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Abstract: The effects of sulfuric acid concentration in VO2+ solutions were investigated via
electrochemical methods and electron paramagnetic resonance. The viscosity of solutions containing
0.01 M VOSO4 in 0.1–7.0 M H2SO4 was measured. Diffusion coefficients were independently
measured via electrochemical methods and electron paramagnetic resonance (EPR), with excellent
agreement between the techniques employed and literature values. Analysis of cyclic voltammograms
suggest the oxidation of VO2+ to VO2

+ is quasi-reversible at high H2SO4 concentrations (>5 mol/L),
and approaching irreversible at lower H2SO4 concentrations. Further analysis reveals a likely
electrochemical/chemical (EC) mechanism where the H2SO4 facilitates the electrochemical step
but hinders the chemical step. Fundamental insights of VO2+/H2SO4 solutions can lead to a more
comprehensive understanding of the concentration effects in electrolyte solutions.

Keywords: vanadium redox flow batteries (VRFBs); cyclic voltammetry; electrochemical kinetics;
viscosity; electron paramagnetic resonance; diffusion coefficient

1. Introduction

Flow batteries, including the all-vanadium redox flow battery (VRFB), have recently received
considerable attention as a possible solution to large grid energy storage needs [1]. Numerous
experimental [2] and modeling studies [3] have been conducted to understand and improve flow
battery technology. A detailed understanding of the electrolyte dynamics and how they change with
parameters like temperature and concentration is an important fundamental step in flow battery
research [4–6]. For instance, many modeling studies rely on physical parameters, such as viscosity,
diffusion coefficient, permeability, mobility, activation energy, and others. However, these values are
often not known for the specific conditions at which models are evaluated; thus, modelers often rely
on the available parameters of nearest relevance, potentially leading to incorrect models.

The vanadium electrolyte in VRFBs frequently begins as a solution of vanadyl sulfate and
sulfuric acid, which is charged to the necessary oxidation states to form the anolyte and catholyte
solutions for the uncharged battery [7]. Concentrations ranging from 0.1–2 M VOSO4 and 1–5 M
H2SO4 have been reported in characterization studies [6]. Significant interest has been given to the
diffusion and uptake of vanadium in the ion exchange membranes that separate the negative and
positive electrodes. Vanadium crossover through the membrane leads to self-discharge of the battery.
The composition of the electrolyte has been shown to play an important role in this process [8–11].
Vanadium crossover could potentially lead to concentration mismatches, which, in severe cases
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could require complete electrolyte remixing which could result in downtime. Thus, a complete
understanding of these dynamics will assist in further development of VRFBs and enhance their
performance and marketability.

Some limitations of current battery technology include the kinetics of the reactions and the
solubility of the reactants at varying temperatures and pH values. A number of organic additives,
including L-Glutamic acid [12] and inositol and phytic acid [13], have been investigated to improve
the energy density of the battery. A variety of sulfates and phosphates have also been investigated
to inhibit vanadium precipitation [14]. A foundation of fundamental information to understand the
effects of sulfate, acid, and other components of the electrolyte systems can aide in the pursuit of
improved electrolytes for battery operation by using a knowledge-based approach.

Diffusion coefficients for translational diffusion can be measured in a variety of ways.
Electrochemically, it is possible to measure the diffusion coefficient with cyclic voltammetry using
the Randles–Sevcik equation, through chronoamperometry using the Cottrell equation, and through
rotating disc electrode methods (cyclic or linear sweep voltammetry) using the Koutecky–Levich
equation. Furthermore, these methods can provide complementary information, as long as they are
carefully executed under the conditions for which the equations have been developed. In many
cases, the validity of these equations depends on boundary conditions that are not relevant to actual
battery operation. For instance, activities are often replaced by concentrations for convenience, as
the assumption is acceptable for dilute solutions. However, as concentrations increase appreciably
(i.e., values relevant to VRFBs) so does the deviation from activity, thus rendering the equations
inaccurate. For this reason, we employ ideal-dilute battery electrolytes for this initial study. It is worth
noting that as H2SO4 concentrations increase, so does viscosity which will cause a decrease in diffusion
coefficients. This is also the case for VOSO4 concentrations [4,15] but the focus of this paper is on the
effect of the acid concentration on the system, so low concentrations of VOSO4 minimize the effect of
the later, which will be addressed in future studies.

