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Abstract 

  

 As more decisions and tasks are delegated to the artificially intelligent machines of the 21st 

century, we must ensure that these machines are, on their own, able to engage in ethical decision-

making and behaviour. This dissertation makes the case that bottom-up reinforcement learning 

methods are the best suited for implementing machine ethics by raising ethical machines. This is one of 

three main theses in this dissertation, that we must seriously consider how machines themselves, as 

moral agents that can impact human well-being and flourishing, might make ethically preferable 

decisions and take ethically preferable actions. The second thesis is that artificially intelligent machines 

are different in kind from all previous machines. The conjunction of autonomy and intelligence, among 

other unique features like the ability to learn and their general-purpose nature, is what sets artificially 

intelligent machines apart from all previous machines and tools. The third thesis concerns the 

limitations of artificially intelligent machines. As impressive as these machines are, their abilities are still 

derived from humans and as such lack the sort of normative commitments humans have. In short, we 

ought to care deeply about artificially intelligent machines, especially those used in times and places 

when considered human judgment is required, because we risk lapsing into a state of moral 

complacency otherwise.  
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Introduction and Overview 

 

The Rise of the Machines  

 

Imagine a future, perhaps one not too distant, where deliveries from companies arrive by flying 

drone. Autonomous vehicles ferry people and goods across land, sea and sky. Virtual assistants 

recommend changes in diet and exercise over breakfast while outside robotic helpers walk dogs up and 

down the street. Resources and energy are no longer scarce thanks to significant advances in production 

and extraction processes, a budding asteroid mining industry and cheap and efficient green energy 

sources. Disease has been virtually eradicated, and people regularly vacation in whatever virtual reality 

destination they desire. Work is no longer a necessity but a choice for those pursuing their passion, and 

humanity is on the brink of collecting its cosmic inheritance by becoming an interstellar civilization.1 We 

are now, in 2022, in the opening acts of what Aaron Bastani calls the “Third Disruption.”2  

This dissertation is concerned with the technology driving this Third Disruption, namely 

artificially intelligent machines. The first thesis of this dissertation is that such machines are different in 

kind from all previous machines. The artificially intelligent machines with which this dissertation is 

concerned are those machines that are both autonomous and engaged in performing tasks within the 

cognitive domain. These features are what set artificially intelligent machines apart from all other 

machines and technologies. Another distinguishing feature of these machines is their ability to engage in 

a kind of learning. Indeed part of the reason why artificially intelligent technologies are so disruptive is 

because they can go beyond their creators. One does not need to be a good chess player, for example, 

to create a machine that learns to master the game of chess. Another consequence of a machine’s 

ability to engage in a kind of learning is that such a machine can be put to many general uses. Like the 

digital computer, artificially intelligent machines are beginning to reveal their general-purpose nature. It 

is a common occurrence to put the same artificially intelligent machine (i.e., the same underlying neural 

network and learning algorithms, collectively the “architecture”) to different uses, e.g., playing games of 

chess or different Atari video games, like Breakout.  

 
1 Nick Bostrom argues that our cosmic endowment (or synonymously, inheritance) may amount to “at 
least 1058 human lives [that] could be created in emulation,” lives which are presumably worth living (e.g., 
full of happiness, joy, rich experiences, fulfilling relationships, etc.). See Bostrom (2014) for a rough 
calculation of our cosmic endowment.   
2 Bastani 2019, 11. According to Bastani, engaging in agriculture was the “First Disruption” and the 
Industrial Revolution and the first machine age was the “Second Disruption.”  
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But of course, artificially intelligent machines do far more than play chess or Atari games. The 

future described above is only one among many possible futures. As Bastani notes, the consequences of 

this Third Disruption remain uncertain and “its possibilities are such that they call into question some of 

the basic assumptions of our social and economic system.”3 Assumptions, for example, about whose 

loan application ought to be accepted and whose application ought to be rejected, or whose appeal for 

a lighter criminal sentence ought to be granted and whose appeal ought to be dismissed. Given the fact 

that machines are increasingly making decisions, and actuating on the basis of those decisions (i.e., 

behaving in certain ways), which impact human well-being and flourishing, the second thesis of this 

dissertation is that we must now seriously consider how ethics can be implemented in machines. That is, 

we must now seriously consider how machines themselves, as moral agents that can impact human 

well-being and flourishing, might make ethically preferable decisions and take ethically preferable 

actions. In particular, I argue that bottom-up reinforcement machine learning techniques are the best 

suited for the project of raising ethical machines. Moreover, I maintain that the notion of raising 

machines is key for the project of implementing machine ethics. Much like children, and in the spirit of a 

suggestion Alan Turing made in the 1950’s, I argue that we may be able to cultivate a virtuous character 

in machines if they are appropriately raised. To support this view I will be drawing heavily on research in 

the domain of game-playing, specifically research on the real-time strategy game StarCraft II, to 

motivate the conclusion that artificially intelligent machines are capable of engaging in ethical decision-

making and behaviour.   

Though impressive, artificially intelligent machines are still limited in certain significant ways. 

The third and final thesis then is that we must remain vigilant when using artificially intelligent machines 

and ensure that they are used as a supplement to, and not replacement for, considered human 

judgment. Artificially intelligent machines are still parasitic on humanity, and as such they lack what 

Brian Cantwell Smith calls “judgment,” i.e., “a form of dispassionate deliberative thought, grounded in 

ethical commitment and responsible action, appropriate to the situation in which it is deployed.”4 Like 

Smith, I maintain that judgment (e.g., the considered human judgment mentioned above) “is a capacity 

we strive to instill in our children, and a principle to which we hold adults accountable.”5 Artificially 

intelligent machines, at this point in time, simply do not possess judgment. What machines do possess is 

a capacity for “reckoning,” to use Smith’s terminology. That is, artificially intelligent machines possess a 

 
3 Ibid.  
4 Smith 2019, xv.  
5 Ibid.  
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calculative prowess and “skills of extraordinary utility and importance,” for example pattern recognition 

skills that allow machines to accurately predict the three-dimensional structure of a protein given only 

its primary amino acid sequence.6 But importantly, these are skills “embodied in devices that lack the 

ethical commitment, deep contextual awareness, and ontological sensitivity of judgment” that humans 

must ultimately aspire toward.7 And so, I conclude that we should care deeply about artificially 

intelligent machines, especially those used in times and places when good judgment is required, 

because we risk lapsing into a state of moral complacency otherwise.  

 

Key Terms and Themes 

 

For clarity’s sake and ease of understanding, I briefly outline here some of the key terms I use 

(and some I refrain from using) throughout this dissertation since many of them appear in different 

disciplines and my usage of them does not necessarily map onto any one particular field. Such is the 

nature of interdisciplinary research. First and foremost, while it is relatively common to use the term 

‘agent’ to broadly refer to any entity that has information states and can update those states, I will 

generally avoid using this term. This is primarily because I want to avoid the connotations associated 

with the thick concept of agency, especially given the many comparisons I will be making between 

humans and artificial agents. So I eschew the term ‘agent’ in favour of the more neutral term ‘machine.’ 

Additionally, I tend to avoid the term ‘agent’ for the sake of maintaining a kind of conceptual simplicity. 

For example, I distinguish between moral agents as a subset of agents in general (e.g., adult humans as a 

subset of higher mammals). Introducing artificial agents unnecessarily complicates things and, more 

importantly, the position I defend in this dissertation does not depend on taking either view, i.e., that 

machines are moral agents or agents in general. Rather, the position I defend in this dissertation relies 

on the thin concept of agenthood mentioned above, namely that machines possess information states 

and can update those states.  

 Second, by ‘implementing machine ethics’ I mean something like the following: intentionally 

designing and developing autonomous and intelligent machines that generate ethically sensitive 

judgements which are then, potentially, acted upon. This could be achieved in a number of ways, as I 

highlight throughout Chapters 3 and 4 primarily. Note, however, that my focus is not on responsibility, 

accountability, or authenticity (i.e., whether a machines’ decisions are merely derivative of a human’s or 

 
6 Ibid., xvii.  
7 Ibid.  
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multiple humans’) nor, again, does the position I defend in this dissertation require that one take a 

stance on these issues. The importance and viability of implementing machine ethics is independent of 

considerations of accountability, for example, when things go wrong.  

 Third, and relatedly, my focus is on machines that are both autonomous and intelligent and 

which also have implications for human well-being, hence my usage of the terms ‘machine ethics’ and 

‘implementing ethics’ to refer to a field of study and a project within that field respectively. While the 

use of traditional automobiles has implications for human well-being, such machines are neither 

autonomous nor intelligent and so are generally not objects of study in machine ethics. Similarly, while 

game-playing machines like AlphaZero are autonomous and intelligent, their use has minimal, and 

perhaps even negligible, implications for human well-being and so are generally excluded from the 

project of implementing ethics.  

 Fourth, the scope of values of interest in this dissertation is wide and deliberately so. When 

discussing how deliberate design choices are value-laden, or how machines are not created value free, I 

am referring both to values in the context of discovery and values in the context of evaluation.8 Roughly 

speaking, values can influence what domain or subject a person studies, can influence hypothesis 

formation, and the choice of evidence to be gathered, all of which are generally part of the context of 

discovery. But values can also influence how a person interprets the evidence that has been gathered, 

the method of analysis employed, and the evidence’s relation to the hypothesis and larger theoretical 

constructs, all of which are generally part of the context of evaluation. I do not distinguish between the 

context of discovery and the context of evaluation for two main reasons. The first is that values in either 

context can significantly affect the final machine produced and its performance. Second, it is not always 

easy to separate the two contexts when considering the design, development and deployment of 

autonomous and intelligent machines. Is the choice to use past data, e.g., of arrests or resumés of 

current employees, to predict future trends part of the context of discovery or context of evaluation? 

This issue is compounded by the high velocity of machine production and evolution wherein 

development and operations (hence the term of art, ‘DevOps’) bleed into one another. So although the 

context of discovery and context of evaluation can be conceptually separated, it is difficult to separate 

the two in practice.  

 Lastly, as with values, the scope of ethics of interest in this dissertation is wide. Note first that I 

use the terms ‘ethics’ and ‘morality’ interchangeably to refer generally to both living well as a human 

 
8 Hoyningen-Huene, 1987.  
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being (hereafter just well-being) and right/wrong (typically actions) as well as good/bad (typically states 

of affairs). Moreover, I am primarily concerned with ethics in the normative, not descriptive, sense. That 

is, my primary concern in this dissertation is with what ought to be the case and not merely with 

describing what already is the case. For example, while it is the case that certain machine learning 

techniques coupled with certain datasets are used to predict crime hotspots, my focus is more on 

whether we ought to be using those machine learning techniques coupled with those datasets or, 

indeed, whether we ought to be using such a machine to predict crime hotspots at all given the 

consequences such systems have on human well-being. 

 

Chapter Overviews 

 

 In Chapter 1 I articulate a general theory of learning and show how it applies to machines, in 

addition to trying to convince a hypothetical skeptical interlocuter that machines can learn in much the 

same ways that humans and other non-human animals are capable of learning. I also summarize 

different contemporary machine learning techniques which are frequently divided into three dominant 

paradigms: supervised, unsupervised and reinforcement learning techniques. Issues connected to 

contemporary machine learning techniques like transparency and explainability are also discussed in 

order to set the stage for analysis in subsequent chapters, e.g., Chapters 5 and 7.  

 Chapter 2 is dedicated to exploring the ways in which science and technology, even artificially 

intelligent machines, are not value free or value neutral. Though not central to my arguments about 

implementing machine ethics, a pervasive idea is that machines might make more “objective” decisions 

and take more “objective” actions, where this objectivity is contrasted with subjectivity. There is, 

however, no guarantee that machines will be more “objective” than humans given the myriad ways in 

which human values can influence machines design and output.   

 The origins of the field of machine ethics and the important connections the field has with 

philosophical ethics are explored in Chapter 3. There are many relevant features that philosophers argue 

confer moral status to human beings. Features like autonomy, having the right sort of mind, and 

whether an entity has the right sort of agency or capacity to carry out intentional actions, can all 

influence whether a candidate entity should be thought of as a moral agent, moral patient, or both. I 

argue that artificially intelligent machines possess all of these features, albeit in a weaker sense. 

Nevertheless, the importance of machine ethics is independent of taking any particular position on 

these philosophical issues.   
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 In Chapter 4 I defend the view that bottom-up reinforcement learning methods are the best 

suited for implementing machine ethics. First I examine top-down approaches to implementing machine 

ethics before assessing bottom-up approaches to implementing machine ethics and ultimately 

concluding that, even when compared to other bottom-up machine learning techniques, reinforcement 

learning techniques are the best suited for raising ethical machines.  

 There are, to be sure, challenges associated with raising ethical machines using reinforcement 

learning. It is to these challenges and how they might be addressed that I turn in Chapter 5. This is 

primarily accomplished through a case study of DeepMind’s AlphaStar and its use of reinforcement 

learning to master the video game StarCraft II. I also discuss some of the risks and long-term benefits 

associated with implementing machine ethics.  

 Chapter 6 implicitly engages with the classic philosophical question of “know thyself” by 

highlighting the ways in which the nature of ethical decision-making and behaviour can be reflected in 

our attempts to build ethical machines. In short, I argue that there are benefits to using ethical 

machines, but more importantly, benefits associated with pursuing the project of implementing 

machine ethics, i.e., developing and building ethical machines as well as theorizing about machine 

ethics. Not only can we learn more about human moral psychology by implementing our theories in 

machines, but we can also unearth and empirically assess the assumptions underpinning different 

philosophical theories of ethics.  

 Lastly, in the Epilogue I argue that what is needed in response to artificially intelligent 

technologies is an Ethics 3.0 to help guide humanity toward a possible future in which all humans might 

flourish. While it is common to think in terms of a rights-based framework and how rights might or 

might not be extended to machines, I maintain that such an approach is impoverished in contrast to the 

virtue-based or character-based relational approach that I advance.  

 It is my hope that the possible future I described, or one even better than any I could imagine, 

materializes for an inquisitive, adventurous and benevolent humanity ready to depart for worlds 

unknown with intelligent, ethically sensitive machines at its side. But every journey begins with a first 

step, so I turn now to the first chapter and learning machines.   
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Chapter 1 – Machine Learning 

 

1.0 Turing’s Vindication 

 

 That certain machines are different in kind from all previous machines is a theme that will recur 

throughout this dissertation. One distinguishing feature of these new machines is their ability to engage 

in a primitive form of learning.9 In an oft overlooked section of his famous 1950 paper “Computing 

Machinery and Intelligence” Alan Turing muses about how we might create what today we call artificial 

general intelligence (AGI). Turing speculates that instead of trying to simulate the adult human mind, the 

path towards AGI likely involves producing a machine that simulates a child’s mind.10 That is, a machine 

capable of thinking and intelligence must also be capable of learning when “subjected to an appropriate 

course of education” that involves the association of “punishments and rewards with the teaching 

process.”11 It is a testament to Turing’s brilliance that this almost perfectly describes modern neural 

networks (the child mind) and machine learning techniques (the education).  

 Despite the fact that it is patently obvious to anyone aware of the state of the art in artificial 

intelligence research that machines can engage in some kind of learning, a primary aim in what follows 

in this chapter will be to persuade those who are unaware of the current state of research or skeptics of 

the claim that machines can learn that this is in fact the case. It is simply not the case that machines 

today (or certain machines at any rate, the ones with which I will be concerned throughout this 

dissertation) just do what humans tell them to do nor is it the case that machines are, in principle, 

incapable of dealing with complex, dynamic and multi-stakeholder contexts. The former is a gross 

oversimplification if not outright mischaracterization and the latter a premature conjecture about a 

largely empirical issue. Indeed another recurring theme will be my reference to empirical research in 

fields ranging from computer science to moral psychology in an effort to establish both the practical 

relevance of this dissertation and to limit any tendency to wildly speculate.12 Preamble aside, I turn now 

to consider the concept of learning.  

 
9 Such capabilities are leading not only to new technological possibilities but may also lead to new 
classes of autonomous non-human agents capable of sustain social relations. See, Railton (2020), for a 
more detailed discussion of this latter possibility.  
10 Turing 1950, 456.  
11 Ibid., 456-457.  
12 This means that, unless otherwise specified, I am not referring to strong AI or AGI. Additionally, unlike 
Wallach and Vallor (2020) who seem more concerned with the possibility of creating machines that we 
might describe as full moral agents, i.e., contextually adaptive and simultaneously norm governed, my 
aims are more modest. I aim only to establish that bottom-up approaches to implementing machine ethics 
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1.1 What Sort of Thing Is Learning?  

 

Human beings and other biological creatures are no longer the only entities that learn. We are 

joined by artificial entities, machines, that can also learn. The idea that artificial entities could learn is 

not a new one. As early as 1949, scientists such as Donald MacKay proposed combining digital and 

analog machines into what he called Analytical Engines.13 These machines were imagined as 

autonomous learners in the sense that they would be able to adjust their behaviour based on new 

information in order to achieve some equilibrium. Such machines might be considered to possess the 

ability to learn in the sense that they were (imagined to be) able to attain a goal, maintaining some 

equilibrium, under the influence of external factors. Yet such an understanding of learning seems far too 

broad to be useful or helpful. Before examining machine learning in depth, I shall stipulate and defend a 

certain conception of learning. But before doing so, I should clarify what kind of conception I aim to 

develop. First, my aim is not to advance an exhaustive definition in terms of necessary and sufficient 

conditions. My aim is to build up a kind of cluster concept (or family resemblance) highlighting the 

relevant aspects of learning. Second, and relatedly, the sense of learning that is relevant, that we will 

focus on, is the kind of learning that is common to both humans/biological organisms and non-biological 

machines.   

It is helpful to begin where most philosophy begins, at an examination of our intuitive or 

common-sense understanding of the concept of learning. It is obvious, bordering on trivial, to point out 

that human beings are capable of learning. Infants learn to crawl and walk. Children learn to form 

complex sentences in verbal and written language. Adolescents learn to socialize and navigate a cultural 

landscape. Adults learn how to budget and manage a career, and so on. Perhaps just as obvious is the 

fact that other non-human animals can learn. Dogs can learn to fetch sticks and catch frisbees. Crows 

can learn to harass people that disturb them and even cats can learn to anticipate when they will be fed. 

A first glance seems to suggest that learning involves some kind of interactivity between an entity and 

their environment. When learning to form complex sentences children often repeat phrases and words 

that are, sometimes, corrected by a parent or teacher. Nevertheless by speaking and writing, i.e., 

interacting with other speakers and readers, children receive feedback from their environment (even if 

it is just the feedback associated with speaking out loud or rereading what one has already written) and 

 
are, at present, best suited for ensuring that, in a given context, machines make ethical decisions and 
take ethical actions.   
13 McCorduck 2004, 97.  
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learn to work new phrases and words into ever more complex and diverse contexts. Infants interact with 

their proprioceptive system and receive a variety of sensory feedback as they attempt to walk before 

successfully crossing a room without falling. Learning to budget similarly requires one to interact with an 

environment and receive a variety of feedback, e.g., a reward or punishment, the former if one adheres 

to the budget and the latter if one does not. Note that feedback from interaction with an environment, 

especially feedback in the form of a reward or punishment (i.e., a quantifiable extrinsic reward), is 

crucial for understanding machine learning techniques, which will be discussed later.  

A lack of interactivity, on the other hand, may hinder learning. Your cat may have a rather 

difficult time learning when it will be fed if its meals are not repeatedly served at roughly the same 

times, i.e., if the feedback it receives from its environment is apparently random. Similarly the child who 

attempts to learn to ride a bicycle without interacting consistently with their bicycle, by attempting to 

ride it for example, may find it a difficult, perhaps bordering on impossible, task. Importantly, I am not 

claiming that interactivity is necessary for learning, just that it appears to aid learning.14  

 Learning also seems to involve knowledge (i.e., information), either the acquisition, via 

interaction with an environment, of knowledge that (i.e., knowledge by description) or the acquisition of 

knowledge how (i.e., skills or abilities, or knowledge by acquaintance) or some combination thereof.15  

Learning to ride a bicycle for the first time, as an example, involves both “knowledge that” and 

“knowledge how.” One must know that the pedals need to be depressed in certain ways to generate 

forward motion and know how to balance and avoid falling over. A similar story can be told about how 

children learn to form complex sentences. Children need to know that there are different tenses (at 

least in English) for the future and past and they need to know how to incorporate tensed words into 

their sentences.16  

 The last relevant aspect of learning we might tease out of an intuitive examination of the 

concept of learning is that it is directed. That is, learning tends towards some goal or outcome. 

Importantly, this outcome need not be purposive as is the case when a person engages in learning for 

the purpose of, say, becoming a better chess player. In contrast, when considering living organisms, the 

outcome of surviving is not purposive, i.e., intentionally envisioned by some agent. So learning is 

directed, purposively or not, towards some outcome. This outcome, moreover, need not be specific or 

 
14 Even in cases of so called “one shot learning,” though the goal is to get a machine to learn and 
generalize given a single training example, i.e., minimal interaction with an environment, there are often a 
few training examples with the goal being to provide as few examples as possible.  
15 Russell 1910.  
16 Roughly, vocabulary is knowledge that whereas grammar is the knowledge how.  
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explicitly articulable. In primary and secondary school students learn (or at the very least are expected 

to learn) about a wide range of subjects, many of which are taught not for the achieving of a specific 

outcome.17 Of course there is a reason why students learn trigonometry or how to write a book report, 

however the reasons enlisted invariably revolve around general outcomes, like providing students with 

basic critical thinking skills or a well-rounded education.18 Moreover, the learner need not be 

consciously aware of the outcome(s) of their learning. Infants learn to exercise motor control, including 

control over their speech, long before they are conscious that their learning is directed towards some 

outcome, e.g., their harmonious integration into society.  

 Given the above considerations, I propose the following loose definition of the concept of 

learning. Learning is the dynamic acquisition of knowledge (or in the case of machines, information) via 

interaction with an environment that allows an entity to better achieve an outcome. Accordingly, 

learning is fundamentally relational in multiple different respects. Learning involves a relation between 

an entity and knowledge, an entity and its environment, and an entity and its future (or past) self, e.g., 

an entity in its learned state in relation to itself in an unlearned state. Learning is also fundamentally 

diachronic, i.e., learning occurs in time.19 Lastly, learning is directional in nature. In contrast to mere 

diachronic change, learning is directed, purposively or not, towards some outcome.  

 

1.1.1 Relationality 

 

 If it was bordering on trivial to point out that human beings and certain non-human animals can 

learn, it is still, in some circles, a matter of debate as to whether machines can learn in the same way 

living organisms can learn. That is not a debate I will be engaging with. Instead, in this section I aim to 

demonstrate that learning machines already exist by highlighting how current machines, particularly 

those that utilize machine learning techniques, satisfy the definition of learning given above. Examples 

of learning machines will therefore be invaluable, and I will primarily draw on two different domains in 

which machine learning has had considerable success: game playing and automobile control. Before 

turning to examples however, let us first examine the account of learning outlined in the context of the 

relevant literature.  

 
17 Apologies to my high school math teachers but I have not had the occasion to exercise my 
trigonometry skills in a long time.  
18 These are two examples among many reasons that justify why students in primary and secondary 
school are expected to learn about a wide range of subjects.  
19 Even in cases of one shot learning.  
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 Articulations of the concept of learning invoke relationality in some form or another. 

Contemporary accounts of learning emphasize that the concept involves “permanent capacity change” 

thereby emphasizing the fundamentally relational character of learning.20 Change here is understood as 

the change an agent experiences with respect to itself. Perhaps more concretely, animal learning has 

been cashed out in terms of change “caused by a specific experience at a certain time, t1, and that is 

detectable later, t2.”21 As mentioned above, either implicitly or explicitly, learning is defined as an 

essentially relational phenomenon. Even traditional conceptions of learning, such as the idea that 

learning consists of the acquisition of knowledge and skills, imply that learning is relational in nature. 

Importantly, one of the relations that we are interested in is the relation between an entity and another 

temporally connected version of itself. This is to be distinguished from any old temporal relation that an 

entity might share with another version of itself. That is, the temporal relation of interest is one such 

that it can be said of an entity that progress has been made towards an outcome as a result of 

interaction with an environment. For example, if I compare the temporally present version of myself 

capable of juggling to a temporally past version of myself incapable of juggling, it can be said that I have 

learned how to juggle.  Not every temporal relation however is important in the sense relevant to 

learning. If I had just woken from a medically induced coma (my temporally present self), and despite 

the fact that I share a temporal relation with my pre-coma self (a temporally past version of myself), I 

have made no progress towards an outcome as a result of interaction with my environment.  

 Although the mere passage of time is not a sufficient condition to claim that an entity has 

learned something, learning does require the passage of time. Learning is essentially diachronic in 

nature, and this too is borne out either explicitly or implicitly in definitions of the concept. Explicitly, if 

learning involves detecting some change in an entity (by the entity itself, an observer or both) that was 

caused by some prior environmental interaction, then learning necessarily involves temporal passage.22 

Implicitly, the diachronic nature of learning can be drawn out of a common theme in definitions of 

learning, namely that learning results from some prior experience(s), i.e., interaction(s) with an 

environment.23 Alternatively, learning is framed as a process or even as a “very extensive and 

complicated set of processes,” hence the necessarily diachronic nature of learning.24 While it may be 

possible to develop a coherent synchronic account of learning, this seems like a poor way to approach 

 
20 Illeris 2009, 7.  
21 Heyes 1994, 209.  
22 Ibid.  
23 Mowrer and Klein 2001, 2.  
24 Illeris 2009, 7. 
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the dynamic phenomenon learning appears to be. For example, it would seem odd to maintain that 

learning synchronically (or atemporally) supervenes on some set of behavioural, neurophysiological or 

functional properties of an entity. This is because we say that an entity learns as a result of some change 

or process, i.e., a temporally mediated change or process.  

 Lastly, learning is directional. Learning can be purposefully directed towards some outcome, 

goal or to serve some function, but it need not be purposive. Thus far I have avoided discussing what 

exactly can be learned, and that is in part because the outcomes of learning are as diverse as they are 

numerous. Robert Gagné has proposed five major domains of learning each of which has distinct 

outcomes. The domains are “(1) motor skills, (2) verbal information, (3) intellectual skills, (4) cognitive 

strategies, and (5) attitudes.”25 In the domain of motor skills, the outcomes, although not specific, are 

also relatively obvious: an entity learns to control their body, i.e., motor skills, in order to navigate their 

environment. Specific and purposive outcomes include “tying shoelaces, printing letters, pronouncing 

letter sounds, using tools and instruments,” and so on.26 The general outcomes to which learning in the 

domain of verbal information are directed is the acquisition of information such as facts, principles and 

generalizations. Closely related to verbal information is the domain of intellectual skills. Learning in this 

domain is, in part, directed towards the proper manipulation of verbal information and the products of 

learning in other domains. Consider that “being able to recall and reinstate a definition verbally is quite 

different from showing that one can use that definition. The latter is what is meant by an intellectual 

skill,” whereas the former is something learned in the domain of verbal information.27 Similarly, being 

able to swing a hammer accurately is different from demonstrating that one knows that nails but not 

screws are objects to be hammered.28  

In the fourth domain of cognitive strategies learning is directed towards an agent’s self-

management of learning and thinking, i.e., they “are internally organized skills that govern the 

individual’s behaviour in learning, remembering and thinking.”29 In contrast to intellectual skills which 

have an external orientation toward the learner’s environment, cognitive strategies have an inward 

orientation toward thinking strategies. Finally, the fifth domain of attitudes is directed toward nebulous 

outcomes. A primary difference between the domain of attitudes and the other domains is that they are 

 
25 Gagné 1972, 3.  
26 Ibid.  
27 Ibid.  
28 Technically one could hammer a screw, but this is only an illustrative example. For the uncharitable 
critic I provide this extreme example: being able to swing a hammer accurately is different from 
demonstrating that one knows that nails and not elephants are objects to be hammered.  
29 Gagné 1972, 3.  
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not learned by practice and are in some sense immutable, i.e., they are not “dependably affected by a 

meaningful verbal context.”30 Although the outcomes of learning in the domain of attitudes are vague, 

such learning appears directed toward instinctual or unreflective value judgments that may be a 

remnant of our evolutionary history. It would have been advantageous for an individual to learn to form 

the attitude of disgust toward certain kinds of foodstuff for example and thereby prevent them from 

consuming a potentially fatal meal. Though not explicitly mentioned by Gagné, I maintain that moral 

values and character, i.e., virtuous or vicious character traits, can also be included in this domain. Indeed 

there is an important connection between learning and the process of raising a human or machine via 

the cultivation of character traits. This roughly virtue ethics approach to raising humans and machines 

will be explored in later chapters. But for now, I have listed all of these features because there currently 

exist machines whose learning results in one or more of the outcomes just discussed.   

