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Background. The epithelial mesenchymal transition (EMT) gene has been shown to be significantly associated with the prognosis
of solid tumors; however, there is a lack of models for the EMT gene to predict the prognosis of AML patients. Methods. First, we
downloaded clinical data and raw transcriptome sequencing data from the TCGA database of acute myeloid leukemia (AML)
patients. All currently confirmed EMT-related genes were obtained from the dbEMT 2.0 database, and 30% of the TCGA data
were randomly selected as the test set. Univariate Cox regression analysis, random forest, and lasso regression were used to
optimize the number of genes for model construction, and multivariate Cox regression was used for model construction. Area
under the ROC curve was used to assess the efficacy of the model application, and the internal validation set was used to assess
the stability of the model. Results. A total of 173 AML samples were downloaded, and a total of 1184 EMT-related genes were
downloaded. The results of univariate batch Cox regression analysis suggested that 212 genes were associated with patient
prognosis, random forest and lasso regression yielded 18 and 8 prognosis-related EMT genes, respectively, and the results of
multifactorial COX regression model suggested that 5 genes, CBR1, HS3ST3B1, LIMA1, MIR573, and PTP4A3, were
considered as independent risk factors affecting patient prognosis. The model ROC results suggested that the area under the
curve was 0.868 and the internal validation results showed that the area under the curve was 0.815. Conclusion. During this
study, we constructed a signature model of five EMT-related genes to predict overall survival in patients with AML; it will
provide a useful tool for clinical decision making.

1. Introduction

Acute myeloid leukemia (AML) is the most common type of
acute leukemia in adults, characterized by a low remission rate,
high relapse rate, high disease-specific mortality, and poor

prognosis. The incidence of AML increases with age, and more
than 20,000 cases are diagnosed per year in the United States,
and over 50% of patients died from this disease [1, 2]. Although
advances in immunology, cytogenetics, and molecular biology
have laid the groundwork for stratified and precise treatment
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of AML, up to 50% of patients with normal karyotype have a
wide range of clinical outcomes [3]. Thus, it is crucial to
develop more risk standards and predictive models for predict-
ing the prognosis and directing treatments of AML.

AML is a highly heterogeneous group of diseases with
uncontrolled proliferation and differentiation of abnormally
clonal myeloid stem cells. The application of next-generation
sequencing (NGS) technology and bioinformatic analysis has
provided systemically studies of genome and transcriptome
data to unravel the mutational spectrum, epigenetic landscape,
and RNA interaction network of these clonal leukemia cells
[4], which help to construct different models to predict progno-
sis and discover potential biomarkers of AML [5, 6]. Epithelial
to mesenchymal transition (EMT) is a dynamic process with
the transition of epithelial cells to mesenchymal cell phenotype,
which has played important roles in embryonic development
and wound healing, and this process is also thought to be
involved in cancer progression and therapy resistance [7, 8].
The overexpression of EMT markers and EMT transcription
factors (TFs) has been proved to correlate with tumor aggres-
siveness and poor prognosis [9, 10]. In addition, recent studies
have shown that cancer cells with the EMT process may con-
tribute to immune escape and drug resistance, thereby reducing
the effect of immunotherapy and chemotherapy [11–13]. As in
hematological malignancies, previous studies already indicated
a correlation between some EMT markers and poor prognosis.
For example, the upregulation of vimentin, one of the EMT
markers, was found associated with poor clinical outcome in
AML patients [14], and downregulation of ZEB1 in AML cells
can inhibit the invasive ability [15]. Taken together, all these

indicate that EMT markers and EMT-TFs involve in the pro-
gression of AML, and EMT-related signatures could be used
as potential target for predicting prognosis. However, more of
its specific biological function still needs to be explored.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. A total of 173 AML
samples were obtained from the The Cancer Genome Atlas
(TCGA) database, a landmark cancer genomic program, which
contains more than 20,000 primary cancer and matched nor-
mal samples spanning 33 cancer types. The corresponding
transcriptome sequencing data of the AML dataset were down-
loaded and normalized to FPKM format. EMT-related genes
were obtained from the dbEMT2.0 database, which contains
a total of 1184 experimentally confirmed EMT-related genes.
Then, we extracted the expression profiles of EMT-related
genes from the normalized matrix based on the obtained
EMT-related gene names. Finally, the expression profiles were
combined with clinical information to generate a new matrix,
and 30% of the data were randomly extracted from this matrix
and set as the test set. For clinical data, it is necessary that the
enrolled patients have a complete follow-up time, those sam-
ples with missing survival time and survival status are excluded
from the cohort, and overall patient survival is defined as the
endpoint event.