Rotational diffusion can be determined using electron paramagnetic resonance (EPR). EPR is
a technique that can be used to observe species with unpaired electrons, which the V(IV) in VO2+

has. EPR is sensitive to the motions of detectible species, which makes it a useful tool for energy
research where species mobility is important [16–20]. Rotational diffusion and translational diffusion
can be related via the Stokes–Einstein and the Stokes–Einstein–Debye equations. In this approach,
the translational diffusion can be determined separately by different methods and compared to
ensure accuracy.

The concept of electrochemical reversibility/irreversibility, which is kinetically driven, is another
important consideration, and should not be confused with chemical reversibility/irreversibility,
which is thermodynamically driven. Electrochemical reversibility can be measured using cyclic
voltammetry by inspecting the difference in peak potentials, ∆Ep, which is related to the reaction rate
k0 [21,22]. This is a powerful electroanalytical method applicable to any redox process, including VRFB
reactions. Previous investigations [23] have indicated that VO2+ oxidation exhibits higher reversibility
with increasing H2SO4 concentration, though the voltammograms are highly asymmetric at 2 M
VO2+. Here, we fully investigate the reversibility of VO2+ oxidation and interpret the data to make
conclusions about the effects of H2SO4 on the electrochemical rate.

In order to more fully understand the dynamics in these electrolyte solutions, we begin with a
study looking at the effects of H2SO4 concentration on the diffusion, hydrodynamic or Stokes radius
and oxidation of the vanadyl (VO2+) ion in dilute solutions of VOSO4. The effects of H2SO4 on
these physical and electrochemical properties can be used to guide further electrolyte and battery
developments and provide insight into the kinetics of VO2+ oxidation. In addition to gaining
understanding of the effects of H2SO4 concentration, these physical characteristics, we develop some
insight into the electrochemical redox mechanism for the oxidation of VO2+ and subsequent reduction
of VO2

+, which cannot be achieved by standard VRFB cycling studies. It is worth noting that these
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fundamental studies have been carried out on smooth, polished glassy carbon electrodes. The kinetics
of VO2+/VO2

+ are sensitive to the electrode surface structure and area as described previously [24,25].

2. Results and Discussion

The influence of 0.01 M VOSO4 has a negligible effect on the viscosity of the H2SO4 electrolyte.
Figure 1 plots the Arrhenius-type plots for viscous flow for solutions with and without VO2+:

η = η∞e
Ea
RT (1)

where Ea is the activation energy for viscous flow, η∞ is the viscosity at infinite temperature, R is the
gas constant, and T is temperature. The viscosity data and extracted Arrhenius parameters are made
available in Tables A2 and A3 in Appendix A, respectively. As with the viscosity, the presence of this
low concentration of VO2+ has little to no effect on the activation energy (Ea) or the intercept (η∞).
The systematic increase in solution viscosity with H2SO4 concentration is expected, as pure H2SO4

has a high viscosity (~26 cP at 20 ◦C); thus, the viscosity is expected to generally increase with the
increasing mole fraction of H2SO4. These viscosity data were collected and used in the analyses of the
electrochemistry and EPR experiments discussed below.
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Figure 1. Arrhenius-type plots for viscous flow for (a) solutions with 0.01 M VO2+ and (b) blank H2SO4

solutions measured at 25, 30, 35, 40, and 45 ◦C. Data values in Figure 1 are also shown in Table A3.

