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ABSTRACT

When it comes to finding functions in libraries, in whichever language, programmers struggle
with the need for efficient tools able to retrieve all relevant functions in a reasonable time. For
the OCaml language, dowsindex was developed to offer a solution to this problem, via the
notion of isomorphisms of types. It relies on the construction of an Index to precompute
information on the libraries and thus facilitate the search algorithm. We aim to improve its
performances by proposing a new data structure representing the matching relation between
types, along with a new heuristic to optimize the type search.
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1
INTRODUCTION

Regardless of the language, programming is not only an art of ingenious creation of new
algorithms, but also of the efficient use of already existing code. For this purpose, most lan-
guages have extensive libraries which offer solutions to all kinds of problems (processing of data
structures, mathematical calculation, etc.). However, finding a specific function in increasingly
large ecosystems can be an extremely tedious task. Often, search by name is proposed, but
names of modules and the functions that compose them are quite arbitrary, and thus difficult
for the programmer to find.

When we are looking for a function in a specific code, there is usually one property that we
have a relatively clear idea of: the type of the function itself. Indeed, we know what we want
the function to return, but also what arguments it will probably take. We could thus look for
functions by doing a simple text search in the ecosystem of their types, but this would be too
restrictive as it does not allow “approximative search”: for instance, we might want to abstract
the order of arguments or the eventual curryfication.

In functional programming and in strongly typed languages such as OCaml, the types of
functions are easily accessible, which allows to develop searching algorithms based on isomor-
phisms of types (in which “similar types” are considered equivalent [5]) such as the work of
Rittri [10]. Based on this model, Allain et al. [2] propose a tool for function search by type in
the OCaml language, named dowsindex.

As type operations on type isomorphisms are very costly in terms of time complexity [9],
C. Allain develops an heuristic on the search algorithm to improve its performances and allow
dowsindex to scale to reasonable library sizes. In particular, it relies on the construction of an
Index storing information beforehand on the types of a library.

Our work during this internship is a followup in the direction of using heuristics to improve
the performances of dowsindex, in order to reach a scaling on even larger libraries, such as
a whole Opam ecosystem. In that perspective, we develop new techniques to optimize type
matching and library browsing, by extending the Index with a new data structure called Poset.
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2
OUR TOOL: DOWSINDEX

The tool we have been working on during this internship is named dowsindex1. It offers
support to search for functions by their types in an OCaml ecosystem. Here is a quick overview
of the way one can use this tool.

First, dowsindex needs to load the libraries on which the developer will be working and in
which it will be looking for functions. In the loading process, dowsindex will compute some
information about the types of the functions contained in the libraries, and stock it into a data
structure called the Index. We may pass as an argument the name of the libraries we want to
work with, otherwise it will just load the entire Opam ecosystem.

$ dowsindex save <package>

For example, we might work mainly with the library containers2 and thus want to find
our functions in the ecosystem formed solely with this library. We then start with the following
command when we use dowsindex for the first time:

$ dowsindex save containers

Our tool is now ready to be used for a type search. This is done with the following command:

$ dowsindex search <type>

A type will be written like a regular OCaml type in the form of a string, for example if
we are looking for a function checking the presence of an element in a list of integers, we can
search for the following type:

int list * int -> bool
Our first query will thus look like this:

$ dowsindex search "int list * int -> bool"

The result for such a query in the containers package is the following:

CCList.memq : ’a -> ’a list -> bool
CCListLabels.memq : ’a -> set:’a list -> bool

1https://github.com/Drup/dowsing
2https://opam.ocaml.org/packages/containers/
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We retrieve, as expected, the two "mem" functions of the library containers, from the
CCList and CCListLabels modules.

As we can see, the order in which we give the arguments doesn’t matter, nor the curryfication
of the functions. Moreover, even if we ask for a function on lists of integers, dowsindex is able
to find the "mem" functions, which are polymorphic, by looking for more general types than
the one we provide. For this query, dowsindex takes 2 ∗ 10−3 seconds to look inside the 2400
functions of the containers library.

The dowsindex tool also comes with some additional functions to measure the performances
and do statistics on the search time. Indeed, we can measure the time taken by dowsindex to
compare a query type with the ones in the library, grouped by a certain characteristic of types,
for example the number of variables.
$ ./dowsindex stats "int -> int -> int" --measure vars
--------------------------------------------------------
measure total time (ms) avg. time (µs) # unif.
--------------------------------------------------------
0 11.3714 11.3714 1000
1 0.613451 4.26008 144
2 5.2495 9.57938 548
3 1.19901 6.21247 193
4 1.85132 7.12046 260
5 57.7247 916.265 63
6 1.45769 12.6756 115
7 0.290155 13.8169 21
8 0.681877 11.9628 57
9 0.0581741 8.31059 7
10 0.00786781 7.86781 1
12 0.0140667 14.0667 1
14 0.0829697 20.7424 4
--------------------------------------------------------
total time (s): 0.0806022
total # unif.: 2414

The different lines correspond to the types grouped by their number of unique variables,
which goes from 0 to 14 here. The unif. column indicates the number of comparisons between
types dowsindex had to make. Without any optimization, the total matches with the number
of types present in the library, because our tool has to compare the query type with each type
of the library in order to retrieve all functions compatible with our type.

We can see here that most types in the library don’t have any variable (i.e., are not polymor-
phic), and they are also taking quite a lot of time to be compared with the query type. Types
with 5 unique variables also seem to be especially problematic. This information can be useful
when trying to optimize our tool, because it gives us an overview of the most time-expensive
operations for a given type search.
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3
PROBLEM STATEMENT: USING TYPE

ISOMORPHISMS FOR FUNCTION SEARCH

The approach chosen for function search in dowsindex is a search by types modulo isomor-
phism. This section explicits the notions of types and isomorphisms (Section 3.1), specifies the
framework in which we use these concepts (Section 3.2) and exposes the main obstacle to an
efficient search (Section 3.3), which motivates our work on the optimization of dowsindex.

3.1 The type isomorphism approach

3.1.1 • What is a type?
Types are a way of categorizing objects in a language, in order to give sense to the manip-

ulated data and to check the validity of the actions performed on those objects. In a strongly
typed language such as OCaml, any data structure must have a definite type and can only
contain what its type indicates. For example, a list of integers in OCaml (type int list) cannot
contain a boolean value (type bool), and only functions taking an int list or an ’a list (i.e.,
which are parametric in their content, also called polymorphic) can be applied to it.

Definition 3.1.1 (Type τ)
Let V be a set of variables (expressing polymorphism in OCaml), and F a set of constructors
indexed by their arity.

A type τ ∈ T is of the following form:

τ ∈ T = α ∈ A (V ariable)
| τ1 × · · · × τn, n ∈ N (Tuple)
| τ1 −→ τ2 (Arrow)
| fi(τ1, ..., τi), i ∈ N (Constructor)

Note : This way of writing types will be used for our theoretic definitions and results through-
out the report, but the OCaml syntax will be used in some examples for the sake of clarity.
Example 3.1.2 exhibits the natural way of translating OCaml types into our theoretic frame.

Example 3.1.2
The Ocaml type int * bool * 'a -> int list is an arrow composed of a tuple and the con-
structor List of arity one, with arguments who are themselves composed of constructors and a
variable.

Constructors are noted with their name indexed by their arity.
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Int0 × Bool0 × α −→ List1(Int0)
with α ∈ A.

Example 3.1.3
The empty tuple can be seen as the neutral element for tuples and will be noted unit, to remain
consistent with the OCaml type unit.

The Definition 3.1.1 does not cover the whole subtlety of Ocaml’s typing system, but this
degree of precision will suffice to characterize most functions in the common libraries.

3.1.2 • What are type isomorphisms?
Our goal is to find types in a library which are close or equivalent to our query type, in

order to draw the most relevant functions. But what does it mean for two types to be “close”?
Instinctively, we could say that two types are equivalent if there is an invertible function

which transforms any function of the first type to a function of the second type, and its inverse
which allows to go in the reverse way.

Example 3.1.1
Let f be a function of the following type: int * bool -> bool list

We can transform it into a function f ′ of the type int -> bool -> bool list through the
following function:

let transform f x y = f (x, y)
in let f' = transform f

And in the other way:
let transform' f' (x,y) = f' x y
in let f = transform' f'

However, this semantic definition of equivalence is wide, and as shown later in Fig. 3, it can
be very costly to compute. This is why we define a more restrictive definition of types which
are equivalent for our search.

