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Abstract—The Noise protocol framework defines a succinct
notation and execution framework for a large class of 59+
secure channel protocols, some of which are used in popular
applications such as WhatsApp and WireGuard. We present a
verified implementation of a Noise protocol compiler that takes
any Noise protocol, and produces an optimized C implementation
with extensive correctness and security guarantees. To this end,
we formalize the complete Noise stack in F*, from the low-level
cryptographic library to a high-level API. We write our compiler
also in F*, prove that it meets our formal specification once and
for all, and then specialize it on-demand for any given Noise
protocol, relying on a novel technique called hybrid embedding. We
thus establish functional correctness, memory safety and a form
of side-channel resistance for the generated C code for each Noise
protocol. We propagate these guarantees to the high-level API,
using defensive dynamic checks to prevent incorrect uses of the
protocol. Finally, we formally state and prove the security of our
Noise code, by building on a symbolic model of cryptography in
F*, and formally link high-level API security goals stated in terms
of security levels to low-level cryptographic guarantees. Ours are
the first comprehensive verification results for a protocol compiler
that targets C code and the first verified implementations of
any Noise protocol. We evaluate our framework by generating
implementations for all 59 Noise protocols and by comparing the
size, performance, and security of our verified code against other
(unverified) implementations and prior security analyses of Noise.

I. INTRODUCTION

Modern distributed applications rely on a variety of secure
channel protocols, including TLS, QUIC, Signal, IPsec, SSH,
WireGuard, OpenVPN, and EDHOC. Despite the similarity
in their high-level goals, each of these protocols makes
significantly different design choices based on the target
network architecture, authentication infrastructure, and desired
security goals. For example, the Transport Layer Security
(TLS) protocol is used to secure live TCP connections between
clients and servers using the X.509 public key infrastructure. In
contrast, the Signal messaging protocol aims to provide strong
confidentiality guarantees like post-compromise security [1] for
long-running asynchronous messaging conversations between
smartphones. All these protocols form a cornerstone of Internet
security, so the correctness and security of their varied designs
and diverse implementations is a tangible concern.

Security Analyses of Secure Channels. Several prior works
establish security theorems for well-known secure channel
protocols. However, as protocols get more complex, building

and checking pen-and-paper proofs for complete protocols
becomes infeasible. To address this, formal verification tools
are now routinely applied to obtain mechanized security proofs
for cryptographic protocols. For example, tools like ProVerif [2]
and Tamarin [3] have been used to automatically analyze
protocols like TLS and Signal [4], [5], [6], by relying on
abstract symbolic assumptions on the underlying cryptography.
Computational provers like CryptoVerif [7] and Computational
RCF [8] have also been used to verify some of these protocols,
providing more precise security guarantees than symbolic tools,
but requiring more human intervention [9], [10], [5], [6].

We refer the reader to [11] for a full survey of computer-
aided cryptographic proofs. On the whole, verification tools
have now reached a level of maturity such that they can analyze
the high-level design of most modern cryptographic protocols.

Verified Protocol Implementations. Even if the design of
a protocol has been verified, writing a secure implementation
remains a challenge. Protocol implementations have to account
for many details that are left out of high-level security proofs,
such as the crypto library, message formats, state machines, key
storage and management, multiple concurrent sessions, and a
high-level user-facing API that is easy for non-cryptographers to
use. Each of these components has been subject to notable bugs
resulting in embarrassing vulnerabilities like HeartBleed [12]
and SMACK-TLS [13]. Many of these flaws were not found
even through extensive testing.

In response, several works have sought to build high-
assurance protocol implementations using formal verification
tools. The most notable of these is miTLS [10], a verified
reference implementation of the TLS 1.2 protocol in F#,
built hand-in-hand with modular proofs of computational
security at the code-level. Follow-up works verify efficient C
implementations of various components of TLS 1.3, including
the TLS packet formats [14], the cryptographic library [15], and
the record layer [16]. Other works have built high-assurance
protocol implementations in OCaml [17], JavaScript [5], [6],
WebAssembly [18], and Java [19].

Despite these advances, verifying a full cryptographic
protocol implementation written in a performance-oriented
language like C is highly resource-intensive and can take years
of work. Consequently such projects have only been attempted
for important protocols like TLS. In this paper, we tackle the
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Fig. 1. Noise* Architecture. Left: Noise protocol stack implemented in
Low*; Middle: generic formal specification of Noise in F*; Right: security
specifications for each layer using the DY* framework. After verification, the
Low* code is specialized and compiled to obtain C code for each protocol.

problem of generalizing and scaling up the security analysis
of protocol implementations in a way that they can be applied
to entire families of cryptographic protocols. Hence, we lower
the human effort involved to build verified protocol libraries.

The Noise Protocol Framework. We target verified imple-
mentations of the Noise Protocol framework, which provides
a general notation and execution rules for a large class of
secure channel protocols. The Noise specification [20] cur-
rently describes 59 protocols, specifies message-level security
properties for each of these protocols, and precisely defines all
the cryptographic steps needed to send and receive protocol
messages. Although these 59 protocols are centered around
Diffie-Hellman and pre-shared keys, the specification language
is itself extensible and can easily handle protocols with
signatures and key encapsulation mechanisms in the future.

Noise is an ideal target for formal verification in that it
covers a large class of similar protocols. For the same reason,
it is a challenging target, since we would like to develop
generic proofs that apply to all 59 Noise protocols and their
implementations, rather than verify each protocol individually.

Several prior works present formal analyses for various
Noise protocols [21], [22], [23], [9] and multiple open source
libraries implement various subsets of Noise. However, until
this work, there has been no verified implementation of Noise.
Consequently, many security-critical protocol elements, includ-
ing key management and state machines remain unstudied.
Our goal is to develop a library of verified high-performance
implementations of Noise protocols in C, with formal proofs of
correctness and security that cover all these low-level details.

Our Approach. We build a verified implementation of Noise,
following the methodology depicted in Figure 1. All our code is
written and verified using the F* programming language [24].

We first write a formal specification of Noise in F* (middle
column) by carefully encoding the message-level functions
described in the Noise specification document [20] and linking
them to F* specifications of crypto algorithms. Our specification
can be read as an interpreter for the Noise protocol notation,

and we can use it to execute any Noise protocol. We extend
this interpreter with F* specifications of key validation and
management and a high-level session API, both which are left
unspecified in the Noise document. Hence, we obtain a full
specification for the Noise protocol stack, starting from the
crypto layer to the user-facing API (see Section II).

Next, we write a low-level implementation of Noise (left
column) using Low* [25], a subset of F*, and prove that it
matches the formal specification. We use the HACL* verified
cryptographic library to instantiate the cryptographic layer [26].
We develop a protocol compiler using a novel technique called
hybrid embedding that allows us to write and verify generic
code for all Noise patterns, prove them correct against the
interpreter spec once and for all, and then specialize and
compile the verified code into standalone C implementations
for each Noise protocol (See Section III).

On top of our protocol compiler, we design and build a
session management layer that handles multiple sessions in
parallel and handles error conditions. We write a verified key
storage module that securely stores long-term keys both in-
memory and on-disk. Finally, we build a verified high-level
user-facing API that provides a simple, secure, misuse-resistant
interface for applications (See Section IV).

Our Low* code is verified with respect to our formal
specification of Noise, but this does not mean that it is secure.
For example, our protocol API may accidentally expose long-
term keys to the adversary, or it may allow data from two
sessions to be mixed up, which may not violate the Noise
spec but would result in serious security vulnerabilities. To
fill this gap, we extend our verification with a symbolic
security analysis of the full protocol specification using a recent
framework called DY* [27]. We set and prove security goals
for each layer in our implementation (right column), linking
a symbolic model of cryptography all the way to verified
high-level API security goals. Notably, our analysis is generic
and verifies all Noise protocols in a single proof, unlike prior
work which needed to run verification tools on each individual
protocol. (See Section V).

Finally, we demonstrate our framework by compiling verified
implementations for all 59 Noise patterns and compare the
results with prior work (See Section VI).

Summary of Contributions. We present the first verified
implementations for Noise and the first verified protocol
compiler that generates C code. Our compiler proof relies
on a novel technique, called hybrid embedding, which is of
independent interest. We also provide verified implementations
of key storage and a high-level protocol API, both of which are
novel and reusable in other developments. Finally, we provide
the first modular mechanized symbolic security proofs of Noise
at the level of a detailed executable protocol specification.

II. A FORMAL FUNCTIONAL SPECIFICATION OF NOISE

The Noise Protocol Specification [20] defines a succinct
notation and precise execution rules for a family of secure
channel protocols that primarily use Diffie-Hellman and pre-
shared keys for confidentiality and authentication, yielding a
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Protocol Message Sequence Payload Security Properties
Name ← →

Auth Conf Auth Conf

X

← s
. . .
→ e, es, s, ss [d0] - - A1 C2
→ [d1, d2, . . .] - - A1 C2

NX

→ e A0 C0 A0 C0
← e, ee, s, es [d0] A2 C1 A0 C0
↔ [d1, d2, . . .] A2 C1 A0 C5

XX

→ e A0 C0 A0 C0
← e, ee, s, es [d0] A2 C1 A0 C0
→ s, se [d1] A2 C1 A2 C5
↔ [d2, d3, . . .] A2 C5 A2 C5

IKpsk2

← s
. . .
→ e, es, s, ss [d0] A0 C0 A1 C2
← e, ee, se, psk [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

Fig. 2. Example Noise Protocols and Security Guarantees. X: a one-
way authenticated encryption protocol; NX: an interactive Diffe-Hellman
key exchange with an unauthenticated initiator; XX: an interactive mutually-
authenticated key exchange using Diffie-Hellman; IKpsk2: an interactive
mutually-authenticated key exchange using Diffie-Hellman and a pre-shared
key; At each stage of a protocol, we note the expected authentication level
(A0-A2) and confidentiality level (C0-C5) for messages in each direction
(← /→).

total of 59 protocols with varying authentication and secrecy
properties. We begin by an informal overview of the syntax
and semantics of Noise protocols, before describing our formal
specification of Noise in the F* programming language [24].

A. Noise Protocol Notation

Four example Noise protocols are shown in Figure 2. The
message sequence for each protocol is divided into three phases.
The first phase (before the dotted line) consists of pre-messages
exchanged by the two parties out-of-band before the protocol
begins. The second phase is the main handshake where the
two parties exchange fresh key material to establish a series
of payload encryption keys with gradually stronger security
guarantees. Once the handshake is complete, the protocol enters
the third transport phase where both parties can freely exchange
encrypted application messages in both directions.

The handshake is described as a sequence of messages
between an initiator (I) and a responder (R), where each
message is as a sequence of tokens. Each participant maintains
a chaining key ki that it uses to derive the payload encryption
key at each step; both of which are initially set to public
constants derived from the protocol name. The chaining key
evolves as each handshake token is processed.

Consider a handshake between I and R, where I has a static
Diffie-Hellman key-pair (i, gi) and generates an ephemeral
key-pair (x, gx); R has a static key-pair (r, gr) and ephemeral
key-pair (y, gy); and the two may share a pre-shared key psk .
Then the semantics of each token sent from I to R is as follows
(tokens in the reverse direction are handled similarly):
• e: means that I includes gx in the message;
• s: I includes its static public key (gi) in the message,

encrypted under the current payload encryption key;
• es: I computes the ephemeral-static Diffie-Hellman shared

secret gxr and mixes it into the chaining key ci, obtaining

a new chaining key ci+1 and payload encryption key ki+1;
• se: I mixes the static-ephemeral shared secret giy into ci;
• ee: I mixes the ephemeral-ephemeral secret gxy into ci;
• ss: I mixes the static-static shared secret gir into ci;
• psk: I mixes the pre-shared key psk into ci.

After processing each sequence of tokens according to the
above rules, at the end of each message, the sender (I) also
includes a (possibly empty) payload encrypted under the current
payload encryption key. These payloads are implicit in Noise
notation, but we note them explicitly (d0, d1, . . .) in Figure 2.

On receiving a message constructed using the above rules,
the responder R performs the dual operations to parse the
remote ephemeral key (e), decrypt the remote static key (s),
and computes the same sequence of chaining and payload
encryption keys to decrypt the payload. In addition to the keys,
each participant also maintains a hash of the protocol transcript,
which is added as associated data to each encrypted handshake
payload (to prevent handshake message tampering.)

X: One-Way Encryption. The protocol X is a one-way
protocol that encrypts data in a single direction, from an initiator
I to a responder R. As such, this protocol can be considered a
replacement for constructions like NaCl Box [28] or HPKE [29]
for encrypting files or one-way messages.

We now break down the notation for this protocol, which
appears in Figure 2 under “message sequence”. The pre-
message token s, assumes that I has received R’s static public
key gr before the handshake. The handshake itself consists of
a single message (from I to S) with four tokens (e, es, s, ss)
followed by an encrypted payload (d0). Here, ephemeral-static
Diffie-Hellman (es) serves to provide confidentiality for k1
(even if I’s static key were compromised), whereas static-
static Diffie-Hellman (ss) is used to authenticate I . After the
handshake, I can send any number data messages (d1, d2 . . .)
to R, using the final payload encryption key.

NX: Server-Authenticated Key Exchange. The protocol NX
is a unilaterally authenticated key exchange protocol, where R
is authenticated but I is not. Hence, this protocol can be seen
as a replacement for TLS as it is used on the Web. The main
difference from X is that it has no pre-messages, and has a
second message that uses ephemeral-ephemeral Diffie-Hellman
(ee) to provide forward secrecy.

XX: Mutual-Authentication. We can extend NX to a mutually-
authenticated protocol by adding a third handshake message
that uses I’s static key (se). This yields a different Noise
protocol called XX, which is one of the protocols used in
WhatsApp. Both NX and XX are single round-trip (1-RTT)
protocols since the initiator has to wait for the response before
it can send its first encrypted message. However, in scenarios
where I already knows R’s static public key (gr) via a pre-
message, it can use this prior knowledge to start sending data
with the first message (0-RTT), but with different secrecy and
confidentiality guarantees.

IKpsk2: Mutual-Authentication and 0-RTT. The IKpsk2
protocol, which is used by the WireGuard VPN, supports
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mutual authentication and 0-RTT by relying on both Diffie-
Hellman and pre-shared keys, and hence provides some of the
strongest security properties among all Noise protocols.

The protocol starts like X but includes authenticated mes-
sages in both directions; it uses four Diffie-Hellman operations
and also a pre-shared key in the second message (psk token)
for additional protection against compromised static keys (and
future quantum adversaries). Removing the psk token yields a
protocol called IK, which is also used in WhatsApp.