Figure 2a,b shows sample EPR spectra of the VO2+ ion in 0.1 M and 7 M H2SO4 at 25 ◦C
and −180 ◦C, respectively. In Figure 2b, the lower H2SO4 concentration spectra show broadening
due to unresolved hyperfine interactions, most likely a result of solute aggregation in the frozen
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solutions. Broadening in frozen solutions has been observed to dissipate with the addition of
glycerin to the solution to deter nucleation, probably by slowing mobility with increased viscosity [26].
This broadening decreases with increasing H2SO4 concentration, which also increases the viscosity and
lowers the VO2+ mobility (Figure 2b, inset). However, a steep drop in spectral broadening is observed
with only small increases in H2SO4 concentration, where the viscosity does not significantly increase.
For the lowest H2SO4 concentration measured, 0.1 M, the pH should be <1, and the VO2+ structure
should be stable as an aquo-cation ligated by five water molecules [27]. The increased presence of
additional ions in the solution must also play a role in deterring aggregation upon freezing, possibly by
adding competition to ion redistribution observed in freezing liquids [28].
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Figure 2. (a) Representative electron paramagnetic resonance (EPR) spectra at 25 ◦C for the highest and
lowest H2SO4 concentrations investigated; (b) EPR spectra collected at −180 ◦C (inset shows unrefined
hyperfine coupling); (c) extracted rotational diffusion coefficients using Equation (2); and (d) the
Stokes radius of the vanadyl ion using Equation (2). EPR fitting parameters were A‖ = 542.6 MHz;
A⊥ = 203.3 MHz; g‖ = 1.943; and g⊥ = 1.989.

The initial parameters for fitting the higher temperature spectra were determined by fits to the
frozen spectra at −180 ◦C. The value of A‖, determined from the rigid limit spectra, is consistent with
values reported in the literature [29], and is as expected for a complex with four equatorial water
ligands [30]. EPR fitting parameters that were unaffected by the H2SO4 concentration are listed in the
Figure 2 caption. The fitting parameter most affected by the H2SO4 concentration was the rotational
diffusion, which decreased as H2SO4 concentration and viscosity increased (Figure 2c).

The stokes radius of the VO(H2O)5
2+ complex is related to the rotational diffusion through the

Stokes–Einstein–Debye (SED) equation:

DR =
kBT

8πηr3 (2)
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Figure 2d shows the results of this calculation. The radius decreases from 3.7 A to 3.1 Å with increasing
H2SO4 concentration. These values are in good agreement with values reported elsewhere [29,31,32].
The trend with H2SO4 concentration, however, is different than what was observed by Oriji et al. [23] in
solutions with significantly higher VO2+ concentration (~2 M), where considerably lower Stokes radii (2 Å)
were reported. The decreasing trend in the Stokes radius observed here is likely due to the higher H2SO4

concentrations disrupting the outermost hydration layer, possibly to hydrate the H2SO4.
The rotational diffusion and Stokes radius can be related to the translational diffusion through

the Stokes–Einstein (SE) equation relating translational diffusion and viscosity:

DT =
kBT

6πηr
(3)

In addition, by combining Equations (2) and (3):

DT
DR

=
4
3

r2 (4)

The translational diffusion of VO2+ in the H2SO4 solutions as determined by EPR is shown in Figure 3,
and will be discussed in greater detail in comparison to results obtained via electrochemistry below.
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The oxidation of the VO2+ ion to VO2
+ proceeds via the following reaction:

VO(H2O)5
2+ 
 VO2(H2O)4

+ + 2H+ + e− (5)

At a pH < 1 and low vanadium concentration, the V(V) is expected to exist as a VO2
+ ion with a

bent geometry, though there is some discussion as to whether it is more likely to be ligated by four or
three water molecules [33].

Linear sweep voltammetry at a rotating disc electrode was analyzed by plotting the inverse of the
square root of the rotation rate versus 1/i in Figure 4. The linear results fit with the Koutecky–Levich
(K-L) equation:

1
i
=

1
iK

+
1

0.62nFAD2/3
T,o ω1/2η−1/6Co

(6)
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Figure 4. Results of the Koutecky–Levich (K–L) analysis of linear sweep voltammetry data measured
for 0.01 M VO2+ in the indicated H2SO4 solutions at 25 ◦C.

Using this method, the translational diffusion, DT, can be calculated from the slope of the line.
The results from this method are compared to the results from the EPR in Figure 3, and they correlate well.