This theory is called ACIC due to the four rules it contains:

• Associativity: tuples are associative

• Commutativity: tuples are commutative

• Identity: unit is the neutral element for tuples

• Curryfication: arrows to the left of an arrow can be removed and the types grouped into
tuples
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Definition 3.1.2 (ACIC-Equivalence)
The relation of equivalence, noted ≡, is the transitive closure of the reflexive and symmetric
relation defined by the following rules:

α × β ≡T β × α (×-commutativity)
α × (β × γ) ≡T (α × β) × γ (×-associativity)

unit × α ≡T α (×-unit)
(α × β) → γ ≡T α → β → γ (curryfication)

Example 3.1.3
The following types are ACIC-equivalent:

• int * float ≡ float * int

• int * int -> int ≡ int -> int -> int

• bool * (unit * int * float) -> int -> bool ≡ float * (bool * int) * int -> bool

The notion of equivalence allows us to equate functions which have almost exactly the same
type as our query type, modulo the order and grouping of variables, the presence of unit type
or curryfication.

Example 3.1.4
With only the equivalence, a query for type int * (float * float) -> int list could return
the following results:

int -> float * float -> int list
float -> float -> int -> int list
float * (float * int) -> int list
unit -> float * float * int -> int list

3.1.3 • The matching relation
The search modulo ACIC-equivalence could be enough to return plenty of expected func-

tions, but it might not return every function that could be useful. For example, we could be
interested in a more polymorphic function, which would be able to perform the operation we
are looking for not only on lists of integers but on lists of any type.

A way to find such functions is through the notion of matching. Indeed, the notion of
matching includes that of equivalence, while allowing the instanciation of the variables in one
of the two types.

An instanciation of a variable consists in the specification of the corresponding polymorphic
type into a type without the variable in question.
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Example 3.1.1
In OCaml, the instanciation of the variable 'a as int will allow us to go from polymorphic
type :
'a * 'a list -> 'a list
to the monomorphic type :
int * int list -> int list

Instanciation of variables can be formalized through the notion of a substitution.

Definition 3.1.2 (Substitution)
In a type theory with a set of variables A, a substitution is a function σ from A to the set of
all types T .

Note : For the sake of clarity, substitutions will be noted as a set of correspondances (map)
between variables and typed, ignoring fixed points.

Example 3.1.3
The following substitution σ associates the variables α and γ to other types, but all other
variables are fixed points.

σ = { α 7→ Int0; γ 7→ (List1(Int0) −→ Float0)}

The extension of the substitution will be the function allowing us to transform a polymorphic
type into a less polymorphic type with instanciated variables.

Definition 3.1.4 (Extension of a substitution)
The extension σ̂ of a subsitution σ is the only endomorphism of T whose restriction to A is σ.

In other words, σ̂ can be inductively defined by:

σ̂(α) = σ(α) ∀α ∈ A
σ̂(τ1 × · · · × τn) = σ̂(τ1) × · · · × σ̂(τn) ∀n ∈ N

σ̂(τ1 −→ τ2) = σ̂(τ1) −→ σ̂(τ2)
σ̂(fi(τ1, . . . , τai

)) = fi(σ̂(τ1), . . . , σ̂(τai
)) ∀i ∈ I

If a type τ1 can be obtained through the extension of a substitution σ from the type τ2, we
will write:

τ2 ≻σ τ1

Note : For the sake of clarity, we allow by abuse of language to refer to the extension of a
substitution as the substitution itself.
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Example 3.1.5

(α −→ Int0 −→ γ) ≻σ (Int0 −→ Int0 −→ γ)
with the substitution

σ = { α 7→ Int0; γ 7→ β}

This translates into the Ocaml syntax as:
σ = { 'a 7→ int ; 'c 7→ 'b }
'a -> int -> 'c ≻σ int -> int -> 'b

We are now able to define the notion of matching, noted ≼, or more precisely ACIC-matching
since it is dependant on the ACIC-equivalence theory.

Definition 3.1.6 (ACIC-Matching)
A type τ is said to match with a type τ ′ if their exists a type τ0 such that:

τ ′ ≻ τ0 ≡ τ

In other words, τ is equivalent to a type which can be obtained from τ ′ through a substitu-
tion.

We will write
τ ≼ τ ′

or τ ≼σ τ ′ if the substitution σ is known.

Example 3.1.7
The following types are matching:

• int ≼σ 'a with σ = { 'a 7→ int }

• float * 'a -> 'a ≼σ int list -> float -> int list with σ = { 'a 7→ int list }

• int -> 'a * 'a ≼σ 'c -> 'b * 'a with σ = { 'b 7→ 'a ; 'c 7→ int }

With this new definition, we may search not only for types equivalent to our query τ , but
for all types which are more general than τ modulo ≡, i.e., all types τ ′ such that τ ≼ τ ′.

Example 3.1.8
When querying for a type int * int list -> int list, we will now retrieve the following
types via ACIC-matching:

• int -> int list -> int list

• int -> 'a list -> 'a list

• 'a list * 'a -> 'a list
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Note : The matching relation, unlike equivalence, is not symmetric, therefore we can write
that float -> int -> int matches with int * float -> 'a, but int * float -> 'a does not
match with float -> int -> int (the first type cannot be instantiated).

Theorem 3.1.9 (Matching is a partial order on types)
The matching relation is reflexive, transitive and antisymmetric modulo ACIC-equivalence.
Thus, matching defines a partial order on types.

Proof.
Here are a few sketches of proof for each property:

• Reflexivity: done via an empty substitution (i.e., the identity function)

• Transitivity: done via a composition of substitutions

• Antisymmetric: if one of the substitution is empty, then we have the ACIC-equivalence by
definition of the matching relation, or else we have τ ≻σ τ ′ and τ ′ ≻σ′ τ , σ must have
instantiated only variables that are not in τ , or instantiated them into other variables in
order for τ ′ to go back to τ via σ′, so τ ≡ τ ′ modulo possibly the name of the variables

• Matching is not a total ordering: int * 'a -> bool and float are not in a matching relation.
It should be noticed that most pairs of types are actually uncomparable.

Note : We can notice that the matching relation embodies the intuitive notion of a type
being “more general” than another. For example, 'a -> 'a list, as a polymorphic type, is
more general than int -> int list, which is translated in our theory as it being "greater" in
the partial order established by ACIC-matching: int -> int list ≼ 'a -> 'a list

3.1.4 • Unification
Using the ACIC-matching relation as the criterion of our search tool will help us retrieve

all expected functions in the majority of cases, but at times, we may want to also authorize the
instantiation of our query type and not just the instantiation of types from the library.

For example, when looking for a printing function for lists, we might not know exactly which
arguments it takes : only a list, or a list and a printer for the values of the list. Thus, we may
ask for a function taking a type 'a * 'b list as argument, and authorize the instantiation of
our query type so that we can retrieve functions with more arguments than just the list.

In that perspective, we define the relation of unification between types, noted ∼=.

Definition 3.1.1 (ACIC-Unification)
Two types τ and τ ′ are said to unify if there exists two equivalent types which can be obtained
respectively from τ and τ ′ by substitution, ie:

τ ∼= τ ′ ⇔ (∃(τ0, τ1) : τ ≻ τ0 ∧ τ ′ ≻ τ1 ∧ τ0 ≡ τ1)
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Example 3.1.2
The following types unify:

• int * 'a ∼= 'a * float

• float -> 'a -> int ∼= int * float -> int

• 'a list -> int -> ('a * int list) ∼= unit -> 'a * bool list -> ('a list * bool)

Note : We can notice that the relations of matching and equivalence both imply a relation
of unification, respectively where one or two substitutions are the identity.

Example 3.1.3
To summarize our notions, Fig. 1 gives an example for the relation between ACIC-unification,
ACIC-matching and ACIC-equivalence.

int * 'a -> 'b

int * float -> int

float -> int -> int

float -> 'a -> 'a

≡

≻
≻

equiv.(≡
)m

at
ch

es
w

ith
(≼

)

un
ifi

ca
tio

n
(∼ =

)
m

atches
w

ith
(≼)

Figure 1: Equivalence, Matching and Unification

We have seen multiple ways of defining the notion of compatibility between types, namely
ACIC-equivalence and the corresponding ACIC-matching and ACIC-unification. In the follow-
ing Section 3.2, we will see how those notions have been integrated in dowsindex.

3.2 Unification: usage and complexity

In this section, we aim to explain which choices are made in dowsindex concerning the
unification process and provide an overview of the general framework for unification.
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3.2.1 • Equivalence in dowsindex

In order to compute ACIC-equivalence easily, dowsindex works on normalized types, which
are defined as follows.

Definition 3.2.1
A normalized type τ̂ is either :

• a variable, α ∈ V

• a constructor fi(τ̂1, . . . , τ̂i)

• a multiset of normalized and non-multiset types, which is not a singleton, {τ̂1, . . . , τ̂n}, n ̸= 1

• an arrow with arguments grouped as a non empty multiset {τ̂1, . . . , τ̂n} −→ τ0

Example 3.2.2
In order to keep the writing of types consistant, we will write normalized types in the OCaml
syntax, and interpret OCaml tuples as multisets.

The following types are normalized :
• (bool * int) -> int
• ( 'a ) -> 'a
• float list
On the contrary, these types are not normalized :
• (bool * (int * 'a)) -> int (multiset in a multiset)
• int -> int list -> int list (arguments not grouped in a multiset)

We admit here that any type from T can be put in the form of a normalized type, along
with the following theorem.