B. Formalizing Noise in F*
We define a series of F* types that encode the syntax of Noise

protocols. We define algebraic datatypes (enumerations) for
pre-message and message tokens. We then define a handshake
pattern as a record type containing a protocol name, a pre-
message from I to R (premessage ir), a pre-message from
R to I (premessage ri), and a list of handshake messages in
alternating directions (first I to R, then R to I , and so on):

type premessage token = | PS | PE
type message token = | S | E | SS | EE | SE | ES | PSK
type handshake pattern = {
name : string;
premessage ir : option (list premessage token);
premessage ri : option (list premessage token);
messages : list (list message token)}

We also define some convenient notations in F* to construct a
handshake pattern. For example, IKpsk2 is written as(note that
we omit the implicit payloads di):

let pattern IKpsk2 =
hs ”IKpsk2” [
∼<<∼ [PS];
∼>∼ [E; ES; S; SS];
∼<∼ [E; EE; SE; PSK]]

The Noise specification defines a set of syntactic validity rules
to ensure that the resulting protocols are implementable and
secure. An example functional constraint is that a protocol
should not use the token ee before e has been sent in
both directions: both participants must have received their
counterpart’s public ephemeral key in order to use it in the
Diffie-Hellman. A security constraint is that a session key
based on a psk token should not be used for encryption unless
an e has also been sent (otherwise there could be encryption
nonce reuse.) We encode these rules as a boolean function over
handshake patterns, and check that it holds for all 59 patterns.

val well formed: handshake pattern → bool

Types for the Handshake State. To formalize the execution
rules, we closely follow the Noise specification by defining the
handshake state and functions over this state. Each type and
function in our specification is parameterized by a config type
specifying three cryptographic algorithms: a Diffie-Hellman
group, an AEAD encryption scheme, and a hash algorithm:

type config = dh alg & aead alg & hash alg

The cipher state type consists of an AEAD key and a counter;
it can be used for AEAD encryption and decryption:

type cipher state = {k : option aead key; n : nat}

The symmetric state type represents the cryptographic state of
a Noise handshake. It contains a hash of the protocol transcript
(essentially all the message tokens processed so far), the current
session key, called chaining key in Noise, and a cipher state

(derived from the chaining key) which is used for encrypting
static keys and payloads during the handshake:
type symmetric state (cfg : config) = {
h : hash cfg; ck : chaining key cfg; c state : cipher state}

The main handshake state type contains the full state of a
Noise handshake for a given participant; it includes the current
symmetric state and all the private, public, and shared keys
currently known to the participant:
type handshake state (cfg : config) = {
sym state : symmetric state cfg;
static : option (keypair cfg);
ephemeral : option (keypair cfg);
remote static : option (public key cfg);
remote ephemeral : option (public key cfg);
preshared : option preshared key}

Message Processing Functions. The Noise specification
document describes a series of functions over the three state
objects, which we faithfully encode in F*. The highest-level
operations defined by the document are functions for sending
or receiving one handshake or data message. We describe the
F* code for the handshake sending functions below.

First, we define a function that implements the sending
operation for a single token as a case analysis over the 7
possible tokens (we show two cases below):
let send message token (cfg:config) (initiator is psk:bool)

(tk:token) (st:handshake state cfg) :
result (bytes & handshake state cfg) =

match tk with
| S → (match st.static with

| None →Fail No key
| Some k →

(match encrypt and hash cfg k.pub st.sym state with
| Fail x →Fail x
| Res (cipher, sym st’) →

Res (cipher, { st with sym state = sym st’; })))
| EE → dh update cfg st.ephemeral st.remote ephemeral st
| ...

The function send message token takes as arguments: a
config, a boolean flag indicating whether the sender is the
initiator, a boolean flag indicating whether the current protocol
uses psk, a token tk and a handshake state st. If the token
is an S, the code finds the sender’s static key (st.static),
encrypts it and adds to the transcript hash (encrypt and hash),
returning the ciphertext (cipher) and the updated handshake
state. If the token is an EE, the sender reads its ephemeral
private key (st.ephemeral), the peer’s ephemeral public key
(st.remote ephemeral) and calls the dh update function that
computes the Diffie-Hellman shared secret, mixes it into the
current chaining key, and returns an empty bytestring and the
updated handshake state. The other cases are similar.
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Building on this token-level function, we then write
a function send message tokens that recursively calls
send message token to process an arbitrary list of tokens, and
use it to define a high-level function send messagei for sending
the i-th handshake message in a handshake pattern.

A similar sequence of functions builds up to the top-level
handshake receive function recv messagei. Using these and
other message-level functions in our specification, we can
construct or process any pre-message, handshake message, or
application data message in a Noise protocol.

Comparison with Prior Noise Models. Three features of
our specification are notable. First, our F* code is executable
and precisely matches the Noise specification at the byte
level. Indeed, by linking our specification code with the
HACL* cryptographic library, we are able to extensively
test our specification against test-vectors from other Noise
implementations. Second, we use recursive functions to model
protocols and messages of arbitrary length, even though in
practice, we may only care about the 59 protocols in the current
Noise specification. Third, our code is structured as a protocol
interpreter, and hence provides a single generic functional
specification for all Noise protocols.

These three features are in contrast with prior formal models
of Noise protocols that were written for various security
analyses [21], [22], [23], [9]. These models ignore many low-
level protocol details, are not precise at the byte level, and are
not testable. Their modeling languages cannot handle generic
recursion or protocol interpreters, and so require a separate
model for each Noise protocol. We believe our F* specification
more closely captures the spirit of Noise and serves as a formal
companion to the Noise specification.

C. Noise Protocol Security Guarantees

Different Noise protocols offer different security guarantees.
Even within a single protocol, the confidentiality and authenti-
cation guarantees obtained by the initiator and responder often
differ. These guarantees typically improve with each handshake
message and stabilize after the handshake completes. For
example, IKpsk2 allows application data to be sent both during
the handshake (d0, d1) and after the handshake (d2, d3, . . .),
and each of these messages has different security guarantees.
The Noise specification [20] defines 3 levels of authenticity
(A0-A2) and 6 levels of confidentiality (C0-C5). Figure 2 lists
the security levels at each stage of our three protocol examples,
and Appendix A lists them for all 59 Noise patterns.

Payload Authentication Properties. The three authentication
levels are: A0: No authentication; A1: Sender authentication
vulnerable to Key Compromise Impersonation (KCI) attacks;
A2: Sender authentication without KCI attacks.

Consider a Noise protocol session between A and B, where
B receives a message M at authentication level A2 (supposedly)
from A. If B successfully decrypts this message, it has the
guarantee that the message was indeed sent by A, unless the
long-term static key of A (static Diffie-Hellman private key
and/or PSK) has been compromised (i.e., leaked to the attacker)

before the message was received. Authentication level A1 is
weaker: it only guarantees message authenticity if the static
keys of both A and B are uncompromised.

For a more formal illustration, in a prover like ProVerif, au-
thentication level A1 would correspond to a security query writ-
ten in terms of events triggered by the sender, receiver, and the
adversary. The sender A triggers Sent(A,B,M) before sending a
message; the receiver B triggers Recv(B,A,M) after processing
the message; the adversary triggers LongTermCompromised(P)
whenever it compromises the static keys of a principal P .
(We assume that ephemeral keys are never compromised.) The
resulting security query is written as follows:

query A:prin, B:prin, M:bitstring;
event(Recv(B,A,M)) =⇒ event(Sent(A,B,M)

|| event(LongTermCompromised(A))
|| event(LongTermCompromised(B))

The query for authentication level A2 simply removes the
last line (event(LongTermCompromised(B))). For reference, these
queries correspond closely to the queries generated by a prior
analysis of Noise in ProVerif [22].

For example, in NX, the initiator is never authenticated, so
messages in the forward direction (→) in Figure 2 always have
authentication level A0. The responder is fully authenticated
and so its messages to the initiator are at level A2. In X
and IK, the first message is authenticated by the initiator,
but authentication is based on static-static Diffie-Hellman (ss),
which means that if the responders’s static key is compromised,
an attacker can impersonate the initiator to the responder,
resulting in a KCI attack. Hence, the authentication level is
A1 for forward messages (→), until the third message when
the static-ephemeral Diffie-Hellman (se) token strengthens the
initiator’s authentication level to A2.

Payload Confidentiality Properties. The six confidentiality
levels, in increasing order of strength, are as follows: C0:
No confidentiality; C1: Confidentiality only against passive
adversaries; C2: Confidentiality against active adversaries,
with weak forward secrecy against sender static compromise;
C3: Weak forward secrecy against sender and receiver static
compromise; C4: Strong forward secrecy unless sender static
was compromised before message; C5: Strong forward secrecy.

Of these, the first two levels offer very weak confidentiality,
in that an active network adversary can read a payload sent
at level C0 or C1. Levels C2-C5 offer incremental degrees of
forward secrecy, depending on which subset of static keys may
be compromised and when. C2 offers confidentiality as long
as the sender’s ephemeral key and the recipient’s static keys
remain uncompromised. C3 additionally allows the receiver’s
static key to be compromised as long as the peer ephemeral
public key at the sender corresponds to an uncompromised
ephemeral private key at the recipient. C4 allows the sender
and recipient’s static keys to be compromised after the message
is sent. C5 provides confidentiality even if the sender’s static
keys were compromised before the message was sent.

In a tool like ProVerif, encoding forward secrecy properties
requires the use of phases to enforce an ordering between
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protocol messages and compromise events. For example, we
would run the target protocol session in phase 0 and transition
to phase 1 at the end. We would then allow the attacker to
compromise static keys in both phase 0 and phase 1, and state
secrecy queries for each confidentiality level in terms of when
these keys can be compromised. (As usual, we disallow the
compromise of ephemeral keys.) Hence, to model level C4,
we write a ProVerif query of the form:

query A:prin, B:prin, M:bitstring;
(attacker p1(M) && Sent(A,B,M)) =⇒

event(LongTermCompromised p0(B))
|| event(LongTermCompromised p0(A))

That is, messages sent from A to B are confidential in phase 1
unless the static keys of A or B were compromised in phase 0.
The query for C5 is stronger, it removes the last disjunct, and
hence guarantees confidentiality even if A were compromised
in phase 0 (when the session is still running.)

In Figure 2, X offers confidentiality at level C2 because
there is no fresh ephemeral provided by the recipient. NX
offers strong forward secrecy at level C5 for messages to the
responder, but only level C1 for messages to the unauthenticated
initiator. IKpsk2 provides level C5 confidentiality in both
directions from the third message. However, the first message
only offers level C2 (like X) and the second message only offers
level C4 since an attacker who knows the responder’s static
private key and PSK will be able to forge the first message,
record the second message, and later compromise the initiator’s
static key to obtain the session key and decrypt the payload.

We define an F* function that computes the authentica-
tion and confidentiality levels for each message in each
handshake pattern (see Appendix A). We confirm that it agrees
with the Noise specification on the 38 protocols annotated in
the document, and we also compute levels for the 21 PSK
patterns not annotated in the specification. In Section V, we
show how these security levels are mapped to precise security
goals stated as trace properties and we prove that our protocol
specification meets these goals.

D. A High-Level API for Noise

A full protocol implementation has to handle many security-
critical details beyond message processing. For example, in
the NX protocol, when the initiator receives the responder’s
static key in the second message, it has to validate this key.
Otherwise, there is no guarantee it is talking to the intended
responder and all authenticity and confidentiality guarantees
are lost. Similarly, in X and IKpsk2, the initiator static key
needs to be validated against some database of known initiators.
In PSK-based protocols like IKpsk2, the responder does not
know what PSK to use until it sees the initiator’s static key; so
we need a way for the responder to dynamically retrieve and
validate a PSK based on a protocol message. An implementation
that skips or incorrectly implements these key validation steps
becomes vulnerable to serious attacks. However, none of these
validation steps are documented in the Noise specification and
so are left for the application layer to handle.

It is unrealistic to expect an application programmer who
uses Noise to have the intimate knowledge needed about a
specific Noise protocol in order to directly use the messaging
functions, perform all the required validation steps, and know
when it is safe to send or receive data.

We address this gap by formally specifying (and implement-
ing) a high-level API that combines several layers: a session-
based API that hides message-level protocol details, secure
key storage with user-provided policies for key management,
built-in validation steps and a defensive user-friendly interface
that provides clear guidance on when it is safe to send or
receive data over a Noise session. For example, sending
secret application data after the first message of NX would be
disastrous, but may be safe with IKpsk2. §IV describes our
implementation of this high-level API in C.

III. IMPLEMENTING A NOISE COMPILER IN LOW*

Our specification (§II) may run via the OCaml backend of
F*, which we use for testing and spec-validation purposes. This
execution path suffers, however, from slow performance: in F*
specifications, integers compile as infinite-precision bignums;
sequences compile to persistent functional lists; and execution
relies on OCaml’s runtime system and garbage collector.

We now set out to write a low-level, efficient implementation
of Noise protocols that does not suffer from such performance
shortcomings. This section focuses on a novel technique called
“hybrid embeddings”, a key technical ingredient that allows us
to author low-level code that remains parametric over the choice
of Noise pattern, in a fashion similar to the interpreter. With
hybrid embeddings, we verify the low-level code once then
generate for free any number of specialized implementations
for any Noise patterns: doing so, we minimize the verification
effort while still guaranteeing low-level performance.

A. Warm-Up: Low* Implementation of ss

For our efficient, low-level implementation of Noise proto-
cols, we use Low*. Low* is a subset of F*; or, said differently,
Low* is a shallow embedding of a well-behaved subset of
C into F*. Thanks to F*’s powerful effect system, Low*
defines a CompCert-like C memory model, which captures
heap- and stack-based allocations. A set of distinguished types,
combinators and libraries provides users with workingtools to
operate on mutable arrays, machine integers, const pointers,
and so on. Low* has been used for cryptographic libraries [26],
[30], providers [15], protocol record layers [31], [32] and
parsers [14].

In contrast to §II, where functions were pure, Low* functions
use a new set of effects: Stack and ST. Consider the function
that performs the required processing for the SS token.

inline for extraction
let send ss (nc: iconfig) (ssdhi: ssdh impls nc)
(ssi: static info) (initiator: bool) (is psk: bool)
(st: valid send token hsm nc is psk SS ssi):
Stack error code
(requires (fun h →
live h st.static ∧ live h st.remote static ∧
not (is null st.static) ∧ not (is null st.remote static) ∧
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loc disjoint (loc st.static) (loc st.remote static) ∧ ... ∧
sym state invariant st.sym state ∧ nc.dh pre ∧ ...))