Figure 5 shows sample cyclic voltammograms for VOSO4/H2SO4 solutions. Figure 5a shows the
CVs as a function of the scan rate for the 7 M H2SO4 solution, while Figure 5b plots the peak separation
(∆Ep) for the same. These data reveal that even for this highest acid concentration, the redox process is
quasi-reversible at best, as fully reversible redox couples would exhibit ∆Ep ~59 mV. Here we observe
a minimal peak separation of 86 mV when the scan rate is 1 mV/s. Additionally, the values of ∆Ep

increase with the scan rate, which suggests that the reaction kinetics become in competition with mass
transport for the faster scan rates, where the diffusion layer is thinner than for the slower rates [20].
Figure 5c shows the cyclic voltammogram (CV) as a function of H2SO4concentration at a fixed scan
rate of 15 mV/s. These CVs are qualitatively similar to those reported elsewhere [22]. Between 1–1.2 V
vs. Ag/AgCl, the anodic part of the scan shows a peak associated with the oxidation of V(IV) to V(V).
Ranging from 0.2–1 V of the cathodic part of the scan, there is a peak associated with the subsequent
reduction of V(V) back to V(IV). This peak drifts to lower potentials with lower H2SO4 concentrations,
and is more dependent on H2SO4 concentration than the anodic peak. Overall, as H2SO4 concentration
decreases, the shape of the CV becomes more stretched out as ∆Ep increases and the peak currents
decrease, which is characteristic of a shift from quasi-reversible to irreversible.
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Figure 5. (a) Cyclic voltammograms (CVs) of 0.01 M VO2+ in 7 M H2SO4 at the indicated scan rates
measured at 25 ◦C; (b) plot of peak separation (∆Ep) from the CVs in (a); (c) a representative set of CVs
of 0.01 M VO2+ as a function of H2SO4 concentration at 25 ◦C, with a scan rate of 15 mV/s; (d) average
∆Ep for CVs measured at varying H2SO4 concentrations.

Further analyses of the CVs reveal interesting kinetic information on the oxidation of VO2+.
The shape of the CVs, particularly at lower H2SO4 concentrations where ip,a > ip,c, suggests an EC
(electrochemical [first reaction]/chemical [second reaction]) mechanism:

[VO(H2O)5]
2+ � [VO(H2O)5]

3+ + e− � [VO2(H2O)4]
+ + 2H+ (7)

which is consistent with the EC mechanism proposed by Gattrell et al. [34]. The effect of the chemical
step on the shape of the CV is then expected to truncate the cathodic peak and should be more
pronounced in conditions where: (a) the chemical step has more time to occur before the cathodic
scan begins (i.e., lower scan rate) and (b) the chemical reaction is able to occur very quickly before
the cathodic scan begins (i.e., faster rate of the chemical step). The effect of scan rate can be probed
qualitatively by observing the ratio of the peak heights (ip,c/ip,a), In Figure 6a the calculated results are
shown using the approximation by Nicholson [35]:

ip,c

ip,a
=

(ip,c)o
ip,a

+
0.485 (isp)

ip,a
+ 0.086 (8)

where (ip,c)o is the position of the cathodic peak and isp is the current at the switching potential,
which here is taken as the minima between the anodic peak associated with the VO2+ oxidation and
the switching potential. As the scan rates increase, the peak height ratio approaches 1. At higher
H2SO4 concentrations, the peak ratios also approach 1, suggesting that the presence of H+ in the
solution (a product of the chemical step of the mechanism) alters the rate of the chemical step.
Modeling works [36] have shown that an EC mechanism mostly effects the cathodic peak, leaving the
anodic peak available for traditional analysis.