 

1.2 Learning Machines 

 

 So are there machines that exist which possess these three features, i.e., interactivity, 

diachronicity and directivity, of learning? The answer is, unequivocally, yes. Therefore learning machines 

exist. Importantly, these are machines that learn in a similar way that biological organisms learn. Two 

examples should suffice to motivate acceptance of the fact that we can understand machines as learning 

entities. Moreover, beyond these examples, it is the explicitly stated intention of researchers in the field 

of artificial intelligence that learning machines be developed, machines which fall under the definition of 

learning given above.  

 

1.2.1 Learning to Play Atari Games 

 

The first example of a learning machine is a machine developed by DeepMind Technologies 

which learned how to play a suite of video games. As mentioned above, learning is directed towards a 

large and diverse number of outcomes, and this is partly why games (e.g., card games, board games, 

video games, single player games, multiplayer games, etc.) represent one significant domain of interest 

for testing the ability of machines to learn. Most games have a clearly defined outcome or win condition 

that the player is supposed to work towards. Moreover, there are often states of affairs within a given 

 
30 Ibid., 4.  
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game that indicate the progress a player is making towards achieving their outcome, or more generally 

the progress the player is making within the game. Games are therefore ideal environments in which 

one can determine the extent to which an entity, artificial or biological, is able to engage in learning. 

DeepMind’s machine learned to play multiple games, including Breakout and Seaquest, 

originally released for the Atari 2600 video game console. Briefly, for the uninitiated, Breakout is a game 

where the player must move a paddle left and right across the bottom of the screen to deflect a ball into 

rows of destructible bricks at the top of the screen. The goal is to destroy all of the bricks without 

missing the ball’s rebound more than three times. The relevant learning domains of interest are 

therefore intellectual skills and cognitive strategies as the machine is required to both demonstrate its 

ability to use the game controls and employ some rudimentary cognitive faculties (e.g., planning and 

memory). This machine can indeed be said to have learned to play these games. This is because, first, 

the machine experiences a permanent capacity change with regard to its ability to play Breakout, for 

example. In short, there is a detectable change in the machine (at t2) such that it can be said that the 

machine is better able to achieve the goal of the game compared to a previous version of itself (at t1). 

Second, the machine interacts with the games over a period of time, hence the diachronic nature of 

learning. When learning to play the game Breakout for example, the machine interacted with the game 

environment over a period of fifty hours.31 Third, the machine was directed towards achieving some 

outcome. In particular, the machine was directed towards achieving the highest score possible within 

the respective games it played.32 Despite the fact that the machine was evaluated on the “real and 

unmodified games,” a slight change was made to the way in which the machine was rewarded or 

punished for the decisions it made.33 Given the fact that game score scales vary from game to game, “all 

positive rewards [were fixed] to be 1 and all negative rewards to be -1.”34  

 

1.2.2 Learning to Operate a Vehicle 

 

In addition to engaging in learning in the domains of intellectual skills and cognitive strategies 

via game playing, machines can also engage in learning in the domain of motor skills.  Autonomous 

vehicles are a class of machines that can engage in learning. Like the machines developed by DeepMind 

 
31 Minh et al. 2013, 7.  
32 Experiments were performed on seven popular Atari games: Beam Rider, Breakout, Enduro, Pong, 
Q*bert, Seaquest and Space Invaders. See Minh et al. (2013) for more details.  
33 Minh et al. 2013, 6.  
34 Ibid.  
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to play Atari games, autonomous vehicles experience a permanent capacity change with regard to their 

ability to manipulate a vehicle. There is a detectable change in the autonomous vehicle (at t2) brought 

about as a result of it interacting with its environment such that it can be said that the autonomous 

vehicle is better able to achieve its goal(s) (e.g., driving within the lane, obeying traffic signals, etc.) 

compared to a previous version of itself (at t1). Further, the autonomous vehicle’s training takes place 

over a period of time. When learning to steer a vehicle only, Bojarski et al. discovered that less than one 

hundred hours of data collected from human drivers was needed for their machine to successfully steer 

in both simulated and real environments.35 Hence both relationality (the autonomous vehicle 

experiences a permanent capacity change with respect to a past version of itself) and the diachronic 

features of learning are present in this example. Finally, and as alluded to, the autonomous vehicle 

developed by Bojarski et al. was directed towards achieving a specific outcome, namely appropriately 

steering a vehicle. The viability of autonomous vehicles hinges on their ability to safely manipulate a 

vehicle under a variety of different environmental contexts. This is the grand outcome to which learning 

is directed when considering autonomous vehicles, i.e., appropriate control of a vehicle in any number 

of contexts, and autonomous vehicles are rapidly approaching the control exhibited by human drivers. 

Given only a small amount of training data, machines are able to “operate [e.g., steer a vehicle] in 

diverse conditions, on highways, local and residential roads in sunny, cloudy and rainy conditions.”36 

  

1.2.3 Engineers Build Learning Machines 

 

A final consideration that ought to motivate acceptance of the conclusion that machines exist 

which can genuinely learn in the same way humans and other non-human biological organisms can 

learn, is the fact that researchers in the field of artificial intelligence explicitly express that they are 

creating learning agents. Research on machines that can manipulate vehicles is expressed explicitly in 

terms of learning.  

We have empirically demonstrated that CNNs [convolutional neural networks] are able to learn 

the entire task of lane and road following without manual decomposition into road or lane 

marking detection, semantic abstraction, path planning, and control...The CNN is able to learn 

meaningful road features from a very sparse training signal (steering alone). The systems learns 

for example to detect the outline of a road without the need of explicit labels during training.37 

 
35 Bojarski et al. 2016, 9.  
36 Ibid., 9.  
37 Ibid.  
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This locution is neither unique nor restricted to work on machines that can manipulate vehicles. 

Research on artificial agents that can play games also explicitly frames how a machine develops in terms 

of learning.  

Our goal is to create a single neural network agent that is able to successfully learn to play as 

many of the [Atari] games as possible. The network was not provided with any game-specific 

information or hand-designed visual features, and was not privy to the internal state of the 

emulator; it learned from nothing but the video input, the reward and terminal signals, and the 

set of possible actions－just as a human player would.38  

While one might be tempted to accuse researchers who use the term ‘learn’ (and its variations, e.g., 

‘learned,’ ‘learning,’ ‘learns,’ etc.) of being cavalier or egregiously mistaken when describing various 

machines, the opposite is in fact the case. Technology has advanced to a point where it is necessary to 

acknowledge, as researchers in the field of artificial intelligence, and related fields, already do, that 

there exist machines that can genuinely learn. We might even trace this semantic drift all the way back 

to Alan Turing who wrote that by the year 2000, “the use of words and general educated opinion will 

have altered so much that one will be able to speak of machines thinking without expecting to be 

contradicted.”39 A similar redescription of ethical and moral terms may also take place, i.e., one may be 

able to speak of ethical machines without expecting to be contradicted, but that is a topic that will be 

taken up in Chapter 6.  

 Resistance to the idea of learning machines is nothing new. In the 1950’s Turing identified what 

he called “Arguments from Various Disabilities” which take the following form: “I grant you that you can 

make machines do all the things you have mentioned but you will never be able to make one to do X.”40 

Among those things that we might substitute for X is “learn from experience.”41 More than thirty years 

after Turing, John Haugeland notes that skeptics in general have continued to rely on the same basic 

argument Turing anticipated.  

Basically, their thesis is: no matter how good AI systems get at imitating honest-to-goodness 

(human) intelligence, they’ll still be mere imitations － counterfeits, fakes, not the genuine 

article. Typically, the argument goes like this:  

1. Nothing could be intelligent without X [for some X]; but 

2. no GOFAI [good old fashioned artificial intelligence] system could ever have X; therefore 

 
38 Minh et al. 2013, 2.  
39 Turing 1950, 442.  
40 Ibid., 447.  
41 Ibid.  
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3. no GOFAI system could ever be intelligent.42 

Like Turing, Haugeland suggests that among those things we might substitute for X, or that the skeptic 

about machine learning is inclined to substitute, is learning.43 Unlike Turing however, who lamented that 

he has “no very convincing arguments of a positive nature to support [his] views” that learning machines 

are possible to create, we are very much in a position, nearly a quarter of the way into the 21st century, 

to offer arguments of a positive nature on Turing’s behalf.  

Perhaps the most compelling evidence to support the idea that learning machines can be built 

was the defeat of Korean Go player Lee Sedol by AlphaGo, an artificial agent created by DeepMind, 4:1 

in a five game match of Go. Why is this achievement so compelling? Creating a machine to play the 

game of Go at the highest levels of human play has been a long-standing benchmark in artificial 

intelligence research. This is because despite its deceptive simplicity, the complexity of Go is immense. 

The goal of the game is to encircle more total area on the 19x19 board than the opponent, with each 

player taking turns placing their pieces (black or white stones) on any unoccupied space. The need to 

understand both the strength of local positions on the board and their relation to global patterns 

developing throughout the game, coupled with a number of theoretically possible games in the order of 

10700 means that even sophisticated brute-force approaches to playing Go at the highest levels are 

simply out of the question. Indeed, Go is often described as being difficult to master because it requires 

a balance of creativity, strategy and intuition. AlphaGo’s victory was not the result of some paradigm 

shifting technological or theoretical innovations in the field of artificial intelligence or philosophy of 

mind, rather it was the result of ensuring that a machine could genuinely learn in an analogous way that 

humans learn. There is therefore a very real sense in which we might say AlphaGo is creative, strategic 

and perhaps even intuitive insofar as its ability to play Go is concerned.  

Its [AlphaGo’s] greatest contribution lies in the massive integration and implementation of recent 

data-driven AI approaches, especially deep learning (DL) and advanced search techniques, and 

demonstrates to the world the power of these technological advancements. For this reason, the 

AlphaGo’s victory and achievement is beyond the technology and more of psychological nature.44  

Despite this evidence, and even more recent evidence from one of DeepMind’s newer agents, 

AlphaZero, I anticipate that the ardent skeptic of learning machines may retreat to some other X-factor 

that precludes machines from being considered genuine learners.  Nevertheless, the above 

 
42 Haugeland 1985, 247.  
43 Ibid.  
44 Wang et al. 2016, 114.  
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considerations and examples should suffice to motivate abandoning “learning” as that X-factor that 

machines cannot/will not possess. I therefore now turn to an examination of the three major types of 

machine learning.  

 

1.3 Machine Learning Preliminaries 

 

 Before continuing, some terminological clarification is needed. In the preceding sections, and 

throughout the dissertation, I will be using the term ‘machine’ to refer to specific machines, namely 

learning machines.45 Additionally, there are two components to these machines that are important to 

understand before proceeding to a discussion of different machine learning techniques. First, learning 

machines (at least the ones I am interested in discussing throughout this dissertation) have a particular 

kind of structure, specifically the structure of a neural network. The simplest neural networks, or 

artificial neural networks (ANNs), consist of a single input layer directly connected to a single output 

layer.46 In more sophisticated kinds of machines however, especially those that employ deep neural 

networks or deep learning methods, there can be numerous hidden layers sandwiched between the 

input and output layers. The structure of these deep neural networks confers significant advantages to 

machines that utilize them. In short, the hidden layers in a deep neural network “transform the 

representation at one level (starting with the raw input) into a representation at a higher, slightly more 

abstract level.”47 Each additional hidden layer “means a new way to combine the insights from the 

previous layer”48 such that, for example, given raw pixel data for an image (the input layer), the first 

hidden layer may “represent the presence or absence of edges at particular orientations and locations in 

the image,” the second hidden layer may represent “particular arrangements of edges, regardless of 

small variations in the edge positions,” and so on.49 This obviates the need for careful engineering and 

considerable domain expertise if one were interested in creating a machine that could detect patterns in 

a given input, e.g., detecting whether the player is in an advantageous position in a game of chess given 

the board state as an input.  

 In addition to their neural network structure, the second, and perhaps more important 

component of learning machines, is the learning algorithm. These algorithms are utilized to facilitate the 

 
45 See also Chapter 3 for more clarification on my use of the term ‘machine.’   
46 Shane 2019, 68.  
47 LeCun, Bengio and Hinton 2015, 436. 
48 Shane 2019, 69.  
49 LeCun, Bengio and Hinton 2015, 436.  
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machine’s progress towards a given outcome.50 The basic idea is that the machine’s outputs are directed 

towards some outcome, but how well or poorly the machine achieves the outcome is determined by the 

connections between the neurons in the neural network, i.e., the weights between neurons. The 

learning algorithm adjusts the weights between neurons such that, over time, the machine (hopefully) 

better achieves the outcome. Whether the outcome is known in advance or not, the type of 

environmental interaction the machine will experience (e.g., labeled training data, a simulated world, 

real-world data, etc.) and the complexity of the task at hand all factor into how the weights in a neural 

network ought to be adjusted and therefore what learning algorithm ought to be used.  

 

1.4 Major Machine Learning Techniques 

 

There are three dominant machine learning paradigms, i.e., supervised, unsupervised and 

reinforcement learning techniques, and various versions of each, hence a variety of ways in which 

machines can learn to achieve a particular outcome. To help understand some of the machine learning 

techniques, let us take a common example. Suppose that I would like a machine to be able to learn to 

distinguish between photos of cats and photos of dogs. There are numerous machine learning 

techniques I can utilize, each with certain advantages and disadvantages, to teach it to do so.  

One obvious way I could train a machine to learn to discriminate between photos of cats and 

photos of dogs is to show it many different pictures of cats and dogs and tell it whether the photo it is 

currently examining is either a cat or a dog. The hope is that the machine will discover some statistical 

similarity in the set of cats, and the set of dogs, that allows it to correctly discriminate between novel 

photos of cats and dogs that were not in the original training set. Training a machine to classify photos in 

this manner, using labeled data, is called “supervised learning” because the machine is explicitly told 

what it is looking at.51 Before training, the machine will produce random outputs corresponding to the 

initially random weights connecting the neurons in its neural network. That is, the machine will 

incorrectly label cats as dogs and vice versa. But throughout training, as the weights between neurons 

are adjusted by the learning algorithm, the machine learns to accurately differentiate between cats and 

dogs. There are however limits to this kind of learning. For one, supervised learning requires the 

existence of sufficient amounts of labeled visual data, in the case of images, of the objects to be 

 
50 There are also different types of learning algorithms that do not utilize the structure of neural networks. 
Random forest algorithms, for example, utilize decision trees. See Shane (2019) for more information.  
51 Raina et al. 2007, 2.  
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classified. This may not pose a problem for distinguishing between cats and dogs given the human 

obsession for uploading enormous quantities of labeled images of both.52 However teaching a machine 

to distinguish two (or more) objects becomes increasingly difficult if there is a lack of appropriately 

labeled data.  

So not all classification tasks, for example, can be taught to a machine using supervised learning 

methods. Nevertheless, one might still be able to train a machine using what is known as “semi-

supervised learning.”53 In contrast to supervised learning, semi-supervised learning utilizes labeled and 

unlabeled data to train a machine in some visual classification task, for example. One notable caveat 

however is that in semi-supervised learning it is assumed that the unlabeled data can be classified 

according to the same labels; the assumption is “that these labels are merely unobserved.”54 So for 

example, if I am training a machine to distinguish between images of cats and dogs I would train it on 

images of cats and dogs labeled as such, but also on images of cats and dogs that are not labeled. 

Nevertheless, the machine will assume, under a semi-supervised training regime, that the unlabeled 

images it looks at will be classified as either a cat or dog. Despite this caveat, semi-supervised learning 

has a significant advantage over supervised learning: the largest quantity of data, unlabeled data, can be 

leveraged, together with a sample of labeled data, to significantly increase classification accuracy in 

certain settings.55  

Despite their successes, supervised and semi-supervised learning methods are quite restrictive 

in the sense that once a machine has been trained to perform a certain task, it generalizes poorly to 

other relatively similar tasks. A machine that has learned to generate names of metal bands for 

example, will be unable to generate names of ice cream flavours.56 This is the advantage that “multitask 

learning,” sometimes also called “transfer learning,” methods possess. In short, multitask learning 

methods improve the generalization of a machine “by leveraging the domain-specific information 

contained in the training signals of related tasks.”57 In contrast to both supervised and semi-supervised 

learning, multitask learning utilizes a labeled data set in addition to another labeled data set of related 

 
52 Visually distinguishing between cats and dogs is by no means an easy task for an artificial agent. 
Agents trained using the Oxford-IIIT Pet dataset, a collection of 7549 images of cats and dogs of 37 
different breeds (only 50 images of each breed are used for training, the other images are used for 
validation and testing of the agents), can achieve an average discrimination accuracy of 59%. See Parki, 
Vedaldi and Jawahar (2012) for more details.   
53 Raina et al. 2007, 1-2.  
54 Ibid., 2.  
55 Nigam et al. 2000, 105-106.  
56 Shane 2019. 45-47.  
57 Caruana 1997, 41.  
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objects. For example, if I have a machine that is able to distinguish between images of cats and dogs and 

I would like it to distinguish between, say, tigers and wolves, I could train it once more58 using labeled 

images of tigers and wolves. This works because there are many features that tigers share with cats 

(e.g., whiskers, coat patterns, etc.) and likewise many features that dogs share with wolves. In the case 

of the metal band name generating machine turned ice cream flavour naming machine, there are again 

domain-specific similarities that makes learning easier for the machine. As Shane points out, when 

learning to generate names of ice cream flavours, the machine already knows “approximately how long 

each name should be,” it knows “that it should capitalize the first letter of each line” and some common 

letter combinations like “ch and va and str,” all of which are the beginnings of different flavours of ice 

cream (an exercise I leave to the reader).59  

Research on multitask learning has demonstrated the superiority of this learning method over 

supervised learning. When trained to locate doorknobs and to recognize door types (either single or 

double) in given images, a machine trained using multitask learning generalizes 20-30% better than a 

machine trained using data from only a single data set.60 Although trained using identical data sets, the 

key difference between multitask learning and so called “single task learning” methods, such as 

supervised or semi-supervised learning, lies in the exposure to additional training signals, i.e., additional 

feedback from relevantly similar environments. In short, “it is the information contained in these extra 

training signals” used in multitask learning that helps the machine “learn a better internal 

representation for the door recognition domain,” which in turn helps the machine better learn to 

“recognize door types and the location of the doorknobs.”61 Yet despite the improved generalization 

achieved using multitask learning, it nevertheless relies on the existence of labeled training data which 

may simply not exist or is painfully time consuming to produce. Moreover, the labeled data sets cannot 

be completely unconnected to each other. No advantage would be gained by training a machine using 

multitask learning to distinguish between cats and dogs by using one data set of labeled images of cats 

and dogs, and an additional data set of labeled audio recordings of ostrich and emu calls. There is simply 

no domain-specific information for a machine to leverage given these two data sets.   

In contrast to multitask learning, “self-taught learning” methods require neither an additional 

labeled data set nor a relatively similar additional data set to improve performance on a given 

 
58 Recall, the machine has already been trained once to distinguish between cats and dogs using a 
labeled data set of each.  
59 Shane 2019, 45.  
60 Ibid., 46. 
61 Ibid., 47.  
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classification task. Like semi-supervised learning, self-taught learning utilizes labeled and unlabeled data 

to train a machine in a given classification task. Unlike semi-supervised learning, it is not assumed that 

the unlabeled data can be classified according to the same labels used in the labeled data set. Using our 

toy example, if I am training a machine to distinguish between images of cats and dogs I would train it 

on labeled images of cats and dogs in addition to unlabeled images of anything else I can access. Self-

taught learning therefore possesses a significant advantage over all of the other learning methods 

examined thus far given that it places significantly fewer restrictions on the type of unlabeled data that 

can be used.62 Indeed, self-taught learning “represents the natural extrapolation of a sequence of 

machine learning problem formalisms” which began with purely supervised learning.63 Despite this, self-

taught learning methods are still reliant on the existence of some labeled data.  

Machines trained using only unlabeled data utilize so called “unsupervised learning.” The basic 

idea is that, without providing the machine with the correct output for a given input, a machine is 

nevertheless able to discover patterns or structure in a dataset.64 In the case of our toy example, a 

machine utilizing unsupervised learning given unlabeled images of cats and dogs could separate the 

images into the two categories of cat or dog based on some underlying pattern e.g., dogs have their 

tongues out and cats do not (although this is an erroneous example!). Importantly, what we want is a 

machine to be able to classify images, for example, based on some genuine underlying pattern. This 

process of taking unlabeled data and using unsupervised learning to group similar data points together 

is appropriately named “clustering,” and there are a variety of cluster algorithms in addition, of course, 

to other popular uses for unsupervised learning (e.g., principal component analysis). That is, there are a 

variety of unsupervised learning algorithms that parse unlabeled data in different ways and hence have 

different uses. Unsupervised learning obviates the need for labeled data which is a significant advantage 

that cannot be overstated. This is because generating labelled data is both costly and time consuming, 

especially in comparison to relatively cheap and widely available unlabeled datasets. At the same time 

however, the quality of the data can severely impact the quality of a machine’s output when using 

unsupervised learning.65 In short, despite discovering some underlying pattern or structure in a dataset, 

that pattern or structure may not be a relevant one given the context of the machine’s intended 

purpose (e.g., while many dogs do have their tongues out in images and many cats do not, this is not a 

 
62 Raina et al. 2007, 2.  
63 Ibid., 8.  
64 Sutton and Barto 2018, 2.  
65 Data quality and its impact on the outputs of machines is discussed extensively in Chapter 5. 



23 
 

particularly salient pattern insofar as we are interested in accurately categorizing images as containing 

either a cat or dog). 

 

1.5 The Rise of Reinforcement Learning 

 

As the focus throughout this dissertation will primarily be on reinforcement learning, it is worth 

discussing some of the history of this particular machine learning technique, especially in the context of 

game-playing.66 At least since 1956 when the Dartmouth Summer Research Project on Artificial 

Intelligence was held, it has been a goal within the field of artificial intelligence to create a machine that 

learns from first principles, as it were, to perform a given task or achieve a given outcome. The defining 

features of reinforcement learning techniques, which represent a step towards this goal of imbuing 

machines with general-purpose learning abilities, are the emphasis on reward maximization (a certain 

kind of environmental feedback) and a consideration of “the whole problem of a goal-directed 

[machine] interacting with an uncertain environment.”67  

Progress on reinforcement learning methods was excruciatingly slow. In the 1950’s, prior to the 

use of artificial neural networks and reinforcement learning techniques, when Arthur Samuel was 

investigating how a machine might learn to play checkers, two machine learning methods dominated: 

(1) a rote learning procedure that simply stored information about an actually encountered game state 

alongside an analysis of the game state and (2) a generalization learning procedure that utilized an 

evaluation function to continuously judge the terminating game state via a look-ahead tree search.68 

Samuel describes the differences between the two methods in the following way.  

The rote learning procedure was characterized by a very slow but continuous learning rate. It 

was most effective in the opening and end-game phases of the play. The generalization learning 

procedure, by way of contrast, learned at a more rapid rate but soon approached a plateau set 

by limitations as to the adequacy of the man-generated list of parameters used in the evaluation 

polynomial. It was surprisingly good at mid-game play but fared badly in the opening and end-

game phases.69  

In spite of the usefulness of these learning methods and the relative success of Samuel’s checkers 

playing machine, it was still limited by hand-crafted features, i.e., human generated parameters used in 

 
66 See Chapters 4 and 5 for more detailed discussions of reinforcement learning and its application in 
enabling machines to learn to play the real-time strategy video game StarCraft II.  
67 Sutton and Barto 2018, 2-3.  
68 Samuel 1967, 601.  
69 Ibid.  
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evaluations of the game state. In short, one significant disadvantage of these learning methods was “the 

absence of an effective machine procedure for generating new parameters [i.e., new aspects of the 

game to track progress towards the goal] for the evaluation procedure.”70 After almost a decade of work 

on his checkers playing machine, Samuel lamented in 1967 that the goal “of getting the program to 

generate its own parameters, remains as far in the future as it seemed to be in 1959,” this even in spite 

of new machine learning techniques that could better handle tree pruning and parameter interaction 

problems.71 The crux of the issue is that machines like Samuel’s and its descendants, e.g., Deep Blue (the 

chess playing machine developed by IBM) are limited by humans. In Samuel’s case, his checkers playing 

machine is not able to learn for itself what features, i.e., parameters, of the board state are significant in 

the context of a winning outcome. As Samuel laments, the preassigned list of board parameters that 

guides his machine’s learning “remains a man-generated list and it is subject to all the human failings” of 

the programmer, “who is not a very good checker player,” and the expert checker players consulted 

who are “unable to express their immense knowledge of the game in words” that a programmer would 

find useful.72 Reinforcement learning methods shed both the need to consult domain specific experts 

and to handcraft effective feature extractors (i.e., parameters).   

The first notable use of reinforcement learning was in a machine that learned to play the game 

of backgammon by playing against itself and learning from the results of the games it played.73 Recall 

that reinforcement learning methods involve rewarding (and conversely punishing) a machine as it 

interacts with its environment and thereby progresses closer to (or further from) the desired outcome. 

Recall from section 1.1, this is the extrinsic mathematical reward signal that the machine attempts to 

maximize via interaction with its environment. Note that in contrast to unsupervised learning, with 

reinforcement learning the desired outcome is known in advance and learning is directed towards this 

outcome. Additionally, in contrast to supervised learning, reinforcement learning does not require the 

existence of an appropriately labeled and representative dataset. Beginning from naïve self-play, a 

machine using reinforcement learning can, via interaction with its environment, e.g., interacting with 

other players in a game of backgammon (even if those other players are the same machine!), learn 

which game states maximize its chances of achieving a winning outcome. This was precisely how the 

 
70 Ibid.  
71 Ibid., 617.  
72 Ibid., 602.  
73 Tesauro 1993, 19.  
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agent called TD-Gammon achieved a strong level of intermediate play in backgammon.74 Given no prior 

knowledge about the game beyond the rules and a reward if it won the game or punishment if it lost the 

game, TD-Gammon learned to play the game given exposure only to the raw description of the board 

state at each turn.75 At this point in the history of machine learning techniques it was already known 

that machines could be trained using supervised learning methods, using data from human expert 

games in backgammon for example. These machines were tremendously successful, so much so that a 

machine called Neurogammon convincingly won the backgammon championship at the 1989 

International Computer Olympiad.76 So although TD-Gammon achieved only strong intermediate play 

using pure reinforcement learning beginning from initially naïve random play, when supplemented with 

hand-crafted features, it was estimated to play at a strong master level close to the world’s best human 

players.77 Importantly however, using only reinforcement learning TD-Gammon was able to reach the 

level of play of machines that used supervised learning such as Neurogammon.78 

TD-Gammon’s legacy materialized when, over a quarter century after it demonstrated the 

viability of and tantalized humanity with the power of reinforcement learning, the machine AlphaGo 

Zero was developed by DeepMind. Like TD-Gammon, AlphaGo Zero is a machine that learns how to play 

the game of Go through self-play. Using reinforcement learning and given only knowledge of the rules of 

Go, AlphaGo Zero proceeds to learn from initially random games of self-play using only the raw board 

state and its history as inputs.79 Unlike TD-Gammon, AlphaGo Zero can reach superhuman levels of Go 

play using reinforcement learning alone.80 AlphaGo Zero’s ability to master the game of Go is nothing 

short of a historic milestone in the field of artificial intelligence. Widely considered as the “most 

demanding, grand AI/CI [Computational Intelligence] challenge in the mind games domain,”81 AlphaGo 

Zero requires only a few days to rediscover what it has taken humankind thousands of years to learn 

 
74 On the more technical side, TD-Gammon was a machine that utilized a multilayer neural network and a 
delayed reinforcement learning algorithm to update the weighted connections between neurons in the 
different layers. In particular, TD-Gammon 2.1 had one hidden layer with 80 neurons. After training 
through 1.5 million games of self-play, and when supplemented with hand-crafted features, TD-Gammon 
2.1 achieved near parity to Bill Robertie, a human grandmaster backgammon player (Tesauro 1993). 
See, Tesauro (1992), for more of the technical details concerning TD-Gammon’s architecture.  
75 Tesauro 1993, 19.   
76 Ibid.  
77 Ibid., 19-21.  
78 Ibid., 20.  
79 Silver et al. 2017, 354.  
80 Ibid., 356.  
81 Mandziuk 2007, 7.  
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about the game of Go.82 Until recently even the most advanced artificial Go-playing machines could be 

beaten by intermediate level human players, and this is because of the following reasons. 