(ensures (
let st0 v = eval handshake state h0 st ssi in
let st1 v = eval handshake state h1 st (ssi init sk ssi) in
let r v = Spec.send message token initiator is psk SS st0 v in
match to prim error code r, r v with
| CSuccess, Res (..., st1’ v) → st1 v == st1’ v ∧ ...
| CDH error, Fail DH →⊤| →⊥))

= ssdhi.dh update ssi st.static st.remote static st

Many of the parameters resemble the ones we saw earlier
(§II). The iconfig, for implementation configuration, extends
a spec-level config with low-level specific preconditions such
as “our DH implementation requires AVX2” (nc.dh pre). The
ssdhi parameter contains our choice of implementation for
cryptographic operations related to the symmetric state and DH;
the Low* code is not only generic over the choice of algorithm
(like the earlier specification), it is also generic over the choice
of implementation. As an example, if the iconfig commits
to Curve25519 for the DH algorithm, our code can operate
either with HACL*’s Curve51 or Curve64 implementation. The
ssi parameter stands for “state static-information”; it contains
statically-known information, such as whether at this point of
the handshake a symmetric key has been derived or not; and
it also contains the nonce (sequence number) to be used for
the cryptographic operations. Finally, initiator and is psk are
similar to the parameters we saw earlier (§II).

The function signature exhibits typical features of Low*. The
st argument represents the low-level state of the protocol, which
can be reflected in a given heap h0 as a high-level state, using
eval handshake state h0 st ssi. The Stack return effect indicates
that the function is valid vis-à-vis the C memory model and
only performs stack allocations (this latter restriction can be
lifted by using the ST effect). The pre-condition covers spatial
(disjointness) and temporal (liveness) preconditions; as well
as functional correctness requirements, such as the symmetric
state invariant and the implementation-specific preconditions.
In the post-condition, we elide memory-related predicates (e.g.,
only the protocol state is modified by a call to this function)
for clarity. We focus instead of functional correctness: st0 v

reflects low-level state st as a spec-level state before calling
send ss; similarly, st1 reflects st after calling the function. If
we execute the interpreter on st0 and obtain st1’, then both st1’
and st1 coincide, i.e., if the specification guarantees success, so
does the low-level implementation with the same result; if the
specification errors out, so does the low-level implementation;
no other outcome is allowed.

B. A Generic Low* Implementation

Inspired by the generic spec-level interpreter, we now write
an even more generic low-level function that not only works
for any choice of algorithm, implementation, responder and
PSK, but also works for any Noise token.

inline for extraction
let send message token nc ssdhi ssi initiator is psk
tk st out: (rtype (send token return type ssi is psk tk))

= match tk with

| S → send s nc ssdhi ssi initiator is psk st out
| E → send e nc ssdhi ssi initiator is psk st out
| ... → ... (* identical for SS, EE, SE, ES, PSK *)

The send message token function above attains the same
level of genericity as the specification. Even the return type
of the function is generic: send token return type captures the
fact that SS returns an error code (for DHs that compute to 0),
whereas S does not, by reducing at compile-time to error code

or unit, respectively. (Here, our specification is more precise
than the Noise specification, which leaves it up to the user
to determine whether a DH that computes 0 is an error.) Our
function can thus be used for all Noise protocols: the initial
match acts as an interpreter, examines the Noise token, then
dispatches execution to a suitable set of Low* functions.

Our style saves a tremendous amount of verification effort:
rather than replicating the effort for 59 protocols, we extract
the commonality, capture it with dependent types, and proceed
to write send message token once and for all. The challenge
now remains to ensure that the function generates valid C code
that eliminates all runtime checks on the nature of the token.

To that end, we rely on implicit staging and compile-time
partial evaluation via F*’s normalizer. The first six parameters
of the function are compile-time parameters: once a Noise
protocol is chosen, their concrete value is statically known;
and the F* compiler is capable of performing enough partial
evaluation at compile-time that all uses of these parameters
disappear before the code is even extracted to C.

Consider, for instance, the X protocol we saw earlier. At
compile-time, we pick concrete values for the choice of algo-
rithms (nc) and implementations (ssdhi). For the first handshake
message, we call send message token, with ssi.has key = false,
ssi.nonce = 0, initiator = true, is psk = false and of course tk = E.
Thanks to the “inline for extraction” keyword, F* aggressively
reduces the definition of send message token; the match reduces
away, leaving only a call to send e. This latter function itself
further reduces: for instance, any statement of the form if is psk

disappears, meaning we ignore the symmetric key generation
induced by PSK patterns. Once partial evaluation is done, the
code contains only the bare minimum set of operations needed
for the first token E of the X protocol, and all compile-time
parameters are gone.

C. Hybrid Embeddings

Looking back at §II, we can think of our earlier specification
as an interpreter for Noise patterns; or, dually, as an evaluator
defining the semantics of a deeply embedded domain-specific-
language (DSL), in our case the language of Noise patterns.
Unlike shallow embeddings, deep embeddings operate on a
representation of the target language within the host language;
doing so, they enjoy a great deal of flexibility since they are
not confined to the syntax of the host language.

The match in the above function is a compile-time match
that operates on the deeply embedded representation of Noise
patterns, and gets partially evaluated away. We dub this style a
hybrid embedding: the code evaluated at compile-time operates
over a deep embedding (the Noise patterns), but after partial
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evaluation, all that is left is a shallow embedding (the Low*
code, which executes at runtime).

The hybrid style allows us to stage and automate the
production of Low* code; rather than writing Low* code by
hand, we embed a protocol compiler that executes on F*’s
compile-time reduction facilities. This style is already useful for
send message token; but there is no reason to limit ourselves
to simple matches and ifs. We now show how to execute
arbitrary pure F* code at compile-time, including recursion,
to completely automate the production of a specialized Noise
protocol instance.

[@@ strict on arguments [5]] inline for extraction
let rec send message tokens (nc: iconfig) ssi initiator
is psk tokens st outlen out =

match tokens with
| [] → success
| tk :: tokens’ →
[@inline let] let tk outlen = token message vs nc ssi tk in
let tk out = sub out 0ul tk outlen in
let r1 = send message token ssi initiator is psk tk st tk out in
if is success r1 then
let outlen’ = outlen −! tk outlen in
let out’ = sub out tk outlen outlen’ in
[@inline let] let ssi’ = send token update ssi is psk tk ssi in
let r2 = send message tokens ssi’ initiator
is psk tokens’ st outlen’ out’ in

compose return type ssi is psk true tokens’ tk r2
else
compute return type ssi is psk true tk tokens’ r1

The function above now operates over a list of tokens; that is,
it generates Low* code for an entire Noise handshake message.
Naturally, the function cannot extract as-is: operating over pure,
persistent lists in low-level efficient, idiomatic C is a no-go. The
goal is to ensure that the subset of send message tokens that
performs a (pure) recursion over the argument pattern (denoted
in bold) is always evaluated away at compile-time when applied
to constant arguments. To this end, we allow F* to unfold
recursive definitions (elided); to prevent infinite compile-time
recursion, we restrict the unfolding to applications where the
fifth argument (tokens) is concrete, via the strict on arguments

keyword. The inline let attribute indicates pure computations
to be inlined at extraction-time. (We use extraction-time
and compile-time interchangeably.) We use the keyword for
compile-time parameters or constants computed from such
parameters.

The function is verified once and for all, meaning that we
now have a verification statement for any list of noise tokens.
At extraction-time, the user applies the function to five concrete
arguments. If pattern is [ E; ES; S; SS ], then after a few steps
of reduction, we obtain:

let r1 = send message token ... E ... in
if is success r1 then ...
let r2 = send message tokens ... [ ES; S; SS ] ... in ...

As computing E always succeeds, is success r1 reduces to true,
in turn eliminating the else branche entirely. Partial evaluation
then continues until all compile-time code has disappeared;
structural recursion over the list of tokens is over; and all that

is left is a sequence of efficient Low* calls that implements
the specification for the given list of tokens.

We use this style of hybrid embedding all throughout our
low-level protocol code implementation, which allows us
to substantially reduce the verification effort. The following
section (§IV) shows how to extend this style to generate the
entire state machine of a Noise protocol.

D. Hybrid Type Definitions And Function Signatures

We use hybrid embeddings further to optimize internal type
definitions and user-facing functions.

For type definitions, we insist on generating C code that
contains no superfluous fields. This is useful not only in case
the code’s internals are audited; but also to ensure that no extra
space is consumed in e.g., the internal state of the handshake.
To that end, our types reduce at compile-time; consider, for
instance:

type handshake state t nc ssi ... is psk ... = { ...
psk: if is psk then lbuffer ... else unit; ... }

If the chosen Noise protocol requires it, the psk field is an
array of bytes. If the Noise protocol does not use a PSK, the
generic type reduces to unit, which is then guaranteed to be
eliminated by KReMLin [25], the Low*-to-C compiler. This
eliminates an always-NULL, superfluous field.

For user-facing functions, we apply a similar design pattern
and ensure that no “dummy” arguments are ever offered in the
public API: such arguments cause user confusion, make code
reviews more difficult, and generally diminish trust in our API.
Anticipating slightly, consider this initialization function that
we present as part of our user-facing API (§IV):

let session p create (idc: idconfig) (initiator: bool) ...
(dvp: device p idc) (peer id: opt pid t idc initiator): ST ... = ...

As mentioned in §II, we may not immediately know a
peer’s identity: whether peer id is needed at initialization-
time depends on the protocol. Rather than rely on an implicit
invariant that peer id will be ignored for some patterns, we
instead rely on a generic type opt pid t. In the case of XX,
the type opt pid t becomes unit. In the case of IKpsk2 for the
initiator, the type becomes lbuffer uint8. KreMLin guarantees
that function arguments of type unit are eliminated: this means
we offer a custom API for each Noise protocol. This directly
supports our goal of generating robust user-facing APIs that
leave no room for user error.

IV. A COMPLETE VERIFIED NOISE LIBRARY STACK & API

Section III describes the core handshake actions, as captured
by the Noise Protocol Framework. Yet, this forms only a small,
core part of a Noise library. We now review the remainder of
our Noise Protocol implementation and describe the many APIs
and library features we wrote in order to provide a complete,
self-contained, user-proof, verified Noise protocol stack.

A Generic State Machine. The core handshake actions
(§III) each implement a single line of a Noise Pattern. We
now tie together these individual protocol actions into two
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state machines: one for the initiator and the responder. These
basic state machines are trivially induced by the steps of the
handshake: they are linear, and each valid transition advances
the initiator or responder to their next step.

The send message tokens function from §III takes many run-
time parameters; we group them in a single type definition,
dubbed state t. The state also holds the current step in the hand-
shake, i.e., the current state of the machine. Continuing with
hybrid embeddings, a generic function state t handshake write

advances the state machine, and returns a fresh state t, for any
choice of pattern, step i, or initiator vs. responder.

(* The low-level state machine type: encapsulates keypair, chaining
hash state, symmetric state, current handshake step, psk, etc. *)

val state t: isconfig → initiator:bool →Type0
(* Simplified signature *)
val state t handshake write (isc: isconfig) (ssi: static info)

(i: nat { i < isc.pattern.messages })
(payload len: size t) (payload: lbuffer uint8)
(st: state t isc (i%2=0) { ... })
(outlen: size t) (out: lbuffer uint8):
Stack (s result code (st:state t isc (i%2=0) { ... }))

The signature of the function is familiar; the earlier iconfig

is now wrapped in an “implementation state config” isc, which
contains the entire noise pattern, along with compile-time
parameters that determine the shape of the final C struct
(§III-D). The function is once again written in the hybrid
embedding style; the compile-time parameter i allows the caller
to specialize the function for the i-th step of the handshake; this
in turns allows us to compute, at compile-time, whether the
message originates from the initiator (i%2=0) or the responder
(i%2=1). The compile-time parameters also determine the
nature of the return type, which is derived from the series
of return types for each token. The function returns a fresh
state st1 under the successful Res case. In a fashion similar to
send message tokens, the low-level stateful function coincides
with the outcome st1’ v of the spec-level interpreter. (Full
definitions can be found in [33].)

The parameter i represents the current step of the handshake
at compile-time; but this information is also carried at run-time
within the state st. A static precondition requires the compile-
time i to be consistent with the step stored at run-time within
st. This key technical trick enables compile-time computations
over the step i, which allows us to write a single transition
function. The function can be specialized at compile-time for
any step i; doing so produces a Low* function that can only
be called when the current run-time step coincides with the
compile-time i.

Equipped with this extremely generic function, we now
use the hybrid embedding style to generically program state
machine management: at compile-time, we generate a series
of run-time tests for each (statically-known) possible state of
the handshake; if a run-time test succeeds, the code proceeds
to execute state t handshake write, specialized at compile-time
for the specific step of the handshake. The result is a higher-
level function that can generate the state machine of either
the initiator or the responder, for any Noise pattern. We have

effectively embedded at compile-time within F* a compiler
that, from a deeply embedded Noise pattern, generates the
corresponding shallowly-embedded Low* state machine.

A User-Proof State Machine. As it stands, the state machine
cannot be exposed to the user. First, it returns a new state,
rather than modifying a heap-allocated state through a pointer;
second, it does not record stuck states, meaning that the user
can make a mistake by ignoring the Failure and calling the
function a second time.

We now transform this low-level state machine into a user-
proof one. In the process, we also enrich the API with features
for device, peer and key management. We dub this second
API layer the “device API”. We encapsulate the earlier state t

in a device state dstate t, which handles Low* region-based
memory management and ownership (elided), holds session
and peer names (provided by the user), and maintains a device
state for peer management.

[@CAbstractStruct] type dstate t idc =
| Initiator: state:state t idc.isc true → session name:name t
→ peer name: name t → device: device t → ...
→ dstate t ...

| Responder: state:state t idc.isc false → (* similar *)
type dstate p ... = B.pointer or null dstate t

Introducing dstate p, a potentially-null pointer, serves several
purposes: the C code becomes more idiomatic, now manip-
ulating a pointer to a structure instead of passing structures
by value; we can now have a NULL case which accounts
for errors, e.g., a point at infinity showing up at initialization
time; and we can introduce a modicum of abstraction, by using
the CAbstractStruct keyword which instructs KreMLin to only
emit a typedef in the generated header, thus preventing clients
from directly allocating or accessing a dstate t.