It can be observed from Figure 5 that as the CVs deviate from reversibility the peak heights decrease.
The Randles-Sevcik equation for irreversible redox reactions accounts for this by adding the αn′ term:

irev
p = ±0.446nFAC

(
nFDυ

RT

)1/2
(9)

iirrev
p = ±0.496(αn′)

1
2 nFAC

(
FDυ

RT

)1/2
(10)

where n’ is the number of electrons transferred before the rate determining step. The relationship of ip,a

with the square root of scan rate is shown in Figure 6b. If α = 0.5, the peak of the irreversible process is
expected to be 80% of a theoretical reversible process with identical parameters [37].
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Figure 6c demonstrates the use of the Randles–Sevcik equation for a reversible process to calculate
the diffusion coefficient (DT) based on the actual anodic peak currents and anodic peak currents with an
added 20% of height. Only the lowest scan rates were used to determine DT using this method. Low scan
rates have been shown to deviate the least from peak values predicted by the Randles–Sevcik equation,
in the case where pure Butler–Volmer kinetics are not predicted [38], which is suggested in publications
reporting Tafel slopes for this system [34,39]. The average DT values determined from EPR and rotating
disc electrodes (RDE) are plotted for comparison. At higher H2SO4 concentrations, the results calculating
the diffusion from uncorrected peak heights compare well with those measured by other means, but the
diffusion for lower H2SO4 concentrations trends low. The results of the calculation of the DT using the
corrected peak currents, also plotted in Figure 6c, show that lower H2SO4 concentrations compare well
with the other methods, but also that higher H2SO4 concentrations trend high. This suggests that as the
H2SO4 concentration decreases, and the redox processes deviate from reversibility, the 80% relationship
becomes viable with an α value of 0.5. Assuming an α value of 0.5 and diffusion coefficients determined by
EPR and RDE, the potential peak separation, ∆Ep, can be used to determine the standard heterogenous
rate constant, ko, using the relationship of Klingler and Kochi [22,40]:

ko = 2.18
[

DανnF
RT

]1/2
exp

[
−
(

α2nF
RT

)
(Eox

p − Ered
p )

]
(11)

This method is similar to the commonly used method of Nicholson and Shane [41], but is more
appropriate for the larger values of ∆Ep (and therefore lower values of ko), which are observed here for
the lower H2SO4 concentrations. As Figure 6d illustrates, the rate of the electrochemical step on glassy
carbon increases dramatically as H2SO4 concentration is increased (e.g., 72 times larger at 7 M versus
0.1 M H2SO4).
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Figure 6. (a) Peak current ratios for the CVs of 0.01 M VO2+ in the indicated H2SO4 solutions as a
function of scan rate (shown here as log of scan rate for clarity); (b) Randles–Sevcik (R–S) analysis of the
CVs (four slowest scan rates) using Equation (8); (c) translational diffusion coefficient (DT) calculated
from R–S analysis for corrected (red circles) and uncorrected (dark red hollow circles) peak currents in
comparison to values obtained via K–L and EPR analyses (the latter from Figure 3). The peak current
correction applied was +20% added to the anodic peak. (d) Heterogeneous rate constant (k0) at varying
H2SO4 concentrations, as calculated using Equation (10).
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3. Materials and Methods

3.1. Preparation of Electrolyte Solutions

Electrolyte solutions were made to consist of 0.01 M VOSO4·xH2O (x = 4.2 via the certificate of
analysis; Alfa Aesar, Ward Hill, MA, USA) and sulfuric acid (Sigma Aldrich, Burlington, MA, USA) at
approximate target concentrations of 0 M, 0.1 M, 0.2 M, 0.5 M, 0.8 M, 1.0 M, 2.0 M, 4.0 M, 5.0 M, 6.0 M,
and 7.0 M. All acid stock solution concentrations were verified via titration with standardized NaOH
prior to the addition of VOSO4. The actual titrated concentrations of H2SO4 were as follows: 0.1180 M,
0.2390 M, 0.4761 M, 0.8334 M, 1.176 M, 2.231 M, 3.502 M, 4.539 M, 6.012 M, and 7.086 M.