Theorem 3.2.3 (ACIC-equivalence on normalized types)
The ACIC-equivalence on types is the equality on normalized types.

Example 3.2.4
The types int -> int list -> bool -> bool and (int list * int) * bool -> bool are both
normalized to the type (int list * int * bool) -> bool, and are thus ACIC-equivalent.

Theorem 3.2.3 simplifies our work greatly : once types have been put in normalized form at
the beginning of the algorithm (as implemented by Allain [1]), we don’t have to worry about
ACIC-equivalence anymore since it corresponds exactly to the equality.

3.2.2 • Unification in dowsindex

The idea of using ACIC-unification to search for types in a library is proposed by Rittri
[10]. The algorithm currently implemented in dowsing is an adaptation of the AC-unification
algorithm proposed by Boudet [3] and is implemented by Gabriel Radanne.
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As we saw through Section 3.1.4, instantiation of the query type can help us retrieve more
relevant functions in some cases. However, matching is usually the relation adapted to function
search. Thus, by default, dowsindex searches matching types for our query.

If we want to authorize the instantiation of some variables in the query type, we must
specify it by using a different type syntax and naming explicitly the variables which are not
instantiable, separated from the rest of the type by a point.

Example 3.2.1
Let’s suppose we are looking for a printing function for lists. Such a function might only
take a list as argument, it might also ask for a printer for the values of the list, or even more
arguments. Since we don’t know for sure which arguments it could take, we will allow to
instantiate a variable in the arguments tuple:

$ dowsindex search "b . ’a -> ’b list -> unit"

Since we want a polymorphic printer, we cite b as a variable which is not instantiable, but
we leave a free for instantiation.

3.2.3 • Equivalence theories
The ACIC-unification rules have not been selected randomly, but are linked to the definition

of type isomorphism as the existence of an invertible function between functions of the two types.
Further in this section, refer to that definition with the equivalence symbol ≃. In a given set
of types, ≃-equivalence can be said to be "equivalent to" (i.e. defines the same isomorphisms
as) a theory, i.e., a set of rules holding in that environment.

Definition 3.2.1
Let us introduce, as in [5] the following theory Th1

×T :

α × β ≡T β × α (×-commutativity)
α × (β × γ) ≡T (α × β) × γ (×-associativity)

unit × α ≡T α (×-unit)
(α × β) → γ ≡T α → β → γ (curryfication)

unit → α ≡T α (curry-unit)
α → (β × γ) ≡T (α → β) × (α → γ) (distribution)

α → unit ≡T unit (dist-unit)

Theorem 3.2.2 (Th1
×T is sound [5])

In first-order λ-calculus with surjective pairing and unit type, the theory Th1
×T is sound.

In other words, for two types τ and τ ′ in this λ-calculus, their equivalence in the Th1
×T

theory implies ≃-equivalence, or:

∀(τ, τ ′), τ ≡T h1
×T

τ ′ ⇒ τ ≃ τ ′
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Theorem 3.2.3 (Th1
×T is complete [5])

In first-order λ-calculus with surjective pairing and unit type, the theory Th1
×T is complete.

In other words, for two types τ and τ ′ in this λ-calculus, ≃-equivalence implies equivalence
in the Th1

×T theory, or:
∀(τ, τ ′), τ ≃ τ ′ ⇒ τ ≡T h1

×T
τ ′

The soundness result is crucial for us: we want to retrieve only functions with types which
are indeed equivalent to our query type.

However, completeness is less essential: it gives us the assurance that we will find all equiv-
alent types, but this also implies a complex theory with many rules, some of which might not
be that necessary to us. As long as we retrieve the most important functions, we may set aside
the others.

This allows Rittri [10] to propose a specific theory for the research by type, among the
different existent theories defined by the rules they allow and the ones they cut from Th1

×T .
Here are a few theories less complete than Th1

×T with the rules they have abandoned:

• Linear-Th1
×T : the two rules distribution and dist-unit correspond to isomorphisms which are

not linear, and are therefore abandoned in the linear-Th1
×T theory

• ACIC-theory: apart from the non-linear rules, it also cuts the curry-unit rule

• AC-theory: as its name suggests, this theory only keeps ×-commutativity and ×-associativity,
it is a minimalist theory for type isomorphisms.

Then how do we choose out theory for type search? A reason for keeping ACIC-rules is
their respective importance for function search:

• ×-commutativity and ×-associativity are essential if we want to forget about the order and
the grouping of arguments in our functions

• ×-unit is allowing us to ignore the number of arguments by instantiating a variable as unit

• curryfication is essential to abstract the way of passing arguments to the function

The rules chosen for different theories of equivalence are summarized in Fig. 2.

3.2.4 • Complexity results on type isomorphisms
Another aspect and our main motivation in cutting rules from Th1

×T is the complexity of
the computation of equivalence, matching and unification in such a theory. Indeed, as shown
in Fig. 3, unification is always very costly, forcing us to try to reduce the complexity of its
computation as much as possible.

The main obstacle to choosing a complete theory such as Th1
×T is that the unification

modulo this theory is undecidable, i.e., there is no algorithm giving an answer to the problem
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α × β ≡ β × α
α × (β × γ) ≡ (α × β) × γ

}
AC

unit × α ≡ α
(α × β) → γ ≡ α → β → γ

 ACIC

unit → α ≡ α


Linear − Th1

×T

α → (β × γ) ≡ (α → β) × (α → γ)
α → unit ≡ unit


Th1

×T

Figure 2: Rules for equivalence theories

Theories Th1
×T Linear-Th1

×T ACIC-theory AC-theory
Equivalence ? Polynomial [12] Polynomial Polynomial

Matching
NP-complete for
terms in normal
form [9]

NP-complete NP-complete NP-complete [8]

Unification Undecidable [9] NP-complete [9] NP-complete NP-complete [8]

Figure 3: Complexity of unification and matching operations depending on the equivalence
theory

of two types unifying or not in finite time. However, when we lose some rules from the complete
theory, we obtain smaller theories where the unification problem is only NP-complete3. From
there comes the desire to remove as many unnecessary rules as possible from Th1

×T , and thus
to choose the ACIC-theory for our problem.

However, unification is still very costly in that theory, which motivates further work on our
tool to obtain the result of a function search in reasonable time.

3.3 Our approach for search by types

The search for functions using type isomorphisms was first proposed by M. Rittri in [10]
and implemented in the ML language.

It consists in the application of the unification algorithm on a query type successively with
all other types from the library on which we are searching, and it returns all types matching
with our query type.

Note : Although we are trying to retrieve only the types in a matching relationship with our
query type, we are still using the unification algorithm for two reasons:

• to be able to allow punctually the instantiation of some variables in the query
3Note that in our case, considering the size of the entries (several thousands of functions in a library of

reasonable size), this complexity still implies extensive computation times
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• since matching modulo ACIC-equivalence is also NP-complete, we don’t lose much in using
the unification algorithm directly

The goal of dowsindex is first to implement this idea in the OCaml language, which is also
very adapted to the problem, and then to allow it to scale on larger function ecosytems than it
previously did for the ML language (Lazy ML library of 294 types).

3.3.1 • The wall of unification complexity
As we mentioned in Section 3.2.4, solving the unification problem comes at a high cost, even

when the result is negative (i.e two types do not unify).
Concretely, when performing an exhaustive search with ACIC-unification in the library

containers, by attempting to unify our query type with each type in the library, we obtain the
following results:
$ dowsindex stats "'a * 'b -> (int -> 'b list) * 'a list -> 'a * 'b list"
------------------------------------------------------------
measure total time (ms) avg. time (µs) # unif.
------------------------------------------------------------
variable 10518.8 53125.3 198
constructor 27.734 15.3142 1811
tuple 1857.82 4632.97 401
other 0.0331402 8.28505 4
------------------------------------------------------------
total time (s): 12.4044
total # unif.: 2414

For a highly polymorphic type such as this one, the search took 12.4 seconds for only 2414
types in containers, which is a rather small library.

Clearly, an exhaustive function search by types modulo isomorphism does not scale to a
bigger environment. Since our theory is already the simplest one we could use while keeping
the necessary properties of isomorphisms for a search by types, we need to find another way of
working around the unification’s complexity problem.

As we have seen, the unification procedure is very costly. Our goal for the rest of this
report is thus to attempt to pre-process our collection of functions in order to avoid as many
unification as possible:

• We first present in Section 4 the original technique developed in dowsindex by C. Allain,
which uses the shape of types to index and classify them.

• We then present in Section 5.2 a new technique which uses the relation between types to
avoid unifications.
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4
INDEXING SHAPE PROPERTIES ON TYPES

The first strategy used in dowsindex to decrease the number of unifications is to pre-compute
simple “shape” properties on types allowing us to deduce the unification relation between types
without having to actually run the unification algorithm. Those properties are stored in the
Index and then retrieved when needed during the search. This approach was implemented by
C. Allain last year in dowsindex.