Unlike state t handshake write, this state machine from the
device layer is safe to use from C. If an error happens during the
handshake, we modify the step number to a special value that
indicates that the machine is stuck, before returning an error.
Any further attempt to use this state will leave the machine in
the error (stuck) state.

Device API and Session Management. In addition to the
state machine, the device state dstate t also encapsulates device
management. A device holds a set of peers, along with a table
that indexes them by a unique (integer) identifier; it also holds
the local static identity, and provides a high-level API which
enables the user to add, lookup, update or remove peers. Each
peer contains detailed information, such as their remote static
and pre-shared keys. The library is written from scratch, since
the existing Low* libraries for e.g., linked lists were proof-
of-concept-quality and not intended to be used within a large
development. The result is a relatively simple API, wherein
the user provides a private key, an implementation-specific
prologue and a C string for the device name.

device t *device create(uint32 t prologue len,
uint8 t *prologue, const char *name, uint8 t *spriv);

peer t *device add peer(device t *dvp,
const char *name, uint8 t *rs, uint8 t *psk);
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Given a device, the user can create a new session with a
chosen peer, in the role of either the initiator or the responder.

session t *create IKpsk2 initiator(device t *d, uint32 t peer id);
session t *create IKpsk2 responder(device t *d);

We mention at the end of §II that different Noise protocols
handle identity management very differently; and that mis-
handlings can lead to serious vulnerabilities. We rule out these
errors by construction in our API, using hybrid embeddings
(§III-D) to generically program the signature of the API
functions. For instance, IKpsk2 demands a peer identity at
initiator-creation time; this is reflected by the presence of
the peer id (a unique identifier)argument above. Conversely,
for XX, both parties learn the remote’s identity during the
handshake, and the peer id argument is absent from the C
function signature.

This in turn begs the question of what should be an
acceptable policy to deal with receiving a peer’s public static
key over the network, when the key is currently unknown to the
device. The answer varies, and generally requires application-
specific error handling. For instance, in the case of WireGuard,
an unknown user simply cannot connect and the handshake is
aborted. For WhatsApp, conversely, the application registers
the peer with the device, and proceeds with the conversation.

In Noise*, we delegate these decisions to the user of
our library via a policy function and a certification function.
The former is a constant in practice, and simply determines
whether unknown keys may be accepted. The latter receives
the decrypted payload of the message which should contain a
certificate for the key, and from it determines whether to certify
or invalidate a key. This behavior is triggered upon receiving
an S token without a corresponding entry in the peer table.

Long-Term Key Storage. To make sure our library is self-
contained and ready to be used, Noise* incorporates a verified
long-term (e.g., on-disk) key storage feature. Concretely, the
device state can be serialized and deserialized, which includes
peer list and static key. We use an AEAD construction, with the
device and peer names as authenticated data. In order to avoid
nonce reuse, each serialization generates a fresh nonce to be
fed into the AEAD construction; the nonce is stored on disk, so
that it can be reloaded at decryption-time. Our implementation
comes with proofs of correctness for the parser and serializer,
namely that they are the inverse of each other. Whether on-disk
storage is enabled is up to the user; should they enable it via
a compile-time parameter, the resulting C code will contain,
among other things, a create device from secret that takes an
encryption key, encrypted data, and returns a fresh device (or
NULL if decryption failed). We delegate the handling of the
on-disk encryption key to the user of our library.

A High-Level API with Message Encapsulation. To provide
an industrial-grade, error-proof Noise library, there remains one
last issue to address: right now, the user might inadvertently
send messages at a lower level of confidentiality or authenticity
than intended. This may happen either because the user has
misunderstood the guarantees provided by a given Noise

pattern; or because they sent early data in the handshake,
before the full guarantees were established (Figure 2).

We revisit the Noise confidentiality levels (Figure 2) and
expose an informative subset of them to the user: “public”
(C0), “known remote replayable” (C2), “known remote weak
forward” (C3) and “known remote strong forward” (C5). Then,
we abstract away the type of messages and impose that the
user go through a constructor and a destructor. These not only
require the user to specify a level, but also to commit to a
session and a peer, which rules out improper handling of data.

encap message t *pack with conf level(
uint8 t requested conf level,
const char *session name, const char *peer name,
uint32 t msg len, uint8 t *msg);

bool unpack message with auth level(
uint32 t *out msg len, uint8 t **out msg,
char *session name, char *peer name,
uint8 t requested auth level, encap message t *emp);

Encapsulated messages can then be sent through an API that
wraps handshake write and takes care of packing and unpacking.
When sending, we check that the session sn has reached at
least the desired confidentiality level; when receiving, we check
that the requested authentication level is at most the session’s
current level. The high-level rcode captures both state machine
errors (stuck), and authenticity or confidentiality errors.

rcode session write(encap message t *input, session t *sn,
uint32 t *out len, uint8 t **out);

rcode session read(encap message t **out, session t *sn,
uint32 t *inlen, uint8 t *input);

This concludes our tour of our Noise protocol implemen-
tation. From the protocol actions of §III, we derived a state
machine implementation that properly handles failures and
is generically programmed. We extend this state machine
with runtime support for peer and device management, peer
authentication policies, and on-disk long-term key storage. We
expose the API via safe functions that perform confidentiality
and authenticity run-time checks at the API boundary to
rule out errors from unverified C clients. We obtain the first
verified implementation for a full secure channel protocol stack,
complete from cryptographic primitive to its user-facing API.

V. SYMBOLIC SECURITY PROOFS FOR NOISE*

As explained in Section II, the Noise specification [20]
describes the expected security guarantees for each Noise
protocol in terms of authentication (A0-A2) and confidentiality
levels (C0-C5). Several analyses have shown that various Noise
protocols meet these guarantees against classic Dolev-Yao-style
active network adversaries [34], using symbolic analysis tools
like ProVerif [22] and Tamarin [21]. Although these analyses
provide comprehensive results for the protocol messaging code,
they do not cover important details like message formats,
protocol state machines, or key management, which are crucial
to the security of full Noise implementations. In this section,
we close this gap by proving the symbolic security of our F*
Noise specification, relying on a framework called DY* [27].
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A. Background on DY*

DY* Framework. DY* is a set of F* libraries that enables
the symbolic security verification of protocol code written in
F* [27]. In effect, we take our Noise protocol specification from
Section II and replace all calls to concrete cryptography, random
number generation, and state storage with the symbolic libraries
provided by DY*, to obtain a symbolic security specification in
F* that is functionally equivalent to our original specification.
We then use the proof patterns provided by DY* to prove
that our specification satisfies the security guarantees expected
by Noise. Our proofs account for an unbounded number of
protocol sessions and an active Dolev-Yao adversary [34].

DY* has previously been used to verify various protocols
(including Signal [27]) but a key novelty of our approach is
that we build a generic security proof for a Noise protocol
interpreter to obtain security guarantees for all Noise protocols
in one go. This kind of parameterized inductive proof is out of
reach of tools like ProVerif and Tamarin, which instead have
to rely on per-instance verification of each Noise protocol [22],
[21]. The trade-off is that DY* is not as automated as these
tools, and it does not yet support the verification of equivalence
properties, needed to state goals like identity privacy.

We refer the reader to the DY* paper [27] and public code
repository [35] for its detailed presentation. Below, we briefly
discuss the main elements used in our Noise security proof.

Trace-Based Semantics. A DY* program consists of
a set of stateful protocol functions (e.g., session create,
handshake write) that can be executed by each protocol partic-
ipant or principal (e.g., ”alice”,”bob”) to initiate or continue
any number of protocol sessions, where each session is locally
identified by an integer sid. Each principal can store session-
specific state as well as long-term state shared between sessions.

The interleaved distributed execution of protocol sessions
across multiple principals is modeled by an append-only global
trace that records every message sent between principals,
every freshly generated random value, every long-term and
session state stored by each principal, and every security event
triggered by a principal to mark the progress of a protocol
session. The index of an entry in the global trace can be
seen as a unique immutable timestamp, so we can state for
example, that an event was triggered at a particular trace index
(event at i (Send A B M)) and that this occurred before another
event (event at j (Recv B A M) ∧ i < j).

For example, in a run of the Noise IKpsk2 protocol between
I and R, after I sends the first message, the global trace
contains an entry for the generation of I’s ephemeral key (x),
the message from I to R, and I’s handshake state after this
message. Once R processes the first message and responds with
the second message, the trace is extended by another entry
for the responder ephemeral, the second message, and the
handshake state stored at R. When the handshake is complete,
both parties discard their session-specific handshake states and
store new session states containing the final cipher states.

The attacker is modeled as an F* program that acts as a
global scheduler: it drives the execution of all protocol sessions

by calling protocol functions at different principals. It has
all the capabilities of an active network attacker: it can read
and write messages between any two principals in the global
trace, it can generate its own fresh random values, and it can
call cryptographic functions using values it has learned. The
attacker can also dynamically compromise any state stored at
any principal to obtain its contents. Hence, by compromising
the long-term state at a principal (indicated by the event
corrupt principal i ”alice”), the attacker can learn the principal’s
static Diffie-Hellman and pre-shared keys. Alternatively, by
compromising a session state corresponding to an ongoing
Noise session at a principal (corrupt session i ”alice” sid), the
attacker can learn the current handshake state, including any
private ephemeral keys. However, the attacker cannot guess
random values, or invert encryption unless it either has the key
or has explicitly compromised it. The attacker’s knowledge at
a particular timestamp in the global trace is formalized by an
inductive predicate: attacker knows at i m.

B. Formalizing Payload Security Goals as Trace Properties

We formalize each of the 3 authentication levels (A0-A2) and
6 confidentiality levels (C0-C5) of Noise as trace properties,
i.e., predicates over the global trace.

Authentication Goals. Level A0 provides no guarantees.

let trace property A0 = ⊤

For A1, suppose that before sending an authenticated payload,
each Noise participant A triggers an event of the form
AuthSent A B M L indicating that it is sending a message M
to B at authentication level L. After successfully processing
an authenticated payload M in a session sid, the recipient
B triggers an event AuthReceived B sid A M L. Then, the
authentication goal for messages sent at Noise authentication
level A1 can be written as a trace property:

1let trace property A1 =
2∀i sid A B M. event at i (AuthReceived B sid A M 1) =⇒
3(∃ j. j < i ∧ event at j (AuthSent A B M 1)) ∨
4(∃ k. k < i ∧ (corrupt principal k A ∨
5corrupt session k B sid ∨
6corrupt principal k B))

This trace property says that whenever B accepts a message
M from A at time i (with authentication level A1), either this
must be an authentic message sent by A at time j < i, or else
the long-term state of A, the session state at B or the long-term
state of B must have been compromised before i. Note that
corrupt session k B sid actually implies corrupt principal k B, so
the conjunct on line 5 is actually redundant: we leave it only
to make it clear that the trace property A1 above implies the
trace property A2 below.

The disjunct on line 6 indicates the possibility of a KCI
attack: i.e., the loss of message authenticity when the recipient
B’s static key is compromised.

To obtain the trace property for authentication level A2, we
simply remove this disjunct (line 6) to require the absence of
KCI attacks:
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let trace property A2 =
∀i sid A B M. event at i (AuthReceived B sid A M 2) =⇒

(∃ j. j < i ∧ event at j (AuthSent A B M 2)) ∨
(∃ k. k < i ∧ (corrupt principal k A ∨

corrupt session k B sid)

Level A0 provides no guarantees:

let trace property A0 = ⊤

Confidentiality Goals. Confidentiality guarantees are stated
as predicates over the global trace that describe the conditions
in which a protocol secret may become part of the attacker’s
knowledge. Suppose that each Noise participant A triggers an
event ConfSent A sid B sid’ M L before sending a fresh random
secret message M at confidentiality level L to B, where sid

and sid’ are the session indexes at A and B (note that sid’ is
retrieved from B’s ephemeral key by mean of a ghost function
- an abstract function that can only be used in specifications).
Then, the confidentiality level C4 is written as the following:

1 let trace property C4 =
2 ∀i j sid sid’ A B M.
3 (event at i ConfSent A sid B sid’ M 4 ∧
4 attacker knows at j M ∧ i ≤ j) =⇒
5 (∃ k. k < i ∧ (corrupt principal k A ∨
6 corrupt principal k B)) ∨
7 (∃ l. l ≤ j ∧ (corrupt session l A sid ∨
8 corrupt session l B sid’)

This predicate says that if a secret message M sent at time
i (and confidentiality level C4) from a session sid at A to a
session sid’ at B, and M subsequently becomes known to the
adversary at time j, then either the static key of A or the static
key of B was compromised before the message was sent at i
or else one of the two ephemeral protocol session states (sid,
sid’) was compromised before j.

The strongest variant of forward secrecy provided by Noise
(C5) limits static key compromise to the recipient; that is, we
drop the disjunct on line 5 (corrupt principal k A) allowing the
sender A’s static key to be compromised at any time without
affecting the confidentiality of M :

let trace property C5 =
∀i j sid sid’ A B M.

(event at i ConfSent A sid B sid’ M 5 ∧
attacker knows at j M ∧ i ≤ j) =⇒

(∃ k. k < i ∧ corrupt principal k B) ∨
(∃ l. l ≤ j ∧ (corrupt session l A sid ∨

corrupt session l B sid’)

The trace properties for levels C1-C3 provide weaker forward
secrecy guarantees than C4 by restricting the compromise sce-
narios in which confidentiality is guaranteed. In these scenarios,
the sender does not know if the peer ephemeral public key it
is using actually belongs to some recipient session sid’ of B;
instead this public key may have been provided by the attacker.
So we use a different event ConfSentEph A sid B eph M L,
where instead of the peer session sid’, A marks the (possibly
attacker-controlled) peer ephemeral key which it used to derive
the encryption key.

The confidentiality guarantee of C1 then states that the
message is secret only if this peer ephemeral key is confidential:

let trace property C1 =
∀i j sid eph A B M.

(event at i ConfSentEph A sid B eph M 1 ∧
attacker knows at j M ∧ i ≤ j) =⇒

(∃ l. k ≤ j ∧ (corrupt session k A sid ∨
(∃ sk. eph = PK(sk) ∧

attacker knows at k sk)))

That is, we have no confidentiality if the attacker actively
interferes with the session to provide its own public key eph.
Note that this means that confidentiality is lost even if none
of the recipient B’s keys have been compromised.

C2 provides a stronger guarantee that links the confidentiality
of the message to static key compromise at the recipient B:

let trace property C2 =
∀i j sid eph A B M.