2.2. Batch Univariate COX Regression Screening for Prognosis-
Associated EMT Genes. Not all EMT-associated genes affect
patient survival; therefore, further screening of EMT-

Table 1: Top 20 candidate genes of univariate Cox regression analysis results.

Candidate genes
Univariate Cox regression

HR
95% CI

P value
Low High

PTP4A3 1.021726223 1.014321763 1.029184734 6.96E-09

CBR1 1.03820974 1.025067827 1.051520139 7.96E-09

ROR1 8.179147658 3.372478696 19.83658384 3.33E-06

ETS2 1.005307794 1.00295453 1.00766658 9.55E-06

HIP1 1.014075523 1.007666162 1.020525653 1.56E-05

PLA2G4A 1.021276597 1.011531433 1.031115646 1.68E-05

SRC 1.041105298 1.021883572 1.060688587 2.27E-05

KRT7 2.305624508 1.5494694 3.43079016 3.80E-05

HOXB7 1.017736146 1.008665558 1.026888302 0.000118629

PEBP4 9.238964316 2.976207974 28.68027449 0.000119556

UCP2 1.001228192 1.00059024 1.001866551 0.000160359

CDK5 1.025260006 1.011990418 1.03870359 0.000174577

CCL22 1.521162335 1.219639632 1.897228318 0.000198028

RNF8 1.147867946 1.066800293 1.235096044 0.000223934

LIMA1 1.073789995 1.033493977 1.115657159 0.00026414

SPRR2A 18025860.7 2044.952808 1.58894E+11 0.000312518

BMP2 1.363657752 1.150470944 1.616348917 0.000348845

LYPD3 1.593586359 1.231965357 2.061354624 0.000387329

STIM2 1.04818812 1.021292087 1.075792468 0.000387406

BAG3 1.030482529 1.013356191 1.047898312 0.000445426
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associated genes that affect patient prognosis is necessary. We
included 1184 EMT-related genes from the EMT database in
a univariate COX regression model with p < 0:05 as a filtering
condition in order to screen for risk factors that affect the prog-
nosis of AML patients.

2.3. Machine Learning to Screen Prognosis-Associated EMT
Genes. Randomized survival forest and lasso regression are
machine learning algorithms that are often used for dimen-
sionality reduction analysis. The prognostic genes obtained
from the above analyses were included in the random sur-
vival forest, which was performed by the R package “random
forest”, and the importance threshold of the variables was set
to 0.45. Variables above this threshold were included in the
lasso regression for further dimensionality reduction.

2.4. Multivariate Cox Regression and Model Construction.
We first included the prognostic factors obtained from the
lasso regression into the multivariate Cox regression to
screen the independent risk factors affecting the prognosis
of AML patients and then constructed a multigene prognos-
tic model based on the coefficients of the regression model.

2.5. Model Efficacy Assessment and Internal Validation. We
assessed whether there was a difference in the prognosis
of patients in the high- and low-risk groups using the log
rank test and then assessed the applied efficacy of the
model using the area under the ROC curve. In addition,
to validate the stability of the model, 30% of the randomly
selected data from the original data were used as the test set
for this evaluation.
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Figure 1: Random survival forest select candidate EMT-related prognosis genes. The error estimate probability (a), the bar plot of genes (b),
and candidate important genes (importance >0.45) (c).
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3. Results