In this section, we first motivate this approach with measures from practical examples. We
then present the notion of Feature and their Index.

4.1 Exploring the performance of unification

The optimization strategy proposed by Allain et al. [2] for dowsindex is divided in two
steps. The first step is to identify patterns of the most complex types for unification, namely
the ones taking the most time to unify with a given query type. Then, we attempt to find
properties of those types, which could help us avoid the use of our unification algorithm on
them and thus gain in computation time on our search.

For this purpose, C. Allain developed measures on types to understand which properties of
types could make them especially difficult to unify with.

Example 4.1.1
A measure used by C. Allain was the type of the head.

Definition 4.1.2 (Measure on types: Head)
The Head measure is a function from the set of all types T to itself, which associates, to each
type of our theory, the type of its head ν.

The head ν can be seen as the outermost right element from a type, or the return type of
a function. It is defined by:

ν(τ −→ τ0) = τ0

ν(τ) = τ for all other types

Example 4.1.3
Here are the heads of a few types:

• ν( int * bool -> 'a list -> 'a ) = 'a

• ν( float ) = float

• ν( int list -> (int * int) ) = int * int
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The procedure was to look at a type search in the library and to time the sum of all
unifications, grouped by the values of types for the measure.

They obtained the following result:

$ ./dowsindex stats "int -> int -> int" --measure head
------------------------------------------------------------
measure total time (ms) avg. time (µs) # unif.
------------------------------------------------------------
variable 506.137 311.086 1627
constructor 62.705 2.45229 25570
tuple 11.2598 2.73429 4118
other 0.815153 3.09944 263
------------------------------------------------------------
total time (s): 0.580917
total # unif.: 31578

The conclusion of the experiment for this measure was that types with a variable as head
were way more difficult than others to unify with. This gave an indication on the most important
types to avoid a unification with, and thus the kind of properties we might be looking for on
types.

4.2 Features: a type property

The main principle of Features is to find easily computed properties which could, in some
cases, ensure us that two types are NOT unifiable, and therefore save us from applying the
unification algorithm on them.

A Feature designates the association of an encoding function and an unification criterion.
Namely, the encoding function is a function of types, which retrieves an interesting property
with respect to ACIC-unification. The corresponding criterion is a theorem used to decide
whether two types may be unified or cannot be unified at all, based on their encoding value.

4.2.1 • Encoding function on types
We illustrate here the notion of encoding function with two examples of Features used in

dowsindex, Head and Arity.

Definition 4.2.1 (Encoding function: Head)
The Head encoding function associates to a type in T the type of its head denoted ν, as
introduced in Definition 4.1.2.
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Note : The encoding function of the Head feature is exactly the same function as the Head
measure, but the two notions should not be confused: while the Head measure is a way of
sorting types according to their head when doing statistics on the performances of our tool,
the Head feature is part of an optimization of dowsindex in the sense that it gives a theoretic
frame allowing to avoid the computation of the unification for some types.

Definition 4.2.2 (Base of types)
The base is a multiset defined on normalized types (see Section 3.2.1) by :

• B(α) = {α}

• B(fi(τ̂1, . . . , τ̂i)) = (⋃i
k=1 B(τ̂k)) ⋃{fi}

• B({τ̂1, . . . , τ̂n}) = ⋃n
k=1 B(τ̂k)

• B({τ̂1, . . . , τ̂n} −→ τ0) = ⋃n
k=0 B(τ̂k)

where ⋃ is the union on multisets.
It can be seen as the multiset of all constructors and variables present in a type.

Definition 4.2.3 (Tail of types)
The tail is a multiset defined on normalized types by :

• B({τ̂1, . . . , τ̂n} −→ τ0) = {τ̂1, . . . , τ̂n}

• B(τ̂) = ∅ for all other types

It can be seen as the multiset of arguments of an arrow type, which is empty if the type is
not an arrow.

Definition 4.2.4 (Encoding function: Arity)
The Arity encoding function associates to a type τ a pair A(τ) = (is_var, nb_const) ∈ B × N
defined by:

• Boolean is_var: this value indicates whether τ contains any variable in its base

• Int nb_const: this value indicates the number of constructors in the tail of τ

Note : This function encodes, as its name indicates, the arity of a function with type τ .
Indeed, we count the number of constructors in the tail, which corresponds to the arguments
of the function. The presence of a variable in the base indicates that there could be more
constructors by instantiation.

Therefore, a condensed way of denoting the Arity encoding function is as follows:

• (false, i) is noted (= i) forall i ∈ N

• (true, i) is noted (≥ i) forall i ∈ N

From now on, we use this notation for Arity encoding.
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Example 4.2.5
Here are the values of a few types with respect to the Arity encoding :

• A((int * bool) -> int) = (= 2)
(no variable and two constructors on the left of the arrow)

• A((int * int list * 'a) -> 'a) = (≥ 3)
(a variable and three constructors on the left of the arrow)

• A(int) = (= 0)
(no variable and no constructor on the left of the arrow, since it is not an arrow)

4.2.2 • Unification criterion
The second part of a Feature is a theorem (or criterion) giving the incompatibility for

unification of some types based on their values of the corresponding measure. Let’s take again
the example of the Head Feature.

Theorem 4.2.1 (Criterion for unification: Head)
If two types are ACIC-unifiable, and that none of their heads is a variable, then their heads
are equal, or:

∀(τ, τ ′) ∈ T 2, ν(τ) /∈ A ∧ ν(τ ′) /∈ A ∧ (τ ∼= τ ′) ⇒ ν(τ) = ν(τ ′)

Theorem 4.2.2 (Corollary)
The reciprocal of this property gives us the following property:

∀(τ, τ ′) ∈ T 2, ν(τ) /∈ A ∧ ν(τ ′) /∈ A ∧ (ν(τ) = ν(τ ′)) ⇒ (τ ≇ τ ′)
In other words, if two types have different heads, none of which is a variable, then they are

not unifiable.

Example 4.2.3
The following pairs of types are not unifiable:

• 'a * int -> int and 'a -> bool because their heads are not variables and are not equal
(int ̸= bool)

• ('a -> int) * bool -> int list and float because their heads are not variables and are
not equal (int list ̸= float)

The following pairs of types may be unifiable according to the Head Feature:

• unit -> int -> 'a and float -> float because one of the heads is a variable

• bool * int -> int and int -> int because their heads are equal

• 'a list -> int -> 'a and int list -> int -> int because one of the heads is a variable
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Note : If we compute the values of the head for all types in the library and for our query,
a quick comparison between them can allow us to decide whether they are not unifiable, or
if they may be unifiable (notice that in that case, we gain no information on the unification
between the types in question, we only know that they may unify).

We can do the same for the Arity Feature.

Theorem 4.2.4 (Criterion for unification: Arity)
If two types τ and τ ′ unify, then the arities of the ACIC-equivalent types they instantiate to
are equal.

The contraposition of this theorem translates naturally with the Arity encoding as the
following corollary.

Theorem 4.2.5 (Corollary)
Two types τ and τ ′ cannot unify if their Arity encoding are not compatible, i.e. in the following
cases:

• A(τ) = (= i) and A(τ ′) = (= j) with i ̸= j

• A(τ) = (= i) and A(τ ′) = (≥ j) with i < j

• symmetrically, A(τ) = (≥ i) and A(τ ′) = (= j) with i > j

Example 4.2.6
The following types cannot unify since their Arity encoding are not compatible :

• int -> int -> int of arity (= 2) and float -> float of arity (= 1)
• 'a list * bool * int -> 'a of arity (≥ 3) and int list -> int list of arity (= 2)

The following types may, however, be unifiable according to the Arity Feature :
• int -> int -> int of arity (= 2) and float * float -> float of arity (= 2)
• 'a list * bool * int -> 'a of arity (≥ 3) and 'a -> 'a of arity (≥ 0)

4.3 Storage: structure of Trie

In order to store the values of all types for each Feature and to access them in an efficient
way, we use a specific data structure called a Trie.

Our Trie of Features is a rooted tree as shown in Fig. 4 where the leaves are sets of types
from the library. Each level of depth in the tree corresponds to a Feature, and the nodes are
possible values of the corresponding feature.

Example 4.3.1
The type τ : int * 'a list * 'a -> bool takes the following values for the Features’ measures:

• Head: ν(τ) = bool

• Arity: A(τ) = (= 2)
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Trie

v1(F1)

v1(F2) v2(F2) v3(F2)

v2(F1)

v1(F2) v2(F2) v1(F2)

v3(F1)

v1(F2) v2(F2) v1(F2) Second feature (F2)

First feature (F1)

Figure 4: Structure of the Trie (v3(F2) is the third value of the second feature)

Trie

bool

(≥ 1) (= 2)

int * 'a list * 'a -> bool

(≥ 4)

int

(≥ 1) (= 2) (≥ 4)

'a list

(≥ 1) (= 2) (≥ 4) Arity

Head

Figure 5: The place of type int * 'a list * 'a -> bool in a simple Trie

Therefore, in a two-level Trie with the Features Head and Arity, this type would be in the
subtree of types with Head value bool, and in that subtree, it would be placed in the subsubtree
for types with Arity value (= 2), as shown in Figure 5.