(event at i ConfSentEph A sid B eph M 2 ∧
attacker knows at j M ∧ i ≤ j) =⇒

(∃ k. k ≤ j ∧ (corrupt session k A sid ∨
corrupt principal k B))

That is, we have no confidentiality if the attacker compromises
the recipient’s static key or the sender’s ephemeral key (before
or after the message is sent), but the compromise of the sender’s
static key does not affect security.
C3 provides weak forward secrecy, which combines the

guarantees of C1 and C2 to link message confidentiality to
both the peer’s ephemeral key and recipient’s static key:

let trace property C3 =
∀i j sid eph A B M.

(event at i ConfSentEph A sid B eph M 3 ∧
attacker knows at j M ∧ i ≤ j) =⇒

(∃ k. k ≤ j ∧ (corrupt session k A sid ∨
(∃ sk. eph = PK(sk) ∧

attacker knows at k sk ∧
corrupt principal k B)))

That is, we have no confidentiality if the attacker first actively
interferes with the session to provide its own ephemeral public
key and then also compromises the recipient’s static key (before
or after the protocol message is sent).

C0 provides no guarantees:

let trace property C0 = ⊤

Deriving Security Goals for each Noise Protocol. The overall
security goal for our Noise specification is to prove that every
global execution trace for every Noise protocol satisfies the 7
trace properties corresponding to A1-A2 and C1-C5. Hence,
for each payload in a Noise protocol, we can look up the
confidentiality and authentication level (from Appendix A) and
map it to the corresponding trace property to obtain the precise
security guarantee at sender and recipient.

Our way of encoding security goals as trace properties
(sometimes called correspondence assertions [36]) is similar
to how these goals are usually stated in protocol verification
tools like ProVerif and Tamarin. Notably, these trace properties
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are defined independently of a specific Noise protocol or its
F* code and only refer to events triggered during protocol
execution. This allows our security goals to be independently
audited and compared with other formulations. Indeed, the
corresponding ProVerif query for authentication level A2 in
prior work [22] (see Section II-C) is almost identical (modulo
syntax) to our trace property. However, the ProVerif queries
for forward secrecy (C2-C5) look different from our trace
properties since they use phases (instead of timestamps) to
enforce an order between messages and compromise events.

C. Security Proof for Noise*: Overview
Having stated our (trusted) security goals by mapping levels

to trace properties, the next step is to prove that our security-
oriented specification preserves a global trace invariant that
implies these trace properties. This symbolic security proof in
DY* relies on two kinds of (untrusted) annotations: secrecy
labels and authentication predicates. These must be provided
by the programmer and are then verified by typechecking. Note
that labels are not the same as the levels previously introduced:
levels are a way of revealing high-level security properties to
the user and are used by the API to perform dynamic checks,
while labels are annotations we insert for the security proofs.

Secrecy Labels. Each bytestring (key, message, constant) used
in the protocol must be annotated with a secrecy label that
indicates which sessions of which principals are allowed to read
them. For example, a static (long-term) Diffie-Hellman private
key belonging to a principal named ”alice” is given a label
CanRead [P ”alice”], indicating that it can be read by all sessions
of ”alice”, whereas an ephemeral private key that is only meant
to be used in session sid is labeled CanRead [S ”alice” sid]. A
long-term pre-shared key between ”alice” and ”bob” is given
the label CanRead [P ”alice”] ⊔ CanRead [P ”bob”], where the
join (⊔) operator indicates the union of the two labels.
For succinctness, we can also write the above label as
CanRead [P ”alice”; P ”bob”]. Constants and public bytestrings
are labeled with Public, indicating that they can be read by any
session, including by the attacker.

Secrecy labels are related by a reflexive, transitive relation
can flow i l1 l2 which says that a label l2 is stronger (more
restrictive) than label l1 at a timestamp i. For example,
the label Public can always flow to any other label, and
CanRead [P p; P p’] can always flow to CanRead [P p]; but
CanRead [S p sid] can only flow to Public at timestamp i if
the event Compromise p sid occurs before i in the global trace.

The DY* cryptographic API manipulates these labels and
imposes a strict discipline on their usage, ensuring that secret
data never flows to a public location. In particular, AEAD
encryption returns a ciphertext labeled Public, but requires as
a pre-condition that the label of the payload must flow to the
label of the key. Computing a Diffie-Hellman shared secret
between two private keys with labels l and l′ yields a key
with label l ⊔ l′, indicating that any session that can read one
of the two private keys can know the shared secret. Calling
a key derivation function (KDF) with two keys with labels
l and l′ yields a key with label l ⊓ l′, where the meet (⊓)

operator indicates an intersection; only sessions that can read
both inputs may read the result. Hence, KDF strengthens the
label of a key by mixing in additional key material.

As a consequence of the secret labeling discipline, DY*
provides a generic secrecy lemma stating that a secret with
label l can only be obtained by the adversary at timestamp
i if can flow i l Public holds. This lemma can be instanti-
ated to obtain strong protocol-specific security guarantees.
For example, a Diffie-Hellman shared secret x with label
CanRead[S ”alice” sid] ⊔ CanRead[S ”bob” sid’] is forward se-
cret: an attacker can only obtain it if it specifically compromises
sid (at alice) or sid’ (at bob) before these sessions end and their
state is deleted. Notably, compromising the long-term keys of
alice or bob, or any other sessions at these principals does not
help the adversary obtain x. Labels like these allow us to prove
trace properties like strong forward secrecy (C5).

Authentication Predicates. DY* also defines a set of
authentication predicates that can be instantiated for each
protocol to enable the propagation of security invariants
through cryptographic calls and events. For example, AEAD
encryption has a pre-condition ae pred that is intended to
specify the conditions under which a message is allowed
to be encrypted; this predicate becomes a post-condition for
AEAD decryption. For Noise, we instantiate ae pred to require
that, either the encryption key is compromised, or the sender
(who is thus honest) must have triggered the AuthSent and
ConfSent events, and consequently obtain the corresponding
authentication guarantee at the recipient. Similarly, an event
predicate event pred states when an event may be triggered;
we instantiate it to encode our authentication goals, requiring
that the event AuthReceived can only be triggered if the
corresponding authentication property holds. By instantiating
these predicates and verifying that our protocol code still
satisfies the resulting preconditions, we link protocol session
state invariants with cryptographic guarantees to prove the
target trace invariants for our Noise specification.

Structure of the Proof. We structure the symbolic security
proof for our Noise specification in several steps:
• Security Levels to Trace Invariants: we write a generic

function that maps any step of any Noise pattern to its cor-
responding level, as described in Figure 2, the full version
of which is in Appendix A. We then extend the global
trace invariant with the corresponding authentication or
confidentiality trace properties for every Noise message
sent and received at each level.

• Security Levels to Key Secrecy Labels: we map each
payload security level to a predicate over the secrecy
label of the AEAD key used to encrypt the payload. We
show that, for each confidentiality and authentication
level, the AEAD key secrecy label, the properties of
AEAD encryption, and the generic secrecy lemmas of
DY* together imply the global trace invariant.

• Handshake State Invariant: to each state of the hand-
shake, we associate a label and we prove that in all runs
of the protocol code, the resulting state matches its target
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label. We then prove that the label of the handshake state
at a given protocol stage is always stronger than the target
key secrecy label for that stage of the protocol.

• High-Level API security: our high-level API always
preserves the handshake state invariant. In combination
with the above sequence of proof steps, this allows us
to prove that all reachable traces of our Noise protocol
specification satisfy the level-based authentication and
confidentiality guarantees of Noise. In particular, we prove
that these security guarantees are correctly propagated all
the way up to the user-facing API where they are exposed
as understandable security guarantees.

To achieve the proof above, we build a new security-oriented
specification of Noise that is provably equivalent to our original
specification, but is annotated with labels and logical invariants
that enable us to prove our security goals. The full proof
development is in F*; we now describe each of the proof steps.

D. Security Proof: Handshake State Invariant

Labeling the Handshake State. In our security spec, we
annotate every element of the handshake state with a secrecy
label. The cipher state and symmetric state types are now
parameterized by a timestamp i and a label l for the chaining
key ck and AEAD key k:

type cipher state (i:nat) (l:label) = {
k: option (aead key i l);
n: nat;}

type symmetric state (cfg:config) (i:nat) (l:label) = {
h : hash cfg i Public;
ck : chaining key cfg i l;
c state : cipher state i l}

The full handshake state for a session sid at a protocol
participant p is annotated with a security index. For each
participating principal in the protocol, the index includes the
name of the principal (p), its local session identifier (sid), the
name of the peer (peer), and the secrecy label associated with
the ephemeral key of the peer (peer eph label). Of these, the
last two are optional, since they may only be available in later
stages of protocols.

type index = {
p: principal;
sid: nat;
peer: option principal;
peer eph label: option label}

Notably, the index does not contain the peer’s local session
identifier, since this value is unknown to p. All p knows is
the remote ephemeral public key, and so we state our security
properties in terms of what p knows about the security of this
key, which is encapsulated in peer eph label.

Each handshake state is annotated with the current index
idx and the current label l encoding the secrecy of the current
chaining key and cipher state. Hence, in each run of a protocol
at a principal p, we have an index and a label describing the
current security guarantees.

type handshake state (cfg:config) (i:nat) (l:label) (idx:index) = {
sym state : symmetric state nc i l;
static : option (keypair cfg i (CanRead [P idx.p]));
ephemeral : option (keypair cfg i (CanRead [S idx.p idx.sid]));
remote static : option (public key cfg i (CanRead [P idx.peer]));
remote ephemeral : option (public key cfg i idx.peer eph label);
preshared : option (preshared key cfg i idx.p idx.peer);}

In the handshake state, the local static and ephemeral
keypairs have secrecy labels related to the current principal
and session. Once we have validated the remote static key
(see the certification function below), it is labeled with
CanRead [P idx.peer]. However, the relationship between the
remote ephemeral key label (idx.peer eph label) and the peer’s
identity is unknown. The pre-shared key, if it exists, has a label
indicating that it is shared between the principal and its peer.

Computing Target Secrecy Labels. Given a Noise protocol
(described as a handshake pattern), and an index describing the
current run, we can compute the target secrecy label for the
handshake state at the initiator and responder at each stage
of the protocol. Note that since the initiator and responder
have different (partial) views of their peer’s protocol state, the
computed labels at the two ends may be different. In total, we
compute four labels at each stage, two for‘ the initiator, and
two for the responder:

• li: the current label at I;
• l←i : the last label at which I received a message from R;
• lr: the current label at R;
• l→r : the last label at which R received a message from I .

The last labels at which I or R received a message are
used for authentication through the peer ephemeral invariant:
receiving a message from a peer gives you confirmation that
he was able to advance in the protocol up to this message,
providing guarantees about the secrecy of his ephemeral key
(see Establishing the Peer Ephemeral Invariant). When we
wish to refer to the label at a particular stage n, we write
li[n] or lr[n]. The sequence of computed labels for our three
example Noise protocols X, NX, and IKpsk2 are shown in
Figure 3, the full version of which is in Appendix B.

The target label computation faithfully follows the sequence
of cryptographic operations. Every time new key material is
added to the handshake state, the new label is a meet (or ⊓)
of the old label and the new key material. If the key material
is a Diffie-Hellman secret, its label is a join (or ⊔) of the
labels of the two Diffie-Hellman private keys. Each participant
knows the labels of its own static key (CanRead [P idx.p]) and
its own ephemeral key (CanRead [S idx.p idx.sid]). After public
key validation, it also knows the label of the peer’s static key
(CanRead [P idx.peer]), but it typically does not know the label
of the peer’s ephemeral key (idx.peer eph label). Hence, Diffie-
Hellman operations involving the peer’s ephemeral key result
in labels that use idx.peer eph label as an opaque label.

Computing Target Labels for X. The protocol X has a single
message with four tokens. At the initiator point of view, the
token e does not affect the label; es changes the label to the
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Protocol Message Sequence Stage Initiator Handshake State Label Responder Handshake State Label
li l←i lr l→r

X

← s pre
→ e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p]⊔idxr .peer eph label) ⊓ = lr[1]

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
→ [d1, d2, . . .] 2 = li[1] Public = lr[1] = lr[1]

NX

→ e [d0] 1 Public - Public Public

← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ Public

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p]⊔idxr .peer eph label)
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2]
↔ [d3, . . .] 4 = li[2] = li[2] = lr[2] = lr[2]

IKpsk2

← s pre
→ e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1]

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
← e, ee, se, psk [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid]⊔idxr .peer eph label) ⊓ = lr[1]

(CanRead [P idxi.p]⊔idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2]
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2]

Fig. 3. Target Security Labels Computed for Three Example Noise protocols (X, NX, and IKpsk2)

secrecy label of the ephemeral-static Diffie-Hellman shared
secret (CanRead [S idxi.p idxi.sid; P idxi.peer]); s does not affect
the label; ss changes the label to the meet of the previous label
and the label of the static-static Diffie-Hellman shared secret
(CanRead [P idxi.p; P idxi.peer]). Hence the label li after the
first message is a meet of the labels of the two Diffie-Hellman
shared secrets.

From the responder’s point of view, the label lr
looks a bit different. Since the responder does not know
the label of the initiator’s ephemeral key, the label it
computes for the ephemeral-static shared secret is of
the form (CanRead [P idxr .p] ⊔ idxr .peer eph label), where
idxr .peer eph label is the label of the peer’s ephemeral private
key. The label for the static-static shared secret is the same.
Hence, for the responder, the key after the first message is
only partially authenticated (level 1 in Noise terminology)

The last received label l←i is null since the initiator has not
received any message, and l→r is the same as lr.

Computing Target Labels for NX. For NX, the label
computation is similar, except that the labels at the ini-
tiator and responder are even more asymmetric, since the
initiator is unauthenticated. Hence, at the end of the pro-
tocol, the initiator has a precise label linking its session
to the peer’s identity (CanRead [S idxi.p idxi.sid; P idxi.peer]),
but the responder only has a weak label linking its ses-
sion to some (potentially compromised) peer ephemeral key
(CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label).

Computing Target Labels for IKpsk2. The computation of
labels for IKpsk2 follows the same pattern as X and NX except
that both parties are authenticated and their labels get stronger
with each stage. Notably, at the end of the second message, the
responder’s label lr[2] has reached the maximum label for this
pattern (it never changes thereafter). However, at this point,
the last received label l→r [2] is still quite weak (since R has
not yet received a message protected under the newest key,
confirming that I was able to complete the handshake). It is
only when the responder receives a subsequent (data) message
from the initiator that the two labels lr an l→r coincide. It is
this quirk of IKpsk2 that leads to the responder obtaining a

slightly weaker forward secrecy guarantee (Noise level 4) at
the end of the second message, and strong forward secrecy
(level 5) after the third message.

