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High-Performance Computing

Applications ...

... running on Platforms

@ANL
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Energy-aware HPC

@CBS

Performance/Energy Trade-off
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Dynamic Management of HPC Systems

Highly variable systems ...
Offline

HW spec.
Aging

At runtime
Phases
Failures
Temperature

(Ramesh et al. 2019)

... require dynamic management
How Scheduling, Autonomic computing, Machine Learning,

Feedback Control Theory (Hellerstein et al. 2004)
Why Stability, performance guarantees, explainability
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Autonomic Computing Approach

The Autonomic Computing approach. . . (Kephart et al. 2003)
Periodically monitor application progress
Choose at runtime a suitable power cap for processors

power
cap

application
progress

Controller System

. . . using Control Theory
How Low-intrusive supervision
Why Stability, accuracy, transient performance, explainability

(Hellerstein et al. 2004)
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Principle of Control Theory

Feedback loops
Measure performance and react according to the error w.r.t. the
desired setpoint by leveraging system’s knob.

Controller Controlled
System+-

setpoint error knob performance

disturbance

Power control in HPC

Controller HPC
System+-

error powercap

temperature,
I/O, etc. application

progress
desired

progress
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Control Theory Methodology

Define the objectives

 Characterize the
constraints

Identify a knob

Identify a
performance metric

Analyze signals
properties and
dependencies

Choose a controller
form

Identify an
appropriate model

Design the controller

Evaluate the
controlled system
w.r.t. objectives

1. 
Problem

Definition

2. 
Control 

Formulation

3. 
System 

Analysis

4. 
Model & Control 

Design

5. 
Evaluation

update

update
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Dynamic Power Management

Global Objectives
Sustain execution time
Minimize energy usage

The Runtime Perspective
Sustain application progress
Minimize power usage

Actuator and Sensor
Power regulation DVFS (Imes et al. 2015; Imes et al. 2019);

DDCM (Bhalachandra et al. 2015);
RAPL (David et al. 2010; Rotem et al. 2012)

App. behavior Measuring progress with heartbeats (Ramesh et al. 2019)
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Software Architecture

Software Stack Argo NRM resource management framework

Node  

Manager
Resource  

Python runner
Identification Controller  

Slice

Applicationsensor
(active)

sensor/
actuator
(passive)

Resources

CPU RAM
cores

...

Platform 3 clusters from Grid5000 with various nb. of sockets
Benchmark STREAM (McCalpin 1995)
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Signals

Power actuator
RAPL’s power limitation (David et al. 2010; Rotem et al. 2012)

pcap(ti)

Performance sensor
Application’s progress (Ramesh et al. 2019)

progress(ti) = median
∀k, tk∈[ti−1,ti [

( 1
tk − tk−1

)
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Uncontrolled System Analysis (Identification)
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Controller System

Many Sources of Variations
Cluster Node Run Exogenous factors (temp., I/O)
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Modeling

Static Characteristic (time averaged behavior)
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Powercap [W]
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cluster: yeti - measures
cluster: yeti - model
cluster: gros - measures
cluster: gros - model
cluster: dahu - measures
cluster: dahu - model

progress = KL
(
1 − e−α(a·pcap+b−β)

)
a, b: characterizing RAPL actuator
KL, α, β: cluster- and application-specific

Dynamic perspective

progressL(ti+1) = KL(ti+1 − ti )
ti+1 − ti + τ

· pcapL(ti ) + τ

ti+1 − ti + τ
· progressL(ti )

Shape set by control theory, parameters optimized offline
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Experimental Evaluation
Measure of the Model Accuracy

Not a prediction model but used to tune the controller
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Observations
Good accuracy.
The model performs better on clusters with few sockets.
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Experimental Evaluation
Post-mortem analysis

12 degradation levels, min. 30 repetitions each
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yeti

Pareto Front
gros, dahu Family of trade-off from 0% to 15% degradation level

gros with ϵ = 0.1: -22% energy, +7% execution time
yeti no front, no negative impact of the controller
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Perspectives

Applications’ phases

I/O COMPUTE-
intensive

MEMORY-
intensive

COMPUTE-
intensive

I/Ot0 tend

Adaptation steps
1 Phases characterization

2 Online phase detection (?)
3 Dedicated control: robust, adaptive or hybrid
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Conclusion

Objective Reducing energy consumption
while sustaining performance

Approach Dynamic power regulation using
Control Theory

allowed

degradation power

cap

application

progress

Controller System

Contributions

Control theory × HPC systems

Experimental validation on several clusters
https://doi.org/10.6084/m9.figshare.14754468 0 10 20 30 40
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Open post-doc/engineer positions @CTRL-A!
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Related Works

On power regulation in HPC
Different objective or static schema
(Eastep et al. 2017) application-oblivious monitoring

On using control theory for power regulation
Applications web servers (Abdelzaher et al. 2008), cloud (Zhou et al.

2016), real-time systems (Imes et al. 2015)
Metrics RAPL (Imes et al. 2019; Lo et al. 2014)

Progress metric (Santriaji et al. 2016)
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Model and Controller Parameters

Description Notation Unit gros dahu yeti

RAPL slope a [1] 0.83 0.94 0.89
RAPL offset b [W] 7.07 0.17 2.91

α [1/W] 0.047 0.032 0.023
power offset β [W] 28.5 34.8 33.7
linear gain KL [Hz] 25.6 42.4 78.5
time constant τ [s] 1/3 1/3 1/3

τobj [s] 10 10 10
lower power limit pcapmin [W] 40 40 40
higher power limit pcapmax [W] 120 120 120
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PI Controller Parameters Computation

KP and KI are based both on the model parameters KL and τ and on a
tunable parameter τobj (Åström et al. 1995):

KP = τ/(KL · τobj)

KI = 1/(KL · τobj)

with τobj defining the desired dynamical behavior of the controlled system.

The controller is chosen to be nonaggressive:

τobj = 10 s > 10τ
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Model Reference Adaptive Control

Model y(k+1) = b0u(k)+a0y(k)
Parameter vector θ = [s0]
Regression vector ϕ(k) = [y(k)]

PLANT

ADAPTATION

CONTROLLERTRANSDUCER

θ

u y∈ yref

Control Law (Akhtar et al. 2005)

u(k) = − 1
b0

[
ϕT (k)θ̂(k) − bmyref

]
θ̂(k) = θ̂(k − 1) + 1

ϕT (k − 1)ϕ(k − 1)
[
amy(k − 1)

− b0u(k − 1) − ϕT (k − 1)θ̂(k − 1)
]
ϕ(k − 1)
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