This structure of Trie allows us to easily retrieve the set of all types with specific values for
different Features.

4.4 Querying the Trie

Once the Trie has been statically computed, it contains all the types of the library, sorted
by their feature values. Therefore, given a query type, we can browse the Trie to retrieve all
possibly compatible types of the library according to all Features. This process is done by visit-
ing the different branches of the Trie and eliminating, at each level, the subtrees corresponding
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to uncompatible values with the query type.

Example 4.4.1
For the query type τ : int * 'a list * 'a -> bool, the uncompatible values for the different
Features are as follow:

• Head: types τ ′ such that (ν(τ ′) ̸= α ∈ A) ∧ (ν(τ ′) ̸= bool)

• Arity: types τ ′ such that (A(τ ′) = (= i), i ̸= j) ∨ (A(τ ′) = (≥ i), i ≥ 3)

4.5 Results on the use of the Index

With this approach, on a Trie built with only two Features, C. Allain was able to decrease
the search time of most types by at least 70% and up to 99%. Table 1 is an extract of those
results, presented in the research report [1].

type total time (s) nb. unifications
without criterion with criterions without criterion with criterions

int → int → int 0.638 0.001 (0.23%) 31578 121 (0.38%)
int → int → int → int 1.622 0.001 (0.08%) 31578 107 (0.34%)

int → (int → int) → list(α) 11.193 0.011 (0.93%) 31578 141 (0.45%)
int → float → bool → unit 0.636 0.004 (0.60%) 31578 126 (0.40%)

α → int → unit 1.180 0.225 (19.06%) 31578 2443 (7.74%)
int → int → α 5.097 1.566 (30.71%) 31578 3677 (11.64%)

Table 1: Comparison of unification time with and without the use of Features

Yet for some types, the time of search can go up to several seconds for especially polymorphic
types, even though our search ecosystem is still of a reasonable size (around 30000 functions to
browse in here).

Though we could have kept looking for improvements through new features, we decided
to try another approach and look for a different kind of properties on types with respect to
unification. Our contribution is the definition of a new Index data structure based on type
relations, as described in the next section.
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5
CONTRIBUTION: A MATCHING POSET TO
LEVERAGE RELATIONS BETWEEN TYPES

Although this previous work on dowsindex improved greatly the performances of the tool,
our type search still takes too much time for some queries, as we can see for int -> int -> 'a
which took 5 seconds to return its result. There is therefore a need for more research on how
to improve our tool’s performance. One particular source of difficulty are queries with high
polymorphism, which are harder to classify by simply using the shape as was done in the last
section.

For this purpose, we investigate a new lead: using relation between types, and notably
the matching relation presented in Section 3.1.3, to statically build a new structure called the
Matching Poset to shortcut unification. We first present the theoretical result underlying this
idea in Section 5.1, before presenting the notion of Matching Poset (Section 5.2), how to build
it (Section 5.3) and how to query it in combination with the Feature Index (Section 5.4).

5.1 Matching: a relation between types

The principle of Features is to store information on the types and use them to deduce
the result of some unifications without having to perform our unification algorithm. In our
new approach, the principle is essentially the same, except for the kind of information we will
be storing: instead of looking for properties of the types themselves, we will be looking at
properties of the relation between the types, the matching relation in this case.

We saw in Section 3.1.3 that the matching relation defines a partial order on types. This
property has a great advantage: it makes it easy to store the matching relation between all
types in the library, in order to use those relations for well-chosen properties concerning the
unification of types. In the following section, we expose two theorems which serve as a basis
for our improvement of the dowsindex tool.

5.1.1 • Theorems on matching
The two following theorems are propagating unification properties based on the matching

relation. Namely, they are allowing us to deduce new unifications from the ones we know
between our query type and the library’s types, or on the contrary to deduce types that or
not-unifiable based on types already known as not-unifiable.

Those theorems both confirm some rather intuitive ideas on types, linked to the interpre-
tation of the matching relation as a measure of types being more general than others.
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Theorem 5.1.1 (Matching theorem 1)
If two types τq and τlib unify, then τq also unifies with all types which are more general than
τlib.

∀(τq, τlib), τq
∼= τlib =⇒ (∀τ ′

lib, τlib ≼ τ ′
lib ⇒ τq

∼= τ ′
lib)

Proof.
The proof is done by working on normalized types for the ACIC-equivalence, and composing
the substitutions from the unification on τlib and the matching on τ ′

lib.

Example 5.1.2
Since the types int -> float -> 'a list and (float * unit * int) -> bool list unify, we
can deduce the following unifications between int -> float -> 'a list and types which are
more general than (float * unit * int) -> bool list:

• int -> float -> 'a list ∼= ('a * unit * int) -> bool list

• int -> float -> 'a list ∼= float -> 'a -> int -> 'b list

Theorem 5.1.3 (Matching theorem 2)
If two types τq and τlib don’t unify, then τq does not unify with any type which is less general
than τlib either.

∀(τq, τlib), τq ≇ τlib ⇒ (∀τ ′
lib, τ ′

lib ≼ τlib ⇒ τq ≇ τ ′
lib)

Example 5.1.4
Since the types 'a -> bool and 'a -> 'b -> 'a list don’t unify, we can deduce that 'a ->
bool does not unify with the following types which are less general (i.e., more specific) than
'a -> 'b -> 'a list:

• 'a -> bool ≇ bool -> 'b -> bool list

• 'a -> bool ≇ (int * int) -> int list

As we just saw, Theorem 5.1.1 and 5.1.3 give us the result of the unification of types under
certain conditions. This lead to the main idea of our contribution: during our search, whenever
we do the computation of the unification between the query type and a type in the library, we
can propagate the result to other pairs of types by following the matching relation. Thus, we
can avoid the computation of the unification for those types.

Note : Actually, we will only use Theorem 5.1.3 on the propagation of non-unification.
The main argument for this choice is linked to the interest of the unification algorithm,

which computes more than just the relation of unification between two types. Indeed, when
two types unify, the algorithm also returns the unifiers, which are the substitutions leading to
the two ACIC-equivalent types justifying the unification relation. Those unifiers could be useful
to sort the list of the retrieved functions, in the sense that the size of unifiers is a good measure
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of the proximity between two types, and thus smaller unifiers may correspond to functions
which are better suited for our query.

Yet, if we were to use Theorem 5.1.1, we would deduce the unification without running the
algorithm, and thus we wouldn’t have access to the unifiers.

5.2 The Matching Partial Order Set

To leverage these two theorems, we introduce a new structure called the Matching Partially
Ordered Set, or Poset for short, which contains the whole information on the matching relation
between types of the libraries.

5.2.1 • Structure of the Poset
The natural representation of partially ordered sets are Directed Acyclic Graphs (DAG).

The vertices of such a graph represent the elements of the set, that is types of library functions
in our case, and the edges represent the binary relation between them, that is the partial order
"matching" here.

Note : Since ACIC-equivalence is already resolved by manipulating normalized types (see
Section 3.2.1), we can consider types in the quotient set of T by ≡. This allows us to refer here
to the matching relation as just a matter of substitution, ignoring the equivalence.

Since the matching relation is not symmetric, the edges are directed. An edge between
types τ1 and τ2 means therefore:

τ1 ≼ τ2

, namely the type τ1 can be obtained from an instanciation of the variables of τ2.
Finally, the graph can be proven to be acyclic in the case of a partially ordered set.

Supposing the existence of a cycle τ0 ≤ τ1 ≤ ... ≤ τn ≤ τ0 in our graph, by successive
compositions of the substitutions leading from τ0 to τn, from τn to τn−1 and so on, there would
then be a non-empty substitution (i.e., different than the identity) going from τ0 to itself, which
is absurd.

The main interest of the graph is to be able to retrieve all types which are in a matching
relation with a given type τ : the types τ ′ such that τ ′ ≼ τ are actually the whole offspring of
τ in the graph, while the types τ ′′ such that τ ≼ τ ′′ are its ancestry.

Since the relation is transitive, we do not need to keep track of all relations between types
but only the corresponding the transitive reduction of the matching relation (i.e., the smallest
relation of which matching is the transitive closure), therefore gaining space by only representing
necessary edges.
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5.2.2 • Implementation
For the implementation of this Directed Acyclic Graph, we used the OcamlGraph4 library.

Thanks to the GraphViz5 extension of this package, we can obtain graphical representations of
our graphs, as illustrated in Example 5.2.1.

Example 5.2.1
A Poset on four types ('a -> 'b, int -> 'b, 'a -> int, int -> int) is depicted in Fig. 6.

The type 'a -> 'b can be instanciated either to int -> 'b through σ1 = { 'a 7→ int } or
to 'a -> int with σ2 = { 'b 7→ int }, which can both be instanciated to int -> int via the
respective substitutions σ2 and σ1.