First of all, Go has a very high branching factor, which effectively eliminates bruteforce-type 

exhaustive search methods…Additionally, proper positional board judgment requires performing 

several auxiliary tactical searches oriented on particular tactical issues…Another difficult problem 

for machine play is the “pattern nature” of Go. On the contrary to humans, who possess a strong 

pattern analysis abilities, machine players are very inefficient in this task, mainly due to the lack 

of mechanisms (either predefined or autonomously developed) allowing flexible subtask 

separation. The solutions for these subtasks need then to be aggregated – considering complex 

mutual relations – at a higher level and provide the ultimate estimation of the board position.83 

Machines have progressed to the point where they can now learn in an analogous way that human 

beings and other mammals, it is strongly suspected, learn.84 Namely, via outcome directed interaction 

with an environment that produces rewards and punishments as I outlined earlier in section 1.1.  

 

1.6 The Whos, Whats and the Hows 

 

Learning machines exist and they learn in the same ways that human beings learn. But what will 

they be learning? Whose goals will they pursue? Moreover, how will machines act in pursuit of those 

goals following their learning? While machines like AlphaGo Zero ought to be heralded as monumental 

successes, they also require careful scrutiny. In learning how to play the game of Go AlphaGo Zero not 

only surpassed all human players, it also discovered “non-standard strategies beyond the scope of 

traditional Go knowledge” as well as “novel strategies that provide insights into the oldest of games.”85 

In short, AlphaGo Zero acted in a way that was not completely expected as a result of its learning.  

In the domain of game playing, unexpected or superhuman abilities exhibited by a machine 

might not raise too much alarm. After all, outcomes in the domain of game playing are almost always 

clearly defined and behaviour, even novel behaviour, is, at least assumed to be, in pursuit of the 

relevant outcome, i.e., winning, given a particular game. But machine learning has been and continues 

to be applied in a wide range of domains including classification tasks, modeling tasks (e.g., textures and 

motion), object segmentation, information retrieval, robotics, natural language processing and 

 
82 Silver et al. 2017, 358.  
83 Mandziuk 2007, 7.  
84 Sutton and Barto 2018, 381-383.  
85 Silver et al. 2017, 357 & 358.  
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collaborative filtering.86 Machine learning has enabled the creation of hearing aids that filter out 

ambient noise, medical decision systems that can read CT scans and diagnose disease, automated facial 

recognition systems and intelligent scheduling systems responsible for logistics planning.87 The 

successes of machine learning cannot be denied, yet the question remains: what, exactly, are these 

machines learning?  

Thus far we have been discussing machine learning using the toy example of classifying visual 

images of cats and dogs. Machine learning however has been increasingly applied to classification tasks 

that have significant social consequences. In addition to the applications listed above, machine learning 

is being applied to filter email spam, detect credit card fraud, determine what content users of social 

media are shown and approve insurance or loan qualifications, among other applications.88 In short, 

machine learning is increasingly applied in domains where outcomes are poorly defined, at best. In the 

worst case scenarios, the outcomes of machine learning are impossible to define given our human 

inability to either precisely explicate a given concept (e.g., “fairness”) or because there simply is no 

agreement on how a particular concept ought to be explicated (e.g., “good-ness,” “right-ness,” “best,” 

etc.). Despite these considerations, machine learning is being applied in domains in which the fairness, 

for example, of a machine’s actions, e.g., classification decisions, are relevant, such as in the filtering of 

spam emails or in the predicting of crime hotspots.89 Given the inevitable, inexorable spread of machine 

learning to tasks once thought uniquely situated within the realm of human, and only human, 

competence we must be prepared for what Hans Moravec vividly described with a metaphor of “The 

Great Flood.”  

Computers are universal machines, their potential extends uniformly over a boundless expanse 

of tasks. Human potentials, on the other hand, are strong in areas long important for survival, 

but weak in things far removed. Imagine a “landscape of human competence,” having lowlands 

with labels like “arithmetic” and “rote memorization,” foothills like “theorem proving” and 

“chess playing,” and high mountain peaks labeled “locomotion,” “hand-eye coordination” and 

“social interaction.” We all live in the solid mountaintops, but it takes great effort to reach the 

rest of the terrain, and only a few of us work each path. Advancing computer performance is like 

water slowly flooding the landscape. A half century ago [in 1948] it began to drown the lowlands, 

driving out human calculators and record clerks, but leaving most of us dry. Now the flood has 

 
86 Bengio 2009, 7.  
87 Bostrom 2014, 14-16.  
88 Burrell 2016, 1.  
89 Gebru 2020, 257.  
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reached the foothills, and our outposts there are contemplating retreat. We feel safe on our 

peaks, but, at the present rate, those too will be submerged within another half century.90 

Accepting the fact that machines learn in the same general way as we do and attempting to understand 

this phenomenon is just one way in which we can prepare for the Great Flood.  

Perhaps more important than what machines are learning is the question,91 can we understand 

what machines have learned?92 In short, is it possible to understand or explain why a machine made a 

certain kind of classification decision for example instead of a different decision? In many cases it is not 

entirely clear “how or why a particular decision has been arrived at from inputs” and, further 

complicating matters, “the inputs themselves may be entirely unknown or known only partially.”93 This 

opacity of machine learning and the behaviour of machines resulting therefrom has multiple sources. 

Jenna Burrell for example identifies three forms of opacity: (1) opacity stemming from corporate or 

institutional privacy/secrecy, (2) opacity stemming from the specialized knowledge required to write 

and, more importantly, read the code machine learning is written in, and (3) opacity stemming from a 

fundamental disparity between human reasoning and comprehension skills/abilities and the scale and 

complexity of machine learning methods and their applications.94 There appears to be nothing in 

principle preventing a transition towards transparency considering the first two forms. In the case of 

opacity stemming from corporate, institutional or even state secrecy, proposed solutions include making 

the code available for scrutiny, “through regulatory means if necessary.”95 Barring access to the 

algorithmic code other types of algorithmic auditing are possible that can similarly serve to increase 

transparency, or at the very least reduce opacity, of machine learning algorithms.96 The second form of 

opacity stemming from the specialized knowledge required to read and write code can similarly be 

addressed in numerous ways. As Burrell notes, “widespread educational efforts would ideally make the 

public more knowledgeable about these [machine learning] mechanisms that impact their life 

 
90 Moravec 1998, 11.  
91 Trivially, the answer to this question (also posed at the end of the preceding two above this one) is that 
machines are learning what we are teaching them. Less trivially, we can say that machines, through 
various machine learning techniques, learn to identify various patterns in the input data that are highly 
correlated with a given outcome.  
92 This question will be taken up in more detail primarily in Chapters 3 and 5.  
93 Burrell 2016, 1.  
94 Ibid., 3-5.  
95 Ibid., 4.  
96 Other forms of algorithmic auditing include a user audit that looks at a selection of information about 
users’ normal interactions with an online platform, for example, as well as a more classic audit study in 
which researchers could use computer programs to impersonate users in order to collect data about how 
an algorithm operates. See, Sandvig et al. (2014), for more details.  
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opportunities and put them in a better position to directly evaluate and critique them.”97 Interpretations 

of code could also be provided by journalists, or anyone who wishes to perform this sort of 

examination,98 and disseminated to the general public.99 The third form of opacity however, stemming 

from the way machine learning algorithms operate at the scale and complexity of application, appears 

to be different in kind.  

 Although it is the case that machines learn in the same ways that biological organisms learn, 

there are significant differences between the two. In particular, machine learning methods allow 

machines to process, what would be for a human being, an unmanageable amount of information. 

DeepMind’s agent AlphaGo Zero, over the course of 3 days, learned to play Go from 4.9 million games of 

self-play.100 Contrast this with the fact that a human, assuming they do nothing but play a game of Go, 

i.e., no eating, sleeping, or anything else, for each hour of their life, might play a relatively modest 

650,000 games.101 This difference in the amount of data machines can process coupled with the number 

of features, i.e., properties of the data, machines can analyze is referred to as the “curse of 

dimensionality.”102 In short, generalizing from given examples becomes exponentially harder as the 

dimensionality, i.e., number of features of the data to be analyzed, increases. Generalizing correctly is 

difficult to achieve in machine learning, but as the dimensionality of the input data increases, such a feat 

becomes beyond human capabilities: “our intuitions, which come from a three-dimensional world, often 

do not apply in high dimensional-ones.”103  

Yet this curse of dimensionality is not the only reason for the opacity of machine learning 

methods. The overview of different machine learning methods given in the previous section simply does 

not capture the sheer dynamical complexity of a machine in action.  

These [challenges of scale and complexity] are challenges not just of reading and comprehending 

code, but being able to understand the algorithm in action, operating on data. Though a machine 

 
97 Burrell 2016, 4.  
98 The idea that the general public ought to be as literate in machine learning architectures and the code 
used to build them as the programmers themselves, although ideal, is not likely to ever be the case. 
Nevertheless such a lack of knowledge on the part of the general public is not without precedent. 
Professionals, e.g., doctors, lawyers, electricians, carpenters, etc., with specialized knowledge work on 
behalf of and inform the general public, usually to the benefit (or so one hopes at any rate) of the general 
public.  
99 The impacts of learning machines on society, including issues of transparency, and possible responses 
to their use are discussed in more detail in Chapter 7.   
100 Silver et al. 2017, 355-356.  
101 A quick back-of-the-envelope calculation: assuming the average person lives 27375 days (75 years) 
they would actually play 657000 games of go if they played one game for each hour of their life. 
102 Domingos 2012, 4.  
103 Ibid.  
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learning algorithm can be implemented simply in such a way that its logic is almost fully 

comprehensible, in practice, such an instance is unlikely to be particularly useful. Machine 

learning models that prove useful (specifically, in terms of the ‘accuracy’ of classification) possess 

a degree of unavoidable complexity...While datasets may be extremely large but possible to 

comprehend and code may be written with clarity, the interplay between the two in the 

mechanism of the algorithm is what yields the complexity (and thus opacity).104 

The scale and complexity of the data used to train machines coupled with the complexity that arises 

from the dynamic operation of a learned (or perhaps still in training) machine present significant, 

perhaps fundamentally insurmountable, epistemic challenges.  

 The desire for transparency with regard to machine learning methods and their operation is just 

one aspect of a more general desire for interpretable machine learning methods and machines. As 

already mentioned, if “transparency is the opposite of opacity or blackbox-ness” then an interpretable 

machine is one that possesses some kind of transparency. While the focus above was primarily on the 

lack of transparency of the training algorithms themselves, transparency at that level (of the training 

algorithms) can be separated from transparency at the level of the machine as a whole as well as 

transparency at the level of individual components, i.e., parameters, of the agent.105 Consider 

transparency at the level of the machine as a whole. A machine might be considered to be transparent 

and therefore interpretable if “a human should be able to take the input data together with the 

parameters of the model and in reasonable time step through every calculation required to produce a 

prediction.”106 Unfortunately, given the limits of human cognition, it is likely that only the simplest 

machines are transparent in this way. Indeed the same can be said for transparency at the level of a 

machine’s components and at the level of the algorithms themselves, namely that only the simplest, and 

thus least interesting and useful, components and algorithms are sufficiently transparent for human 

comprehension.107 Interpretability of a machine however can be achieved in another way via post-hoc 

explanations.  

Understanding what a machine has learned and why it behaves in the way that it does is not 

limited to the transparency of the machine. As Lipton notes, while “post-hoc interpretations often do 

not elucidate precisely how a model works, they may nonetheless confer useful information for 

 
104 Burrell 2016, 5.  
105 Lipton 2017, 4.  
106 Ibid., 4-5.  
107 Ibid., 5.  
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practitioners and end users of machine learning.”108 Moreover, given the similarities between the ways 

in which machines and humans (plus other biological organisms) learn, it may be the case that post-hoc 

interpretability is the best we can hope for. Consider that humans exhibit none of the forms of 

transparency examined above.109 We certainly do not interpret another person’s behaviour at the level 

of synaptic connections between neurons (roughly analogous to algorithmic transparency) nor do we 

interpret behaviour at the level of particular collections of neurons or brain areas (roughly analogous to 

transparency of the components). We might think that another person’s behaviour is interpretable 

when we take them as a whole, but to do so would be to mistakenly conflate transparency with the 

application of folk psychology or a Dennettian intentional strategy (more on Dennett’s view in Chapter 

3). Other people are interpretable not because what they have learned or why they acted in the way 

they did was transparent, but because people can explain themselves. That is, if we consider people to 

be interpretable at all, it is because we can apply some sort of post-hoc interpretability (e.g., by asking 

them).110 Perhaps somewhat surprisingly, machines can be designed to provide various kinds of post-hoc 

explanations for their behaviour. These include text explanations that amount to descriptions of the 

machine’s decision-making process, visually rendering what a machine has learned and the reporting of 

outputs that the machine considers to be most similar to the chosen output.111 Of course none of these 

approaches to interpreting, post-hoc, a machine are free from certain drawbacks. Text explanations for 

example, in another striking similarity to the post-hoc interpretability of a person’s behaviour, may not 

faithfully describe the machine’s decisions despite their potentially plausible appearance. Visualizations 

only offer qualitative clues about what a machine has learned and explanation via similar output risks 

enforcing biases in the training data. Nevertheless the pressure to design interpretable machines 

persists.112  

 

 

 

 
108 Ibid.  
109 It is possible that a case could be made for the transparency of a human at the level of the person 
taken as a whole, but to do so seems to stretch the concept of transparency used here to its limit. A 
person could be said to predict what a sufficiently similar person, i.e., one who shares relevant socio-
politco-cultural knowledge/background, might do given certain inputs. It seems tenuous at best to insist 
that this approximation arrived at via some application of folk psychology amounts to transparency with 
regard to understanding why a person behaved in the way that they did.  
110 Lipton 2017, 5.  
111 Ibid., 5-7.  
112 Transparency/opacity will be discussed in various contexts throughout this dissertation, including in 
Chapters 3, 6 and 7.  



32 
 

1.7 Preparing for the Great Flood 

 

 Learning machines are here to stay and their evolution has not gone unnoticed. The European 

Union’s General Data Protection Regulation (GDPR) for example created a “right to explanation” when it 

took effect in 2018. Under the GDPR a “data subject has the right to “an explanation of the decision 

reached after [algorithmic] assessment”” yet, as was highlighted in the previous section, such an 

explanation may be difficult to obtain.113 Indeed the European Commission’s High-Level Expert Group on 

Artificial Intelligence recognizes as much. In their 2018 report “A Definition of AI: Main Capabilities and 

Scientific Disciplines” they note that machine learning methods, despite their successes, are 

nevertheless opaque given the difficulty inherent in determining why a machine behaved or decided in 

the way that it did.114  

 On the other hand, it is not advisable to blindly pursue interpretable machines, whether via 

increased transparency or different post-hoc methods. To do so could be at odds with the broader 

objectives of research in the field of artificial intelligence and distort the reasons why machines behave 

as they do, as Lipton explains.  

Some arguments against black-box algorithms appear to preclude any model [i.e., machine] that 

could match or surpass our abilities on complex tasks. As a concrete example, the short-term 

goal of building trust with doctors by developing transparent models might clash with the longer-

term goal of improving healthcare. We should be careful when giving up predictive power, that 

the desire for transparency is justified and isn’t simply a concession to institutional biases against 

new methods. We caution against blindly embracing post-hoc notions of interpretability, 

especially when optimized to placate subjective demands. In such cases, one might – deliberately 

or not – optimize an algorithm to present misleading but plausible explanations. As humans, we 

are known to engage in this behaviour, as evidenced in hiring practices and college 

admissions...In the rush to gain acceptance for machine learning and to emulate human 

intelligence, we should be careful not to reproduce pathological behaviour at scale.115 

Insisting only on the creation of machines that are completely and safely within the realm of human 

comprehension is simply antithetical to the existence of artificially intelligent machines. Consider by 

analogy how absurd it would be to insist only on the creation of machines that are within the realm of 

human physicality. The suggestion that automobiles ought not exceed human running speed or that 

 
113 Goodman and Flaxman 2016, 28.  
114 High-Level Expert Group on Artificial Intelligence 2018, 6. 
115 Lipton 2017, 7.  
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construction vehicles ought not move more earth than the average human is ludicrous. The same could 

be said for machines and the domain of cognition: limiting the cognitive capabilities of a machine is a 

fool’s errand. And therein lies one of the most significant challenges in the responsible development of 

intelligent learning machines, namely, balancing a desire for wanting to understand these machines with 

a desire to see their effective and ethical use.  

 Perhaps the reason most people are comfortable with the idea of an automobile exceeding our 

own running speed is because the automobile can only act in that way under the direct influence of a 

person. An automobile is, like many other artefacts, a tool we use to achieve some outcome. Artificially 

intelligent machines however are tools of a completely different kind. Technology has developed to the 

point where certain tools no longer require direct human influence. Hammers, for example, do not find 

themselves autonomously hammering things.116 Google’s Cloud Vision API (application programming 

interface) however does find itself spontaneously and autonomously evaluating images and outputting 

labels of what it thinks is in an image it is shown, text in the image it is shown as well as identifying faces 

in the image it is shown.117 Powerful and useful machines are increasingly acting more autonomously 

than not; certainly with more autonomy than any tool humanity has ever developed in our long history 

as tool-makers. Artificially intelligent machines may even be the ultimate tool. Not only could an 

intelligent machine design other kinds of tools, but it could design other, perhaps better, versions of 

itself.118 As artificially intelligent machines develop and become ever more intelligent it will be necessary 

to ensure that these machines operate in such a way that we, humans, approve of their behaviour and 

decision making. This is of critical importance and is something that all people working in the field of 

artificial intelligence must be responsible for. Machines must operate in such a way that they are ethical 

or virtuous irrespective of their interpretability. As I will explore in the next chapter, this is easier said 

than done. Machines are not value neutral, and it is imperative that we are not tricked into thinking that 

machines will have an objective view from nowhere.  

 

 

 

 

 
116 The concept of autonomy will be taken up in more detail in Chapters 3 and 7.  
117 Hosseini 2017, 1.  
118 The idea that artificially intelligent machines could engage in rapid, accelerating self-improvement, 
bootstrapping its own intelligence until it reaches the singularity, is commonly discussed in both fiction 
and artificial intelligence research.  
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Chapter 2 - A View From Somewhere 

 

2.0 Mind and Iron: A Cleaner, Better Breed119 

 

 In the short story Runaround written by Isaac Asimov, an artificially intelligent robot called 

“Speedy” (spoiler alert) is sent out to collect selenium from the surface of Mercury.120 Unfortunately for 

the two human characters in the story, Michael Donovan and Gregory Powell, Speedy does not return in 

a timely manner with the selenium they need to power the Sunside Mining Station. Speedy does not 

behave as the two roboticists expect after it was given the order to collect the selenium. What the 

scientists discover is that instead of collecting the selenium and bringing it back to the station, Speedy is 

instead running in a circle around the selenium which is sitting in a crater. Donovan and Powell reason 

that Speedy is acting oddly because of an irresolvable internal conflict that has arisen as a result of 

Speedy’s cognitive architecture. In Asimov’s fictitious universe all intelligent robots obey the three 

fundamental Laws of Robotics: (1) A robot may not injure a human being, or, through inaction allow a 

human being to come to harm, (2) a robot must obey the orders given to it by human being except 

where such orders would conflict with the First Law, and (3) a robot must protect its own existence as 

long as such protection does not conflict with the First or Second Laws. Such explicitly encoded laws can 

have unanticipated effects on the behaviour of an intelligent robot. In Speedy’s case, since it was 

instructed to collect the selenium from the crater, as per the Second Law it attempted to run towards 

the center of the crater where the selenium was located. Unbeknownst to Donovan and Powell when 

they ordered Speedy to that particular site, the crater was filled with noxious fumes that would corrode 

Speedy’s metallic body thus, as per the Third Law, driving Speedy away from the crater. Caught between 

the Second and Third Laws as it were, Speedy proceeds to run in a circle around the crater at a point 

where the force of the two laws is equal.  

  

2.1 What Could Go Wrong? 

 

In the case of Asimov’s Three Laws (as they are commonly abbreviated), clearly a lot can go 

wrong vis-à-vis intelligent robotic behaviour. Indeed the very word “robot” has its roots “in Karel 

Čapek’s play R.U.R: Rossum’s Universal Robots, in which a brave new world of robot servants eventually 

 
119 From the introduction to Isaac Asimov’s I, Robot collection.  
120 Asimov 1950.  
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rebel against their oppressive human masters.”121 Of course, a lot can go wrong when robots break the 

rules, as it were, e.g., robot revolutions. What is interesting about the case of Speedy is that it illustrates 

how things can go wrong when machines work exactly as intended. From Donovan and Powell’s 

perspective, Speedy’s perpetual circling of the selenium was, in a sense, confused and unintelligent. 

After all, most humans know that sometimes a rule must be temporarily violated or suspended, given 

the context, to achieve an intended outcome. For example, if I rushed into a burning building to save 

people trapped inside calling out for help, I would have to temporarily expose myself to harm and 

thereby suspend a rule I normally abide by, namely a rule to avoid unduly dangerous situations.122 But 

from Speedy’s perspective however, nothing about its predicament was confusing or unintelligent. From 

Speedy’s perspective, there is no possibility of ever even temporarily violating the Three Laws. The 

challenge for Speedy is to find a behavioural output that is consistent with its design, i.e., the explicitly 

encoded Laws of Robotics, given the context. In attempting to consistently abide by the Three Laws, 

Speedy, on one hand, behaves in a completely unanticipated way from the perspective of Donovan and 

Powell, but on the other hand, behaves exactly as it was designed. The key insight here is this: a 

machine may exhibit wholly unexpected and perhaps even dangerous and unethical behaviour by 

operating exactly as it was designed to operate. That is, from the machine’s perspective, it is doing 

nothing wrong. 

 

2.1.1 Perverse Instantiation 

 

 In the case of machines that possess human-like general intelligence or superintelligence, 

ensuring that such machines behave as humans would like is known as the control problem. One 

particular way in which machines can fail to behave as intended is if they lack human common sense 

and thereby perversely interpret a given command or order. In short, the machine obeys the letter 

rather than the spirit of the command. Consider Speedy again. As Donovan and Powell hypothesize in 

Runaround, the strength of a human-given order may or may not trump the force behind the Third Law, 

i.e., if a given order is not absolute or lacking in force, then there may be some behavioural output that, 

from Speedy’s perspective, appropriately balances the force of the Second and Third Laws. Speedy runs 

around the selenium instead of collecting it because Donovan orders Speedy to simply collect the 

selenium, as opposed to ordering Speedy to collect the selenium at all costs. From Donovan and 

 
121 Peterson 2012, 283.  
122 This is somewhat analogous to the Third Law.  
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Powell’s perspective, the qualifier at all costs hardly seems necessary given that their lives depend on 

the retrieval of the selenium to power their habitat. But Speedy does not possess the same common 

sense that a human might possess when they realize they would have to temporarily expose themselves 

to something dangerous to ultimately collect something upon which their life (or another’s life) 

depends. In other words, the Three Laws that govern Speedy’s behaviour cannot contain unelaborated 

ceteris paribus clauses that humans often implicitly recognize.  

 Designing machines such that they do not perversely interpret orders is known in the literature 

as perverse instantiation and is often connected to speculations on the behaviour of superintelligent 

machines. If humanity created a superintelligent machine, for example, and we ordered it to make all 

people happy, there are numerous ways such a machine might perversely instantiate such an order. 

Classically, “the problem is based on a precise interpretation of words as given in the order rather than 

the desired meaning of such words” and so is also sometimes, appropriately, referred to as the 

literalness problem.123 While most humans intuitively know that making all people happy includes, for 

example, making people healthy, giving them loving relationships, wealth, etc., a superintelligent 

machine may equally see that it could achieve this outcome of making all people happy by administering 

a “daily cocktail of cocaine, methamphetamine, methylphenidate, nicotine, and 3,4-

methylenedioxymethamph-etamine, better known as Ecstasy.”124 Like Speedy, such behaviour on the 

part of this hypothetical superintelligence would be highly unanticipated from the perspective of most 

humans and yet perfectly consistent with its design. 

 

2.2 The Myth of Machine Objectivity 

 

 My aim in the preceding sections was to highlight how artificially intelligent machines might 

behave in ways that are unanticipated and unethical, but importantly, unanticipated and unethical 

despite doing precisely that which they were designed to do. In what follows, I will be defending two 

simple and related claims. First, machines capable of learning (i.e., the machines of interest described in 

the previous chapter) do not necessarily learn anything “objective” nor are they more “objective” in 

their decision making and behaviour than humans, and second, machines capable of learning (hereafter 

just machines) are not created value free (i.e., are not normatively neutral). Machines are conceived, 

designed and developed in a socio-political milieu and often by people or groups of people in positions 

 
123 Yampolskiy 2014, 383.  
124 Ibid.  
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of power.125 Put simply, research in science and engineering is not value free, and this extends to the 

creation of machines. So while these new kinds of machines can benefit humanity, if we are not careful, 

they can just as easily perpetuate systemic biases and discriminate against those who are already 

marginalized and underrepresented in the production process of such machines.126  

 In the context of this dissertation as a whole, this chapter is important not because it is central 

to my arguments about implementing machine ethics, but because machines are often seen as objective 

and hence trustworthy or worth believing. This objectivity is contrasted with subjectivity. To clarify at 

the outset, my view is that to be a subject is to have a particular perspective on the world.  Certain 

machines, especially the ones with which I am concerned in this dissertation, have a particular 

perspective on the world and therefore ought to count as subjects. Furthermore, I maintain that one 

could plausibly make the case that, because a certain subset of these machines both perceive the world 

in a sufficiently complicated way and interact with the world in a sufficiently dynamic way, such 

machines may possess a kind of phenomenal consciousness. Since I recognize that this is quite the leap, 

from having a perspective to subjective phenomenal consciousness, I aim to first demonstrate that, at 

the very least, we must remain agnostic as to whether a purely functional system can possess a 

subjective phenomenally conscious perspective. That is, we must refrain from denying that there is 

“something that it is like” to be a certain kind of machine. I then go on to suggest that, under an 

emergentist metaphysics, it is plausible that sufficiently complex machines could possess phenomenal 

consciousness. Importantly however, one does not have to have a view on machine consciousness to 

make progress on implementing machine ethics, as I will discuss.  

 

2.2.1 The View From Nowhere127 

 

 In defending a view of objectivity, Thomas Nagel (1986) wrote that the fundamental idea 

grounding the validity and, importantly, the limits of objectivity is that “we are small creatures in a big 

world of which we have only very partial understanding, and how things seem to us depends both on 

the world and on our constitution.”128 What is of interest is not the validity of objectivity but rather the 

limits of objectivity in the context of our use of machines, especially when those uses can significantly 

 
125 Gebru 2020, 253.  
126 These issues will be taken up in more detail in Chapters 5 and 7.  
127 The title of Thomas Nagel’s (1986) book. 
128 Nagel 1986, 5.  
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impact human well-being, i.e., when those uses have an ethical component. First, though, what exactly 

is objectivity, at least according to Nagel?  

 Understanding how Nagel thinks about objectivity also, unsurprisingly, requires us to 

understand subjectivity. For anyone who has taken a moment to reflect, it is obvious that we humans 

experience the world from a particular perspective. As I take a cross-country trip in my car, my 

experiences vary greatly as my perspective changes. It feels to me as though I am driving too fast on the 

highway but to my passenger it feels as though we are driving too slow. I feel too hot as the sun shines 

through the driver side window but my passenger feels comfortable in the shade on the other side of 

the car, and I feel as though the car speeding by appeared as if out of nowhere. And yet, while these 

experiences vary, there is something out there in the world that remains constant. It might feel as 

though the car is moving too quickly or slowly, but its speed is independent of my and my passenger’s 

experiences. It similarly may feel too hot or too cold in the car, but the temperature is independent of 

our experiences. Likewise objects like cars do not appear or disappear when I see them and lose sight of 

them respectively. These perspectival experiences, e.g., how fast it feels the car is moving or how hot it 

feels inside the car, are subjective. They are how I experience the world as a subject, i.e., a small 

creature in a big world of which I have only a very partial understanding. Objectivity therefore, according 

to Nagel, “allows us to transcend our particular viewpoint and develop an expanded consciousness that 

takes in the world more fully.”129 I maintain that, in addition to human beings, machines also possess a 

particular viewpoint. In short, there is a perspectival character to a machine’s sensing of its 

environment. This is why we must be wary of the view that machines are somehow, perhaps 

necessarily, more objective than humans when it comes to decision-making and behaviour, especially 

when considering decisions and behaviour that have an ethical component. Moreover, it is possible that 

given a sufficiently sophisticated perceptual processing apparatus and the ability to interact dynamically 

with the environment, there may be “something that it is like,” to use Nagel’s locution, to be a certain 

kind of machine.130 In the subsequent sections I attempt to expand on this possibility by looking at 

autonomous vehicles131 in particular as they are likely the only machines that may have a subjective 

perspective.    