Hence, for instance, after the second IKpsk2 message, the
target handshake state label at an initiator with index idxi is
computed as follows:

(CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) ⊓
(CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label]) ⊓
(CanRead [P idxi.p] ⊔ idxi.peer eph label]) ⊓
(CanRead [P idxi.p; P idxi.peer])

Each line of the label corresponds to some key material
that has been mixed into the chaining key: ephemeral-static,
static-static, ephemeral-ephemeral, and static-ephemeral Diffie-
Hellman secrets, followed by a pre-shared key.

Proving the Handshake Secrecy Invariant. Our main secrecy
invariant for the handshake state is that at each stage of the
protocol its label must match the computed target label. We
prove that the messaging functions in our Noise specification
preserve this invariant whenever they modify the handshake
state. For example, the type of our labeled send message tokens

function is as follows:

val send message tokens (cfg:config) (initiator is psk:bool)
(tokens:list token) (i:nat) (l:label) (idx:index)
(st:handshake state cfg i l idx) :
(result (ciphertext:msg i Public &
handshake state cfg i (updt label l idx tokens initiator) idx))

The result type says that the new handshake state label (after the
message is sent) can be computed from the old label, the index,
the list of sent tokens, and the message direction. Separately,
we show that this updated label corresponds exactly to the
target label computed for this stage of the handshake pattern.

The type for receive message tokens is a bit more compli-
cated since the index of the handshake state may change in
the course of the function, if the message contains the peer’s
static or ephemeral key. Other than this detail, we again prove
that it updates the handshake label in the same way from the
prior label and received tokens. Hence, we prove that all our
messaging functions preserve the handshake labeling invariant.
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Establishing the Peer Ephemeral Invariant. The label of
peer ephemeral key (idx.peer eph label) in the handshake state
is (as yet) unrelated to the peer’s identity. It means that the
keys in the handshake state are linked to an untrusted remote
ephemeral key, and hence are not forward secret. To obtain
stronger forward secrecy guarantees, we need to establish an
authentication invariant on the handshake state.

As described above, in addition to the target secrecy labels (li,
lr) for each handshake state at the initiator and responder, we
also keep track of the label at which each participant received
its last message (l←i , l→r ). We then prove that if this last receive
label is uncompromised at i (i.e., it does not flow to Public)
then the remote ephemeral key label at i (idx.peer eph label)
must be of the form CanRead [S idx.peer sid’] for some session
sid’ at the peer. In other words, the last received message
conditionally attests to the authenticity of the peer ephemeral
key. If the payload received with this message was protected
with a strong label, we get a strong authentication guarantee
for the peer ephemeral.

To obtain an authentication guarantee for the peer ephemeral
key, we rely on the global AEAD predicate (ae pred, mentioned
in §V) to enforce that every encrypted handshake payload sent
in each direction contains a transcript hash in the associated
data, which uniquely captures all the ephemeral keys exchanged
so far. Using this AEAD predicate at each decryption, the
receive message functions can establish and maintain the peer
ephemeral invariant in the recipient’s handshake state.

E. Security Proof: Handshake State Invariant to Trace Proper-
ties

Our next goal is to show that the handshake state invariant
implies the trace properties corresponding to our authentication
(A0-A2) and confidentiality goals (C0-C5). This proof is in
three steps: (1) we map each authentication and confidentiality
level to predicates on the secrecy label of an AEAD key;
(2) we show that the handshake state invariant guarantees that
the current AEAD key in the handshake state satisfies these key
secrecy predicates; (3) we show that each key secrecy predicate
implies the trace property for the corresponding level.

Mapping Levels to Key Secrecy Predicates. We define
a series of security predicates in F*, one for each payload
security level, stated in terms of the current global timestamp
(i), security index (idx), and a handshake state label (l). The
confidentiality predicates should be read from the viewpoint
of the sender, whereas the authenticity predicates are from the
viewpoint of the recipient. Each predicate has the same shape,
represented by the predicate type below:

type security pred = i:nat → idx:index → key label:label →Type

The three authentication predicates are as follows:

Level Authentication Predicate (over i, idx, and l)
A0 ⊤
A1 can flow i (CanRead [P idx.p; P idx.peer]) l
A2 can flow i (CanRead [S idx.p idx.sid; P idx.peer]) l

Each authentication predicate is stated in terms of the
strength of the current key label l; that is, the conditions under
which the current key may be known to the adversary. This in
turn implies the conditions under which the messages received
by idx.p may have been forged or tampered with.

For level A0, there are no authentication guarantees, and so
the predicate is always ⊤.

For level A1, we require that l is at least as strong as the
(static-static) label CanRead [P idx.p; P idx.peer], which means
that the current key can only be known to the adversary if
one of the two static keys (at idx.p or idx.peer) were currently
known to the adversary.

For level A2, we strengthen the requirement by requiring
that l is at least as strong as the (ephemeral-static) label
CanRead [S idx.p idx.sid; P idx.peer]. This predicate requires
that the AEAD key in the cipher state should be known only to
the principal (idx.p) and its peer (idx.peer), and should be bound
to the current session sid at idx.p. So, even an adversary who
compromises a principal’s static key cannot obtain the session
key; the adversary must compromise either the principal’s
ephemeral key or the peer’s static key. In particular, this forbids
KCI attacks, since compromising the long-term keys of the
principal idx.p does not break authentication.

The six confidentiality predicates are depicted in Figure 4,
again stated in terms of the timestamp i, index idx, and the
current handshake state label l.

As with authenticity, level C0 provides no guarantees.
For level C1, we require that the handshake state label

l is at least as strong as the ephemeral-ephemeral label
(CanRead [S idx.p idx.sid] ⊔ idx.peer eph label) which means
that the recipient (peer) is unauthenticated and hence could be
played by an active attacker. This level only protects against
passive adversaries. Note that idx.peer eph label is actually an
optional value, so the predicate definition implicitly says that
this value must not be empty, otherwise the confidentiality
predicate is false.

For level C2, we require that l is as strong as the ephemeral-
static label CanRead [S idx.p idx.sid; P idx.peer], so we have
confidentiality unless the sender’s ephemeral key or the peer’s
static key are compromised.

For level C3, our requirement is a little stronger in that
we require the current label to be stronger than both the
ephemeral-static label (from 2) and the ephemeral-ephemeral
label (from 1). This level provides weak forward secrecy, since
the attacker can actively interfere with the session to insert its
own ephemeral key.

For level C4, we strengthen the forward secrecy guaran-
tee of level 3 by adding conditions under which the peer
ephemeral key is known to be secure. Unless the attacker has
actively compromised one of the two static keys (before the
session is complete), the peer eph label must be of the form
CanRead [S idx.peer sid’] for some peer session sid’. Hence, we
have forward secrecy if both static keys are uncompromised
during the session.

Level C5 provides strong forward secrecy: the attacker must
compromise either the sender’s ephemeral key or the recipient’s
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Level Confidentiality Predicate (over i, idx, and l)
C0 ⊤
C1 can flow i (CanRead [S idx.p idx.sid] ⊔ idx.peer eph label) l
C2 can flow i (CanRead [S idx.p idx.sid; P idx.peer]) l
C3 can flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ∧

can flow i (CanRead [S idx.p idx.sid] ⊔ idx.peer eph label) l
C4 can flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ∧

can flow i (CanRead [S idx.p idx.sid] ⊔ idx.peer eph label) l ∧
(compromised before i (P idx.p) ∨ compromised before i (P idx.peer) ∨

(∃sid’. peer eph label == CanRead [S idx.peer sid’]))
C5 can flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ∧

can flow i (CanRead [S idx.p idx.sid] ⊔ idx.peer eph label) l ∧
(compromised before i (S idx.p idx.sid) ∨ compromised before i (P idx.peer) ∨

(∃sid’. peer eph label == CanRead [S idx.peer sid’]))

Fig. 4. Confidentiality Predicates for each Noise Confidentiality Level

static key before the session is complete. This predicate is as
follows:

can flow i (CanRead [S idx.p idx.sid; P idx.peer]) l ∧
can flow i (CanRead [S idx.p idx.sid] ⊔ idx.peer eph label) l ∧
(compromised before i (S idx.p idx.sid) ∨
compromised before i (P idx.peer) ∨

(∃ sid’. peer eph label == CanRead [S idx.peer sid’]))

The first line of this predicate says that the handshake secrets
should be readable only by the (authenticated) peer (idx.peer)
and the current session idx.sid at idx.p. The second line says
that the handshake secrets must also be bound to some peer
ephemeral key. The last two lines provide strong forward
secrecy: they say that unless the peer’s long-term keys and
the specific session idx.sid of idx.p was compromised (before
the session is complete), the peer ephemeral key must have
a label of the form CanRead [S idx.peer sid’]. Since the key
label is bound to specific sessions at both ends, compromising
long-term keys after the session has no effect on key secrecy.

Handshake Invariant to Key Secrecy Predicates. Given
the handshake state invariant (including the secrecy invariant
and the peer ephemeral invariant), we prove that in each
reachable handshake state the current handshake label satisfies
the authenticity and confidentiality predicates described above
for the security levels at the current stage of the protocol. In
other words, we show that the secrecy label annotating the
handshake state (and hence the label of its current AEAD key)
is always stronger than the label expected by the Noise payload
security level at the current stage of the protocol.

Key Secrecy Predicates to Trace Invariants. Message
authenticity and confidentiality guarantees in secure channel
protocols directly rely on the secrecy of the corresponding
encryption key. In DY*, the AEAD encryption function only
allows the encryption of a message under a key whose label is
stronger than the message, and so the key label expresses an
upper bound on the secrecy of messages. For our confidentiality
proofs, we assume that the application always sends messages
labeled with the current handshake state label, which is the

same as the current AEAD key label. Then, from using the
confidentiality predicate on key labels for each level, we derive
the confidentiality trace invariant for messages sent at this level
as a corollary of the generic secrecy lemmas of DY*.

For authentication, we instantiate the ae pred pre-condition
of AEAD encryption to ensure that each call to the AEAD
encryption function is preceded by a security event AuthSent

with the appropriate parameters. We also instantiate the
event pred pre-condition for security events to ensure that the
AuthReceived function can only be called if the corresponding
authentication trace property is satisfied. These predicates,
along with the properties of AEAD encryption and decryption,
and the authentication predicates on the key secrecy label allow
us to prove the trace invariant for each authentication level.

This completes the security proof for the protocol code. In
summary, we combine the handshake state invariant with key
secrecy predicates to show that every reachable handshake
state preserves the global trace invariant, which includes the
confidentiality and authentication goals for each level.

F. Security Proof: High-Level API security

The final step of our proof involves propagating the protocol
security guarantees up through the stack all the way to the high-
level API. For most of our code, this propagation is relatively
straightforward: we prove that our code does not accidentally
break the labeling discipline, by storing a secret value in a
public location, or mixing up data from different sessions.

The main security-critical step in this proof is the static key
validation function provided by the device API. We assume
that the certification function can take a potential public key,
along with a (possibly-empty) certificate, and verify that it is
indeed a static public key belonging to a given principal:

val certification function: i:nat → rs:bytes → rcert:bytes →
option (peer:principal{is public key rs i (CanRead [P peer])})

We also propagate our secrecy labels through the device
management API, by annotating all remote static and pre-
shared keys stored in the device with the appropriate labels

17



Component F* spec Low* code DY* proof
Core Protocol (§III) 1,095 15,506 1,792
Device Management (§IV) 315 6,410 475
Session API (§IV) 1,106 13,184 3,681

Fig. 5. Size of the Noise* codebase, excluding whitespace and comments.
The total size of the codebase is 43kLOC.

Pattern Noise* Custom Cacophony NoiseExpl. Noise-C
X 6677 N/A 2272 4955 5603
NX 5385 N/A 2392 4046 5065
XX 3917 N/A 1593 3149 3577
IK 3143 N/A 1357 2459 2822

IKpsk2 3138 3756 1194 2431 N/A

Fig. 6. Performance Comparison, in handshakes / second. Benchmark
performed on a Dell XPS13 laptop (Intel Core i7-10510U) with Ubuntu 18.04.

and ensuring that these labels are respected by the data structure
and by the encrypted storage mechanism.

After all these steps, we obtain a high-level API that
guarantees that each application message sent or received with
the API meets high-level security properties expressed using a
subset of the Noise security levels.

VI. EVALUATION AND COMPARISON WITH RELATED WORK

Size of the Codebase. Figure 5 measures the size of the F*
codebase for our Noise protocol implementation. This covers
everything described in this paper. The core protocol code
contains the Noise messaging functions. Device management
includes long-term key storage and validation, including the
encrypted storage and verified in-memory data structures, such
as a linked list and an imperative map. Session API includes the
two successive state machines and the high-level user-facing
API code. For each component, we list the size of the high-
level specification, the Low* code, and the DY* proof. All of
the code listed here was written for the purposes of this paper.
The total size is 43kLOC excluding whitespace and comments.
As a point of comparison, HACL* itself is 97kLOC, making
Noise* the second largest F* project in the literature. All this
code is open-sourced [33].

The Compiled C Library. Using the Noise* compiler, we
compile several specialized C implementations for each of the
59 Noise protocols. Representative code sizes are: 6,400 lines
of C code for IKpsk2, 5,900 LoC for XX, and 4,900 LoC
for X. Each Noise Protocol admits several implementations,
depending on the choice of primitives (e.g., SHA2-256 vs.
Blake2b), and the degree of optimization (e.g., Blake2b-portable
vs. Blake2-AVX2). As a proof of concept, we ran a batch job
that produced 472 implementations, out of several thousand
possible choices [33]; the result totals 3.2M lines of C code.

In practice, a typical user would choose a Noise protocol,
a set of primitives and a choice of optimization level, then
would download the corresponding C implementation from
Noise*, along with a custom distribution of HACL* containing
the relevant cryptographic primitives for the target platform,
to obtain a small high-performance protocol implementation.
Advanced users can extend our code-base and compile it in
different ways, to obtain any combination of Noise patterns.

Proof Overhead. A popular way of measuring the human
effort of verification is the proof-to-code ratio: how many lines

of Low* code did we write for each line of C that we produced.
If we were to consider all 59 Noise patterns, this ratio would
drop to 0.2, without even taking into account all the ciphersuite
specializations we support. Conversely, if we only ever wanted
generated code for a single Noise protocol, then the ratio jumps
to nearly 7. A more realistic estimate is a proof-to-code ratio
of 1, based on the 44kLOC of C code produced for the five
patterns we actively test and benchmark. This is on par with (or
even better than) mature F* verification projects like HACL*.