This leads to the following matching relations :
• int -> int ≼ int -> 'b
• int -> int ≼ 'a -> int
• int -> 'b ≼ 'a -> 'b
• 'a -> int ≼ 'a -> 'b

Figure 6: A simple Poset

4http://ocamlgraph.lri.fr/
5https://graphviz.org/
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5.3 Building the Poset from the library: insertion al-
gorithm

While done at pre-computation time, the Matching Poset can still be large for big libraries.
Nevertheless, it should be very shallow: most types are not in relation with each others. We
now describe an iterative algorithm to build the Poset and take advantage of its sparseness.

5.3.1 • Principle of the insertion algorithm
The construction of the Poset is done by inserting all the library types one by one in the

graph. Let’s consider τ0, a type to be inserted in a current poset.
Already inserted types in the Poset can be divided in four groups depending on their match-

ing relation to τ0, namely:
• Bigger : the types τ which are more general than τ0, i.e., such that τ0 ≼ τ ;
• Smaller : the types τ which are more specific than τ0, i.e., such that τ ≼ τ0;
• Equal : the types that are τ equal to τ0 is the sense of ACIC-equivalence, i.e., such that

τ ≡ τ0 (which is equivalent to τ being both Bigger and Smaller than τ0)
• Uncomparable : since the matching relation is not a total order, τ can be neither

Bigger nor Smaller than τ0

If we stored all the matching relations in the Poset, we would have to link τ0 to all the types
in the Bigger and the Smaller groups. However, we are only interested in the transitive
reduction of the matching relation. Therefore, we will need to determine three sets:

• the set of types which will be parents (immediate ancestors) of τ0
• the set of types which will be children (immediate sucessors) of τ0
• the set of edges which should be removed in order to keep the transitive reduction of the

matching relation

Note : An interesting property of the Poset is that when comparing τ0 with the other types,
the resulting groups are spatially delimited in the Poset, as shown in Proposition 5.3.1.

Proposition 5.3.1
If we exclude the possible Equal zone (singleton τ0), the three remaining groups of types can
be identified as three delimited zones :

• Bigger zone : types Bigger than τ0 are grouped in the upper part of the Poset and are
delimited by a "lower upper bound" (LUB)

• Smaller zone : types Smaller than τ0 are grouped in the lower part of the Poset and
are delimited by an "upper lower bound" (ULB)

• Uncomparable zone : the zone formed by the rest of the types which are Uncomparable
with τ0 constitutes the central part of the Poset

Proof.
The delimitation of those zones comes from transitivity of the matching relation. If a type
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matches with our query type τ0 (i.e., is Smaller), then all its descendants in the Poset will also
match with it (i.e., be Smaller). Symmetrically, if τ0 matches with a type (i.e., that type is
Bigger), then it also matches with its ascendants (i.e., they are also Bigger).

An example of a Poset with delimited zones is given in Example 5.3.2.

Example 5.3.2 (Zones in a Poset)
Let us consider τ0 = int * 'a -> int to insert in the Poset depicted in Fig. 7.

The Bigger zone is marked red, the Smaller zone is marked green, and the Uncompa-
rable zone is marked orange.

Figure 7: Zones for the insertion of type int * 'a -> int in a small Poset

From this results the following definition of the LUB and ULB zones :
• a type in the "lower upper bound" is Bigger than τ0 and so are its ancestors, while its

descendants are all either Uncomparable or Smaller than τ0
• symmetrically, a type in the "upper lower bound" is Smaller than τ0 and so are its de-

scendants, while its ancestors are all either Uncomparable or Bigger than τ0

The types contained in those bounds are actually the ones which should be linked to τ0.
When inserted in the Poset, the type τ0 will be pointed to by all types of the LUB and point
to all types of the ULB. Moreover, the edges between a type from LUB and a type from ULB
should be removed, since they will now be obtained through τ0 by transitivity of the matching
relation.
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Example 5.3.3
In the previous example, members of the LUB and ULB zones for the insertion of int * 'a ->
int would be :

• LUB-zone: int * 'a -> 'b
• ULB-zone: int * float -> int and int * int -> int

The edges to be added are shown in blue and those to be removed in grey in Fig. 8.

Figure 8: Insertion of type int * a -> int in a small Poset

We are now able to define a high-level version of our algorithm.

Algorithm 1 Insertion of τ0 in the Poset Structure, high-level version
1: procedure Insert_In_PoSet(type τ0, Poset P)
2: (LUB, ULB) = Identify_LUB_ULB(P, τ0)
3: for all τ in LUB do
4: Add edge (τ, τ0)
5: for all τ in ULB do
6: Add edge (τ0, τ)
7: for all τ, τ ′ in P∩ (LUB × ULB) do
8: Remove edge (τ, τ ′)
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5.3.2 • Finding LUB and ULB (procedure Identify_LUB_ULB)
Since the majority of types in the Poset are likely to be Uncomparable with τ0, we identify

the LUB and ULB sets by browsing our Poset down from the top and then up from the bottom.
This allows us to stop as the frontier of the Bigger zone when we go down, and to stop as the
frontier of the Smaller zone when we go up, in order not to visit the whole Poset.

While browsing our Poset down from the tops (i.e., the set of nodes which don’t have any
parents), we fill two sets:

• the LUB-set, which will correspond at the end of the algorithm to the LUB-zone
• the Removal set, which will correspond to the edges which should be removed at the end.
The procedure is basically a worklist algorithm that keep a queue of nodes to be visited.

When a new node is visited, the algorithm performs actions depending on the result of the
comparison to τ0:

• Equal: τ0 was already present, end of the algorithm
• Bigger: add the type to the LUB-set and remove its parents from it, add the children to

the list of nodes to visit, keep browsing
• Uncomparable: do nothing and keep going
• Smaller: add the edge between the previous node and this one to the set of edges to be

removed, keep going
We proceed then to the visit of the Poset up from the bottoms (i.e., the set of nodes which

don’t have any children) and fill the last set, the ULB-set which will correspond to the ULB-zone
at the end of the algorithm. This computation is done symmetrically to that of LUB.

5.3.3 • Final Code for Insertion in a Poset
The pseudo-code in Ocaml Style for our insertion algorithm is divided in three main func-

tions : the visit of the Poset down to identify the LUB-zone (Figure 9) and the Remove-set of
edges to be discarded, the visit of the Poset up to identify the ULB-zone (Figure 10, and the
global adding function which applies the changes (Figure 11).
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let visit_down poset tau_0 =
let lub_set = Set.empty in
let edges_to_remove = Set.empty in
let to_visit = Queue.create () in
let rec visit (prev, current) =

try let comp = compare current tau_0 in
match comp with
| Equal -> raise (Type_already_present current)
| Bigger ->

let l = G.succ poset current in
List.iter (fun next -> Queue.push (current, next) to_visit) l;
(* adding the children to the queue of nodes to visit *)
Set.remove lub_set prev;
(* previous node is not in the LUB-zone, remove it *)
Set.add lub_set current;
(* current node is in the LUB-zone of the Poset formed by already visited

nodes, add it *)
visit (Queue.pop to_visit)

| Uncomparable ->
visit (Queue.pop to_visit)

| Smaller ->
Set.add edges_to_remove (prev, current);
(* since we are visiting this node, it is a child of a Bigger node, so the

edge between them must be removed *)
visit (Queue.pop to_visit)

with Queue.Empty -> lub_set, edges_to_remove
(* queue is empty, return the sets *)

in
(* beginning with the tops of the poset *)
Set.iter (fun v -> Queue.push (None, v) to_visit) poset.tops;
visit (Queue.pop to_visit)

Figure 9: Pseudo ocaml code for identifying LUB and edges to be removed (browse down)
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let visit_up poset tau_0 =
let ulb_set = Set.empty in
let to_visit = Queue.create () in
let rec visit (prev, current) =

try let comp = compare current tau_0 in
match comp with
| Equal -> raise (Type_already_present current)
| Bigger -> visit (Queue.pop to_visit)
| Uncomparable -> visit (Queue.pop to_visit)
| Smaller ->

let l = G.pred poset current in
List.iter (fun next -> Queue.push (current, next) to_visit) l;
(* adding the children to the queue of nodes to visit *)
Set.remove ulb_set prev;
(* previous node is not in the ULB-zone, remove it *)
Set.add ulb_set current;
(* current node is in the ULB-zone of the Poset formed by already visited

nodes, add it *)
visit (Queue.pop to_visit)

with Queue.Empty -> ulb_set
(* queue is empty, return the set *)

in
(* beginning with the bottoms of the poset *)
Set.iter (fun v -> Queue.push (None, v) to_visit) poset.bottoms;
visit (Queue.pop to_visit)

Figure 10: Pseudo ocaml code for identifying ULB (browse up)

(** adds tau_0 in current poset G **)
let add poset tau_0 =

let lub_zone, edges_to_remove = visit_down poset tau_0 in
let ulb_zone = visit_up poset tau_0 in
Set.iter (fun v -> G.add_edge poset (v, tau_0)) lub_zone;
Set.iter (fun v -> G.add_edge poset (tau_0, v)) ulb_zone;
Set.iter (fun e -> G.remove_edge poset e) edges_to_remove;;

Figure 11: Pseudo ocaml code for propagating changes in the poset

5.3.4 • Correctness of the algorithm
The proof of our algorithm relies on two parts: the correctness of the LUB and ULB zones

delimited after browsing the Poset, and the correctness of the insertion if those zones have been
correctly identified.