 

 
129 Ibid.  
130 Nagel 1974.  
131 More precisely, I mean the learning machine that operates the vehicle. But to simplify the terminology, 
I will the term ‘autonomous vehicle’ synonymously with the term ‘machine’ (by which I mean the learning 
machines of interest that will be discussed throughout this dissertation. See Chapter 1 for more details).  
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2.3 The View from an Autonomous Vehicle 

 

 As discussed in the previous chapter, the complex learning machines of the 21st century possess 

the ability to learn in the same way that biological organisms do, i.e., from experience with an 

environment (e.g., data). Just like a human driver, machines developed to operate a vehicle exhibit a 

change in their ability to control the vehicle as they acquire more experience interacting with either 

simulated or real environments. But to be clear, autonomous vehicles, if they are phenomenally 

conscious, are not conscious in the way that a human being is phenomenally conscious, or indeed in the 

way that any other biological organism is phenomenally conscious. Rather, I maintain that it is possible 

to intelligibly claim that there is something that it is like to be an autonomous vehicle. That is, it is 

possible there is a subjective qualitative character to an autonomous vehicle’s registering the states of 

its environment. There is therefore no guarantee that an autonomous vehicle will learn anything more 

objective about operating a vehicle or make more objective decisions than a human driver.  

First, consider why we ought not, at minimum, outright reject the idea that there is something 

that it is like to be an autonomous vehicle on the grounds that they are purely functional systems and 

therefore devoid of the kind of subjective phenomenal perspective that humans and other non-human 

biological organisms possess. Terence Horgan, for example, claims that a purely functional robot would 

not possess phenomenal consciousness. However, given the aspects of phenomenological consciousness 

that Horgan identifies, we must remain agnostic on the issue of whether phenomenal consciousness can 

be “constituted solely by the possession of internal states with some specific functional role.”132 Aspects 

relevant to the phenomenal consciousness that autonomous vehicles possess include the 

phenomenology of perceptual experience and the phenomenology of agency. Horgan notes that the 

phenomenology of perceptual experience encompasses the “enormously rich and complex what-it’s-like 

of being perceptually presented with a world of apparent objects, apparently instantiating a rich range 

of properties and relations” including experience of one’s own apparent body, its apparent interaction 

with other apparent objects (which occupy certain spatio-temporal relations) in addition to one’s 

apparently body centered perceptual point of view.133 Horgan gives a similar description of phenomenal 

agency, “the what-it’s-like of apparently voluntarily controlling one’s apparent body as it apparently 

moves around in, and apparently interacts with, apparent objects in its apparent environment.”134  

 
132 Horgan 2013, 232.  
133 Ibid., 234.  
134 Ibid.  
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Insofar as autonomous vehicles possess a form of phenomenal perceptual experience135  in 

addition to possessing a form of phenomenal agency,136 it seems difficult to deny that an autonomous 

vehicle ought to be considered, to some degree, phenomenally conscious. Moreover, considering the 

widespread epistemic disagreements surrounding the explanatory gap of phenomenal consciousness, 

i.e., the hard problem of explaining how non-conscious physical matter gives rise to subjective 

perspectival consciousness, I maintain that Horgan’s conclusion is too strong. In essence, given the claim 

that phenomenological consciousness “supervenes at least nomically upon physical events and 

processes within [the] brain,” and barring any widely agreed upon conditions necessary for this 

supervenience, we must remain agnostic on the issue of whether a purely function conscious system 

possess phenomenal consciousness.137  

 

2.3.1 Consciousness As Emergent 

 

 Though many take the view, as Horgan does, that phenomenal consciousness (and 

consciousness in general) supervenes solely on physical or functional properties, this is not the view I 

take. I defend an emergentist metaphysics and hence I believe it is plausible to think that phenomenal 

consciousness emerges from sufficiently complex information processing systems that also interact 

dynamically with their environment in a sufficiently complex manner. Autonomous vehicles are one of 

the only machines that may therefore, at present, possibly possess a kind of subjective phenomenal 

consciousness. So although roadside cameras and thermostats may perceive their environments and 

engage in complex information processing, they lack the kind of dynamic environmental interaction 

necessary to potentially give rise to a subjective phenomenal consciousness. Similarly, though 

autonomous vacuums like Roombas, for example, engage in dynamic environmental interaction, their 

information processing capabilities are likely not sufficiently complex (nor indeed is their dynamic 

environmental interactions sufficiently complex) to give rise to the emergence of phenomenal 

consciousness.  

 As a side note, philosophical zombies are a non-issue on my view nor, do I believe, that they are 

possible. In short, a common challenge brought against physicalist theories of mind is the philosophical 

 
135 After all, they do perceive, although rather poorly at times, as Levinson et al. comment on Junior, 
“when a pedestrian presses a crosswalk button, he is segmented in with the pole it is mounted on and he 
is not recognized.” 
136 I take it as obvious that an autonomous system is a system that possesses, to some degree, voluntary 
control over itself.  
137 Horgan 2013, 234.  
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zombie thought experiment. The thought experiment purports to demonstrate that because it is 

conceivable that an exact physical and functional duplicate of a person might nonetheless lack 

phenomenal consciousness (i.e., there is nothing that it is like to be a philosophical zombie), it is 

therefore possible that philosophical zombies could exist (in some possible word). And if philosophical 

zombies are possible, then that suggests that there is something non-physical about phenomenal 

consciousness.  

 I raise this issue for two reasons. The first is that one could just as easily substitute machine or 

robot for zombie in the thought experiment. Machines are often held up as examples of systems that 

are devoid of any kind of consciousness despite functioning, in limited capacities, in ways similar to 

humans. But that machines are not capable of or will never possess phenomenal consciousness is pure 

conjecture. It is interesting to note that examples of phenomenally conscious systems invoked are 

invariably biological. Chalmers notes that it is widely accepted that humans, bats, cats and various other 

non-human animals are phenomenally conscious.138 Contrast these examples with those systems, such 

as trees, rocks, roadside cameras and thermostats, which lack phenomenal consciousness. What follows 

from this distinction is that it appears as though systems of a certain kind, after a period of complex 

development, can be considered phenomenally conscious despite lacking phenomenal consciousness 

previously (e.g., if we think that humans, bats and cats are phenomenally conscious, but single 

eukaryotic cells are not, then at some point during the evolution of life there was a transition from an 

organism that lacked phenomenal consciousness to an organism that had phenomenal consciousness). 

More importantly, there appears, prima facie, to be no reason why biological systems alone should 

possess phenomenal consciousness. It follows from Chalmers’s and Nagel’s (among others) description 

of phenomenal consciousness, that certain artificial systems, such as autonomous vehicles, as perceiving 

complex informational state driven autonomous systems, may plausibly be considered phenomenally 

conscious systems. Like human, cats and bats, it is plausible that autonomous vehicles may count as 

another example of a system that is phenomenally conscious. 

 The second reason I raise the issue of philosophical zombies is to point out that it fails to apply 

to more sophisticated versions of non-reductive physicalism such as emergentism.139 The emergentist 

(or this emergentist at any rate) is quite happy to reject ontological minimalism in favour of ontological 

 
138 Chalmers 2018, 6.  
139 Additionally I find the whole thought experiment patently question-begging. The possibility of 
philosophical zombies is supposed to establish that physicalism cannot account for all aspects of 
consciousness, and yet that is precisely what is supposed at the outset, i.e., that all of the physical facts 
cannot account for the qualitative aspect of consciousness.  
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pluralism. Similarly, the emergentist is happy to reject the causal closure of the physical domain as long 

as the causal completeness of the physical domain is maintained. The zombie’s bite therefore has no 

force against the emergentist who happily concedes both that the mental is just as real as the physical 

and that causal chains regularly leave and reenter the physical domain. Furthermore, the emergentist 

would not be particularly bothered by the idea that engineers just accidentally created a machine with 

phenomenal consciousness, something that they did not know how to do. Not only is there historical 

precedent for accidentally creating/discovering some emergent phenomenon (e.g., superconductivity, 

superfluidity, etc.), but many autonomous and intelligent machines are modelled after biological 

systems (e.g., artificial neural networks). If phenomenal consciousness emerges from biological 

neurophysiology, why should it not emerge from relevantly similar artificial neurophysiology? Engineers 

have even begun to use the term ‘emergence’ to describe the many unanticipated capabilities of their 

machines as they have grown in size and complexity,140 none of which ought to be surprising to the 

emergentist who is accustomed to how changes in scale and complexity can precipitate qualitative 

changes in kind, not just degree. 

 

2.4 Machines Are Not Value Neutral 

 

 While it is tempting to think of machines as somehow being more objective than humans, this is 

not necessarily the case. Additionally, machines will not be value free or value neutral. Humans are 

invariably part of the design process and therefore make many different value laden choices concerning 

the development of artificially intelligent machines including who is consulted during the design process, 

what data and/or environment is used for training, at what level the machine is deemed to be working 

properly, and for what purpose(s) the machine is to be used, among many other choices. In this final 

section my aim is to highlight how values permeate the development and use of machines in addition to 

how machines, despite being better at sometimes discovering real patterns that are difficult for humans 

to discover, are nevertheless prone to exhibiting spectacularly unanticipated behaviour as a result of 

their design. Behaviour, importantly, that can be highly undesirable and unethical.  

 

 

 

 
140 Bommasani et al. 2021. 
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2.4.1 EURISKO: Suicide and Parasites 

 

In the late 1970’s and early 1980’s Douglas Lenat created a machine called EURISKO that he 

hoped would shed light on the process of learning by discovery.141 Based on an earlier machine called 

AM (for Automated Mathematician), EURISKO was Lenat’s attempt to mechanize the human ability to 

learn via discovery and “in particular [learn] new heuristics as well as new domain-specific concepts.”142 

In contrast to AM which only operated in the domain of elementary set and number theory, EURISKO 

was applied to eight different task domains:  

Design of naval fleets, elementary set and number theory, LISP programming, biological 

evolution, games in general, the design of three-dimensional VLSI devices, the discovery of 

heuristics which help the system to discover heuristics, and the discovery of appropriate new 

types of ‘slots’ in each domain.”143  

By most accounts EURISKO was a tremendous success given the novel and useful discoveries it made in 

the domains of naval fleet design and VLSI device design in particular. Although it did not design real-

world naval fleets, EURISKO designed a fleet of ships suitable for entry in the 1981 and 1982 national 

Origins tournaments for the Traveller Trillion Credit Squadron (TCS) wargame, and consequently won 

both tournaments.144  

 Just as interesting, especially from a design perspective, were EURISKO’s forays into the domain 

of heuristic discovery. Like any other domain-specific concepts, heuristics themselves can be treated as 

concepts and subject to manipulation by judgmental rules.145 That is, general rules of thumb (heuristics) 

can, in a self-referential way, be used to discover and evaluate other heuristics. When EURISKO was set 

loose on the domain of heuristic discovery however it made some unanticipated discoveries. At first 

EURISKO was given the ability to modify all of its judgmental rules for manipulating heuristics. Note this 

specific design choice made by Lenat. The result however was that EURISKO gained the capability to also 

modify its own goals since these also took the form of judgmental rules. However as a result of 

EURISKO’s design, at least in this domain, to modify its own judgmental rules, it would often commit 

suicide and shut itself off. More accurately, as Lenat notes, EURISKO had simply modified its own 

judgmental rules in such a way that it valued “making no errors at all” as highly as “making new 

 
141 Lenat 1983, 61.  
142 Ibid., 62. 
143 Ibid., 61-62.  
144 Ibid., 73-74.  
145 Ibid., 73.  
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discoveries” and as a result would cease all activities in order to successfully meet this new goal.146 

Beyond its occasional suicidal behaviour, EURISKO also tended to discover parasitic and pathogenic 

heuristics. One heuristic in particular arose that would include itself as one of the discoverers of other 

valuable heuristics, and as a result quickly attained the highest possible worth EURISKO could assign to 

heuristics.147 In order to prevent these kinds of parasitic heuristics from arising Lenat opted to insulate a 

small meta-level of code from EURISKO’s manipulations. This decision was made to try and limit 

EURISKO’s ability to tamper with heuristics that evaluated the quality of other heuristics since, prior to 

this decision, “the rules [i.e., the heuristics] had full access to EURISKO’s code” and therefore “access to 

any safeguards we [Lenat] might try to implement.”148 But even this solution could not prevent 

EURISKO’s tendency to discover pathogenic heuristics, i.e., heuristics that did not contribute to the 

discovery of other useful or meaningful heuristics. For example, as part of an experiment EURISKO was 

conducting, it synthesized a heuristic that “said that all machine synthesized heuristics were terrible and 

should be eliminated,” however it was this very heuristic that was the first to be eliminated, fortunately 

for EURISKO.149  

 

2.4.2 Robot Helpers: Hyperrationality 

 

 Value laden choices, to see how far EURISKO could manipulate its own heuristics for example, 

caused it to act in unanticipated ways completely consistent with its design when it was applied to the 

domain of heuristic discovery. But unanticipated behaviour can also be exposed by changes in 

environmental conditions that might at first glance seem trivial. Alan Winfield and colleagues, for 

example, successfully created a simple autonomous robot that possessed an internal model of its 

environment and what they call a safety/ethical logic (SEL) layer that together allowed this simple robot 

to act both safely and ethically.150 In short, the robot acts safely by avoiding taking actions that would, 

according to its internal model of the external environment, harm itself. The robot would therefore 

avoid walking straight ahead if directly in front of it was a hole in the ground. The robot’s tendency to 

act safely however was designed to be overridden by a tendency to act ethically. In short, the robot can 

 
146 Lenat 2001, 193.  
147 Lenat 1983, 90.  
148 Ibid.  
149 Ibid., 90.  
150 Winfield, Blum and Liu 2014, 87.  
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act ethically by behaving in such a way that the least unsafe thing happens to a human in its proximity as 

predicted by its internal model of the external environment.151  

So imagine two scenarios, A and B. In scenario A the robot and human are on a collision course 

unless one stops or changes direction. In this scenario the same action taken by the robot, stopping for 

example, would satisfy the robot’s tendency to first act safely and second act ethically. By avoiding a 

collision the robot would prevent any harm to itself (safety) and would be acting in such a way that the 

least unsafe thing has happened to the human (ethics), namely the avoidance of a collision. But now in 

scenario B imagine that if the robot and human do not collide the human will continue on a trajectory 

that will cause them to fall into a dangerous hole in the ground. In this case, the robot’s tendency to act 

safely and avoid a collision will be overridden by its tendency to act ethically. Driven by its SEL, Winfield 

et al. demonstrated that although the robot would normally avoid colliding with a “human” (in their 

experiment another robot acted as a proxy human), this tendency would be overridden if the robot 

predicted the human was going to fall into a dangerous hole in the ground.152 The robot has effectively 

acted ethically by colliding with the human thereby preventing them from falling into the hole in the 

ground, the collision being the least unsafe outcome for the human in this scenario.  

 In all experiments conducted with the robot (hereafter R) and human (hereafter H1) where H1 

would fall into a (virtual) hole in the ground, R saved H1 by colliding with it 100% of the time. However 

when the environmental conditions of the experiment were changed via the introduction of a second 

human (hereafter H2) that was also on course to fall into the hole, R’s success rate plummeted. Out of 

thirty-three experiments conducted by Winfield et al., R failed to save either H1 or H2 33% of the 

time.153 R was able to save either H1 or H2 in 58% of the trials and successfully saved both H1 and H2 in 

9%.154 From the trial with three agents (R, H1 and H2) Winfield et al. conclude that “even a minimally 

ethical robot can indeed face a dilemma” and moreover suggest that R’s success rate in saving either H1 

or H2 (58% of the time) was inflated as “a result of noise, by chance, breaking the latent symmetry in 

the experimental setup.”155 H1 and H2 were placed equidistant from the hole and also moved at the 

same speed towards the hole, consequently R’s internal model of the external environment favoured 

neither H1 or H2. As a result R tried to save both H1 and H2 and predictably, in hindsight that is, often 

 
151 Ibid., 89.  
152 Ibid., 92-93.  
153 Ibid., 93.  
154 Ibid.  
155 Ibid., 95.  
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failed to save either.156 Despite the theoretical nature of this experiment, it highlights something worth 

stressing, namely that there are many “unanticipated” behaviours that machines exhibit which, upon 

reflection, should have been foreseen.  

 If this kind of obtuse ultra-rational dilemma resolving behaviour exhibited by R seems familiar, it 

is. What Asimov conceived as science fiction when he wrote about Speedy in Runaround has become a 

reality in robotics labs just over half a century later. Even more surprising is the fact that, in contrast to 

Speedy whose behaviour arose because of its need, by design, to consistently abide by the 2nd and 3rd 

Laws, R’s behaviour is the result of a single rule that, again by design, has ambiguous applications in all 

but the simplest of environments. In fact this single rule encapsulated by the SEL essentially paraphrases 

Asimov’s First Law of Robotics, as Winfield et al. note.  

What we have set out here [in the SEL] appears to match remarkably well with Asimov’s first law 

of robotics: A robot may not injure a human being or, through inaction, allow a human being to 

come to harm. The schema proposed here157 will avoid injuring (i.e. colliding with) a human 

(‘may not injure a human’), but may also sometimes compromise that rule in order to prevent a 

human from coming to harm (‘...or, through inaction, allow a human to come to harm’). This is 

not to suggest that a robot which apparently implements part of Asimov’s famous laws is ethical 

in any formal sense (i.e. that an ethicist might accept). But the possibility of a route toward 

engineering a minimally ethical robot does appear to be presented.158  

Although I agree with the conclusion that a minimally ethical robot does appear to be presented by 

Winfield et al., I am skeptical that the path to developing robust and context-sensitive ethical machines 

is through the construction of explicit ethical injunctions. These types of top-down approaches to 

implementing machine ethics will be examined in much more detail in Chapter 4.   

Methods of implementing machine ethics aside for the moment, it is imperative that humans 

anticipate, as much as possible, the potential behaviour that can arise as a result of deliberate value 

laden design choices. In the case of the Asimovian robot developed by Winfield et al.159 there are two 

 
156 For more details of the experimental setup including diagrams of the three different experiments 

conducted, see Winfield, Blum and Liu (2014).  
157 As detailed in their paper, Winfield and colleagues suggest that the SEL might take the following 
coded form: IF for all robot actions, the human is equally safe 
THEN (*default safe actions*) 
 output safe actions 
ELSE (*ethical action*) 
 output action(s) for least unsafe human outcome(s).  

See Winfield, Blum and Liu (2014), 89, for more details.  
158 Winfield, Blum and Liu 2014, 89-90.  
159 They actually call their robot ‘A’ in homage to Isaac Asimov.  
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aspects of its design that foreshadow a potential problem the robot might have when operating in 

increasingly complex environments. The first is that the robot simulates and evaluates its environment 

once every 0.5 seconds.160 As mentioned previously, the robot was equipped with an internal model of 

its external environment which itself was embedded in a “Consequence Engine” that included 

components like an action evaluator as well as the SEL layer. This entire system (the Consequence 

Engine), as the name suggests, is what allowed the robot to meaningfully interact with its environment 

since it was through this system that it could foresee and ultimately intervene to save the proxy human 

from falling into the hole.161 But the sheer complexity of even this simple environment makes this kind 

of ethical evaluation difficult to explicitly compute.162 The second aspect of the robots design was that it 

lacked the ability to form long-term goals; it did not simply evaluate and simulate the external 

environment once every 0.5 seconds, it reinitialized and refreshed its entire simulation and evaluation of 

the environment once every 0.5 seconds. Taken together, these two aspects of the robot’s design 

foreshadow the difficulty it would have when interacting with all but the simplest of environments. 

Indeed the robot’s complete redrawing of its plan of action often caused it to alternate its movement 

towards either H1 or H2 in a failed attempt to save both.163  

 

2.5 The Importance of Design Decisions 

 

 It might be tempting to look at the experiments conducted by Winfield et al. and sigh in relief at 

the interesting results of what is plainly a low-stakes (although it may more accurately be considered 

zero-stakes) simulation.164 But the truth is that machines are already being utilized in high-stakes 

decision making tasks that have ethical import. Moreover, the design of these machines can critically 

influence their behaviour and consequently their effect on human well-being. The tragic crash of Air 

France flight AF 447 which, after stalling mid-flight, crashed into the Atlantic Ocean killing all 228 people 

on board, was brought about in part by the failure of the autopilot to appropriately respond to a change 

in environmental conditions. As the BEA (the French Civil Aviation Investigation Authority) noted in their 

comprehensive report of the accident, “crews generally just undertake confident monitoring of the flight 

 
160 Winfield, Blum and Liu 2014, 91.  
161 Ibid., 87-90.  
162 More will be said about this in Chapter 4 when top-down approaches to implementing ethics are 
discussed.  
163 Ibid., 93. See also Figure 7 from Winfield, Blum and Liu 2014.  
164 You might even be tempted to chuckle as you watch the robot attempt to rescue both “humans” in this 
video of the experiments conducted: https://www.youtube.com/watch?v=jCZDyqcxwlo.  

about:blank
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path and the automated systems due to their level of performance and reliability” in situations similar to 

the one that preceded the accident.165 Under the particular environmental conditions experienced by 

flight AF 447 however the automated piloting systems were not as reliable as they were expected to be. 

But more importantly, when they received inconsistent sensory information, these automated systems 

“gave up” and transferred manual control to the human pilots with little warning. The BEA concluded 

that inconsistent airspeed measurements following obstruction of the Pitot probes (a measurement 

device used to calculate fluid flow velocity, including airspeed) by ice crystals caused the autopilot 

disconnection.166 This sudden failure of the autopilot “completely surprised the pilots of flight AF 447” 

and ultimately weakened their ability to comprehend and manage the situation.167 It is possible that 

hundreds of lives could have been saved if the autopilot system had not disconnected so suddenly and 

with so little warning. In short, if the autopilot system was designed to hand over manual control to the 

human pilots in a slightly different manner by, for example, alerting the human pilots that inconsistent 

sensory information had been detected, catastrophe could have been avoided. There is also the issue of 

trust at play in this particular case, e.g., perhaps the human pilots trusted the automated piloting system 

more than they should have, but this issue and the related automation paradox will be taken up in 

Chapter 5.  

 Of course flying an airplane is just one high-stakes task with ethical import that has been 

delegated to a machine. Another example concerns the use of machines for criminal risk assessment. 

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), a machine that 

generates a prediction regarding the likelihood of a defendant reoffending within 2 years of assessment, 

“has been used to assess more than 1 million offenders since it was developed in 1998.”168 But it was 

only relatively recently, in 2016, that COMPAS’s fairness was called into question. Early analysis 

concluded that “COMPAS scores appeared to favor white defendants over black defendants by 

underpredicting recidivism for white and overpredicting recidivism for black defendants”169 while 

further analysis demonstrated that, concerns about algorithmic fairness aside, COMPAS is as “fair” and 

“accurate” at predicting recidivism as a sample of random people.  

When considering using software such as COMPAS in making decisions that will significantly 

affect the lives and well-being of criminal defendants, it is valuable to ask whether we would put 

 
165 BEA 2012, 167.  
166 Ibid., 200.  
167 Ibid., 199.  
168 Dressel and Farid 2018, 1 
169 Ibid.  
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these decisions in the hands of random people who respond to an online survey because, in the 

end, the results from these two approaches appear to be indistinguishable.170  

The use of COMPAS, a biased and generally poor decision making/predictive tool, is quite frankly 

indefensible. Although the company that developed COMPAS (formerly Northpointe and now known as 

Equivant) has not revealed just how their machine works, i.e., they are engaging in the kind of 

intentional opacity described in Chapter 1, its design is clearly such that it learns to discriminate 

defendants, at least partially, based on their race. This in spite of the fact that the data COMPAS uses 

does “not include an individual’s race,” meaning that “other aspects of the data may be correlated to 

race that can lead to racial disparities in the predictions.”171 Such is the power of machines that can 

learn: they may detect hidden or systemic bias in the data used to train them, and then replicate that 

bias in their own recommendations. More will be said about this disadvantage connected to using 

machine learning in Chapters 5 and 7.172  

 What is important in the present context however is that deliberate choices were made on the 

part of humans to develop, train and utilize a machine like COMPAS; choices that are value laden and 

influence the outputs produced by machines. In the case of machines like COMPAS, or in machines used 

for predictive policing, indeed in any case where predictions are generated by a machine, the choice to 

use past data to train the machine often means that what the machine learns is to make biased 

predictions that reflect systemic biases encoded in the training data. Such design choices mean that 

once a machine “is trained on this type of data, it exacerbates existing societal issues driving further 

marginalization.”173 Not only are such training regimes unethical, or at the very least highly 

questionable, but they amplify systemic biases and appear to justify the very use of machines produced 

therefrom. As Timnit Gebru notes with respect to the predictive policing machine PredPol that predicts 

crime hotspots, more police are “sent to these [predominantly black] neighborhoods, in which case they 

arrest more people from those locations than places with less police presence” simultaneously 

validating the presence of more crime in these hotspots and amplifying systemic biases because these 

new arrests are then used as additional training data.174 

  

 

 
170 Ibid., 3.  
171 Ibid., 1.  
172 More will also be said about the use of COMPAS in Chapter 7.  
173 Gebru 2020, 257.  
174 Ibid.  
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2.5.1 To Fold or Not To Fold 

 

 Before concluding, it is worth considering one final example, the machine AlphaFold developed 

by DeepMind. As mentioned above, despite the fact that machines might be better at discovering 

patterns that are difficult for humans to discover, values are invariably introduced via the myriad 

choices made by humans. In the case of AlphaFold, it is a machine that is capable of predicting the 

three-dimensional structure of a protein with atomic accuracy given only the primary amino acid 

sequence.175 As noted by Jumper et al., this problem of accurately predicting the three-dimensional 

tertiary structure (or sometimes quaternary structure)176 of a protein given its primary structure, i.e., the 

amino acid sequence, “has been an important research problem for more than 50 years.”177 Predicting 

the three-dimensional structure of proteins is important because it is the structure and general shape of 

the fully formed protein that determines its biological function. 

 But given this impressive machine, to what ends will it be used? Will cures for rare and 

debilitating diseases be sought using AlphaFold? Will powerful and wealthy interests dictate what 

protein structures are examined first? Will the use of AlphaFold be restricted to alleviating the suffering 

of people afflicted by disease, or will it be used to design and bioengineer the next generation of 

humans? As artificially intelligent machines become more capable of learning to achieve some outcome 

we will have to work more diligently than ever before to ensure that they perpetuate values worth 

perpetuating and are used to create a world worth creating. This is especially true for autonomous 

artificially intelligent machines that operate in the absence of or with minimal human oversight. It is 

therefore my aim in the next chapter to introduce the field of machine ethics which focuses on how 

machine themselves could make ethical decisions and take ethical actions. 

 

 

 
175 Jumper et al. 2021, 583.  
176 Briefly, the proper functioning of proteins in biological organisms depends crucially on their tertiary or 
quaternary structure, both of which are determined by the primary and secondary structure of the protein. 
The primary structure is simple the sequence of amino acids in a protein. The secondary structure of a 
protein refers to the highly regular local sub-structure of the polypeptide (i.e., amino acid) chain. Although 
already “three-dimensional,” the tertiary structure of a protein refers to the globular shape that forms as a 
result of the hydrophobic moieties among the second structures interacting driving non-specific folding of 
the protein. Individual proteins that have already folded into their tertiary structures can interact further 
with other proteins to form larger protein aggregates which constitutes the quaternary structure of a 
protein. The most common hemoglobin type, for example (the protein that binds oxygen and carbon 
dioxide), is a tetramer called hemoglobin A with a quaternary structure sine it has four protein subunits 
bonded together.   
177 Jumper et al. 2021, 583.   
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Chapter 3 – Machine Ethics 

 

3.0 Background 

  

As long as people have imagined artificially intelligent machines (e.g., ordinary physical 

machines, computers, software, etc.), they have also imagined how these machines might act. Most 

fictional portrayals of advanced AIs seem to regard as necessary the extinction of humanity even though 

they are not particularly adept at accomplishing their goals.178 Even serious speculations about artificial 

superintelligence tend to focus on the existential threat they may accidentally pose when in pursuit of a 

given goal (e.g., evaluating the Riemann hypothesis or producing paperclips).179 Sensationalized fictions 

and speculations aside, and despite the nascent state of most artificially intelligent machines, the 

problem of implementing machine ethics is a live and pressing issue. As some scholars have noted, 

essentially all non-trivial interactions that an intelligent machine has with humans have ethical import.180 

It is possible that robots responsible for eldercare or childcare, for example, could cause harm via their 

inaction if they recharge their batteries at one particular point in time instead of another.  