Feature Comparison. We compare other Noise implementa-
tions in Figure 7.
Noise* generates specialized code, and is a compiler (C).
WireGuard and Brontide are specialized, built-in (B) imple-
mentations for the purposes of a single application. Other
implementations are interpreted (I). We count all patterns, even
those that do not appear in the Noise Protocol Framework.

An implementation offers a Lean API if it establishes a
clear abstraction boundary that strives to prevent user mistakes.
Details vary; here, the presence of a state machine with abstract
send and receive functions is enough to qualify as a “Lean
API”. WireGuard and Brontide are omitted, since they use
a single Noise protocol and therefore leverage that fact to
traverse abstraction boundaries.
An implementation successfully handles Early Data if it allows
the user to use early message payloads, while preventing
confidentiality issues one way or another. WireGuard uses
a custom scheme that has been carefully audited; Brontide
prevents sending payloads altogether before the handshake is
finished.
An implementation with Key Validation provides a way of
validating keys upon receiving them, e.g., by calling a user-
provided function. Finally, an API with Key Storage provides
a long-term, secure way of storing and retrieving preshared or
remote static keys.

Code sizes vary according to the feature set and the
language used. For Noise*, we list the average size of a
single, specialized C implementation. Noise* is larger than
e.g., Cacophony or Noise Explorer, because of a more verbose
language (C) and a larger feature set. Noise* is smaller than
Noise-C or Noise Java. Our choice of generating C code will,
we hope, facilitate integration in existing codebases. We remark
that not all implementations support the same cipher suites;
this depends on the choice of the underlying cryptographic
library. We are here limited by e.g., the absence of Curve448
in HACL*; fortunately, none of the applications we studied
require it (this includes WhatsApp, not counted in this table).

Performance comparison. We compare the speed of our code
with other Noise implementations in Figure 6. We compiled
the C code for Noise-C and Noise* using gcc 7.5.0. We used
QEMU to run WireGuard for benchmarking, the Criterion
0.3.3 crate to benchmark the Rust code and the Criterion
1.5.9.0 package to benchmark the Haskell code. We observe
that our Noise* implementations beat all other general Noise
libraries for handshakes per second. Of these, Noise-C is the
closest in speed to Noise* and the performance difference is
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Snow I Rust 59 N N N N N ˜3400
Noise Explorer I Rust/Go 50 Y N N N N ˜900
Brontide B Go 1 - - N N N ˜750
Noise Java I Java 40 N N N N N ˜8000

Fig. 7. Noise Implementations Comparison. For Type: C = compiler, I =
interpreter, B = builtin, i.e., a custom implementation.
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Fig. 8. Noise Analysis Comparison. For Model: S = symbolic, C =
computational. Model Size and Verification Time are per pattern.

dominated by DH computations. The IKpsk2 implementation
from WireGuard, which also uses HACL* for DH, incorporates
careful kernel-level optimizations and is consequently 20%
faster than the user-space Noise* code.

Security Analysis Comparison. Figure 8 compares our
symbolic security analysis with prior formal proofs of Noise
protocols. The closest related works are Noise Explorer and
Vacarme, which both analyze (almost all) Noise protocols
against Dolev-Yao attackers. Noise Explorer [22] compiles
each handshake pattern to a ProVerif model and verifies it
against a series of reachability queries corresponding to the
different Noise secrecy and authenticity levels. The analysis of
each protocol takes between 30 minutes and 24 hours. Vacarme
generates Tamarin models for each protocol, and analyzes it
against the strongest threat model supported by the protocol.
Analyzing 53 protocols takes a total of 74 CPU days.

The key difference in our approach is that we verify a generic
executable Noise specification using a modular, semi-automated
proof technique based on dependent types. Hence, we are able
to verify the whole protocol specification in about 9 minutes,
which amounts to 10s per pattern. Furthermore, our proofs are
for an executable specification of the whole Noise protocol
stack, whereas Noise Explorer and Vacarme only focus on
the protocol messaging code. Conversely, the protocol-level
verification results of Vacarme are stronger than ours, since
Tamarin can handle equivalence properties like anonymity and
has a more precise model of Diffie-Hellman.

The security proof overhead for Noise* can be estimated
by the ratio between our DY* proof and the functional
specification, which is 2.4. Note however, that this is a proof
for all 59 patterns, and is still just a fraction of the effort of
developing the Low* implementation.

Figure 8 also notes other work on the computational analysis
of Noise protocols: [23] defines a new security model for

cryptographically analyzing multiple Noise protocols using pen-
and-paper proofs; [37] describes a manual proof of WireGuard,
including an analysis of IKpsk2; [9] presents a mechanized
cryptographic proof of WireGuard using CryptoVerif. These
works use a more precise cryptographic model than the
symbolic models in our work or in Vacarme. However, the
work needed to prove each protocol is significantly higher.
Linking our verified implementations to computational proofs
is an interesting direction for future work.

Other Related Work. Apart from work on Noise, prior
works have investigated the automatic generation of protocol
code from verified high-level protocol specifications, yielding
implementations in Java [38], OCaml [17], [39], and F# [40],
[41]. Each of these tools has been applied to a handful of
protocols; the generated protocol code is tuned for correctness
rather than performance and relies on unverified cryptographic
libraries. In contrast, by relying on the F* ecosystem, we
generate high-performance C code that is provably correct,
memory safe, and linked to a verified cryptographic library.
Furthermore, the flexibility and succinctness of the Noise
specification language enables us to automatically generate
verified implementations for 59 distinct protocols, yielding a
comprehensive protocol library. Other prior works have focused
on efficient code generation for specialized cryptographic
constructions like multi-party computation and zero-knowledge
proofs; we refer the reader to [11], [42] for a survey of this line
of work. Finally, a long line of work has investigated techniques
for directly verifying cryptographic protocol implementations
written in F# [43], [44], [45], [8], F* [46], [16], Java [47],
[19], and C [48], [49], [50]. In these settings, each protocol
implementation must be verified independently, whereas our
compiler-based approach allows us to verify a large class of
protocol implementations once and for all.

VII. CONCLUSION

We have presented a Noise Protocol Compiler embedded
within F*. Our compiler is verified once; then, for any choice
of Noise Protocol and matching cryptographic implementations,
it produces an efficient, low-level implementation in C. We
generate not only protocol transitions, but also the entire
protocol stack, including state machine, device and session
management, user-configurable key policies, long-term key
storage, and dynamic security levels. At all layers, we guard
against user error by providing robust APIs. We go beyond
the usual trifecta of memory safety, functional correctness and
side-channel resistance, by connecting our verified stack to a
symbolic security proofs based on the DY* framework. These
extensive verification results come at no cost to performance;
indeed our C code beats most existing Noise implementations.
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APPENDIX A
59 NOISE PROTOCOLS AND THEIR

AUTHENTICATION AND CONFIDENTIALITY GOALS

Protocol Message Sequence Payload Security Properties
Name ← →

Auth Conf Auth Conf

N
(premessages)
→ e, es [d0] - - A0 C2
→ [d1, d2, . . .] - - A0 C2

K
(premessages)
→ e, es, ss [d0] - - A1 C2
→ [d1, d2, . . .] - - A1 C2

X
(premessages)
→ e, es, s, ss [d0] - - A1 C2
→ [d1, d2, . . .] - - A1 C2

NN
→ e [d0] A0 C0 A0 C0
← e, ee [d1] A0 C1 A0 C0
↔ [d2, d3, . . .] A0 C1 A0 C1

KN

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, se [d1] A0 C3 A0 C0
→ [d2] A0 C3 A2 C1
↔ [d3, d4, . . .] A0 C5 A2 C1

NK

(premessages)
→ e, es [d0] A0 C0 A0 C2
← e, ee [d1] A2 C1 A0 C2
↔ [d2, d3, . . .] A2 C1 A0 C5

KK

(premessages)
→ e, es, ss [d0] A0 C0 A1 C2
← e, ee, se [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

NX
→ e [d0] A0 C0 A0 C0
← e, ee, s, es [d1] A2 C1 A0 C0
↔ [d2, d3, . . .] A2 C1 A0 C5

KX

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, se, s, es [d1] A2 C3 A0 C0
→ [d2] A2 C3 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

XN

→ e [d0] A0 C0 A0 C0
← e, ee [d1] A0 C1 A0 C0
→ s, se [d2] A0 C1 A2 C1
↔ [d3, d4, . . .] A0 C5 A2 C1

IN

→ e, s [d0] A0 C0 A0 C0
← e, ee, se [d1] A0 C3 A0 C0
→ [d2] A0 C3 A2 C1
↔ [d3, d4, . . .] A0 C5 A2 C1

XK

(premessages)
→ e, es [d0] A0 C0 A0 C2
← e, ee [d1] A2 C1 A0 C2
→ s, se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

IK

(premessages)
→ e, es, s, ss [d0] A0 C0 A1 C2
← e, ee, se [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

XX

→ e [d0] A0 C0 A0 C0
← e, ee, s, es [d1] A2 C1 A0 C0
→ s, se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

IX

→ e, s [d0] A0 C0 A0 C0
← e, ee, se, s, es [d1] A2 C3 A0 C0
→ [d2] A2 C3 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

Protocol Message Sequence ← →
Name Auth Conf Auth Conf

Npsk0
(premessages)
→ psk, e, es [d0] - - A1 C2
→ [d1, d2, . . .] - - A1 C2

Kpsk0
(premessages)
→ psk, e, es, ss [d0] - - A1 C2
→ [d1, d2, . . .] - - A1 C2

Xpsk1
(premessages)
→ e, es, s, ss, psk [d0] - - A1 C2
→ [d1, d2, . . .] - - A1 C2

NNpsk0
→ psk, e [d0] A0 C0 A1 C0
← e, ee [d1] A1 C1 A1 C0
↔ [d2, d3, . . .] A1 C1 A1 C1

NNpsk2
→ e [d0] A0 C0 A0 C0
← e, ee, psk [d1] A1 C1 A0 C0
↔ [d2, d3, . . .] A1 C1 A1 C1

NKpsk0

(premessages)
→ psk, e, es [d0] A0 C0 A1 C2
← e, ee [d1] A2 C1 A1 C2
↔ [d2, d3, . . .] A2 C1 A1 C5

NKpsk2

(premessages)
→ e, es [d0] A0 C0 A0 C2
← e, ee, psk [d1] A2 C1 A0 C2
↔ [d2, d3, . . .] A2 C1 A1 C5

NXpsk2
→ e [d0] A0 C0 A0 C0
← e, ee, s, es, psk [d1] A2 C1 A0 C0
↔ [d2, d3, . . .] A2 C1 A1 C5

XNpsk3

→ e [d0] A0 C0 A0 C0
← e, ee [d1] A0 C1 A0 C0
→ s, se, psk [d2] A0 C1 A2 C1
↔ [d3, d4, . . .] A1 C5 A2 C1

XKpsk3

(premessages)
→ e, es [d0] A0 C0 A0 C2
← e, ee [d1] A2 C1 A0 C2
→ s, se, psk [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

XXpsk3

→ e [d0] A0 C0 A0 C0
← e, ee, s, es [d1] A2 C1 A0 C0
→ s, se, psk [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

KNpsk0

(premessages)
→ psk, e [d0] A0 C0 A1 C0
← e, ee, se [d1] A1 C3 A1 C0
→ [d2] A1 C3 A2 C1
↔ [d3, d4, . . .] A1 C5 A2 C1

KNpsk2

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, se, psk [d1] A1 C3 A0 C0
→ [d2] A1 C3 A2 C1
↔ [d3, d4, . . .] A1 C5 A2 C1

KKpsk0

(premessages)
→ psk, e, es, ss [d0] A0 C0 A1 C2
← e, ee, se [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

KKpsk2

(premessages)
→ e, es, ss [d0] A0 C0 A1 C2
← e, ee, se, psk [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

KXpsk2

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, se, s, es, psk [d1] A2 C3 A0 C0
→ [d2] A2 C3 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

INpsk1

→ e, s, psk [d0] A0 C0 A1 C0
← e, ee, se [d1] A1 C3 A1 C0
→ [d2] A1 C3 A2 C1
↔ [d3, d4, . . .] A1 C5 A2 C1

INpsk2

→ e, s [d0] A0 C0 A0 C0
← e, ee, se, psk [d1] A1 C3 A0 C0
→ [d2] A1 C3 A2 C1
↔ [d3, d4, . . .] A1 C5 A2 C1
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Protocol Message Sequence ← →
Name Auth Conf Auth Conf

IKpsk1

(premessages)
→ e, es, s, ss, psk [d0] A0 C0 A1 C2
← e, ee, se [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

IKpsk2

(premessages)
→ e, es, s, ss [d0] A0 C0 A1 C2
← e, ee, se, psk [d1] A2 C4 A1 C2
→ [d2] A2 C4 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

IXpsk2

→ e, s [d0] A0 C0 A0 C0
← e, ee, se, s, es, psk [d1] A2 C3 A0 C0
→ [d2] A2 C3 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

NK1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, es [d1] A2 C1 A0 C0
↔ [d2, d3, . . .] A2 C1 A0 C5

NX1

→ e [d0] A0 C0 A0 C0
← e, ee, s [d1] A0 C1 A0 C0
→ es [d2] A0 C1 A0 C3
← [d3] A2 C1 A0 C3
↔ [d4, d5, . . .] A2 C1 A0 C5

X1N

→ e [d0] A0 C0 A0 C0
← e, ee [d1] A0 C1 A0 C0
→ s [d2] A0 C1 A0 C1
← se [d3] A0 C3 A0 C1
→ [d4] A0 C3 A2 C1
↔ [d5, d6, . . .] A0 C5 A2 C1

X1K

(premessages)
→ e, es [d0] A0 C0 A0 C2
← e, ee [d1] A2 C1 A0 C2
→ s [d2] A2 C1 A0 C5
← se [d3] A2 C3 A0 C5
→ [d4] A2 C3 A2 C5
↔ [d5, d6, . . .] A2 C5 A2 C5

XK1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, es [d1] A2 C1 A0 C0
→ s, se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

X1K1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, es [d1] A2 C1 A0 C0
→ s [d2] A2 C1 A0 C5
← se [d3] A2 C3 A0 C5
→ [d4] A2 C3 A2 C5
↔ [d5, d6, . . .] A2 C5 A2 C5

X1X

→ e [d0] A0 C0 A0 C0
← e, ee, s, es [d1] A2 C1 A0 C0
→ s [d2] A2 C1 A0 C5
← se [d3] A2 C3 A0 C5
→ [d4] A2 C3 A2 C5
↔ [d5, d6, . . .] A2 C5 A2 C5