3.1. Training Set Prognosis-Related EMT Gene Screening and
Model Construction. The results of the univariate batch COX
regression analysis suggested that 212 EMT-related genes
were associated with prognosis in AML patients. Top 20
prognosis-related genes are presented in Table 1. These
212 genes were included in the random survival forest
model, and a total of 18 prognosis genes were selected when
the gene importance was set greater than 0.45 (Figures 1(a)–
1(c)), and these 18 genes were subsequently included in the
lasso regression model for dimensionality reduction analysis,
and a total of 8 genes were selected (Figures 2(a) and 2(b)).
Further, we included these 5 genes into the multifactorial
COX regression model, and a total of 5 genes were selected,
and they were considered as independent risk factors affect-
ing the prognosis of patients (Table 2). These 5 genes were
CBR1, HS3ST3B1, LIMA1, MIR573, and PTP4A3. Five
EMT-associated genes were further modeled for signature
based on COX regression coefficients.

3.2. Performance of EMT-Associated Signature.We first calcu-
lated the risk score for each patient based on this model. To
evaluate the performance of the signature model, patients were
divided into high and low groups according to the median
value of risk score expression, and the results suggested that

the disease-specific survival rate of high-risk patients was sig-
nificantly lower than that of low-risk patients, and the com-
parison between groups was statistically different (p < 0:001)
(Figures 3(a)–3(c)), and the ROC results suggested that the
predictive efficacy of the model was likewise. The area under
the curve was 0.868 (Figure 3(d)). In addition, to verify the sta-
bility of the model, 30% of the total sample was selected for the
internal validation of the test set. The results suggested that the
same between-group survival differences existed in the test set
(Figures 4(a)–4(c)). In addition, the results suggest that the
model has strong stability with an area under the ROC curve
of 0.815 (Figure 4(d)). This result suggests that the model
has a strong stability.

4. Discussion

AML is a deadly and highly heterogeneous disease due to exten-
sive genomic changes and molecular mutations, which have
been incorporated in the updated 2017 European LeukemiaNet
(ELN) risk stratification guidelines [16]. Breakthroughs in NGS
technology have not only explored the molecular mechanisms
of this disease but also bring the AML into the era of small mol-
ecule inhibitor therapy. More studies are devoted to exploring
new prognosticmodels based on the genetic andmolecular pro-
filing to uncover more potential therapeutic targets [4–6]. In the
present study, we constructed a predictive model based on the
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Figure 2: Lasso regression model select candidate EMT-related prognosis genes. Lambda takes the minimum value; a total of eight
candidate genes are selected (a), and (b) demonstrates the prognostic value of these eight genes.

Table 2: Multivariate Cox regression analysis of candidate genes.

Candidate genes
Multivariate Cox regression

Coef HR
95% CI

P value
Low High

CBR1 0.0286 1.0290 1.0147 1.0436 6.62E-05

HS3ST3B1 −0.0458 0.9552 0.9131 0.9993 0.0466

LIMA1 0.0415 1.0423 1.0078 1.0781 0.0160

MIR573 −0.0134 0.9867 0.9716 1.0020 0.0888

PTP4A3 0.0145 1.0146 1.0064 1.0228 0.0004
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EMT-related signature to provide a visual predictive tool for
AML, which might lay the foundation for exploring the role
of EMT in hematological malignancies.

Epithelial cells provide intercellular adhesion by cell-cell
cohesion and are essential for maintaining the integrity and
barrier function of multicellular structures. However, epithe-
lial cells transform into mesenchymal cells to acquire more
complex structures and functions of organs during embryonic
development and wound healing, which is termed EMT [17,