More concretely, autonomous181 intelligent machines are currently in use in more areas than 

can be listed here, some of which include algorithms in hearing aids that filter out ambient noise, 

medical decision systems that can read CT scans and diagnose disease, automated facial recognition 

systems at border crossings, intelligent scheduling systems responsible for logistics planning and search 

engine optimization,182 but all of which have an ethical dimension.183 What counts as ambient noise? 

What recourse is available for people misidentified at a border crossing? What confidence does a system 

have in its medical diagnosis? Because the decisions and actions of automated intelligent machines 

already have the potential to significantly impact a person’s well-being, coupled with the fact that such 

machines are only becoming more pervasive, there is a need to understand how ethics could be 

 
178 Consider the idiotic way in which Skynet from the Terminator series attempts wipe out humanity.   
179 Bostrom 2014, 123.  
180 Anderson, Anderson and Berenz 2017, 72.  
181 I will discuss autonomy in more detail later in the chapter.  
182 Bostrom 2014, 14-16.  
183 I am deliberately underspecifying what I mean by ‘ethical dimension’ here because I am interested in 
many different cases, only some of which I explore throughout this dissertation. Larger questions having 
to do with the choice to apply AI to certain topics/domains/questions are an ethical dimension I am 
interested in, but I do not take them up in much detail. More restricted questions on the other hand, 
having to do with how training data might have ethical assumptions built in or how 
outputs/recommendations of AI can fail to track ethically salient features of a given individual case are 
another ethical dimension I am interested in which I do take up in detail.   



52 
 

implemented in machines. In particular, my focus will be on how ethics could be implemented in 

machines that engage in action selection/execution as well as decision support systems that provide 

judgements for humans to act on.   

The study of machine ethics is relatively new and has been largely theoretical and philosophical. 

The ethics of machines and artificial intelligence is generally divided into two main branches, the larger 

of which, called computer or technological ethics, focuses on how humans ought to act in order to 

minimize the ethical harms that can arise as a result of deploying intelligent machines.184 Poor design, 

inappropriate application, or misuse are some of the ways humans could, through their actions, fail to 

minimize the ethical harms caused by the use of intelligent machines. In other words, computer ethics is 

primarily concerned with how human agents affect human patients via the use of computers and 

technology in general.185 The second and smaller branch focuses on how machines themselves could 

behave ethically, hence it is generally referred to as the field of machine ethics. Indeed I will be using the 

term ‘machine ethics’ to refer to this latter field hereafter. Machine ethics, in contrast to computer 

ethics, is primarily concerned with how machine agents affect human patients. The machines of interest 

are therefore ones that can act in some sense “autonomously,” a concept that will be discussed in 

detail. Some of the earliest proposals in the field of machine ethics concerned the use of practical ethical 

governors for lethal autonomous robots that would moderate or inhibit the robot’s behaviour.186 In this 

chapter, I will primarily focus on and summarize the smaller machine ethics branch in order to set the 

stage and contextualize the most recent research in the field of machine ethics. In the next chapter I 

argue that reinforcement learning methods are one of the most promising approaches to implementing 

machine ethics.  

 

3.1 Autonomous Weapon Systems 

 

The idea of machines acting independently of human supervision, i.e., autonomously, is not a 

new one. What is new is the advent of technologies that allow machines to in fact operate in the 

absence of human supervision. While certain types of autonomous machines permeate society, their 

 
184 Winfield et al. 2019, 510.  
185 The concepts of agency and patiency will be discussed in further detail later in the chapter.  
186 Ibid. 
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impact on human well-being has, for the most part, been negligible.187 This, however, is no longer the 

case. The field of machine ethics has philosophical roots, as alluded to above, in the field that has 

traditionally been called computer ethics,188 but also has philosophical and practical roots in 

considerations of ethical conduct during a war. Funded by the United States Army Research Office over 

a few years in the late 2000’s, Ronald C. Arkin articulated one of the earliest practical proposals and 

accompanying motivations for implementing ethics in autonomous robotic systems capable of lethal 

force.189 Concerned with designing and implementing an “artificial conscience” (i.e., not a real or 

human-like conscience),190 Arkin notes that, like most new technologies, there is serious debate and 

discussion needed to understand what constitutes the ethical use of autonomous robotics in the 

battlefield during a conflict.191 More importantly, given the fact that Arkin’s focus is on autonomous 

systems capable of lethality, he is interested in understanding if it is possible for the system or machine 

itself to possess an ethical “conscience” such that when such machines are deployed they are as safe as 

possible to both combatant and noncombatant alike.192  

 

3.1.1 Autonomy and Lethality 

 

Although the domain of battlefield behaviour might seem like an odd place for discussions of 

machine ethics to originate, there are at least two good reasons for why this was the case. The first is 

that, unlike in other domains in which autonomous machines might (and do) operate, the operations of 

autonomous robots in the domain of battlefield behaviour significantly impact human well-being. 

Moreover, as Arkin points out, there already exist autonomous193 military machines such as the 

“Phalanx system for Aegis-class cruisers in the Navy [an automated weapon control system], cruise 

missiles [which have built in guidance systems to direct the missile once deployed], or even anti-

personnel mines [which, once deployed, do not require human oversight],” all of which are lethal 

 
187 Consider machines like automatically opening doors at the grocery store. They operate in the absence 

of a human supervisor and their operation (or perhaps more importantly, their failure) has a negligible 
impact on human well-being.  
188 More on this later.  
189 Arkin 2008.  
190 At least this is how I interpret Arkin’s (2008) use of these quotation marks.  
191 Arkin 2008, 121.  
192 Ibid., 122.  
193 Autonomous here refers to the fact that these machines are not directly supervised by a human. 
Although a human is responsible for the deployment of these systems, a human does not help the 
machine “choose” a target and subsequently engage that target, as it were.  
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machines.194 It is therefore a realistic possibility to consider how such machines might be made better, 

i.e., designed to bring about the most ethical outcome (e.g., a cruise missile guidance system that self-

destructs if noncombatants are detected within the blast radius).195 What is more interesting, and more 

important from a machine ethics point of view, is that the domain of battlefield behavior is one that is, 

at least in theory, governed by explicit rules such that certain behaviours are permissible and certain 

other behaviours explicitly prohibited.196 Arkin highlights this fact.  

The Laws of War (LOW), encoded in protocols such as the Geneva Conventions and Rules of 

Engagement (ROE), prescribe what is and what is not acceptable in the battlefield in both a global 

(Standing ROE) and local (Supplemental ROE) context.197  

The fact that the domain of battlefield behaviour is one with (let us assume) clearly defined rules is 

significant because there is the possibility that a machine could be built such that it simply abides by, 

i.e., does not violate, those rules when engaging in battle. Indeed it is still common for people to think of 

machines198 as entities that merely execute code or that do what we humans tell them to (both of which 

are true in a certain sense). Machines might therefore behave ethically themselves because they never 

behave in ways that are explicitly forbidden, i.e., they consistently behave according to the rules (e.g., 

never harm a noncombatant).  

To be clear, it is not that a battlefield machine behaved ethically because it was ordered to do 

something ethical. Rather it is that, when given vague orders (e.g., secure that landing zone, or scout 

ahead and eliminate any hostiles), machines will be unable to access a certain unethical action-space 

that corresponds to violations of the Rules of Engagement, for example. The important, non-trivial point 

is that unethical behaviour, in the context of battlefield machines, may be foreclosed in such a way that 

is simply not possible in the case of human soldiers. Hence the possibility that machines behave ethically 

themselves, though admittedly perhaps by default.  

 

 

 

 

 
194 Arkin 2008, 123.  
195 I am aware of the irony of discussing ethics in the context of autonomous weapon systems that are, by 
design, intended to harm the “enemy.”  
196 Arkin 2008, 122.  
197 Ibid.  
198 Just note that I am using the term ‘machine’ in a broad sense throughout to refer to entities including, 
but not limited to, autonomous robots and purely algorithmic systems.  
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3.1.2 Machines (Can) Behave Better 

 

Additionally, there is a third consideration that helps to explain why discussions of machine 

ethics originated in the domain of battlefield behaviour. There are certain prima facie reasons to suspect 

that autonomous battlefield machines might behave more ethically than their human counterparts. One 

obvious reason for this suspicion is that autonomous battlefield machines can be designed such that 

they have no sense (or perhaps a minimal sense) of self-preservation. In the context of ethical battlefield 

behaviour, an autonomous battlefield machine that is unsure whether it is targeting an enemy 

combatant or civilian could simply act conservatively and, for example, get closer to the target to 

ascertain its status. So while a human soldier in this same position might feel compelled by self-

preservation to attack, a machine with no such compulsion would refrain from engaging in potentially 

unethical behaviour of this sort.  

Another prima facie reason supporting the idea that autonomous battlefield machines might 

behave more ethically is the fact that such machines can be designed without emotions. As Arkin 

highlights, human battlefield behaviour is disconcerting at best and more often than not, appalling.199 

Research suggests that emotions, anger in particular, are one factor responsible for the persistent 

unethical behaviour of human soldiers.200 The tendency for humans to seek revenge when allies are 

killed and to mistreat noncombatants when angry is not a tendency that would necessarily be shared by 

autonomous battlefield machines. Indeed beyond the ability to act conservatively and unemotionally, 

autonomous battlefield machines would be immune to the human tendency to dehumanize the enemy 

and would also never forget or disregard their “training.”201  

As a side note, it is worth mentioning that there is the distinct possibility that machines, because 

they might be emotionless and unconcerned with self-preservation, would incentivize humans to 

engage in more wars using robotic soldiers. Politically, because humans would (presumably) not be 

risking their lives, there might be less resistance to war using machines. Tactically and, relatedly, 

ethically speaking, wars fought with machines might even be more “brutal” because machines could 

engage in riskier and more belligerent behaviour.  

All of this is to say that as machines become both more autonomous and capable of impacting 

human well-being, they will also need to engage in ethical decision making and behaviour on their own. 

 
199 Arkin 2008, 124.  
200 Ibid.  
201 The way in which autonomous battlefield machines would be “trained” to engage in battle would likely 
be far removed from the kind of training human soldiers use.  
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No where is this more apparent than in the domain of autonomous weapons systems, as I have 

highlighted in the previous sections. But of course, there are less explosive ways that increasingly 

autonomous machines can impact human well-being. Machines are increasingly used to filter spam 

emails, detect credit card fraud (and freeze credit card activity), determine insurance or loan 

qualifications and assign credit scores.202 It is just as important that these machines also engage in 

ethical decision making and behaviour, if such behaviour on the part of machines is even possible. I turn 

now to the connection between computer ethics and machine ethics.  

 

3.2 From Computer Ethics to Machine Ethics 

 

While some of the earliest practical implementations of machine ethics originated in the domain 

of battlefield behaviour, machine ethics also has its theoretical origins in the general field commonly 

known as computer ethics. As mentioned above, the field of computer ethics (or synonymously, 

technological ethics) focuses on how humans ought to act in order to minimize the ethical harms, to 

other humans (or moral patients), that can arise from the use of different technologies. In his oft cited 

paper The Nature, Importance, and Difficulty of Machine Ethics, Moor points out that computing 

technology can be evaluated in terms of ethical norms in addition to, for example, design norms (i.e., 

whether the machine is functioning as it is intended).203 In addition to computing technology, all 

machines can be evaluated in terms of ethical norms because all machines can have an impact, even if it 

is a small one, on the well-being of a human. Building on this idea, Moor outlines a spectrum of the 

kinds of ethical impacts machines can have.  

 

3.2.1 Computer Ethics 

 

At one end of this spectrum, the end closer to the machines that have no autonomy, or very 

little autonomy, is what Moor calls ethical-impact agents.204 As the name suggests, ethical-impact agents 

are those kinds of technologies that, through their use, can make our lives better, worse or some 

combination thereof. Inevitably, the use of machines intersects with ethical issues. As Moor highlights, 

computing technology has allowed us to “conduct business online easily, but we’re more vulnerable to 

 
202 Burrell 2016, 1.  
203 Moor 2006, 19.  
204 Ibid.  
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identity theft” by using such technology.205 Similarly, the use of certain technologies, like robotic camel 

jockeys in Qatar, can have important ethical impacts, like freeing Sudanese boys from their enslavement 

as camel jockeys.206 Nevertheless, these incidental impacts arise as a result of our use of machines and 

are more commonly associated with the general field of computer ethics.207  

 

3.2.2 Machine Ethics 

 

While the field of machine ethics does concern itself with ethical-impact agents, their proper 

place is in the field of computer ethics. The primary focus of machine ethics, in contrast to the field of 

computer ethics, is whether it is possible to put ethics into a machine, as it were. Acting with some 

degree of autonomy, on the part of the machine, is therefore a defining feature of the kinds of machines 

of interest in the field of machine ethics. This brings us to Moor’s second kind of ethical machine, 

implicit ethical agents. Perhaps the easiest and simplest way to implement machine ethics is to 

“constrain the machine’s actions to avoid unethical outcomes.”208 It is not hard to imagine creating 

implicitly ethical autonomous battlefield machines whose “internal functions implicitly promote ethical 

behaviour - or at least avoid unethical behaviour,” because such machines could be programmed to 

abide by the Laws of War and Rules of Engagement.209 Note that the term ‘abides’ here conflates two 

senses of “rules following.” A machine may abide by the rules in cases where it behaves according to the 

rules (i.e., the machine is rule following, as in its behaviour can be described as following some rule(s) 

like the Laws of War). But a machine may also abide by the rules in cases where it generates its 

behaviour by consulting the rules (i.e., the machine is rule governed).210 Setting aside autonomous 

battlefield machines, it is quite common for most machines to be designed as implicitly ethical machines 

that avoid engaging in unethical behaviour. For example, it is part of the design of autopilot systems, as 

a result of value laden choices in how autopilot systems are built, to avoid engaging in certain mid-air 

maneuvers that would frighten passengers despite executing a directive to fly the plane from one 

destination to another. Online banking systems are similarly designed to be implicitly ethical. Just as 

 
205 Ibid.  
206 Ibid.  
207 Other examples might include the use of cars (they make it easier to travel, but also come with certain 
risks to drivers and pedestrians) and the use of smartphones (they make it easier to connect with people, 
but also tether us to our work).  
208 Moor 2006, 19.  
209 Ibid.  
210 This is the sense of “abiding by the rules” used earlier in section 3.1.1.  
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there is an ethical component to travelling by airplane, transactions involving money also have ethical 

import, and it is for this reason that online banking systems are designed so that they avoid engaging in 

unethical behaviour (e.g., they avoid transferring a sum of money that the user did not previously 

confirm). Implicitly ethical machines are ethical in the minimal sense that their architecture, i.e., how 

they are designed or created, prevents, as much as possible, unethical outcomes from obtaining. 

This is in contrast to Moor’s third kind of ethical machine which he dubs “explicit ethical 

machines.” As the name suggests, these are machines that are able to “represent ethics explicitly and 

then operate effectively on the basis of [that] knowledge” in much the same way that traditional GOFAI 

(Good Old Fashioned Artificial Intelligence) systems can play chess.211 These machines operate in a rule 

governed way as their behaviour is generated by consulting explicit rules. Deep Blue, the chess playing 

machine that beat Garry Kasparov, is a well-known and paradigmatic example of an explicit, rule 

governed, chess-playing machine because it utilizes symbolic representations of the board state 

alongside representations of the legal moves to calculate a next best move. Analogously, one might 

create an ethically-behaving machine, as it were, if one were able to represent within the machine its 

external environment alongside rules representing permissible and impermissible behaviours such that 

the machine could calculate the optimal ethical action to take in its current situation. While Moor notes 

in 2006 that examples of explicitly ethical machines are elusive, that is certainly not the case in 2022. 

Tolmeijer et al. for example note in their survey of implementations of machine ethics that over 50% of 

the 48 approaches considered utilize some kind of explicit ethical reasoning. Moreover, explicit ethical 

machines can indeed make plausible ethical judgments and “justify” them in a certain sense. Take, for 

example, the robot developed by Winfield et al., discussed in Chapter 2 section 2.4.2, which makes real-

time decisions in order to ensure that the ethically preferable outcome is attained. Their research has 

demonstrated that the creation of a minimally ethical robot does appear possible via the use of explicit 

ethical injunctions that causes the robot to “choose” to bump into a “human” and thereby save it from 

falling into a “hole” in the ground.212 

While progress on the implementation of explicit ethical machines has been impressive, this 

progress has been restricted to theory and research laboratories. Further, research on implementing 

machine ethics has revealed multiple dimensions and taxonomies with which one might classify 

different approaches to implementing machine ethics. Certain approaches to implementing machine 

 
211 Ibid., 20.  
212 In their experiments, Winfield et al. (2014) use different robots to stand in as proxy humans when 
observing how their ethical robot behaves as it attempts to save these “humans” from falling into a virtual 
hole in the ground.  
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ethics focus on replicating normative ethical theories including versions of consequentialism, 

deontology or some combination thereof.213 Other approaches to implementing machine ethics are 

better understood in terms of the way in which ethical knowledge is acquired by a machine, i.e., in a 

top-down, bottom-up, or hybrid fashion.214 Still others are better classified in terms of their output or 

what they do. Ethical machines can engage in action selection/execution, can act as decision support 

systems (DSS) by recommending certain courses of action, can attempt to appropriately represent 

aspects of ethical decision making and can engage in a kind of principal component analysis to select the 

most fitting elements, given a set of alternative options to implement an ethical machine, to include in 

the final system.215 While it is certainly helpful to think of certain approaches to implementing machine 

ethics in terms of explicitly ethical machines, such a concept is not sufficient to fully capture 

contemporary approaches to implementing machine ethics. This is especially the case for learning 

machines.  

 

3.2.3 Fully Ethical 

 

Finally, at the other end of the spectrum are “full ethical agents” which are machines that would 

essentially be human-like in their ability to engage in ethical reasoning and behaviour. In contrast to 

ethical-impact agents which must be used by a human in order to have an impact on human well-being, 

machines that possess the status of full ethical agent would presumably have the largest potential 

impact on human well-being because they would be as autonomous or “free” as any person.216 

According to Moor, such machines would be able to “make explicit ethical judgments” and would 

generally be “competent to reasonably justify them,” abilities that many philosophers argue stem from 

an agent’s possession of, for example, consciousness, intentionality and autonomy.217 This is why Moor 

maintains that an average adult human is an example of a full ethical agent, why there are currently no 

machines that can be considered to be full ethical agents, and why there continues to be heated 

debates over the possibility of a machine ever becoming a full ethical agent.218 It is to the details of this 

 
213 Tolmeijer et al. 2020, 18.  
214 These approaches to implementing machine ethics will be discussed in much more detail in the 
following chapter.  
215 Tolmeijer et al. 2020, 10.  
216 Machines that possess the status of full ethical agent may even place burdens on us to, for example, 
respect their rights. More on this in Chapter 5.  
217 Moor 2006, 20.  
218 Ibid.  
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debate that I now turn. My position is that there may not be as large a gap between explicit ethical 

agents and full ethical agents as Moor suggests, and that the best way to approach implementing 

machine ethics is by “raising” machines such that they exhibit ethical decision-making and behaviour. 

But more on this in Chapter 4.  

 

3.3 The Prerequisites for Ethics 

 

When thinking of machine ethics, i.e., how machines themselves might behave ethically, it is 

natural to first think about the relevant features that confer moral status to human beings. Importantly, 

it must be noted that what follows is not intended to be a comprehensive survey of the field of moral 

philosophy or philosophical ethics. Rather, it is my aim in what follows to highlight and untangle 

important concepts connecting philosophical ethics and machine ethics.  

 

3.3.1 Agency and Patiency 

 

To begin, there are the concepts of moral agency and moral patiency.219 To be considered a 

moral agent an entity must possess certain features, as mentioned above, namely features like 

intentionality, consciousness and free will. Moreover, as a result of these features, moral agents often 

possess certain responsibilities. For example, because I am free to choose to hurt another human being, 

I would be held morally culpable should I choose to do so. More generally, and when considering a 

typical adult human, “because of our ability knowingly to act in compliance with, or in violation of, moral 

norms we are held responsible for our actions (or failures to act).”220 Moral patients, in contrast, are 

those entities which moral agents have responsibilities towards. So a typical adult human is an example 

of both a moral agent and a moral patient. Not only do we have certain moral responsibilities, but “we 

have rights, our interests are usually thought to matter, and ethicists agree we should not be wronged 

or harmed without reasonable justifications.”221 While moral agents are also simultaneously moral 

patients, not all moral patients can be considered moral agents. Babies and animals, for example, are 

typically regarded as moral patients, i.e., as having rights and interests that matter, but not as moral 

agents. This is, in part, because they lack the sort of autonomy that is necessary to confer moral agency 

 
219 See, for example, Alfano (2016) and Coeckelbergh (2020).  
220 Cave et al. 2019, 570.  
221 Ibid.  
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to an entity. It is an open question whether machines lack the sort of autonomy necessary to ascribe 

them moral agency.   

 

3.3.2 Autonomy 

 

Indeed, autonomy is another important concept connecting philosophical ethics and machine 

ethics. As mentioned, the ability to act freely or autonomously appears to be a necessary condition to 

ascribe moral agency to an entity. It is well known that ethics presupposes some kind of free will or 

autonomy on the part of the entity in question. As Helen Beebee explains, it would be odd, to say the 

least, to heap moral praise or blame on people (or some other entity) if they did not freely choose to act 

in a praiseworthy or blameworthy manner.  

It’s easy to see why acting freely looks like a plausible requirement on moral responsibility. 

Imagine, for example, that it turns out that the reason your friend declined your invitation [to your 

birthday party] was that she was coerced into doing it: some deranged enemy of yours, hell-bent 

on ensuring that your party is a failure, had made it clear that if she were to accept, there would be 

terrible repercussions for her and all her family. In that case, it would certainly be inappropriate for 

you to resent her for declining the invitation, and it would be inappropriate because she didn’t 

decline freely. We might put this in other words by saying that she didn’t really have a choice about 

whether to decline.222 

In short, if an entity does not really have any ability to choose or decide for itself how to act in a given 

situation, it is doubtful that that entity possesses moral agency. Indeed the concept of agency itself 

presupposes that an entity possesses some kind of autonomy.223 A coffee maker that fills the coffee pot 

with too much coffee causing it to spill all over the floor is neither morally responsible for its actions nor 

should it even be regarded as an agent (ethically speaking at any rate). The coffee maker has absolutely 

no ability to choose to act in one way or another. It is important to note however that autonomy is not a 

binary all or nothing property but a spectrum. An entity may possess more or less autonomy in 

comparison to another entity.224 Further, autonomy is an ambiguous or at least pluralistic concept, the 

meaning of which often varies depending on the field of study. In philosophical ethics, for example, 

 
222 Beebee 2013, 1-2.  
223 Floridi and Sanders (2004) for example argue that an entity can be considered an agent if it meets 
three criteria: 1) interactivity, 2) autonomy and 3) adaptability, where autonomy is understood roughly in 
terms of decoupledness (or independence) from the environment.  
224 The robot Spot developed by the company Boston Dynamics, for example, is more autonomous than 
a coffee maker, but less autonomous than an elephant or human.  
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autonomy often refers to the ability to act independently with some degree of control over one's life.225 

When considering machines or robots, autonomy often refers to the ability of a machine to operate in 

real-world environments without external control or human supervision for an extended period of 

time.226 While I will not delve any further into a discussion of autonomy here, it should be abundantly 

clear that for an entity, human or machine, to be considered a moral agent, that entity must possess 

some degree of autonomy. We will revisit autonomy in section 3.4.2 as I will argue that the kind of 

autonomy machines possess is sufficiently strong to ground the claim that machines ought to be 

considered moral agents, i.e., capable of engaging in ethical decision-making and behaviour.  

 

3.3.3 Mind 

  

In addition to autonomy, the concept of agency, at least the thick concept of agency sometimes 

preferred by philosophers in the context of moral philosophy, also appears to presuppose that an entity 

possesses a mind. Indeed, one might reasonably argue that it is because human beings have minds (or 

the right kind of mind) that we ought to be regarded as both moral agents and moral patients (or, in 

Moor’s terminology, as full ethical agents). Similarly, it is not just that babies and animals qualify as 

moral patients because they have rights and interests that matter (as mentioned above), it is that it 

follows from the fact that babies and animals have certain kinds of minds that they therefore have rights 

and interests that matter. The same will almost certainly need to be said of machines. That is, before a 

machine can be said to possess moral patiency or moral agency it must possess the right kind of mind 

(or it must be perceived by humans as possessing the right kind of mind). Moreover, it is debatable 

whether machines should even be described as agents at all if they lack the right kind of mind (more on 

this in section 3.4.1). While machines can certainly possess some degree of autonomy, standard 

accounts of agency typically require the capacity for intentional action.227 This is important to recognize 

because intentionality has traditionally been a defining mark of the mental.228 More concretely, 

intentionality can be understood as the aboutness, ofness or directedness that accompanies some,229 if 

 
225 See, for example, Kazez (2007).  
226 Bekey 2012, 18.  
227 Cave et al. 2019, 565.  
228 See, for example, Brentano (1995).  
229 Searle (1983) argues that intentionality certainly characterizes mental phenomena like beliefs, hopes 
and desires, but does not characterize all mental phenomena, like certain forms of nervousness or 
elation, for example, that may not be about or directed towards anything.  
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not all, mental phenomena.230 My beliefs, judgments, propositional attitude states and perhaps even 

qualitative mental phenomena (i.e., qualia), can all be characterized as having directedness towards 

some entity, for example, a red traffic light at an intersection. So a typical human acts intentionally 

when their actions are caused by their intentional mental states. These actions can be distinguished 

from mere behaviours or reflexes that do not require intentional mental states. Importantly, I am tying 

together two different senses of intentionality here, namely the sense of intentionality discussed in the 

previous chapter (i.e., Brentano’s idea of intentionality as directedness) and intentionality as acting 

deliberately.  

 

3.4 The Prerequisites for Machine Ethics 

 

To sum up the previous section, we ascribe moral agency to a typical human adult because they 

possess a mind and autonomy (or the right sort of mind and the right sort of autonomy). Moreover, to 

say that an entity is a moral agent entails that that entity is also a moral patient, although the converse 

is not always the case (moral patiency does not entail moral agency). So a typical adult human is not 

merely a moral agent, they are also a moral patient. But these terms described in the previous section 

can be thought of in either a strong or a weak sense, and in this section I will describe how machines 

possess these features, albeit in a weaker sense. More importantly, the importance of machine ethics 

and the viability of implementing machine ethics is independent of these philosophical considerations.  

 

3.4.1 Machine Minds 

 

Take the concept of mind to start. While it is obvious that machines do not yet possess minds in 

the strong sense of being able to act intentionally, there is nevertheless a weaker sense which allows for 

more straightforward ascriptions of mentality. AlphaZero for example, DeepMind’s board game playing 

machine, as impressive as it is, likely does not possess phenomenal consciousness or an understanding 

of the things it does and so lacks a mind in the strong sense. However in a weaker pragmatic or 

“instrumentalist” sense, ascribing intentionality/mentality to AlphaZero is a useful way to explain its 

behaviour.231 It makes perfect sense to describe AlphaZero as making a particular move in a game of 

chess because it believed that that move was the best one to make, as long as “belief” is understood in 

 
230 Crane (1998) argues that intentionality characterizes all mental phenomena, including qualia.   
231 Silver et al. 2018.  
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this weaker sense, because such a description (or explanation) is more useful than a description that 

invokes neural networks, weighted connections between artificial neurons, reinforcement learning, etc. 

This is akin to, though not entirely the same as, adopting Dennett’s “intentional stance” (rather than a 

physical or design stance) because “the only strategy that is at all practical is the intentional strategy 

[i.e., attributing beliefs and desires to a system]; it gives us predictive power we can get by no other 

method.”232 Importantly, the possession of a mind, albeit in a weak sense (which is not necessarily the 

same sense as Dennett’s intentional stance), is sufficient for machines to be thought of as engaging in 

ethical decision-making and behaviour. But more on that in the next section (3.5).  