In those proofs, we will use the following definitions:
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• A directed edge from a type to another in a poset P will be noted 99K.

• The binary relation infered from a poset P is the relation of descendance, meaning that to
proove the correctness of our algorithm, the relation infered from our final Poset must be
exactly the matching relation:

τ ′ ≼ τ ⇔ (∃(τ1, . . . , τn), τ 99K τ1 99K · · · 99K τn 99K τ ′)

• A graph is the transitive reduction of the relation it represents, if for any non trivial path
between from a type τ to another type τ ′, there is no edge linking directly τ to τ ′ :

(∃(τ1, . . . , τn), n ∈ N∗, τ 99K τ1 99K · · · 99K τn 99K τ ′) ⇒ ¬(τ 99K τ ′)

Finding LUB and ULB zones :
Let us give a few clues towards the proof that our insertion algorithm finds the correct LUB
and ULB zones.

Definition 5.3.1 ((P , τ0) − LUB zone)
Let τ0 be the type to insert in the poset P . The LUB zone (Lower Upper Bound zone)
corresponding to this insertion is the set of all types τ such that:

• τ0 ≼ τ (τ is Bigger than τ0)

• ∀τ ′, τ 99K τ ′ ⇒ τ0 ⪯̸ τ ′ (children are not Bigger than τ0)

Definition 5.3.2 ((P , τ0) − ULB zone)
Let τ0 be the type to insert in the poset P . The ULB zone (Upper Lower Bound zone)
corresponding to this insertion is the set of all types τ such that:

• τ ≼ τ0 (τ is Smaller than τ0)

• ∀τ ′, τ ′ 99K τ ⇒ τ ′ ⪯̸ τ0 (parents are not Smaller than τ0)

During the visit of the Poset for insertion of a type τ0, the following invariants are verified:

• the ULB-set corresponds to the ULB-zone in the Poset formed by the already visited nodes

• the LUB-set corresponds to the LUB-zone in the Poset formed by the already visited nodes

Correctness of the Poset after insertion :
We will also give a few indications for the proof of the correctness of the insertion, once admitted
the correctness of the LUB and ULB zones.

The following invariant holds during the creation of the Poset: A fter an insertion, the
graph is the transitive reduction of the matching relation on all types present in the Poset.

Theorem 5.3.3 (All relations are correct in the Poset)

∀(τ, τ ′) ∈ P2, (∃(τ1, . . . , τn), τ 99K τ1 99K · · · 99K τn 99K τ ′) ⇒ τ ′ ≼ τ
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Proof.
After inserting a type τ0 in the Poset, all matching relations indicated by the Poset are either:

• a relation given by an edge already present in the Poset: by correctness of the Poset before
insertion, it is still true

• a relation given by an edge added in the insertion process: it is either an edge between a
type of LUB and τ0, and by definition of LUB as a subset of the types Bigger than τ0, it is
correct, or it is between τ0 and a type of ULB, and it is correct with the same reasoning on
Smaller types.

• a relation given by transitivity of the edges in the graph, which is correct because all edges
have just been proven to be correct, and the matching relation is transitive

Theorem 5.3.4 (All correct relations are in the Poset)

∀(τ, τ ′) ∈ P2, τ ′ ≼ τ ⇒ (∃(τ1, . . . , τn), τ 99K τ1 99K · · · 99K τn 99K τ ′)

Proof.
All relations between types of the Poset after an insertion of type τ0 are of the following form:

• a relation between types already present in the Poset before insertion: if it has not been
deleted then we are done, and if it has been deleted then it was a relation between someone
from LUB and ULB. By construction of our algorithm, there exists now an edge between
the type from LUB and τ0 and one between τ0 and the types from ULB, so by transitivity
the relation between the two types is present

• a relation between types previously in the Poset and τ0: by definition of LUB, if a type is
Bigger than τ0, either it belongs to LUB and is therefore linked to τ0, or it has a descendant
in LUB, which allows to deduce its matching relation with τ0. Same goes for Smaller types
and ULB.

Theorem 5.3.5 (The relations are minimal in the Poset)

∀(τ, τ ′) ∈ P2, (∃(τ1, . . . , τn), n ∈ N∗, τ 99K τ1 99K · · · 99K τn 99K τ ′) ⇒ ¬(τ 99K τ ′)

Proof.
By our invariant, we assume the Poset verified the property before the insertion (i.e., was the
transitive reduction of the matching relation on types present before insertion).

Let (τ, τ ′) be two types linked by the following path τ 99K τ1 99K · · · 99K τn 99K τ ′, n ∈ N∗.
Let us reason on the following cases :
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• if none of the types is equal to τ0, since we only added edges containing τ0 in the insertion,
the path existed before, and by the property on the Poset before insertion, we had no edge
between τ and τ ′. Since they are both different from τ0, the edge hasn’t been added in the
insertion, so we have ¬(τ 99K τ ′)

• else if τ = τ0, then we have τ0 99K τ1, which means that τ1 belonged to the ULB-zone, and
thus none of its descendants did. Since edges from τ0 were only added towards types of the
ULB-zone, in particular, we have ¬(τ 99K τ ′)

• else if τ ′ = τ0, then with the symmetrical reasoning on the LUB zone, we also have ¬(τ 99K
τ ′)

• else if n = 1, we thus have τ 99K τ0 99K τ ′, meaning that τ was part of the LUB zone and τ ′

of the ULB zone. If there was an edge between them, it was removed during the insertion,
so we have ¬(τ 99K τ ′)

• else if n > 1, there exists i ∈ [[1 ; n]] such that τi = τ0. Since n > 1, there exists also i′ ∈ [[1 ; n]]
such that τ ′ ≼ τi ≼ τ , so by correction of the algorithm prooved in Theorem 5.3.4, there was
a path τ 99K τ̂1 99K · · · 99K τ̂n 99K τ ′, n ∈ N∗ before insertion, and by our invariant, there
was no edge between τ and τ ′, yet they are both different from τ0 so no edge was added
between them, so we have ¬(τ 99K τ ′)

The conjonction of Theorems 5.3.3, 5.3.4, 5.3.5 prooves that our invariant is correct, and
thus after insertion of all types, our Poset represents exactly the matching relation on our
library.

5.4 Querying the Poset

5.4.1 • A new flow in the search algorithm
In order to use the information contained in the Poset efficiently while keeping the efficient

Trie filtering, the general flow of our search algorithm must change. Previously, the search
algorithm computed the list of all functions compatible with our query type according to the
flow in Fig. 12.

Statically computed

τ Trie U Unifiable functions with τ

Figure 12: Search algorithm without Poset
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The Trie, computed statically, contains the whole library sorted according to the Features.
A query type τ is passed and an algorithm on the Trie eliminates uncompatible types to pass
a list of possibles types, which is treated linearly with the unification algorithm to return all
functions with an unifiable type for τ .

With the addition of the Poset to the Index, the flow of the algorithm is changed as shown
in Figure 13.

Statically computed

τ Trie Poset

U

Unifiable functions with τ

Figure 13: Search algorithm with Poset

The Trie and the Poset are still computed statically and contain the whole library informa-
tion. Once a query type τ is given, an algorithm on the Trie eliminates incompatibles types and
provides an other algorithm on Poset with a list of possible types. With that list and some calls
to the unification algorithm, the algorithm on Poset selects the types and returns all functions
with an type which unifies with τ .

5.4.2 • Link between Trie and Poset
As said in the previous section, before the implementation of the Poset, the type search

strategy was to try unifying on all types compatible with our query type according to the
Features. In our new algorithm, the idea is to iterate on the Poset and not on the compatible
elements of the Trie. However, we have to keep the resulting of filtering using the Features.
More precisely, we need to represent the set of all types selected by the Trie in a way that is
compact and fast to query.

For this purpose, we attribute a unique integer identifier to each type when building the
Trie: these identifiers are generated in a linear way, following the Depth-First search of the
Trie, as shown in Fig. 14.

With this numbering scheme, sets of types are thus simply unions of interval of integers.
We use discrete interval encoding trees (DIET [6]) to represent and manipulate such sets. When
querying the Trie, we directly return the types as such DIET of integers, as shown in Fig. 15.