3.2. Viscosity Measurements

Measurements of dynamic viscosity were performed on each H2SO4 stock solutions, as well as
the VOSO4 electrolyte solutions using a Cannon–Fenske routine viscometer (Fungilab, sizes 25, 50,
75, and 100, Hauppauge, NY, USA). Cleaned (piranha solution) and dried viscometers were filled
with approximately 7 mL of solution and immersed in a thermostatic water bath (PolyScience, Niles,
IL, USA) equipped with digital temperature control. Viscosity measurements were collected for each
H2SO4 stock and electrolyte solutions at 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, and 45 ◦C. To obtain the dynamic
viscosity from the kinematic viscosity, the kinematic viscosity was divided by the density, ρ, for each
solution, which was measured using calibrated micropipettes and an analytical balance accurate to
five decimal places (Mettler Toledo XS105, Columbus, OH, USA).

Viscosity was calculated using the following relationship:

ηs =
ρs

ρw

ts

tw
ηw (12)

where the subscript s refers to the solution investigated and subscript w refers to water, while η

is viscosity (cP), ρ is density (g/cm3), and t is time (s). Values for ηw were adopted from known
sources [42]. Errors were propagated using standard methods for error analysis in multi-measurement
systems [43].

3.3. Electron Paramagnetic Resonance (EPR) Measurements

The H2SO4 and VOSO4 solutions were deoxygenated by bubbling with hydrated nitrogen for 1 h.
Samples were sealed in a capillary. Measurements were collected on an x-band EPR (Magnettech 5000
miniscope, Berlin, Germany) at 25–45 ◦C and at−180 ◦C. The spectra were fitted using Easyspin [44,45].

3.4. Electrochemical Measurements

All electrochemical measurements were carried out in a 50 mL glass jacketed beaker
electrochemical cell maintained at 25 ◦C and fitted with a machined Teflon lid. The working electrode
was a glassy carbon rotating disc electrode (Pine Instruments, Grove City, PA, USA) with a 5.0 mm
diameter attached to a Pine Instruments model MSR rotator. A Pt mesh spot welded to Pt wire was
employed as the counter electrode, and the reference electrode was an Ag/AgCl (saturated NaCl,
BASi, West Lafayette, IN, USA) reference electrode. All characterization was carried out using a
Bio Logic SP-300 potentiostat equipped with two channel boards. Electrode pre-treatment included
polishing with 1 µm and 0.05 µm alumina slurry (Electron Microscopy Sciences, Hatfield PA, USA) and
sonicating in MilliQ 18.2 MΩ·cm deionized water (Millipore Sigma, Burlington MA, USA) for 5 min.

3.4.1. Rotating Disc Electrode (RDE) Experiments

All RDE experiments were conducted on a Pine Instruments MSR rotator at rotation rates of 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000 RPMs sequentially. Five linear sweep voltammograms
were collected for each rotation rate with potential limits of 0.1–1.6 V versus Ag/AgCl. In all cases, the
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electrolyte solutions were previously degassed by sparging with pre-hydrated Ar (ultra-high purity;
Airgas, Radnor, PA, USA).

3.4.2. Cyclic Voltammograms

Cyclic voltammograms were collected for each of the 0.01 M VOSO4 electrolyte solutions using
potential limits of 0.0–1.6 V versus Ag/AgCl and scan rates of 100, 50, 25, 15, 10, 5, and 1 mVs−1 for all
H2SO4 concentrations.

4. Conclusions

In this initial investigation into the relationship between the VO2+ ion and H2SO4 concentration in
bulk solution, diffusion of the VO2+ ion has been measured with similar results by different methods,
and is in agreement with published reports. Of the three methods investigated, results from EPR and
Koutecky–Levich were very consistent. The Stokes radius of VO2+ was observed to decrease with
increasing acid concentration, likely as a result of the disruption of the second hydration layer by the
higher H2SO4 concentrations. Qualitative mechanistic and rate information was observed from the
electrochemistry of the solutions. These data suggest that the oxidation of VO2+ to VO2

+ proceeds by
an EC mechanism, with the electrochemical step being faster with higher acid concentrations at the
expense of the rate of the chemical step, as H+ is a reaction product. Analysis of the cyclic voltammetry
revealed that the redox process was electrochemically irreversible at H2SO4 concentrations of <5 M,
and quasi-reversible from 5–7 M, but approaching reversible with ∆Ep = 75 mV at 1 mV/s and 7 M
H2SO4. The methods developed here can be applied to the other VRFB-relevant reactions to gain a more
detailed understanding of electrolyte solutions for redox flow batteries. This includes observations of
more concentrated solutions and different electrode surfaces.
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Appendix A.