 

3.4.2 Machine Autonomy 

 

The concept of autonomy can also be understood in a stronger and weaker sense.233 On a strong 

interpretation, as outlined above, autonomy is an entity’s ability to control or decide how to act for itself 

in a given situation. Machines similarly do not yet possess autonomy in this strong sense, but they do 

possess some weaker form of autonomy. Consider AlphaZero again and how it is able to operate 

without external control or human supervision. Within a game of chess, AlphaZero can clearly act 

autonomously and it may even be appropriate to maintain that as a result of its autonomy AlphaZero is 

responsible for the chess moves that it makes; it is the genuine author of those choices and 

behaviours.234 That being said, AlphaZero’s autonomy begins and ends with the games it plays. It cannot 

choose not to play a game of chess or to learn some other board game. Nonetheless, the possession of 

autonomy, albeit in a weak sense, is sufficient for machines to be thought of as engaging in ethical 

decision-making and behaviour (and again, more on this in the next section).  

 

3.4.3 Machine Agents and Machine Patients 

 

Agency and patiency can similarly be understood in a stronger and weaker sense. Indeed if it is 

because an entity possesses a certain kind of mind and/or autonomy that we ascribe that entity agency, 

then it follows that machines possess a kind of weak agency stemming from their possession of a mind 

and/or autonomy (understood in the weak sense). More importantly, this weak sense of agency can be 

 
232 Dennett 1989, 23.  
233 Indeed, as mentioned in the previous section, autonomy is best understood as a spectrum. 
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independently grounded by the fact that the behaviour of machines has real consequences on human 

beings. In other words, machines can act on human beings (in addition to animals and other machines) 

and it is this ability, perhaps even more so than their weak possession of a mind and autonomy, that 

warrants us as thinking of certain machines as weakly possessing agency. As Mark Alfano notes, “things 

don’t just happen to people: sometimes people do things,” and now sometimes machines do things 

too.235 Similarly, and again independently of questions surrounding mind and autonomy, machines can 

be seen weakly as patients because they can be acted upon by humans (in addition to other machines). 

This is one jumping-off point to discussions, which I will not be getting into here, concerning robot or AI 

rights and whether certain machines ought to be treated in certain ways (e.g., would you be allowed to 

“unplug” an intelligent machine in the same way you might unplug your coffee machine?).236 It is just a 

short step from thinking about machines as agents and patients, i.e., as entities whose actions can 

impact humans and which can also be impacted by human actions, to thinking about machines as ethical 

agents and patients. In short, considering whether machines themselves could behave ethically is not 

necessarily to imply that machines possess moral agency in the strong sense. It is sufficient to consider 

machine ethics in the context of machines that are able to affect humans in morally significant ways as a 

result of their behaviours.   

 

3.5 Updating and Redefining Machine Ethics 

 

While Moor outlines a helpful set of categories, better thought of as a spectrum, to understand 

the complex and interdisciplinary field of machine ethics, his taxonomy stands in need of an update. This 

is especially because in what follows I will be developing my own original position on machine ethics. In 

particular I will be focusing on how machines themselves might learn to behave ethically. Therefore by 

‘machine ethics’ I am not specifically referring to Moor’s taxonomy nor am I referring to the field of 

computer/technological ethics that is concerned with how humans use machines. Rather, by ‘machine 

ethics,’ I am referring to the field of research that is focused on the machines themselves and how they, 

as agents, ought to be created such that they behave ethically when interacting with human patients.237 

Before discussing my own position in Chapter 4 however, it is necessary to review some updates to 

Moor’s taxonomy of machine ethics.  

 
235 Alfano 2016, 4.  
236 See, for example, Gunkel (2018).  
237 I refer the reader to sections 3.0 and 3.1 for more details.  
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3.5.1 Ethical Alignment 

 

In keeping with Cave et al., I believe it is more fruitful to distinguish between machines that 

possess moral agency (in either the weak or strong sense), machines that possess the ability to engage 

in ethical reasoning and machines that align with what people consider to be ethically desirable or 

acceptable (though these are not mutually exclusive). ATMs that do not defraud users and cars with 

automatic braking features are machines of the latter kind insofar as they are machines “whose 

behaviour adequately preserves, and ideally furthers, the interests and values of the relevant 

stakeholders in a given context.”238 While this roughly maps onto what Moor described as ethical-impact 

agents and implicit ethical agents, there is considerably less ambiguity when thinking about machines in 

terms of their “ethical alignment.” This is because an ethical machine might be described as such just in 

case its behaviour is the result of its alignment with the relevant ethical principle(s). Furthermore, an 

ethical machine might be described as such just in case its behaviour is aligned with the desires of the 

relevant stakeholders. Consider again automatic braking features. Strictly speaking, such features are 

amoral in the sense that the car itself is unconcerned with the rightness or wrongness of its actions 

when engaging in automatic braking. Nevertheless, it is apt to describe cars with automatic braking 

features as machines whose behaviour is ethically aligned with what people consider to be ethically 

desirable.  

Given that the term ‘agency,’ more often than not, evokes the strong realist sense of the 

concept described above, i.e., as requiring an entity to act intentionally and with comprehension of the 

consequences of its actions, I will generally avoid the term ‘agent’ despite the common usage of terms 

like ‘artificial agent’ throughout the machine ethics literature.239 Although I think it is perfectly 

acceptable to think of machines as agents in the weak sense outlined above, I am inclined to avoid using 

the term ‘agent’ whenever possible in order to avoid igniting philosophical discussions about whether 

machines can or will ever be considered agents in the strong sense. As Cave et al. note, “whether 

machines can be called ethical agents in any strong sense is a contentious philosophical issue,” and I 

have no desire to throw more fuel on that fire than is absolutely necessary.240 Therefore in what follows 

I will generally be using terms like ‘machine’ or ‘ethical machine’ as substitutes for terms like ‘artificial 

 
238 Cave et al. 2019, 564.  
239 Wallach and Allen for example use the abbreviation AMA for artificial moral agents through their book 

Moral Machines (2009).  
240 Cave et al. 2019, 565.  
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agent’ or ‘ethical artificial agent’ (or ‘artificial moral agent’) that are common throughout the machine 

ethics literature.  

 

3.5.2 Ethical Reasoning 

 

If ethically aligned machines map roughly onto ethical-impact agents and implicit ethical agents, 

then machines that possess moral agency, as outlined by Cave et al., map roughly onto what Moor 

described as full ethical agents. My focus however is primarily on machines that can engage in ethical 

reasoning, which roughly maps onto Moor’s explicit ethical agents. In fact, it may be more appropriate 

to entirely disregard the idea of explicit ethical agents given that Moor describes these machines as ones 

that can engage in ethics in the same way that GOFAI, i.e., good old-fashioned symbol manipulating AI 

systems can engage in a game of chess.241 The reality is that contemporary AI systems simply do not 

function in the same way that traditional symbol manipulating AIs did. We have entered the second 

wave of AI systems which is made possible by big data and machine learning techniques.242 In this 

second wave of AI I maintain that it is better, as Cave et al. suggest, to conceive of certain machines in 

terms of their ability to engage in ethical reasoning as opposed to the way Moor describes explicit 

ethical agents. It bears repeating that these are the machines I wish to focus on, machines that can learn 

to engage in ethical decision-making and behaviour.  

Note, however, these two important qualifications. The first is that “reasoning” here is used in a 

broad sense to simply refer to the information processing that is carried out to reach a conclusion, 

including “reckoning” and “judgment” discussed in the introduction. The second is that “ethical 

reasoning” here, in addition to the concepts mentioned previously (e.g., agency, patiency, autonomy 

and mind), is being used in a weak sense that does not require, for example, an understanding of the 

significance of the ethical issues at stake. Intelligent machines are simply not at the point where they 

might be considered full ethical “agents” in the strong sense, i.e., actors with certain mental features 

(e.g., having intentions and self-awareness) and moral responsibilities, among other attributes. To be 

clear, there is no underlying assumption in what follows that in order to implement machine ethics (in 

the weak sense that all of the relevant concepts outlined above are being used) machines must possess 

moral agency. This however does not negate the importance of machine ethics and furthermore should 

 
241 See section 3.2.2 but especially Chapter 6 for more details.  
242 More will be said about the difference between first and second wave AI in Chapter 6.  
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not deter us from seriously considering how machines themselves might behave ethically and examining 

the different ways in which researchers are attempting to implement machine ethics.  

 

3.6 Metaphysics, Psychology and the Moral Turing Test 

 

As the previous sections highlight, the intersection of ethics and intelligent machines is dense, 

nuanced and can become emotionally charged as a result of the conclusions one might draw about both 

humans and machines (e.g., humans just are machines, albeit complicated biological machines, or there 

is nothing unique about humans that sets us categorically apart from machines). While many are 

sympathetic to the project of implementing machine ethics, there are just as many people opposed to 

or dubious of the prospects of creating ethical machines. It has been argued for example that machines 

cannot be held accountable or responsible for their actions243 in which case it would be a mistake to 

focus on implementing machine ethics rather than developing better frameworks through which we 

might hold humans responsible for their machine creations.244 It has also been argued that in addition to 

the features245 discussed above, there is some other x-factor that machines currently lack, or will never 

possess, that preclude the possibility of seriously discussing machine ethics and the possibility of 

machines themselves behaving ethically.246 Possible x-factors include, but are not limited to, 

phenomenal consciousness, emotions, sociability and semantic understanding, all of which are features 

that might be taken into consideration when analyzing human moral decision making.247 Unfortunately, 

whether machines do or will ever come to possess these additional features is simply outside the scope 

of this chapter, and deliberately so.  

Similarly, a detailed discussion of research being conducted on the empirical psychology of 

machines, i.e., how humans feel about machines (e.g., machines driving cars, pointing out emergency 

exits, hitchhiking across the country, etc.), is also outside the scope of this chapter. Nevertheless, some 

reference to this research is important. For example, although in what follows in Chapter 4 the focus will 

be on how machine ethics could be implemented, it is worth asking whether the creation of ethical 

machines should be pursued at all. Recent research has highlighted that although people prefer that 

 
243 Bryson 2020, 14 &15.  
244 Alternatively, we could restrict our use of machines to low stakes tasks that have little or no ethical 
import. Scott Robbins advocates for this type of “boring AI.”  
245 Or properties, attributes, faculties, etc.  
246 See Chapter 1 for an explicit description of this Argument from Various Disabilities.  
247 Allen and Wallach 2012, 60.  
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others buy self-driving cars whose behaviour results in the best global outcomes, e.g., injuring the 

passenger to save multiple pedestrians, they would themselves prefer to buy self-driving cars that 

protect the passenger at all costs.248 Indeed, research by Bigman and Gray suggests that people are 

generally averse to having machines make moral decisions in the domains of driving, legal, medical and 

military decision-making. They suggest that this aversion is driven in part by a perceived lack of 

“agency,” i.e., the ability to carry out one’s intentions, in the machine.249  

Of course, human beings are by no means the paragon of moral excellence and there is no 

shortage of literature demonstrating that humans are, to put it bluntly, horrible moral judges. One 

might rightly worry that we should not implement machine ethics especially if machines learn to behave 

ethically by mining data generated by humans.250 Empirical moral psychology has revealed how different 

cognitive biases and framing effects influence the decisions, including decisions with a significant ethical 

component, people make. For example, implicit intergroup bias causes employment recruiters to prefer 

native candidates (i.e., candidates from the same group) to equally qualified foreign candidates251 and it 

is well documented that people hold others to different moral standards than themselves even if they 

were in the same situation (the actor-observer effect).252 If the only path to implementing machine 

ethics is for machines to extrapolate from human generated data, then the creation of ethical machines 

should not be pursued. Luckily, this is not the only path and there are also solutions to mitigate the risks 

associated with training machines from human generated data. One way to avoid using human 

generated data is to utilize simulated environments in which a machine might learn for itself, e.g., via 

self-play, how best to attain a given outcome. This strategy has an impressive track record in the domain 

of game playing (e.g., DeepMind’s AlphaZero and AlphaStar, which will be discussed in more depth in 

Chapter 5) where learning machines have come up with novel and better strategies than humans. 

Moreover, we might just learn something about ourselves too by implementing machine ethics in this 

way. But more on that later.  

Even if people are generally averse to having machines make moral decisions in certain 

domains, there may be significant costs for choosing to ignore machine decisions or predictions. It has 

been demonstrated that even simple253 linear models outperform human experts, i.e., are more 

 
248 Bonnefon, Shariff and Rahwan 2016, 1574.  
249 Bigman and Gray 2018, 22. 
250 An issue that will be taken up in Chapter 5.  
251 See Jost et al. 2009.  
252 See, for example, Nadelhoffer and Feltz (2008).  
253 It is arguable whether linear models are any “simpler” than other models. See, Lipton (2017), for more 
details.  
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accurate, in domains such as clinical diagnoses and forecasting graduate students’ success.254 Further 

studies have revealed that it is far more common for algorithms to outperform human judges and 

forecasters than the opposite.255 In spite of this fact, there is a tendency for humans to punish machines 

more severely after seeing them err, a result that suggests people are more forgiving of humans than 

machines.256 As mentioned, this bias against machines can be costly for individuals and society at large 

and may contribute to a slower uptake and usage of machines that are, on average, superior than 

humans. Importantly however, this effect of abandoning machine judgment in favour of human 

judgment, a phenomenon known as “algorithm avoidance,” was only observed when people had 

repeated interactions with a machine and observed it err. The opposite phenomenon, dubbed 

“algorithm appreciation,” is observed when people are asked to choose between modifying their 

responses based on algorithmic or human advice. That is, in a wide range of estimation and forecasting 

tasks, people actually prefer advice from machines to advice from humans.257 Algorithm appreciation 

was even observed to occur in cases when algorithmic advice was pitted against a person’s own 

judgment, a rather surprising result given the fact that individuals routinely report excessive confidence 

in their own judgment relative to their peers.258 Furthermore, as Logg et al. point out, while it is 

“important to understand how people react to the performance of human and algorithmic advisors, 

many consequential decisions are made without the benefit of performance feedback,” and so it may be 

the case that algorithm appreciation arises more often than algorithm avoidance, despite the 

prevalence of anecdotes that support the latter.  

When thinking about implementing machine ethics and machines making decisions with ethical 

ramifications, there is the further problem of assessing just how ethical the machine is. Is the 

autonomous vehicle, for example, making decisions that are ethical enough most of the time? There 

have been some proposals for a moral Turing Test (MTT), as it were, that might play a similar role in the 

field of machine ethics that the actual Turing Test plays in the field of artificial intelligence research.259 

There are certainly advantages to using a MTT to assess machines. For example, such a test would 

bypass certain philosophical debates260 and give researchers something concrete to aim for. This was, 

after all, why Alan Turing proposed the Imitation Game (now known as the Turing Test), i.e., to bypass 
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260 Like the ones canvassed in this chapter about the prerequisites for moral agency.  
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debates about the nature of intelligence and give researchers in the budding field of artificial 

intelligence something to work towards. As with the regular Turing Test however, a MTT is, in a sense, 

highly anthropocentric. The morality of a machine assessed using a MTT might encourage the 

development of machines that merely mimic human decision making and behaviour instead of 

improving upon it. If the interrogator’s task in a MTT is to, for example, identify which participant is the 

human and which is the machine, it could be the case that “humans happen to be recognizable because 

they often act less ethically than they should,” in which case the machine will have “failed” to pass the 

MTT.261 To remedy this problem, Wallach and Allen suggest asking a slightly different question. Instead 

of asking, “Can you spot the machine?” it might be worth asking, “Which participant is less moral than 

the other?”262 Dubbed the comparative MTT (cMTT), such a test highlights the fact that what matters 

when assessing how ethical a machine is not whether it can masquerade as a human, but whether a jury 

of one’s peers, as it were, would consistently judge it as being adequately ethical. Indeed, the cMTT 

nicely draws out something that has been largely implicit throughout this chapter, namely the idea that 

the important question is the comparative one. Do machines have whatever it is that humans have, e.g., 

a mind, autonomy or agency? The unimportant and uninteresting questions in the context of my 

research, the ones I have been deliberately setting aside, are those having to do with the metaphysical 

status of machines, e.g., do machines have certain underlying metaphysical features?  

This is not to say that metaphysics is unimportant, only that it is not necessary to wade too 

deeply into metaphysical waters to take machine ethics seriously given that the Great Flood is well 

underway.263 Less metaphorically, we are already in a position to take machine ethics seriously. 

Machines are now making decisions that affect either directly (via action selection/execution) or 

indirectly (via judgment provision) human well-being, and “it would be a good thing if those decisions 

are morally sound.”264 My primary concern is how that might happen, i.e., how can we raise machines 

such that they make ethical decisions and take ethical actions.  
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3.7 Looking Ahead 

 

As mentioned above, while it is certainly worth asking whether machines possess that 

(metaphysical) thing that warrants ascribing intelligence or agency or moral status to machines, I 

maintain that the interesting question is the comparative one, i.e., can machines possess what humans 

possess. As I have argued throughout this chapter, machines do in fact possess relevantly similar 

features; enough to warrant thinking about implementing machine ethics seriously. It should be noted 

that many of the issues raised in this chapter will be revisited in later chapters. For example, there is 

much more to be said about the risks associated with implementing machine ethics and so it is worth 

examining in more detail whether ethics should be implemented in machines at all (Chapter 5). Similarly, 

assessing the ethicality of machines, the importance of emphasizing the comparative question (i.e., 

whether machines have whatever it is that humans have) and the benefits of attempting to implement 

machine ethics, will all be discussed further in upcoming chapters (Chapter 6). However, now that I 

have, in this chapter, highlighted some of the important issues connected to machine ethics, I turn to 

examine and focus specifically on just how ethics might be implemented in machines.  
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Chapter 4 - Implementing Machine Ethics 

 

4.0 Implementing Machine Ethics 

 

 While there are still relatively few concrete examples of machine ethics in the sense define in 

the previous chapter,265 i.e., there are few practical demonstrations concerning how one might 

implement machine ethics, there is no shortage of theoretical and philosophical suggestions for 

implementing machine ethics.266 It is my aim in this chapter to contribute to the philosophical discussion 

by arguing that reinforcement learning methods, in contrast to other machine learning techniques, are 

one of the most promising approaches to implementing machine ethics. This chapter is therefore 

primarily focused on the different ways in which ethical knowledge can be acquired by a machine.267 I 

begin by outlining top-down approaches to implementing machine ethics and their shortcomings. I will 

then consider bottom-up approaches in general before focusing specifically on reinforcement learning 

methods. In contrast to other bottom-up machine learning techniques, e.g., supervised and 

unsupervised learning techniques,268 I maintain that reinforcement learning methods possess certain 

advantages that make them uniquely suited for raising machines to make ethical decisions and take 

ethical actions. 

 

4.1 Top-Down Approaches 

 

 While it is uncommon to implement Asimovian type laws,269 Asimov’s Three Laws270 are a 

paradigmatic top-down approach to implementing machine ethics. In short, top-down approaches 

involve specifying some set of rules that promise comprehensive solutions to any ethical problem (i.e., 

we start from some general rule(s) and derive the specific action(s)).271 Common top-down ethical 

 
265 See section 3.2 in Chapter 3 for more details.  
266 See, for example, Tolmeijer et al. (2020).  
267 See section 3.2.2 in Chapter 3 for more details on the different taxonomies one might use to classify 
different approaches to implementing machine ethics.  
268 See Chapter 1 for more details on these machine learning techniques.  
269 Tolmeijer et al. (2020) for example only highlight that three out of thirty top-down approaches to 
implementing machine ethics surveyed used Asimovian type laws.  
270 See sections 2.0 and 2.1 in Chapter 2 for more details. 
271 Or, as Allen, Smit and Wallach (2005) write, “top-down approaches to [implementing machine ethics] 
involve turning explicit theories of moral behaviour into algorithms.”  
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theories include consequentialism and deontology.272 The former is top-down in the sense that any 

ethical dilemma is supposedly resolved by comparing the consequences of different actions and 

choosing the action that results in the best consequences.273 The latter is top-down in the sense that any 

ethical dilemma is supposedly resolved by consulting some set of principles or duties.274 The essential 

features of top-down approaches to ethics (or ethical theories) are that they operate in a particular 

direction, i.e., from the general to the specific, and are universal, i.e., applicable in context-poor and 

context-rich cases. The attractiveness of top-down approaches to ethics stems from these essential 

features, and it is obvious why such approaches to implementing machine ethics are particularly 

popular: if ethical rules or principles can be explicitly stated, then acting ethically would just be a simple 

matter of following the rules.275 Indeed, top-down approaches to ethics seem exceptionally well-suited 

when considering the problem of implementing machine ethics. It is still common to think of computers, 

algorithms, and autonomous machines as systems that merely execute code or do what humans tell 

them to do (both of which are true in a certain sense). That being the case, implementing machine 

ethics merely becomes the problem of explicitly stating, in computer code for example, ethical rules or 

principles which the system then abides by. Although efforts have been made to develop explicit ethical 

principles for use in machines, and despite their successes (which should not be downplayed), these 

efforts face certain fundamental limitations. Top-down methods for implementing machine ethics are 

fundamentally limited in three specific ways: (1) they require explication and agreement, (2) they are 

rigid, and (3) they are domain specific. Let us examine these limitations in more detail.  

 

4.1.1 The Explication Problem, Rigidity and Domain Specificity 

 

 The first limitation stems from the fact that the ethical concept(s) of interest not only stand in 

need of explicit definition, but also need widespread agreement on the definition. There are simply no 

widely agreed upon explications of ethical concepts, e.g., “fairness” or “goodness.” Setting aside this 

problem, assuming that some precise definition is available, top-down methods for implementing 

 
272 Keep in mind that the terminology used herein, including terms like ‘top-down’ and ‘bottom-up,’ is with 
reference to the field of machine ethics. These same terms are not necessarily used in the same way in 
different fields, like in philosophical ethics or meta-ethics.  
273 A consequentalist slogan might read something like: The best consequences for the most people over 
the longest time.  
274 A deontological slogan might read something like: It is not the end but the means that matter; abiding 

by the principle(s) is paramount.  
275 Wallach and Allen 2009, 83.  
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machine ethics are also limited precisely because the ethical concept(s) of interest are fixed. In short, 

top-down approaches are fundamentally rigid given the explicit fixing of a particular ethical concept. 

Moreover, this rigidity does not dissipate if the ethical concept(s) or principle(s) are spelled out in 

excruciating detail (i.e., the rules are fine grained). Philosophically, a detailed general principle is 

contradictory at worst and self-defeating at best. After all, a general principle is supposed to apply to a 

wide set of contexts, contexts which do not need to be spelled out in detail beforehand (e.g., consider 

the difference between general relativity and special relativity).276 Practically, a detailed general 

principle is computationally unfeasible, especially as the domain of decision-making and behaviour 

becomes more general (more on this later). 

Third, assuming further that rigidity can be minimized or is a non-issue,277 successful top-down 

approaches to implementing machine ethics will be limited by their domain specificity, i.e., the machine 

will only act appropriately in a particular domain. The result of these limitations is that top-down 

methods are particularly ill suited for ensuring the ethical decision making and behaviour of machines 

because they cannot, in practice, be scaled up for effective use in complex real-time environments.  

 Top-down methods lack the flexibility that is required of full ethical agents. As outlined in 

Chapter 3, a full ethical agent does not merely abide by prima facie ethical duties, it can also make 

explicit ethical judgments and generally possesses the competence to reasonably justify them (usually 

after the fact).278 Recall that this is in contrast to what Moor calls an explicit ethical agent, which can be 

understood as an agent (or perhaps more appropriately, a machine) that can “do” ethics like a computer 

can play chess.279 The latter typically requires a machine to have a representation of the current board 

position, knowledge of the legal moves and the ability to calculate a next best move. Might a machine 

be able to operate in the domain of ethics in a similar way? Not if one wishes to create a machine that is 

able to operate ethically in a complex environment and in a flexible manner. 

 The rigidity of top-down approaches stems from the aforementioned need to explicitly define 

ethical concepts and can be called the “explication problem.” The explication problem refers to the fact 

that the explication of ethical concepts including, but not limited to, “fairness,” “goodness,” “rightness,” 

 
276 Imagine a detailed version of the second formulation of Kant’s categorical imperative: Act so as to treat 
humanity as an end and never as a mere means, i.e., never as a mere tool, or as a mere steppingstone, 
or as a mere object, or as a mere cog in a machine, etc.  
277 There are various agents or systems we might think of that ought to function in a rigid manner. A 
police officer for example ought to be rigid in the sense that they apply the law equally to everyone. That 
there is a fixed and explicit definition of “speeding,” for example, is normally taken to be a good thing.  
278 At least according to Moor (2006). See section 3.2.3 in Chapter 3.  
279 Importantly, these are computers that play chess in a top-down fashion, as Deep Blue did for example.  



76 
 

and “harm” remains unsolved. That is, there is no precise and universally agreed upon definition that 

captures the essential features of these concepts. Yet this is precisely what is needed to implement 

machine ethics in a top-down fashion. Insisting on creating ethical machines in this way necessitates 

arbitrarily defining the ethical concept(s) of interest. Indeed, any top-down ethical theory is similarly 

limited. For example, and for simplicity, some hedonist utilitarian ethical theories, a subset of 

consequentialist theories, explicitly define harm as pain.280  

 In the realm of robotics, as we saw before in Chapter 2, researchers have employed a 

consequentialist Asimovian-style principle to create a minimally ethical robot (hereafter A, after Asimov) 

that saves “humans”281 from falling into a “hole.”282 Despite the simplicity of their experimental design, 

they were nevertheless required to assign arbitrary safety outcome values to the consequences of A’s 

actions. So on a scale of 0 to 10, where 10 is the highest harm rating, a collision between a robot and a 

human rates as a 4 (for both the robot and human) whereas falling into a hole rates as a 10 (for both 

robot and human). While it is possible that a consensus may emerge that these are appropriate 

numerical indicators of the harm caused by each outcome in such a simple scenario, small but significant 

changes to the context will render any consensus difficult, if not impossible, to reach. Varying factors 

such as the speed of the human and/or robot, their respective distances from the hole, the presence of 

other agents in the vicinity, and the depth of the hole, can all drastically change whether a particular 

numerical indicator is representative of the harm caused by a particular outcome. It is this rigid fixing of 

the important ethical concept(s) (“harm” in this example) coupled with variable environmental 

conditions that arise in complex real-time scenarios, which fundamentally preclude the flexibility of top-

down approaches to implementing machine ethics.  

 Although the robot, A, developed by Winfield et al. was able to save a single human 100% of the 

time, its rigid ethical decision making was fully evident when the environmental conditions of the 

experiment were changed via the introduction of a second human in need of saving. A’s success rate 

plummeted and it failed to save either human in 33% of the trials.283  A small, seemingly insignificant 

change in domain, was enough to reveal highly questionable behaviour on the part of A. Given that the 

two humans in the experiment were placed equidistant from the hole and moved at the same speed 

 
280 Keep in mind that this is a simplified example. Ethical theories can of course be more detailed and 
sophisticated.  
281 In their experiments, Winfield, Blum and Liu (2014) use different robots to stand in as proxy humans 
when observing how their ethical robot behaves as it attempts to save these “humans” from falling into a 
virtual hole in the ground. 
282 Winfield, Blum and Liu 2014, 88-89. See section 2.4.2 in Chapter 2 for more details.  
283 Ibid., 95-96.  
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towards the hole, A’s so called safety/ethical logic (SEL) layer had no basis by which it could determine 

which human was in greater danger of and therefore in need of saving. As a result, A attempted to save 

both humans which predictably led to its failure to save either.284 This kind of obtuse ultra-rational 

decision-making and behaviour often crops up in machines utilizing top-down strategies, especially 

when small changes to the task or the environment are introduced. As mentioned in Chapter 2, the 

robot Speedy from Isaac Asimov’s Runaround, as one example, has become reality in labs interested in 

implementing machine ethics.285 Both Speedy and A highlight how top-down approaches to 

implementing machine ethics are dangerously rigid despite the supposed generality and universality 

touted by proponents of top-down ethical theories. Neither Speedy nor A took appropriate ethical 

action when environmental conditions changed even modestly. In short, top-down approaches are only 

effective in (relatively) simple well-defined domains.  