5.4.3 • The search algorithm
In our new algorithm flow (Fig. 13), the type is first used to query the Trie, which returns

a compact representation of the set of candidate types as a DIET. Then, a second algorithm
run on the Poset and returns the list of functions whose types unify with the query.
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Trie

v1(F1)

v1(F2) v2(F2) v3(F2)

v2(F1)

v1(F2) v2(F2) v1(F2)

v3(F1)

v1(F2) v2(F2) v1(F2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22 23 24 25 26 27

Figure 14: Allocation of identifiers to types in the Trie

Trie

v1(F1)

v1(F2) v2(F2) v3(F2)

v2(F1)

v1(F2) v2(F2) v1(F2)

v3(F1)

v1(F2) v2(F2) v1(F2)

1-5 9-10 22-23 25-27

Figure 15: Range of types with certain feature values

Search algorithm with Poset
Let τ0 be our query type.

We begin with an empty set of unifiable types, noted S∼=. The Poset is browsed in a
Breadth-First Search fashion, and visited types τ are treated as follows:

• if τ is in S∼= (i.e., we already saw that it is a unifiable type), keep visiting
• else if τ is not in the DIET (i.e., we know that it is not unifiable according to the Features,

or it has already been handled by our algorithm), remove all its descendants in the Poset
from the DIET (by Theorem 5.1.3, we know that those are not unifiable either), keep
visiting

• else, call the unification algorithm on τ and τ0. If they are unifiable, add τ to S∼= and keep
visiting. Else, remove it from DIET along with its descendants (Theorem 5.1.3 again).
Keep visiting.

Pseudo-code
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let check poset ~query:tau_0 ~diet =
let unifs = ref Set.empty in
let diet = ref diet in
let to_visit = Queue.create () in
let rec visit_down tau =

try
if Set.mem tau !unifs then visit (Queue.pop to_visit)
else if not (Diet.mem tau !diet) then (

iter_succ poset tau (fun ty -> diet:= Diet.remove diet ty.id);
visit_down (Queue.pop to_visit))
(* iterate on all descendants of tau, remove them from diet *)

else
match Unification.unify tau_0 tau with
| Yes ->

unifs:= Set.add tau !unifs;
let l = G.succ poset tau in
List.iter (fun next -> Queue.push next to_visit) l;
(* add children to the list of nodes to visit *)
visit_down (Queue.pop to_visit)

| No ->
iter_succ poset tau (fun ty -> diet:= Diet.remove diet ty.id);
(* iterate on all descendants of tau, remove them from diet *)
visit_down (Queue.pop to_visit)

with Queue.Empty -> unifs
in
Set.iter (fun v -> Queue.push v to_visit) poset.tops;
(* begin with the tops of the poset *)
visit_down (Queue.pop to_visit);;

Figure 16: Pseudo code for a query

5.5 Optimisation: matching computation

While the matching relation is computed statically (when pre-processing the libraries), it is
still important to reduce the computation time as much as possible.

In this section, we take interest in a way to optimize our algorithm with respect to the
matching.

5.5.1 • Analysis: how is matching computed ?
In dowsindex, the matching relation between a type τ and a type τ ′ is computed with the

following steps:

1. We freeze the variables from τ (i.e., replacing them by uninstantiable variables) and try
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to unify Freeze(τ) with τ ′

2. We freeze the variables from τ ′ (i.e., replacing them by uninstantiable variables) and try
to unify Freeze(τ ′) with τ

3. If only the first unification is positive, then we have τ ≼ τ ′, if only the second, we have
τ ′ ≼ τ , if both are positive then τ and τ ′ are equal modulo ACIC-equivalence, and if none
is positive then they are uncomparable.

Thus, computing the matching relation between two types costs two iterations of the unifi-
cation algorithm, which motivates a new optimization specific to the matching.

5.5.2 • Proposition: using Features to optimise the matching
(Const)

The notion of Feature was introduced to cut unifications in the search algorithm, however
is also applies to matching as a double-unification process. This is why we used the Features
for the computation of the matching relation while building the Poset as well.

But we also found a specific way of avoiding unification computations in the matching: a
new Feature specifically for the matching, called Const.

The Const Matching Feature is based on the observation of constructors in both types.
Indeed, when trying to prove that a type τ matches with a type τ ′, since none of the variables
from τ can be instantiated, and all constructors are left unchanged by ACIC-equivalence, we
have the intuition that all constructors present in τ ′ must already be present in τ .

As done for unification, a Matching Feature will be the combination of an encoding function
and a criterion.

Definition 5.5.1 (Encoding function: Const)
The encoding function for the Feature associates, to each type τ , the multiset of the constructors
of τ . The multiset is defined as a set where each element can be present more than once, and
is thus stored along with its multiplicity.

Example 5.5.2
Here is the encoding of a few types, where multisets are noted as a set with elements indexed
by their multiplicity.

• Const(int -> int -> int) = { int3}

• Const('a -> 'a list -> bool) = { list1, bool1}

• Const((float * int * float list) -> float list) = { int1, list2, float3}

Theorem 5.5.3 (Matching criterion: Const)
The matching criterion for Const is the following theorem:

∀(τ, τ ′) ∈ T 2, τ ≼ τ ′ ⇒ Const(τ ′) ⊆ Const(τ)
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As for unification features, we will use the criterion with its contraposition.

Theorem 5.5.4 (Matching criterion: contraposition of Const)

∀(τ, τ ′) ∈ T 2, Const(τ ′) ⊈ Const(τ) ⇒ τ ⪯̸ τ ′

Example 5.5.5
The following types do not match because their values for Const are not compatible:

• (float * int * float list) -> float list ⪯̸ int -> int -> int
because { int3} ⊈ { int2, list1, bool1}

• 'a -> 'a list -> bool ⪯̸ (float * int * float list) -> float list
because { int1, list2, float3} ⊈ { list1, bool1}

This new Feature has been integrated to prevent the computation of some unification: before
doing a matching comparison when building the Poset, we first compute the values of the two
types for the Const encoding, and see if there is any inclusion of the multisets. Any non-present
inclusion avoids doing a unification.

Example 5.5.6
If we want to indentify the matching relation between types int -> int -> int and 'a -> int,
we have the following:

• Since { int3} ⊈ { int1}, we deduce 'a -> int ⪯̸ int -> int -> int

• Since { int1} ⊆ { int3}, we will have to compute the unification between Freeze( int ->
int -> int ) and 'a -> int
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6
STATE OF THE ART

In this section, we give an overview of related work to our tool dowsindex.

6.1 Function search

When it comes to function search, there exist interfaces in almost every language to allow
for textual search in the different library. Namely, a textual query is matched to functions by
their name or part of their documentation. Some of those tools include efficient handling of
software databases [7]. In OCaml, the Merlin6 IDE offers a search based on polarity in the
local typing environment.

Hoggle7 is a research tool for Haskell which proposes textual search and search by types.
However, the search remains very syntaxic (type signatures are parsed textually and compared
by approximative shape) and therefore cannot be proven to be sound nor complete.

Our approach with dowsindex has been motivated by the algorithm proposed by M. Rit-
tri [10] of a search by types in the ML language, using type isomorphisms. No such tool existed
for OCaml to our knowledge.

6.2 Theoretical results on type isomorphisms

Research on the complexity of type isomorphism problems has been particularly active
for several decades. This research includes results on the decidability and complexity of the
equivalence, the matching and the unification for many theories such as first-order [8] and
second-order λ-calculus [5].

Many results are still to be proven in this field.

6.3 Algorithms related to dowsindex

Regarding unification algorithms, the algorithm used in dowsindex is inspired from the one
proposed by A. Boudet [4] for AC-unification.

The structure of our Index and in particular of the Trie is inspired by the work of S.
Schulz [11] on the indexing of clause subsumption.

6https://github.com/ocaml/merlin
7https://hoogle.haskell.org/
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7
FUTURE WORK

7.1 Benchmark of dowsindex

In the remaining few weeks of this internship, our main objective is to establish the gain in
performance of our work. Namely, we will measure the gain in time as well as in the number
of unification for a search in a library with our new algorithm including the Poset.

We will also measure the construction time of the Poset and the optimization with the
addition of the Const Feature for matching.

7.2 New features

A direction for future work can be to find new features, either for unification or for matching
specifically, by following the same procedure as Allain [1].

7.3 Sorting the results

An interesting work could also be done on the sorting of the results at the end of the
algorithm. Indeed, we could implement the idea of Rittri [10] to sort the functions by size of
the unifiers between the types of the functions and our query, as suggested in Section 5.1.1.

8
CONCLUSION

During this internship, we worked on improving the dowsindex tool through the completion
of the previously existing Index. We created a new structure, the Poset, which gathers the
information of the matching relation between all the types of a library.

This allowed us to use a theorem concerning matching and unification in order to limit the
use of the very expensive unification algorithm in the search. Moreover, we have developed a
new type of Feature specific to matching in order to lighten the computation of the latter too.

In the next few weeks, we will be able to measure the improvement in performance of our
contribution to dowsindex. There will remain, afterwards, many possible tracks of optimiza-
tion, and the need for an interface in order to, we hope, democratize the use of dowsindex for
all the programmers in OCaml.
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