XX1

→ e [d0] A0 C0 A0 C0
← e, ee, s [d1] A0 C1 A0 C0
→ es, s, se [d2] A0 C1 A2 C3
← [d3] A2 C5 A2 C3
↔ [d4, d5, . . .] A2 C5 A2 C5

X1X1

→ e [d0] A0 C0 A0 C0
← e, ee, s [d1] A0 C1 A0 C0
→ es, s [d2] A0 C1 A0 C3
← se [d3] A2 C3 A0 C3
→ [d4] A2 C3 A2 C5
↔ [d5, d6, . . .] A2 C5 A2 C5

K1N

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee [d1] A0 C1 A0 C0
→ se [d2] A0 C1 A2 C1
↔ [d3, d4, . . .] A0 C5 A2 C1

Protocol Message Sequence ← →
Name Auth Conf Auth Conf

K1K

(premessages)
→ e, es [d0] A0 C0 A0 C2
← e, ee [d1] A2 C1 A0 C2
→ se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

KK1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, se, es [d1] A2 C3 A0 C0
→ [d2] A2 C3 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

K1K1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, es [d1] A2 C1 A0 C0
→ se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

K1X

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, s, es [d1] A2 C1 A0 C0
→ se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

KX1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, se, s [d1] A0 C3 A0 C0
→ es [d2] A0 C3 A2 C3
← [d3] A2 C5 A2 C3
↔ [d4, d5, . . .] A2 C5 A2 C5

K1X1

(premessages)
→ e [d0] A0 C0 A0 C0
← e, ee, s [d1] A0 C1 A0 C0
→ se, es [d2] A0 C1 A2 C3
← [d3] A2 C5 A2 C3
↔ [d4, d5, . . .] A2 C5 A2 C5

I1N

→ e, s [d0] A0 C0 A0 C0
← e, ee [d1] A0 C1 A0 C0
→ se [d2] A0 C1 A2 C1
↔ [d3, d4, . . .] A0 C5 A2 C1

I1K

(premessages)
→ e, es, s [d0] A0 C0 A0 C2
← e, ee [d1] A2 C1 A0 C2
→ se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

IK1

(premessages)
→ e, s [d0] A0 C0 A0 C0
← e, ee, se, es [d1] A2 C3 A0 C0
→ [d2] A2 C3 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

I1K1

(premessages)
→ e, s [d0] A0 C0 A0 C0
← e, ee, es [d1] A2 C1 A0 C0
→ se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

I1X

→ e, s [d0] A0 C0 A0 C0
← e, ee, s, es [d1] A2 C1 A0 C0
→ se [d2] A2 C1 A2 C5
↔ [d3, d4, . . .] A2 C5 A2 C5

IX1

→ e, s [d0] A0 C0 A0 C0
← e, ee, se, s [d1] A0 C3 A0 C0
→ es [d2] A0 C3 A2 C3
← [d3] A2 C5 A2 C3
↔ [d4, d5, . . .] A2 C5 A2 C5

I1X1

→ e, s [d0] A0 C0 A0 C0
← e, ee, s [d1] A0 C1 A0 C0
→ se, es [d2] A0 C1 A2 C3
← [d3] A2 C5 A2 C3
↔ [d4, d5, . . .] A2 C5 A2 C5
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APPENDIX B
AUTHENTICATION AND CONFIDENTIALITY TARGET SECURITY LABELS

FOR 59 NOISE PROTOCOLS

Protocol Message Sequence Stage Initiator Handshake State Label Responder Handshake State Label Payload Security Properties
li l←i lr l→r ← →

Auth Conf Auth Conf

NN
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 0 1 0 1

KN

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 0 3 2 1
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 0 5 2 1

NK

← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] 0 0 0 2
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 2 1 0 2
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 2 1 0 5

KK

→ s pre
← s pre
→ e, es, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
← e, ee, se [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 4 1 2

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 4 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

NX

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 2 1 0 5

KX

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 3 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

XN

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ s, se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 0 1 2 1
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 0 5 2 1

IN

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 0 3 2 1
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 0 5 2 1

XK

← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] 0 0 0 2
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 2 1 0 2
→ s, se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

IK

← s pre
→ e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
← e, ee, se [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 4 1 2

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 4 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

XX

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ s, se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

IX

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
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Protocol Message Sequence Stage Initiator Handshake State Label Responder Handshake State Label Payload Security Properties
li l←i lr l→r ← →

Auth Conf Auth Conf
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 3 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

N
← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] - - 0 2
→ [d1, d2, . . .] 2 = li[1] = li[1] = lr[1] = lr[1] - - 0 2

K

→ s pre
← s pre
→ e, es, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] - - 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
→ [d1, d2, . . .] 2 = li[1] = li[1] = lr[1] = lr[1] - - 1 2

X

← s pre
→ e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] - - 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
→ [d1, d2, . . .] 2 = li[1] = li[1] = lr[1] = lr[1] - - 1 2

NNpsk0
→ psk, e [d0] 1 (CanRead [P idxi.p; P idxi.peer]) - (CanRead [P idxr .p; P idxr .peer]) = lr[1] 0 0 1 0
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 1 1 1 0
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 1 1 1 1

NNpsk2

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, psk [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 1 1 0 0

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 1 1 1 1

NKpsk0

← s pre
→ psk, e, es [d0] 1 (CanRead [P idxi.p; P idxi.peer]) ⊓ - (CanRead [P idxr .p; P idxr .peer]) ⊓ = lr[1] 0 0 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 2 1 1 2
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 2 1 1 5

NKpsk2

← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] 0 0 0 2
← e, ee, psk [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 2 1 1 5

NXpsk2

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es, psk [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 2 1 1 5

XNpsk3

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ s, se, psk [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓ = lr[3] 0 1 2 1

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 1 5 2 1

XKpsk3

← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] 0 0 0 2
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 2 1 0 2
→ s, se, psk [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓ = lr[3] 2 1 2 5

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

XXpsk3

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ s, se, psk [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓ = lr[3] 2 1 2 5

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

KNpsk0

→ s pre
→ psk, e [d0] 1 (CanRead [P idxi.p; P idxi.peer]) - (CanRead [P idxr .p; P idxr .peer]) = lr[1] 0 0 1 0
← e, ee, se [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 1 3 1 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 1 3 2 1
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 1 5 2 1

KNpsk2

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, psk [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 1 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 1 3 2 1
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 1 5 2 1

KKpsk0

→ s pre
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li l←i lr l→r ← →

Auth Conf Auth Conf
← s pre
→ psk, e, es, ss [d0] 1 (CanRead [P idxi.p; P idxi.peer]) ⊓ - (CanRead [P idxr .p; P idxr .peer]) ⊓ = lr[1] 0 0 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

← e, ee, se [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 4 1 2
(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 4 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

KKpsk2

→ s pre
← s pre
→ e, es, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
← e, ee, se, psk [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 4 1 2

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 4 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

KXpsk2

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, s, es, psk [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 3 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

INpsk1

→ e, s, psk [d0] 1 (CanRead [P idxi.p; P idxi.peer]) - (CanRead [P idxr .p; P idxr .peer]) = lr[1] 0 0 1 0
← e, ee, se [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 1 3 1 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 1 3 2 1
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 1 5 2 1

INpsk2

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, psk [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 1 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 1 3 2 1
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 1 5 2 1

IKpsk1

← s pre
→ e, es, s, ss, psk [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) ⊓ (CanRead [P idxr .p; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

← e, ee, se [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 4 1 2
(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 4 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

IKpsk2

← s pre
→ e, es, s, ss [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 0 1 2

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
← e, ee, se, psk [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 4 1 2

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 4 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

IXpsk2

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, s, es, psk [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓

(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 3 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

Npsk0

← s pre
→ psk, e, es [d0] 1 (CanRead [P idxi.p; P idxi.peer]) ⊓ - (CanRead [P idxr .p; P idxr .peer]) ⊓ = lr[1] - - 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ [d1, d2, . . .] 2 = li[1] = li[1] = lr[1] = lr[1] - - 1 2

Kpsk0

→ s pre
← s pre
→ psk, e, es, ss [d0] 1 (CanRead [P idxi.p; P idxi.peer]) ⊓ - (CanRead [P idxr .p; P idxr .peer]) ⊓ = lr[1] - - 1 2

(CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])
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li l←i lr l→r ← →

Auth Conf Auth Conf
→ [d1, d2, . . .] 2 = li[1] = li[1] = lr[1] = lr[1] - - 1 2

Xpsk1

← s pre
→ e, es, s, ss, psk [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ - (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[1] - - 1 2

(CanRead [P idxi.p; P idxi.peer]) ⊓ (CanRead [P idxr .p; P idxr .peer]) ⊓
(CanRead [P idxi.p; P idxi.peer]) (CanRead [P idxr .p; P idxr .peer])

→ [d1, d2, . . .] 2 = li[1] = li[1] = lr[1] = lr[1] - - 1 2

NK1

← s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
↔ [d2, d3, . . .] 3 = li[2] = li[2] = lr[2] = lr[2] 2 1 0 5

NX1

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ es [d2] 3 li[2] ⊓ (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr[2] ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[3] 0 1 0 3
← [d3] 4 = li[3] = li[3] = lr[3] = lr[3] 2 1 0 3
↔ [d4, d5, . . .] 5 = li[3] = li[3] = lr[3] = lr[3] 2 1 0 5

X1N

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ s [d2] 3 = li[2] = li[2] = lr[2] = lr[3] 0 1 0 1
← se [d3] 4 li[3] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[4] lr[3] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 0 3 0 1
→ [d4] 5 = li[4] = li[4] = lr[4] = lr[4] 0 3 2 1
↔ [d5, d6, . . .] 6 = li[4] = li[4] = lr[4] = lr[4] 0 5 2 1

X1K

← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] 0 0 0 2
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 2 1 0 2
→ s [d2] 3 = li[2] = li[2] = lr[2] = lr[3] 2 1 0 5
← se [d3] 4 li[3] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[4] lr[3] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 3 0 5
→ [d4] 5 = li[4] = li[4] = lr[4] = lr[4] 2 3 2 5
↔ [d5, d6, . . .] 6 = li[4] = li[4] = lr[4] = lr[4] 2 5 2 5

XK1

← s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ s, se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

X1K1

← s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ s [d2] 3 = li[2] = li[2] = lr[2] = lr[3] 2 1 0 5
← se [d3] 4 li[3] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[4] lr[3] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 3 0 5
→ [d4] 5 = li[4] = li[4] = lr[4] = lr[4] 2 3 2 5
↔ [d5, d6, . . .] 6 = li[4] = li[4] = lr[4] = lr[4] 2 5 2 5

X1X

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ s [d2] 3 = li[2] = li[2] = lr[2] = lr[3] 2 1 0 5
← se [d3] 4 li[3] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[4] lr[3] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 3 0 5
→ [d4] 5 = li[4] = li[4] = lr[4] = lr[4] 2 3 2 5
↔ [d5, d6, . . .] 6 = li[4] = li[4] = lr[4] = lr[4] 2 5 2 5

XX1

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ es, s, se [d2] 3 li[2] ⊓ (CanRead [S idxi.p idxi.sid; P idxi.peer]) ⊓ = li[2] lr[2] ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) ⊓ = lr[3] 0 1 2 3

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
← [d3] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 3
↔ [d4, d5, . . .] 5 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

X1X1

→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ es, s [d2] 3 li[2] ⊓ (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr[2] ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[3] 0 1 0 3
← se [d3] 4 li[3] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[4] lr[3] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 3 0 3
→ [d4] 5 = li[4] = li[4] = lr[4] = lr[4] 2 3 2 5
↔ [d5, d6, . . .] 6 = li[4] = li[4] = lr[4] = lr[4] 2 5 2 5

K1N

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 0 1 2 1
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 0 5 2 1
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K1K

→ s pre
← s pre
→ e, es [d0] 1 (CanRead [S idxi.p idxi.sid; P idxi.peer]) - (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[1] 0 0 0 2
← e, ee [d1] 2 li[1] ⊓ (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] lr[1] ⊓ (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 2 1 0 2
→ se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

KK1

→ s pre
← s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 3 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

K1K1

→ s pre
← s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

K1X

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

KX1

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ es [d2] 3 li[2] ⊓ (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr[2] ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[3] 0 3 2 3
← [d3] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 3
↔ [d4, d5, . . .] 5 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

K1X1

→ s pre
→ e [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ se, es [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓ = lr[3] 0 1 2 3

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
← [d3] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 3
↔ [d4, d5, . . .] 5 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

IK1

← s pre
→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓
(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)

→ [d2] 3 = li[2] = li[2] = lr[2] = lr[2] 2 3 2 5
↔ [d3, d4, . . .] 4 = li[2] = li[2] = lr[2] = lr[2] 2 5 2 5

I1K1

← s pre
→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

I1X

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s, es [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 2 1 0 0

(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)
→ se [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) = lr[3] 2 1 2 5
↔ [d3, d4, . . .] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

IX1

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, se, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) ⊓ = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) ⊓ = lr[1] 0 3 0 0

(CanRead [P idxi.p] ⊔ idxi.peer eph label) (CanRead [S idxr .p idxr .sid; P idxr .peer])
→ es [d2] 3 li[2] ⊓ (CanRead [S idxi.p idxi.sid; P idxi.peer]) = li[2] lr[2] ⊓ (CanRead [P idxr .p] ⊔ idxr .peer eph label) = lr[3] 0 3 2 3
← [d3] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 3
↔ [d4, d5, . . .] 5 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5

I1X1

→ e, s [d0] 1 public - public = lr[1] 0 0 0 0
← e, ee, s [d1] 2 (CanRead [S idxi.p idxi.sid] ⊔ idxi.peer eph label) = li[2] (CanRead [S idxr .p idxr .sid] ⊔ idxr .peer eph label) = lr[1] 0 1 0 0
→ se, es [d2] 3 li[2] ⊓ (CanRead [P idxi.p] ⊔ idxi.peer eph label) ⊓ = li[2] lr[2] ⊓ (CanRead [S idxr .p idxr .sid; P idxr .peer]) ⊓ = lr[3] 0 1 2 3
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(CanRead [S idxi.p idxi.sid; P idxi.peer]) (CanRead [P idxr .p] ⊔ idxr .peer eph label)

← [d3] 4 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 3
↔ [d4, d5, . . .] 5 = li[3] = li[3] = lr[3] = lr[3] 2 5 2 5
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