18]. The quiescent epithelial cells in adults reactivated and
primed for the EMT under various internal and external
changes, which facilitate tumor cells to invade the extracellular
matrix and evade the immune elimination [19]. The downreg-
ulation of the cell adhesion protein E-cadherin and cytoskele-
tal rearrangements, including downregulation of keratin and
upregulation of vimentin, are themain features of EMT, which
cause ultimately tumor progression and metastasis. Several
EMT-TFs have been well identified to coordinate the process,
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Figure 3: Construct model in training data set, based on the Cox regulation model, a five EMT-related gene signature was constructed: the
risk score and the survival status distribution (a) and the heat map of five genes in high- and low-risk group (b). The survival curve show
high-risk score patients with a worse outcome, compared with low-risk score patients (c). The area under the receiver operating
characteristic of model was 0.868 (d).
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such as SNAIL/SNAI1, SLUG/SNAI2, and TFs of the TWIST
and ZEB families [20]. Given that EMT is associated with
tumor invasiveness and metastasis, as well as its molecular
properties, some EMT-related signatures have been developed
to predict the prognosis of cancers and the response to immu-
notherapy. A recent study reported an EMT-related gene sig-
nature for the prognosis of human bladder cancer [21], and
Chae et al. [22] analyzed the immune landscape of NSCLC
(nonsmall cell lung cancer) patients based on EMT scores to
predict the response of patients to immunotherapy. Although
some previous studies have shown the role of EMT makers

and EMT-TFs in AML, no EMT signature has been applied
to predict the prognosis of AML [14, 15].

As shown in our study, five EMT-related genes (CBR1,
HS3ST3B1, LIMA1, MIR573, PTP4A3) were selected by ran-
dom forest algorithm as the prognostic in TCGA-LAML cohort
as a training set. Then, AML patients were divided into high-
risk and low-risk groups based on the EMT-related signature
risk score. The results demonstrated that patients in the low-
risk group have longer OS than in the high-risk group, which
were also validated in internal datasets. Carbonyl reductase 1
(CBR1) belongs to the short dehydrogenase (SDR) family,
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Figure 4: Validate model in test data set, a five EMT-related gene signature was validated: the risk score and the survival status distribution
(a) and the heat map of five genes in high- and low-risk group (b). The survival curve show high-risk score patients with a worse outcome,
compared with low-risk score patients (c). The area under the receiver operating characteristic of model was 0.815 (d).
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which could promote AML cell resistance to daunorubicin and
be a risk gene in AML patients [23]. However, it is still unclear
whether CBR1 can lead to progression and drug resistance
through EMT in AML. A previous study has shown that hepa-
ran sulfate D-glucosamine 3-O-sulfotransferase 3B1
(HS3ST3B1) participates in the biosynthetic steps of heparan
sulfate (HS) and positively contributed to acute AML progres-
sion by induction of VEGF expression, which also involves in
the regulation TGF-beta-mediated EMT in NSCLC [24, 25].
LIMA1 (LIM domain and actin binding 1), also known as
epithelial protein lost in neoplasm (EPLIN), has been known
to play differential roles in the progression and metastasis of
certain cancers [26, 27]. Downregulation or phosphorylation
of EPLIN can alter the expression of some EMT elements such
as E-cadherin and ZEB1 via Wnt-catenin signaling pathway,
thus promotes the EMT process. While the exact mechanism
of LIMA1 in AML remains unknown [27]. The role of
MIR573 in EMT of tumors is still controversial. Wang et al.
[28]. revealed that MIR573 can inhibit TGFβ1-induced EMT
in prostate cancer, while another study indicated MIR573 asso-
ciated with the EMT in cervical cancer cell growth andmetasta-
sis [29]. As so far, the expression ofMIR573 has been confirmed
in AML cell line (HL-60) and thought as a regulator in respon-
siveness to inorganic substances [30]. Protein tyrosine phospha-
tase of regenerating liver 3 (PRL-3), encoded by PTP4A3 gene,
has been proved to promote EMT through PI3K/AKT pathway
and Src-ERK1/2 pathways in a variety of tumors [31, 32], which
is also a hazard factor with poor survival in AML [33]. All these
hint the prognostic role of EMT-related gene signature in AML.
Furthermore, given that the general condition of the patients is
also included in the risk stratification of the disease in addition
to the genomic profile [16], a predictive model was constructed
based on the EMT-related genes, which demonstrated powerful
predictivity.

5. Conclusion

During this study, we constructed a signature model of five
EMT-related genes to predict overall survival in patients
with AML; it will provide a useful tool for clinical decision
making. However, our study still has some limitations. First,
more datasets need to be included for better validation. Sec-
ond, further function experiments regarding of the core
genes are required to clarify the role of EMT-related genes
in AML.
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