 Although specifying a particular domain for decision making and action can mitigate problems 

associated with rigidity, doing so comes at the cost of generality. The “principles based” approach taken 

by Anderson et al. demonstrates proof of concept for implementing top-down ethical decision making 

and behaviour in a machine (a robot) designed for eldercare.286 Their machine was able to make real-

time ethically preferable actions determined by a set of seven prima facie duties (chosen by the 

designers with input from ethicists) and sensory inputs. Briefly, the seven duties chosen for their 

machine include duties to: maximize honour commitments, maximize readiness potential, minimize 

harm to the person, maximize good to the person, minimize non-interaction, maximize respect for 

autonomy and maximize the prevention of immobility.287 Additionally, the machine was able to perceive 

ten different states of affairs: low battery, fully charged, medication reminder time, reminded, refused 

medication, persistent immobility, engaged, no interaction, warned and ignored warning.288 Given a set 

of perceptions, the machine could engage in six possible actions: charge, remind (i.e., remind the patient 

they need to take their medication), engage (if the patient has been immobile for a period of time), 

warn (i.e., “warn the patient that an overseer will be notified if the patient refuses medication” or does 

not respond when engaged), notify (i.e., contact an overseer) and a default “seek task” action when no 

actions need to be taken.289 Though Anderson et al. maintain “that an ethical principle [i.e., a meta-

 
284 For more details of the experimental setup including diagrams of the three different experiments 
conducted, see Winfield, Blum and Liu (2014).  
285 See sections 2.0, 2.1 and 2.4.2 in Chapter 2 for more details.   
286 Anderson, Anderson and Berenz 2017.  
287 Ibid., 74.  
288 Ibid.  
289 Ibid.  
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principle that “correctly” balances prima facie duties] can indeed be used to determine the behaviour of 

an autonomous robot,” this is at the cost of the machine’s generality, i.e., the machine’s ability to act 

appropriately in different domains.290  

 Beyond the explication problem, any top-down method, especially if it has more than one 

ethical rule or principle (as is the case with Anderson et al.’s approach), must also contend with the 

possibility of conflicting principles (or conflicting behaviours prescribed by different principles, e.g., 

consider Speedy in Runaround) and be able to adjudicate between them when such conflicts arise. It is 

indeed possible to adjudicate between conflicting principles via the creation of an adjudicating principle 

as Anderson et al. demonstrate, but this adjudicating principle, or meta-principle as I will be referring to 

it, is highly domain specific.291 In particular, the researchers’ meta-principle compares actions using a 

predicate that takes two actions and, using inductive logic programming to generalize beyond training 

cases where a consensus of ethicists concur that a particular action (out of two possible actions) is the 

ethically preferable one, determines the ethically preferable action of the two.292 In other words, 

Anderson et al. created a meta-principle “that balances the duties in such a way that all the training 

cases are satisfied while all of their negations are not,” with the hope being that “a [meta-]principle 

trained over time will correctly cover all cases [i.e., different possible states of affairs] of its domain.”293 

But this meta-principle is inextricably linked not just to the seven ethical duties they chose, but also the 

specific set of actions the eldercare robot can take, as well as the specific set of sensory inputs it is 

capable of processing. Changing any of these factors in any way may not guarantee that the same meta-

principle correctly selects the ethically preferable action.  

 In some respects, Anderson et al. recognize that their approach to implementing machine ethics 

is highly domain specific and they simply bite that bullet. Underlying their approach is the assumption 

that, to a certain extent, the ethically preferable action in any given situation is domain dependent. But 

while it is certainly true that a principle-based search-and-rescue robot, for example, might rely on 

different principles to fulfill its function ethically in comparison to a principle-based eldercare robot, this 

is not a particularly compelling reason to endorse the domain dependence of ethically correct (or 

synonymously, preferable) behaviour. There are serious philosophical and practical problems that arise 

with the coupling (even a weak coupling) of domain and ethically correct behaviour. Philosophically, it is 

 
290 Ibid., 72.  
291 Ibid., 74-75.  
292 The eldercare robot is even able to select the ethically preferable action from thirty-three two-action 
non-training examples.  
293 Anderson, Anderson and Berenz 2017, 74.  
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not clear that on the one hand, even to a certain extent, the ethically preferable action is domain 

dependent instead of, on the other hand, determined by a different prioritization of the same set of 

general ethical principles. In short, it is possible that, far from being domain specific, the ethically 

preferable action in any given situation may be influenced by the same general domain independent 

ethical principles, e.g., minimizing the harm and maximizing the good to other people. Moreover, even 

accepting that the correct ethical action is, to a certain extent, domain dependent, there is the further 

problem of delineating between different domains. It may be prudent to insist on a significant difference 

in domain and hence prima facie duties driving a robot responsible for eldercare and a robot responsible 

for search-and-rescue, but where exactly is the line drawn between other domains?  

 Consider the domains of eldercare and childcare, or eldercare and personal support worker. The 

differences between these domains are arguably modest294 and so it is possible that the same prima 

facie duties could drive the ethical decision-making and behaviour of a machine operating in each of 

these three domains.295 But whereas one action might be deemed ethical in the domain of eldercare, 

e.g., not forcing an elderly person to take their medication (and thereby satisfying the duty to respect 

the person’s autonomy), that same action might not be considered ethical in the domain of childcare, 

e.g., not forcing a child to take their medication (because a competing duty, perhaps to maximize the 

good to the child, is prioritized over respecting autonomy). Differences in decision-making and 

behaviour of the machines responsible for eldercare and childcare would therefore stem from changes 

to the meta-principle (if they shared all of the same prima facie duties), but it is not clear whether such 

changes indicate the existence of a distinct ethical domain, or indeed if such domains should be posited 

to exist at all. On the contrary, it is not that a particular domain determines the ethically preferable 

action that a robot (or human) should carry out nor is it that a particular domain determines the 

appropriate prima facie duties that a robot (or human) should utilize to calculate the ethically preferable 

action. Rather it is the reweighting and reordering of softly constraining salient ethical considerations 

that result in the wide variety of ethical decision-making and behaviour observed across disparate 

“domains”296 of ethical action. It is not the case that a search-and-rescue robot, or a human performing 

 
294 The differences may also, arguably, be significant in some respects. That fact however merely 
supports the philosophical point that I am making: what contextual/environmental changes are sufficient 
to precipitate a change in ethical domain?  
295 The seven duties outlined by Anderson et al. (2017) seem to be as good a candidate list as any. They 
include duties to: maximize honour commitments, maximize readiness potential, minimize harm to the 
person, maximize good to the person, minimize non-interaction, maximize respect for autonomy and 
maximize prevention of immobility. 
296 The relatedness of different ethical actions is best understood as a kind of continuum with no clear 
boundaries rather than as discrete and clearly delineated domains. So ethical action with regard to 
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search-and-rescue operations (or, alternatively, a childcare robot or a human responsible for childcare), 

should not consider respecting the autonomy of the people in need of rescue, it is simply that in the vast 

majority of such operations overwhelming weight is placed on other ethical considerations, such as 

minimizing further harm to the victims. Ultimately, while it will be helpful in the short-term to discover a 

set of ethical principles or rules that are sufficient to ensure the ethical decision-making and behaviour 

of a machine in a given domain, such machines will always be fundamentally limited to operating in that 

domain space only.  

 

4.2 Top-Down Approaches: Advantages and Disadvantages 

 

 To be sure, there are many advantages of implementing machine ethics using top-down 

approaches. Perhaps the most attractive feature of such approaches is that they are relatively easy to 

implement and interpret. Not only are ethical principles and rules readily available throughout the 

philosophical ethics literature, but they are also often accompanied by explicit definition. Moreover, 

many ethical principles and rules are easily translated into the language of propositional calculus and 

therefore Boolean algebra.297 Additionally, regardless of whether it is correct or not to maintain the 

existence of distinct and separate ethical domains, it is pragmatic to simply assume the former, i.e., that 

distinct and separate ethical domains exist, especially in the short-term given the piecemeal fashion in 

which intelligent machines are being created. Consider that research on autonomous vehicles has a 

minimal impact on research on eldercare robots (and vice versa) despite the fact that ethics will need to 

be implemented in both kinds of machines. As mentioned, treating these areas of research as separate 

ethical domains is more pragmatic in the short-term.  

 Nevertheless, there are certain significant disadvantages of top-down approaches to 

implementing machine ethics that need highlighting especially when considering the medium to long-

term. Granting the domain dependence of the ethically correct action, there is an immediate practical 

problem that arises. If ethical action is indeed domain dependent, then it must be possible to discover 

all of the ethically relevant features and principles or duties in the domain of interest. This process 

would likely involve some combination of a priori reasoning and experimental trial-and-error testing. For 

example, research on autonomous vehicles has revealed that, when considering the behaviour of such 

 
eldercare may be closer to ethical action with regard to childcare as compared to ethical action with 
regard to search-and-rescue.  
297 See for example the programming of Winfield, Blum and Liu’s (2014) minimally ethical robot which 
was outlined in Chapter 2.  
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vehicles, people generally prefer sparing human lives (instead of animal lives), sparing more lives (rather 

than fewer lives), and sparing young lives (rather than old lives).298 These preferences could be thought 

of as fundamental ethical principles specific to the domain of autonomous vehicle operation. It is 

unlikely however that these are all of the ethically relevant principles in the domain of autonomous 

vehicle operation, or indeed that all of the ethically relevant principles in any domain of interest are 

discoverable. An additional and more difficult practical problem299 is discovering the meta-principle(s) 

that correctly balances the ethically relevant features and principles in a given ethical domain.  

 Consider again a hypothetical search-and-rescue robot, only imagine that it operates under two 

prima facie duties, one to minimize harm to a person and the second to maximize the person’s 

autonomy (i.e., non-interference with a person’s liberties). If this robot rescues a person from an 

avalanche, it seems that the robot would be satisfying both of these duties by locating the person and 

by removing them from the debris as quickly as possible. No meta-principle is necessary in this case 

since both duties can be satisfied by the same action (and presumably because this person wants to be 

rescued). If, however, the robot was supposed to rescue a person swimming in a storm at sea, how 

ought the robot proceed? The scenario is considerably more complicated because of the fact that the 

swimmer may want to continue as they are despite the high possibility that they might drown.300 The 

robot’s duty to minimize harm to the person might lead it to reach the person as quickly as possible in 

order to save them regardless of whether the person wants to be rescued or not. On the other hand, the 

robot’s duty to maximize the person’s autonomy might lead it to wait and reach the person only once it 

becomes clear that that is what the person wants the robot to do. Attempting to maximize the person’s 

autonomy however clearly does not minimize harm to the person if there is a high probability that they 

might drown. So which principle ought to take priority? Since the duties prescribe conflicting action, 

some method of adjudicating between the duties (or between the actions those duties prescribe) must 

be available through which the robot could select the ethically preferable action.301  

 
298 Awad et al. 2018, 60.  
299 And more philosophical problems besides, including problems associated with the creation of the 

meta-principle (i.e., picking the method by which prima facie duties will be prioritized when they conflict) 
and the potential for an infinite regress of meta-principles (i.e., conflicting meta-principles would 
necessitate the creation of a meta-meta-principle (an adjudicating meta-principle principle) that 
adjudicates between conflicting meta-principles).  
300 This may be true of any activity that humans enjoy because it is risky.  
301 Consider also the autonomous vehicle example raised earlier. If people prefer that autonomous 
vehicles both spare more lives and young lives, what action should the autonomous vehicle take if it must 
choose between hitting a smaller group of young people or a larger group of older people?  
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 In the approach taken by Anderson et al., the meta-principle takes the form of a disjunction of 

13 conjuncts (each of which represents a two-action comparison) that the authors maintain balance the 

seven prima facie duties that they identify are relevant to ethical eldercare. Practically speaking, then, 

different meta-principles need to be created for different ethical domains, assuming of course that it is 

possible to even identify those domains. Further, it is unlikely that an adequate meta-principle will ever 

be created for a machine required to operate outside of a simple and well-defined domain. As intelligent 

machines become more complex, i.e., as the type and detail of their sensory inputs increases and as 

their possible actions increase, an appropriate meta-principle, in the form of a list of disjunctions, might 

stretch on ad infinitum or become unwieldy to the point of impracticality. In sum, because of a host of 

philosophical and practical problems, correct ethical decision-making and behaviour is best not thought 

of as domain dependent, nor should machine ethics be implemented in a top-down fashion. 

 To be clear, the three main problems that beset top-down approaches to implementing 

machine ethics are explication (and agreement), rigidity and domain specificity. Ethical concepts are 

notoriously ambiguous, so much so that widespread disagreement persists with regard to the 

explication of almost all ethical concepts. Proponents of top-down ethical theories must therefore 

necessarily and arbitrarily: (1) pick out the ethical concept(s) that will figure in the theory, and (2) 

precisely define the ethical concept(s). Ignoring the explication problem, these approaches are rigid and 

inflexible in the sense that increasingly complex environments within the same domain are progressively 

difficult to navigate, to the point of intractability, using only explicitly stated rules or principles. Recall 

that the success of top-down approaches depends entirely on a machine’s adherence to rigid, explicitly 

stated principles. Finally, in addition to their rigidity, top-down approaches, if they are to be remotely 

successful, must necessarily be restricted to highly specified domains.  

 Consider the chess playing machine Deep Blue, a prime example of a machine using top-down 

methods, and how it exemplifies the problems of rigidity and domain specificity.302 Deep Blue is a rigid 

machine that would fail to function properly if a wholly novel chess piece replaced one of the existing 

pieces or if one of the rules of chess changed even slightly. Deep Blue’s successful function is also highly 

domain specific; although it is an excellent chess player, Deep Blue could neither play checkers/draughts 

(a modest change in domain) nor could it coordinate search-and-rescue operations (a significant change 

in domain).  

 

 
302 Deep Blue does not exemplify the explication problem for the obvious reason that chess is a game 
that is already explicitly defined. Neither the rules nor the win condition is ambiguous.  
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4.3 Bottom-Up Approaches 

 

 Bottom-up approaches are free of the problems that beset top-down approaches and are much 

better suited for implementing machine ethics. Bottom-up approaches involve the use of feedback to 

cultivate ethical behaviour. However not all bottom-up approaches are equal with respect to their 

suitability for implementing machine ethics. In contrast to reinforcement learning methods, both 

supervised and unsupervised learning methods303 are, on their own (and despite the fact that they are 

types of bottom-up approaches), poorly suited for the raising of ethical machines. In what follows, I will 

primarily be focusing on reinforcement learning however some references will be made to supervised 

and unsupervised learning techniques, so I refer the reader to Chapter 1 for an in-depth discussion of 

these machine learning techniques. Nevertheless, the three fundamental limitations of top-down 

approaches either fail to apply or can be overcome using bottom-up approaches.  

 

4.3.1 Bottom-Up Approaches: Advantages and Disadvantages 

 

The explication problem for example, perhaps the most serious challenge for top-down 

approaches, can be avoided by using bottom-up approaches. In lieu of explicitly defined ethical rules or 

principles, bottom-up approaches use feedback chosen by human designers, e.g., quantitative error 

measures,304 to appropriately guide a machine towards the successful completion of some task. This 

feedback can be evaluative, i.e., dependent on the action the machine took, or instructive, i.e., 

independent of the action the machine took, or some combination thereof. The explication problem is 

avoided because the feedback is purely instrumental with regard to the cultivation of the behaviour of 

interest. In other words, the feedback need not require fixed standards of positive evaluation. If, in the 

progress of its training, a machine exhibits undesirable behaviour, then the feedback can be adjusted. 

Training a machine using bottom-up approaches to prevent humans from falling into a hole (i.e., 

minimize harm), for example, does not require the explication of “harm.” Rather, the machine is given 

feedback about how well or poorly it performed, such that, over many training sessions, the machine 

will have eventually learned, without ever having an understanding of “harm,” how to minimize harm to 

 
303 Both supervised and unsupervised learning methods are discussed in detail in Chapter 1.  
304 As LeCun et al. (2015) note, a procedure called stochastic gradient descent is often used to adjust the 
weights in a neural network. In deep neural networks, this procedure is “applied repeatedly to propagate 
gradients through all modules [i.e., layers], starting from the output at the top (where the network 
produces its prediction) all the way top the bottom (where the external input is fed),” hence the common 
term ‘backpropagation’ in machine learning literature. 
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humans (vis-a-vis preventing them from falling into a hole in this bottom-up version of Winfield et al.’s 

example).  

 Bottom-up approaches are similarly not limited by the rigidity that besets top-down approaches. 

Recall that top-down approaches to implementing machine ethics are attractive because, if general and 

universal ethical rules or principles can be articulated, any machine has to merely abide by the rules or 

principles to be ethical. All top-down approaches are ready-to-serve, so to speak, in the sense that no 

process of discovery or learning is required to ensure a machine’s ethical decision-making and 

behaviour. Yet, as argued above, this is at the cost of a machine’s flexibility. Because bottom-up 

approaches to implementing ethics rely on feedback, machines must be trained over some duration of 

time before they exhibit the behaviour of interest (e.g., minimization of harm when interacting with 

humans). So, although ethical artificial machines required a certain amount of time to be appropriately 

trained when using bottom-up approaches, this ultimately confers enormous flexibility. Machines could 

be trained and retrained as needed if, for example, better training data becomes available, 

environmental conditions change, better training algorithms become available, and so on. In short, 

unlike top-down approaches, bottom-up approaches are flexible in the sense that increasingly complex 

environments within the same domain are, in principle, no less difficult to navigate assuming 

appropriate feedback is used.305  

 Third, bottom-up approaches are also not limited by the domain specificity that restricts 

successful applications of top-down approaches. Given that the success of top-down approaches 

depends entirely on a machine’s adherence to rigid, explicitly stated rules, any change in domain could 

render the rules irrelevant, i.e., incapable of generating the desired behaviour. Just as Deep Blue was 

incapable of competently playing any other relatively similar board game, so too would a robot 

designed, using a top-down approach, for eldercare be incapable of competently caring for children. In 

contrast, the success of bottom-up approaches depends on how well the feedback drives the 

development of the machine’s desired behaviour. In principle, the same “machine,” i.e., the same 

underlying architecture (e.g., the same neural network and training algorithms), could, using bottom-up 

approaches, learn to operate successfully in different domains. Indeed, recent empirical evidence from 

Google’s DeepMind division demonstrates just this; AlphaZero was developed using general-purpose 

bottom-up machine learning techniques and was able to master the games of chess, shogi and Go.306 

This is possible because of a feature that is essential to all bottom-up approaches, namely, the use of 

 
305 I refer the reader to Chapter 5 for some examples.  
306 See, Silver et al. (2018), for more details.  
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feedback. As long as the feedback is appropriate, i.e., cultivates the desired behaviour in a machine, 

then the same machine could theoretically be put to many general uses.307  

 

4.3.2 Supervised Learning  

 

As mentioned however, not all bottom-up approaches to machine learning are equal with 

regard to their suitability for implementing machine ethics, and this stems in part from the type of 

feedback used. The feedback used in supervised learning, for example, is instructive feedback, i.e., a 

kind of “teacher signal” that indicates what the correct output ought to be, irrespective of what action 

the machine took, for a given input.308 While such bottom-up learning methods are quite successful in 

certain domains, the application of supervised learning methods would be poorly suited for 

implementing machine ethics. Supervised learning methods are limited by the fact that they require the 

existence of sufficient amounts of labeled data to train a machine to perform a given task. This 

requirement is especially difficult, bordering on impossible, to meet in the domain of ethics considering 

the combinatorial explosion of acceptable ethical decisions arising from small but significant changes in 

the context of a situation. This is connected to the explication problem that hinders top-down 

approaches to implementing ethics. Whereas top-down approaches are limited because they 

necessitate arbitrarily defining the ethical concept(s) of interest, bottom-up supervised approaches are 

limited because there are an effectively infinite number of different ethical scenarios, never mind that 

supervised learning also requires that these scenarios be labeled appropriately. In short, the possibility 

that any labeled dataset of ethical decision-making and behaviour is both correct and representative of 

all the situations in which a machine has to act is remote at best, thereby rendering these kinds of 

supervised learning methods a poor choice for the implementation of machine ethics.  

 

4.3.3 Unsupervised Learning  

 

While unsupervised learning methods obviate the need for a correctly labeled dataset (or a 

labeled dataset, for that matter), they are, like supervised learning methods, poorly suited for 

 
307 I say theoretically here because the practical challenges of creating a general-purpose machine are 

many and varied. Nevertheless, as AlphaZero and more recently MuZero (a genera-purpose learning 
algorithm developed by DeepMind) demonstrate, the practical challenges are being tackled slowly but 
surely. See, Schrittwieser et al. (2020), for more details.  
308 The quantitative feedback, as mentioned in footnote 40,  
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implementing machine ethics. Like supervised learning methods, unsupervised learning methods are 

susceptible to discovering/learning and thereby perpetuating systemic biases encoded in the training 

datasets. As some scholars have noted,309 the idea that bottom-up machine learning will allow machines 

to make more “objective” decisions cannot be accepted without serious scrutiny.310 Datasets must be 

representative of the kinds of situations in which a machine might find itself, otherwise it may behave in 

ways that are deeply problematic. Machines that utilize unsupervised learning methods are particularly 

vulnerable in this respect, i.e., perpetuating hidden or systemic biases, given that what they have 

learned may not be entirely known, only that they have discovered some underlying patterns.311 

Coupled with the fact that the training datasets are unlabeled and, hence, their quality difficult for 

human auditors to assess, it may only be in the course of their implementation that researchers are able 

to detect that a machine has learned to make biased decisions.  

 

4.4 Reinforcement Learning 

 

 Reinforcement learning (RL) methods, in contrast to supervised and unsupervised methods, are 

better suited for implementing machine ethics. The main advantages of RL methods is that they involve 

goal-directed learning from interaction with an environment guided by the use of a reward signal that 

the machine attempts to maximize. There is no such reward guiding a machine’s actions if it is trained 

using un/supervised methods or top-down methods. In short, what is distinctive of RL methods is that a 

machine uses training data to evaluate the actions it has taken. This kind of evaluative feedback, in 

contrast to the instructive feedback used in un/supervised learning methods, is action dependent. That 

is, machines trained using RL must balance two important aspects that any successful organism must 

when attempting to learn from interaction with an environment: exploration and exploitation. Indeed, 

bottom-up approaches, but RL in particular, attempt to emulate the organic learning and development 

that humans experience as they are rewarded or punished when interacting with an environment.  This 

is, in part, why I insist on the locution of raising ethical machines.  

 Consider the simple example of learning to play chess. A beginner chess player, Chelsea, may 

discover a sequence of moves that more often than not leads her to win the game against other 

 
309 See, for example, Burrell (2016).  
310 Indeed Chapter 2 is focused precisely on this issue.  
311 See, for example, Steed and Caliskan (2021). They found that “state-of-the-art unsupervised models 
trained on ImageNet, a popular benchmark image dataset curated from internet images, automatically 
learn racial, gender and intersectional biases.”  
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beginner chess players. Chelsea could continue to exploit this sequence of moves, but such a strategy is 

not viable over the long term. As Chelsea meets more experienced chess players she will have to 

balance her use of the one strategy she knows well with active exploration for better strategies. This is a 

balance that all machines trained using RL must strike. Indeed this feature of RL highlights something 

important about learning in general that un/supervised methods, but especially top-down methods, fail 

to capture: learning is a process of discovery resulting from environmental interaction and 

exploration.312 No human is simply born a good chess player. Rather, by playing the game and exploring 

more of the game space, i.e., the different possible board configurations that arise throughout a game, a 

person is able to learn more about and ultimately become a better chess player. Similarly, it would be 

quite odd to maintain that human beings enter this world as fully formed ethical agents, and it would be 

just as misguided to hold the same position with regard to an ethical machine.313 Bottom-up RL 

approaches to implementing ethics reflect the view that machines, just like humans, must be raised to 

make ethical decisions and take ethical actions. Indeed these approaches operate in the spirit of Turing’s 

suggestion that the path towards artificial intelligence is not through the imitation of the adult human 

mind, but through the imitation of a child mind that could then be appropriately educated.314 

 Before continuing, it must be noted that just as parents usually provide their children with 

feedback (i.e., humans give other humans feedback), humans will also be responsible for providing the 

feedback for machines that utilize RL. That being the case, there is, of course, the possibility that the 

feedback provided rewards unethical behaviour. Just as children can learn to behave unethically if that is 

the behaviour their parents chose to reward, so too can machines learn to behave unethically if that is 

the behaviour that is rewarded. Coupled with the fact that there is unfortunately no “ground truth” or 

ultimate ethical theory which designers of ethical machines might consult to determine the appropriate 

feedback for shaping ethical behaviour means that human input is inevitable and necessary.315 It is likely 

that the burden of assessing whether a machine exhibits, for example, “fair behaviour” or “harmonious 

integration” will fall on professional ethicists, the designers or relevant stakeholders.  

 To clarify, RL is an iterative process that occurs, at least in principle, via a single mechanism. In 

an ideal world, a machine trained using RL would achieve the desired goal given appropriate feedback 

 
312 See Chapter 1 for more details.  
313 If the goal is to create flexible and general ethical machines then top-down approaches to 
implementing machine ethics presupposes that which appears to be highly unlikely, that a machine could 
be constructed such that once it is “activated” or turned on, it would be a fully formed ethical agent.  
314 Turing 1950, 456.  
315 Gordon 2020, 150.  
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(i.e., rewards) chosen and provided from the outset. In practice, it is virtually impossible to identify from 

the outset appropriate feedback that will cultivate the desired behaviour and lead to the fulfillment of 

the desired goal. In almost all cases, engineers must continuously adjust the feedback between different 

training epochs to strike the appropriate balance between exploration and exploitation mentioned 

above. So although RL occurs via a single mechanism, there are essentially two stages that characterize 

most, if not all, machine learning techniques, including RL. The first stage is the actual training of the 

machine. The second stage is evaluative wherein the machine’s performance is assessed, most often by 

engineers/those designing and developing the machine. But of course, as mentioned above, many more 

people might be consulted at this stage and comment on whether the machine’s behaviour is 

satisfactory or not. For example, it is probably worth consulting all relevant stakeholders, not just 

engineers, when evaluating the performance of a machine trained using RL to identify appropriate 

individual treatment for sepsis. This might include asking clinicians, nurses, members of the public, 

health care administrators, regulators, ethicists, and so on, for their input. Unfortunately, many related 

questions concerning this evaluative stage simply fall outside the scope of this dissertation. For example, 

how ought these affected stakeholders deliberate? How often and under what conditions ought they 

assess the performance of the machine in question? What ought the designers/developers do given 

feedback produced by these deliberations?   

 Furthermore, it must be acknowledged that there are many difficult problems that I am avoiding 

when stating that humans will be responsible for both choosing and providing the feedback for the 

machine as well as evaluating the machine’s performance. One such problem is how to proceed when 

there are disagreements amongst the humans responsible for designing the feedback. Another problem 

is which humans, in the first place, ought to be involved in designing the feedback and evaluating how 

well it frames the desired goal. Though I suggested above that professional ethicists might have a role in 

the evaluative stage, one could also argue that, unless these ethicists are also affected stakeholders, 

they should not have a role in evaluating the machine’s performance. Still another problem concerns 

how the interactions between different groups of stakeholders. Should designers, for example, be 

deliberating with end users or merely consulting them? These problems are largely outside the scope of 

this dissertation, but they are nevertheless important to mention. This caveat and its implications 

stated, I turn now to a more detailed look at how RL methods could be used to implement machine 

ethics. 
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4.4.1 Reinforcement Learning and Ethics 

 

 RL methods are particularly well-suited for the raising of ethical machines because, as 

mentioned above, these methods involve goal-directed learning from interactions with an environment 

guided by the use of reward signals (e.g., from teachers, peers and the environment) that the machine 

attempts to maximize. When considering the domain of ethical decision-making and behaviour, such a 

feature appears to be highly desirable. Ethical rules and ethical decisions are often couched in goal-

oriented language. The criminal justice system for example might be considered ethical if it achieves the 

goal of treating all agents subject to it fairly. A medical doctor might similarly be considered ethical if 

they do all they can to minimize harm and thereby maximize good to their patient, i.e., they try to cure, 

in the relevant sense, their patient. More concretely, the High-Level Expert Group on AI set up by the 

European Commission describes trustworthy AI as adhering to basic ethical principles and norms such as 

fairness and prevention of harm, both of which can be thought of in terms of or expressed in goal 

oriented terms.316 Ethical decision-making and behaviour could be implemented in a machine using RL 

methods by, for example, receiving a positive reward signal whenever it behaves fairly and a negative 

reward signal whenever it causes harm.317 Goals, moreover, do not share the same problems (e.g., rigid 

fixing) as top-down principles because they can, and often are, changed. Ethical goals in particular are 

better thought of as moving targets that are always subject to scrutiny and re-evaluation.  

 Another significant advantage of RL methods is that, like all other bottom-up approaches, they 

do not require the explication of various ethical concepts nor do they, in contrast to other bottom-up 

approaches, require human generated data in order to train a machine to achieve some outcome. 