Table A1. List of terms and symbols.

Term/Symbol Definition

A‖, A⊥ Hyperfine splitting tensor, MHz
A Electrode area, cm2

Co Concentration, mol m−3

DR Rotational diffusion, s−1

DT Translational diffusion, m2 s−1

Eox
p Anodic peak potential, V

Ered
p Cathodic peak potential, V

Ea Activation energy, kJ mol−1

F Faraday’s constant, C mol−1

g‖, g⊥ g-tensor
i Current, Amperes

iK Kinetic current, Amperes
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Table A1. Cont.

Term/Symbol Definition

ip,a Anodic peak current, Amperes
ip,c Cathodic peak current, Amperes

(ip,c)o Cathodic peak current position, Amperes
isp Switching potential current, Amperes
kB Boltzmann Constant, m2 kg s−2 K−1

ko Rate constant cm s−1

n Moles
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No VO2+ Temperature (K)

Sulfuric Acid Conc. (mol L−1) 298 303 308 313 318
0 0.890 0.797 0.719 0.653 0.596

0.1 0.909 0.809 0.730 0.663 0.603
0.2 0.945 0.840 0.758 0.686 0.623
0.5 0.993 0.890 0.801 0.724 0.658
0.8 1.046 0.929 0.839 0.756 0.685
1.0 1.102 0.979 0.882 0.802 0.719
2.0 1.333 1.192 1.067 0.962 0.870
4.0 1.679 1.499 1.344 1.208 1.090
5.0 1.999 1.781 1.595 1.433 1.291
6.0 2.613 2.330 2.089 1.875 1.685
7.0 3.242 2.869 2.562 2.296 2.092

0.01 mol L−1 VO2+ Temperature (K)

Sulfuric Acid Conc. (mol L−1) 298 303 308 313 318
0 0.901 0.804 0.723 0.652 0.595

0.1 0.913 0.812 0.736 0.658 0.607
0.2 0.935 0.836 0.754 0.681 0.619
0.5 0.973 0.874 0.785 0.710 0.644
0.8 1.037 0.927 0.836 0.753 0.684
1.0 1.108 0.991 0.890 0.801 0.729
2.0 1.358 1.209 1.089 0.979 0.884
4.0 1.768 1.579 1.414 1.268 1.144
5.0 2.103 1.875 1.675 1.507 1.359
6.0 2.622 2.342 2.098 1.885 1.698
7.0 3.215 2.887 2.583 2.339 2.095
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Table A3. Arrhenius parameters extracted from data in Figure 1.

H2SO4 Concentration (M) No VO2+ Ea (kJ/mol) η∞ (cP)

0 16.41 1.19 × 10−3

0.1 16.19 1.32 × 10−3

0.2 16.25 1.32 × 10−3

0.5 16.27 1.37 × 10−3

0.8 16.37 1.40 × 10−3

1.0 16.56 1.39 × 10−3

2.0 16.88 1.42 × 10−3

4.0 17.18 1.72 × 10−3

5.0 17.22 2.02 × 10−3

6.0 17.12 2.62 × 10−3

7.0 16.81 3.63 × 10−3

H2SO4 Concentration (M) With 0.01 M VO2+ Ea (kJ/mol) η∞ (cP)

0.1 16.08 1.37 × 10−3

0.2 16.32 1.30 × 10−3

0.5 16.23 1.42 × 10−3

0.8 16.58 1.29 × 10−3

1.0 16.58 1.36 × 10−3

2.0 16.84 1.49 × 10−3

4.0 17.01 1.75 × 10−3

5.0 17.17 1.96 × 10−3

6.0 17.24 2.49 × 10−3

7.0 17.33 2.97 × 10−3
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