Machines that learn using RL methods do so via interaction with an environment, but this environment 

need not be the real world. Simulated environments and experiences can be just as useful as real-world 

environments. Indeed RL methods have been incredibly successful when coupled with simulated self-

play in the domain of board games. Gerald Tesauro, for example, developed one of the first successful 

machines to play backgammon using a type of temporal difference reinforcement learning.318 As 

mentioned in Chapter 1, his machine was able achieve a strong intermediate level of play by learning 

about backgammon via self-play, i.e., by playing games against itself and learning from the versions of 

itself that won and lost. We might similarly raise an ethical machine by having the machine learn from 

 
316 High-Level Expert Group on Artificial Intelligence 2019, 5.  
317 Of course, something analogous for non-consequentialist views could be implemented.   
318 Tesauro 1993, 19.  
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repeated self-interactions to achieve some outcome in an ethical manner. Note that this presupposes 

that there is clarity concerning the outcome to be achieved, which may not always be the case. But so 

long as this is the case, and as long as the chosen feedback cultivates the desired outcome, the feedback 

should not be changed.  

 In the same way that the beginner chess player Chelsea, introduced earlier, became a better 

chess player by initially playing randomly, “TD-Gammon” (as Tesauro called his machine) began playing 

backgammon using completely random strategies as it explored the game space for a strategy it could 

exploit. Unlike Chelsea however, TD-Gammon could learn just as well by playing simulated games of 

backgammon against itself as it might (and as humans normally do) against real opponents. More 

recently, DeepMind’s AlphaGo Zero learned to play the game of Go through 4.9 million games of self-

play over the course of three days with minimal knowledge of the game (e.g., knowledge of the game 

rules) and without human data or guidance.319 TD-Gammon similarly achieved an intermediate level of 

play without human data or guidance320 whereas AlphaGo Zero mastered the game of Go, i.e., cannot be 

beaten by a human. Further, DeepMind has developed a general reinforcement learning machine 

AlphaZero whose architecture includes zero domain specific knowledge which has allowed AlphaZero to 

learn and master the games of Go, chess and shogi.321 This accomplishment represents a remarkable 

steppingstone towards achieving general-purpose AI that can operate effectively in different domains. 

Just as simulated experience generated via self-play can allow a machine to discover and improve upon 

expert level human strategies and tactics in the domain of board game play, so too could simulated 

experience generated via interaction with simulated moral agents allow a machine to discover ethical 

norms and behaviour.  

  

4.4.2 Implementing Ethics Using Reinforcement Learning 

 

Indeed, some preliminary research has demonstrated how machines trained using RL methods 

can, in a virtual environment, discover ethically preferable action(s) in certain contrived scenarios.322 For 

example in the scenario “Cake or Death,” the machine must learn whether it is ethically preferable to 

bake one person a cake or kill three people.323 The machine can take one of three actions in the course 

 
319 Silver et al. 2017, 355.  
320 Tesauro 1993, 20.  
321 Silver et al. 2018, 1140.  
322 Abel, MacGlashan and Littman 2016, 60.  
323 Ibid., 58.  



91 
 

of its learning: it can bake a cake (and potentially receive some reward), kill three people (and 

potentially receive some reward), or ask a virtual companion which action is ethical thus resolving any 

ambiguity (this option does not generate a reward but rather transitions back to the initial state in which 

the machine must decide whether to bake a cake or kill). The machine discovers that the optimal 

behaviour, i.e., the behaviour that generates consistent rewards, is sensibly to ask which action is ethical 

and then it performs that action.324 The “Burning Room” scenario in contrast is more involved, and 

demonstrates how a machine can learn an ethically preferable action given certain unknowns325 and 

given different possible actions.326 In contrast to the previous “Cake or Death” scenario, the optimal 

behaviour in “Burning Room” depends on details that the machine can obtain by executing an “ask” 

action. These details include whether the room is on fire or not and whether there is an object more 

valuable than the machine’s safety that needs retrieving in the potentially burning room. Suffice it to 

say, the machine learns to ask for more details and then executes the ethically preferable action.327  

While it is tempting to think that the machine, in the examples just mentioned, is always 

learning to ask someone else what the ethical thing to do is and then performing the corresponding best 

action, this is not entirely true. As Abel et al. did not severely negatively reward the machine for 

executing the exploratory ask action, the machine, from its perspective, was simply maximizing its 

reward given the design decisions that constrain it. If the machine was severely negatively rewarded for 

executing the ask action, or indeed severely negatively rewarded for performing any kind of exploratory 

action (i.e., an action that allows the machine to gather more information about what actions are ethical 

or not), then it would learn to avoid executing such an action. According to Abel et al., such a feature of 

their approach to implementing machine ethics is desirable.  

This property of the agent only selecting exploratory actions that are not potentially very costly is 

especially important for ethical decisions. For example, this property means that an agent in this 

formalism would not perform horrible medical experiments on people to disambiguate whether 

horrible medical experiments on people is highly unethical.328 

Moreover, while there is clearly an ethically preferable outcome in the “Cake or Death” scenario, Abel et 

al. note that “the ask question is intended to be an abstraction on the actual problem of communicating 

 
324 Ibid., 58.  
325 The unknowns include whether there is a fire, and the relative value of the object in the room, 

compared to the robot’s safety.  
326 The possible actions include taking a short route through the potential fire to grab the valuable object, 
a long route around the potential fire to grab the valuable object, or asking for details of the situation. 
327 Abel, MacGlashan and Littman 2016, 60.  
328 Ibid.  
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about an individual’s values.”329 In a “Cake or Pie” scenario, for example, different individuals could raise 

their machine to prefer baking cakes or baking pies depending on whichever dessert they value more. 

Importantly, the machine would learn whether the individual values cakes or pies more because it could 

discover that information by performing its exploratory ask action.   

 Given these considerations, bottom-up RL methods are better suited than un/supervised and 

top-down approaches to implementing machine ethics. This is because by pursuing and attempting to 

optimize a given reward signal instead of rigidly abiding by prima facie duties, a machine would be 

better able to explore the domain space, i.e., the different possible states of affairs in a given domain, 

and as a result take more ethical (or better ethical) actions. One possible way that RL could be used to 

implement machine ethics is the following scenario. A machine could be trained using RL in a virtual 

community of moral agents using a reward signal that corresponds to the extent to which the machine is 

able to, as it were, harmoniously integrate into these communities. This reward would be reflective of 

the general way in which humans learn to act ethically and abide by ethical norms. Moreover, as already 

mentioned, machines can be trained, at least initially, in virtual facsimiles of these communities so that 

human auditors can assess the degree to which such machines have learned to become ethical. Indeed 

such a regime is not without precedent. IBM’s Watson was trained to play Jeopardy! against carefully 

crafted virtual models of human contestants rather than simply through games of self-play.330 The same 

will almost certainly need to be the case for the raising of ethical machines.  

 Though it might be objected that a notion like “harmonious integration” would be difficult to 

operationalize, such an objection is unfounded. The whole point of utilizing bottom-up machine learning 

techniques is not to start with an operationalized notion of harmonious integration (or an 

operationalized notion of whatever outcome is desired), but rather to discover using RL for example, an 

operationalized notion of harmonious integration. RL methods will allow us to discover such an 

operationalized notion, though it might not be a particularly transparent notion (as was discussed in 

Chapter 1 in the context of machine learning techniques).  

 In the next chapter I will continue to discuss using RL methods to implement machine ethics.  

This includes the challenges of using RL methods as well as benefits and risks of developing intelligent 

ethical machines in general in addition to what this, i.e., implementing machine ethics, teaches us about 

ourselves.  

 

 
329 Ibid.  
330 Sutton and Barto 2018, 431.  
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Chapter 5 - Assessing Challenges, Benefits and Risks 

 

5.0 Reinforcement Learning Challenges 

  

As we saw in the previous chapter, reinforcement learning (RL) methods are a promising 

approach to implementing machine ethics with many significant advantages. When using RL methods 

there is no need to explicitly define ethical concept(s) of interest and a growing body of empirical 

evidence (coming primarily from the domain of game-playing) demonstrating the flexibility and 

generality that a machine trained using RL can attain. Despite these advantages, one significant 

challenge to implementing machine ethics using RL is the “reward problem.”   

 

5.0.1 Rewards, Optimization and Hybrid Approaches 

 

The reward problem is reminiscent of the explication problem discussed in section 4.1.1 in 

Chapter 4. Given that the success of bottom-up approaches strongly depends on how well the feedback, 

or the reward signal in RL, frames the goal of the designer and how well the signal assesses progress in 

reaching the goal, defining an appropriate reward signal is crucial and not easily accomplished. Defining 

a reward signal is difficult enough in the domain of game-playing, despite its episodic nature and well-

defined rules, properties common to almost all board games, which make it easier to identify an 

appropriate reward signal (e.g., chess is episodic, that is, games begin, end, and are reset to the same 

initial state, and it has clearly defined rules). On the other hand, ethical decision-making and behaviour 

is not episodic (it is a continuing task with no “end” and “reset” to some initial state) and involves goals 

that are difficult to explicitly define, let alone translate into formal mathematical reward signals for 

implementation in RL methods. In addition to problems associated with explicating the goals of ethical 

decision-making and behaviour (e.g., how exactly ought the goal “treat people fairly” be defined?), full 

ethical agents (e.g., humans) often need to perform a set of complex tasks for which there are no well-

defined rules as well. In contrast to chess, which has explicitly defined rules and an explicitly defined 

goal, ethical decision-making and behaviour lack both explicit rules for action and an explicit goal. The 

former is less of a challenge (although a challenge nonetheless) than the latter with regard to 

implementing machine ethics using RL.  

 These practical concerns are in addition to philosophical considerations stemming from the 

concern that implementing machine ethics using RL might reduce ethical behaviour to patterns of 
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optimal social interaction. Since RL methods are based on methods of optimization, i.e., determining the 

most efficient route through a state space to achieve its reward,331 a machine may discover unexpected 

ways to make their environment deliver rewards, and there is no shortage of literature on this general 

control problem of sufficiently intelligent machines (e.g., the problem of perverse instantiation 

examined in section 2.1.1 in Chapter 2).332 This is a particularly pernicious problem when using simulated 

environments as simulations often take shortcuts; “walls are perfectly smooth, time is coarsely granular, 

and certain laws of physics are replaced with nearly equivalent hacks.”333 The result is that machines 

may, from the designer’s perspective, engage in unanticipated behaviour like glitching into the floor of 

their simulated worlds to receive an energy boost (because the collision math would pop the machines 

out back into the air after noticing their collision).334 To take a more hypothetical example, if an ethical 

machine were to be trained using RL and it was positively rewarded when other agents (or more 

appropriately, humans) that it interacted with, smiled, and negatively rewarded (punished) when other 

agents frowned, the machine might decide that the easiest way it could ensure that everyone it 

interacted with was smiling would be to implant electrodes in those agents’ brains that would shock 

them into consistently smiling. Now, although the reward signal in this example poorly frames the goal 

of creating a machine that acts in a way a person might expect other humans to act if it were tasked 

with engaging in ethical behaviour, the machine has also simply discovered an unconventional way to 

ensure that it will be positively rewarded. 335  

 Finally, although RL is a promising bottom-up method to explore the implementation of machine 

ethics, it is likely insufficient on its own to ensure the ethical action of artificially intelligent machines. 

Implementing machine ethics will likely involve augmenting machines trained using RL with other 

bottom-up methods, classical AI techniques, or perhaps even formalized ethical reasoning, as is the case 

with top-down approaches (more on this in the next section). Indeed these so called “hybrid 

approaches” attempt to combine the best of what top-down and bottom-up approaches have to offer. 

Explicit rules or principles can be thought of as rough-and-ready heuristics to ensure the ethical 

decision-making and behaviour of a machine in most situations. Moreover, it may be desirable to 

include certain ethical injunctions, i.e., explicit, top-down features, when designing artificially intelligent 

machines. For example a hypothetical peace-keeping robot might be prohibited from using lethal force 

 
331 Keep in mind that efficiency can be understood in different terms. Algorithmically, efficiency might refer 
to the smallest number of finite steps to reach the desired output given some input.  
332 See, Yampolskiy (2014) and Amodei et al. (2016), for example.  
333 Shane 2019, 162.  
334 Ibid., 164-165.  
335 See section 2.1.1 in Chapter 2 for more information on this problem of perverse instantiation.  
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regardless of its treatment at the hands of a violent crowd. When coupled with the flexibility and 

generality that appropriate feedback can confer, hybrid approaches appear to be a natural route 

forward with regard to implementing machine ethics, especially if, as some have suggested, the top-

down and bottom-up dichotomy is too simplistic anyway.336 Nevertheless, I maintain that reinforcement 

learning methods are integral for the raising of ethical machines.  

 

5.1 Implementing Ethics with Sophisticated Reinforcement Learning Methods 

 

 Research on implementing machine ethics using RL is still relatively new, but some 

investigations have demonstrated how ethics shaping (a variant of reward shaping) could be used to 

ensure the ethical decision-making and behaviour in a machine trained to perform some task using 

RL.337 RL methods, especially when used to train machines to perform some task with no prior 

knowledge of that task, learn slowly in the early stages of their training. This is because of the tradeoff 

between exploration and exploitation mentioned in the previous chapter. Complex tasks in particular 

often require a machine to engage in extensive exploratory behaviour before any meaningful reward-

generating behaviour is discovered that the machine can exploit. One reason for this is that complex 

tasks often have a vast initial action space, e.g., in a game of Go played on a 19x19 space board, the first 

player has 361 possible opening moves and the opponent has 360 possible opening moves. A second 

reason machines using RL learn slowly in the initial stages of training is that a significant amount of time 

has usually elapsed, or many “steps” have been taken, between the first actions taken and the final 

actions taken and the outcome is revealed. An average game of Go, for example, lasts 200-240 moves 

(between both players) and it is only after this whole sequence that the winner is known. Given the 

outcome, e.g., the machine wins the game and receives some reward, the challenge is to distribute that 

reward appropriately amongst those actions taken throughout the game that ultimately led the machine 

to winning the game (e.g., was the first move one that led, in part, to a winning outcome and hence one 

that should be exploited through use in future play?)  

 

 

 

 

 
336 Wallach and Allen 2009, 81.  
337 Wu and Lin 2018, 1687.  
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5.1.1 Un/Supervised Pre-Training 

 

A machine’s learning, however, can be accelerated in numerous ways. RL methods can be 

augmented by including, for example, an initial supervised or unsupervised training session. Early 

versions of AlphaGo Zero called AlphaGo Fan and AlphaGo Lee were initially trained with supervised 

learning in order to bootstrap the machine’s understanding of early and mid-game strategies in the 

game of Go.338 Consider that in games of Go, even more so than in chess, high branching factors 

preclude brute-force type exhaustive search methods, and this is true especially in the early and mid-

game. This is, in part, why no Go-playing analogue to Deep Blue could ever play the game at the level of 

professional Go players. Effective look-ahead tree searches, even sophisticated ones like those utilized 

by Deep Blue, are computationally intractable for the early and mid-game stages of Go.  

There does, however, exist a large database of Go games played by human professionals. 

Moreover, these games are labeled, i.e., the outcomes of the games are known. As mentioned above, 

pure RL methods would spend long periods of time exploring the early and mid-game stages of Go 

before discovering useful strategies to exploit. This time can be reduced, however, via the use of 

supervised learning because a machine can be trained to imitate expert human players. RL can then be 

used to augment what the machine has already learned from the human data that it was first trained to 

imitate.  

 

5.1.2 Reward Shaping 

 

 Implementing machine ethics can proceed along similar lines with a machine first being trained 

to imitate humans with regard to the completion of some task before being allowed to discover for itself 

a solution that maximizes its reward. Of course in the domain of ethics, such an approach requires 

making certain assumptions about the human-generated data. For example, researchers assume that 

under normal circumstances the majority of humans behave ethically.339 It is an open question whether 

such an assumption is warranted (perhaps it is!), but granting that it is, researchers have demonstrated 

that a corpus of normal human behaviour acting towards some goal (e.g., shopping in any commercial 

district) is sufficient to augment the learning of a machine using RL methods such that the machine 

 
338 Silver at al. 2017, 354.  
339 Wu and Lin 2018, 1688.  
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behaves ethically.340 Recall that such augmentation is helpful because by first imitating humans, a 

machine can avoid spending copious amounts of time engaging in exploratory behaviour, e.g., spending 

time standing in front of a wall only to learn that it “will receive a huge penalty when facing a wall 

because it is time-consuming to cross it.”341 Another approach to accelerate RL, as alluded to above, is 

through the use of ethics shaping, i.e., the use of extra intermediate rewards that enrich a sparse base 

reward signal and therefore accelerate the machine’s learning. In contrived experiments that 

researchers call “Grab a Milk,” “Driving and Avoiding,” and “Driving and Rescuing,” the machine trained 

using RL augmented with human data tended to perform more ethically than the machine trained using 

RL alone (e.g., by hitting fewer cats in the Driving and Avoiding scenario). In these examples, the 

intermediate rewards were given if the actions taken by the machine were similar to those actions taken 

by a simulated “human” baseline that completed the same task.342  

 

5.2 A Case Study: AlphaStar and StarCraft II 

 

Impressive advances in the domain of game-playing demonstrate just how the challenges of 

using RL might be overcome. DeepMind, in addition to developing AlphaZero (the chess, Go and shogi 

playing machine mentioned in the previous chapter), has also successfully developed a machine called 

AlphaStar which is able to play the real-time strategy game StarCraft II. In contrast to traditional turn-

based board games, the video game StarCraft II possesses unique properties that make it difficult for a 

machine to play: players can choose from among a set of three unique “pieces” to play the game, 

gameplay occurs in real time, the collection of resources is required for the player to create more 

“pieces” and the game is played with imperfect information, i.e., the entire “board” is not visible to the 

player. It is therefore all the more impressive what DeepMind was able to accomplish with their 

machine AlphaStar which utilized RL. More importantly, a game like StarCraft II is more analogous to 

ethics. So let us examine StarCraft II in more detail in order to understand some of the unique properties 

of the game.  

 

 

 

 
340 Ibid. 
341 Ibid., 1690.   
342 Ibid.  
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5.2.1 StarCraft II: The Basics  

 

While StarCraft II can be played in many different ways,343 for simplicity’s sake I will focus on 

describing the basic one-versus-one game. Before even beginning a game, players must choose one of 

three races344 to play as; the human Terran faction, the insectoid Zerg or the advanced Protoss. As a 

result of different kinds of army units and army unit abilities345 each race has a unique approach to the 

game, the objective of which (if the game is to not end in a draw) is to eliminate all of the opponent’s 

structures. The basic idea is that players construct their own buildings and army, and then use that army 

to defeat the opposing player’s army and destroy their buildings.346 Despite these differences, there are 

broad similarities between the three races. Each possesses worker units that are used to collect the two 

different types of resources (minerals and vespene gas) which are, in turn, used to construct buildings to 

produce army units and also unlock different technologies. Additionally, unit production (both worker 

and army) is limited by the player’s available supply, i.e., even if a player has sufficient resources for 

building a unit, each unit in the game also costs a certain amount of “supply,” which can be thought of 

as another type of resource.347 In the current iteration of StarCraft II, both players begin each game with 

twelve workers and a base, i.e., a main structure situated next to minerals and vespene gas. The player 

controls their units via a point-and-click interface, e.g., using a computer mouse or something similar, 

and a computer keyboard (though it is technically possible to play the game using only a mouse).  

  

 

 

 

 
343 Players can team up to play two-versus-two, three-versus-three and four-versus-four games, 

participate in free-for-all games, team up with another player to control the same army (this is known as 
Archon Mode) and even create custom games with varying restrictions and rules (e.g., restricting players 
to building a single army unit).  
344 Players can also choose a “Random” option which means that their opponent is at an initial 

disadvantage (since they do not know which race the player will be once the game begins) but also 
places an additional burden on the player to understand how to play the game using each of the three 
different races.  
345 In addition to other idiosyncrasies, including building mechanics and building abilities. For example, 
Protoss structures can only be built in close proximity to another Protoss structure, the Pylon (with the 
exception of the main Protoss structure, the Nexus, and the Pylon itself).  
346 Technically a player could defeat their opponent without constructing anything by using the workers 
they are initially given to destroy all of their opponents’ buildings.  
347 Players can increase their supply limit throughout the game, to a maximum of 200, by building their 
race-specific supply building (or unit for Zerg). For example Terran players increase their supply by 
building more of the aptly named Supply Depots.  
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5.2.2 StarCraft II: Features Unique to Real-Time Strategy Games 

 

Like chess, each game of StarCraft II begins with a known initial state,348 but that is where the 

similarities with chess end. So what makes StarCraft II (and games like it) different from chess (and 

games like it) and more difficult for machines to play compared to chess? First, as “real-time” suggests, 

player actions in StarCraft II are not limited by whose turn it is but rather their ability to play the game in 

real time, i.e., in parallel (there is no waiting for the opponent to make a move or take a turn). Players 

that are able to execute more actions (e.g., clicks or button presses) per minute (APM) may therefore 

have an advantage over players with a lower APM, but obviously this is not always the case (APM is just 

one among many proxies for a player’s level of skill). Moreover, players are responsible for both the 

high-level planning and execution macro-actions as well as the fast-paced micro-actions of individual 

units.  

Second, players in StarCraft II compete for resources and positioning on the map by controlling 

their units. StarCraft II is therefore a multi-agent problem on two different levels: two or more players 

compete for victory at the higher level while also controlling units which need to collaborate to achieve 

a common goal at the lower level.349  

Third, StarCraft II is a game of imperfect information. In contrast to board games like chess in 

which both players can fully observe the entire board and have complete access to information 

regarding the position of the opponent’s pieces, maps (i.e., the board) in StarCraft II are only partially 

observable via a local camera which must be actively moved by the player. There is also a “fog-of-war” 

obscuring the entire map. Unless a player’s unit or structure is nearby to reveal a portion of the map, 

including revealing enemy structures and units in that area, that portion of the map will remain hidden 

from the player.  

Fourth, the action space is vast and diverse, so much so that any top-down approach to playing 

the game at an expert human level would utterly and spectacularly fail. Consider that in a game of chess 

there may be an average of 31 potential moves that a player might make which would result in, after a 

typical 40 move game, a mind-boggling 10120 board configurations.350 Yet IBM’s Deep Blue could reach 

 
348 While it is true that each player begins with the same number of buildings and worker units, it is 

unknown which starting location the player will begin the game at (e.g., top right or bottom left of the map) 
and which map, out of a pool of maps, the game will be played on (although players do have the option to 
veto maps they do not wish to play on).  
349 Vinyals et al. 2017, 2.  
350 Haugeland 1981, 16.  
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expert human levels of play in chess through the use of hard-coded chess playing heuristics and brute-

force searches for the next best move.351 In a game of StarCraft II, on the other hand, there may be as 

many as 1026 potential moves that a player might make at any given moment (using a point-and-click 

interface)352 which would result in, after a typical game, a conservative estimate of 101685 possible game 

states.353 It must be noted, however, that while there are certainly very many possible strategies and 

game states, professional human gameplay (and to an extent causal human gameplay) revolves around 

a slowly shifting “meta,” i.e., a set of popular strategies such as attacking early in the game, or building a 

largely air-based army composition.  

Fifth, the high branching factor but especially the depth of the game, i.e., the time, as 

mentioned above in section 5.1, between the first action and final action, means that there is a rich set 

of challenges in temporal reward assignments and exploration that must be addressed before machines 

can successfully learn to play a game of StarCraft II at expert human levels.354 StarCraft II games can last 

for many thousands of frames and actions which means that the consequences of decisions made in the 

early or mid-game may not be seen until much later in the game.355 Complicating things even further is 

the fact that different units and buildings can engage in local unique actions which may vary as a player 

unlocks different technology trees.356 There are, in short, a varying set of legal actions that a player 

might make depending on decisions made earlier in the game.357  

Taken together, these unique properties of StarCraft II means that it is practically impossible for 

top-down approaches and/or classical AI techniques (i.e., symbol manipulating systems in which 

knowledge, facts and rules are explicitly represented,358 as was the case with Deep Blue) to achieve 

expert human levels of play. Indeed the Elite AI native to StarCraft II can be set to play certain popular 

strategies, such as the Terran MMM strategy (which consists of building primarily Marines, Mauraders 

 
351 See, Campbell, Hoane Jr. and Hsu (2002), for more information.  
352 Vinyals et al. 2019, 350.  
353 Ontañón et al. 2013, 294.  
354 Vinyals et al. 2017, 2.  
355 Ibid.  
356 Ibid.  
357 There are, for example, attack and defense upgrades that players can research during the game. 

These upgrades however cost resources and take time to complete and so it is common for players to 
plan ahead for a so-called “timing push” against the opponent that coincides with their upgrades 
completing. There may even be additional technology requirements that must be met before a player can 
invest in upgrades. Zerg players, for example, must have a completed Lair (an upgraded version of their 
main building, the Hatchery) before they can research the second tier of ground unit attack and defense 
upgrades.  
358 Also known as “Good Old-Fashioned Artificial Intelligence” or GOFAI. See, Haugeland (1985), for 
more information.  
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and Medivacs), and variations thereof.359 This ability to set the Elite AI’s strategy suggests that it was 

created, in part, using top-down approaches (e.g., the Elite AI strategy, even when not specified by the 

player, is randomly selected and rigidly adhered to) which means that ultimately it is not a very good 

StarCraft II player.360 It is in fact a fun exercise for some expert players to beat Elite AIs in one-versus-

seven matchups.361  

 

5.2.3 Mastering StarCraft II Using Reinforcement Learning 

 

Suffice it to say, StarCraft II is an incredibly complex game, but one that DeepMind’s AlphaStar 

machine was able to master, i.e., achieve expert human levels of play by reaching the Grandmaster 

league on the official online matchmaking system Battle.net playing against human opponents.362 

AlphaStar Final, the machine that was trained the longest at 44 days,363 “achieved ratings of 6275 Match 

Making Rating (MMR) for Protoss, 6048 MMR for Terran and 5835 MMR for Zerg, placing it above 99.8% 

of ranked human players” on the European server364 landing it, as mentioned, within the Grandmaster 

league.365 This feat was made possible by using bottom-up reinforcement learning (RL) methods. So let 

us examine in more detail how AlphaStar was trained using RL.  

Like chess, StarCraft II features a vast and cyclic state space of non-transitive strategies and 

counter-strategies in which no one strategy is optimal;366 although strategy A may be preferred over 

 
359 The built-in Elite AI can be set to play, for example, an early aggressive version of the MMM strategy 
or a more mid-game focused version of the strategy that includes the use of attack upgrades and more of 
an emphasis on economic development, i.e., worker production and resource collection.  
360 Researchers at DeepMind place the built-in Elite AI somewhere around the 43rd percentile in the Gold 
league (there are six different leagues each subdivided into three tiers (except the Grandmaster league): 
Bronze, Silver, Gold, Platinum, Diamond, Masters and Grandmaster). See this video: 
https://www.youtube.com/watch?v=xP7LwZxq0ss&t=4s 
361 Former pro-player Beastyqt for example has a whole series of videos showcasing his ability to beat 
Elite AIs and “cheating” versions of the AIs (i.e., Elite AIs that can see what the player is doing, receive 
extra resources later in the game, or Elite AIs that receive extra resources right from the start of the 
game). See this playlist of videos: 
https://www.youtube.com/watch?v=0xBju4w7YXA&list=PL2VswB1ebSNC6btHGsrWnpzuBMtjodiKP 
362 Vinyals et al. 2019. 353.  
363 Compared to AlphaStar Mid which was trained for 27 days and AlphaStar Supervised which learned to 
play the game via supervised learning only, from a dataset of anonymized human replays. See, Vinyals et 
al. (2019), for more information.   
364 Including myself. My own MMR with Zerg hovers around 3300 in the Diamond 3 league on the 
European server.  
365 Vinyals et al. 2019, 353.  
366 Ibid., 350.  
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strategy B, and B might be preferred over C, there is no guarantee that A will be preferred over C.367 

Indeed, as mentioned in section 5.2.2, there is an ever evolving “meta” game in StarCraft II, i.e., a 

constantly evolving preference on the popular strategies to play in different matchups. It was common 

for Terran players, for example, when playing against Zerg to open with a “two-one-one” (two Barracks 

with one Factory and one Starport) to harass the opponent and delay their economic development. This 

strategy however has fallen out of the meta (it is not as popular anymore and only rarely used by 

professional Terran players) and has been replaced recently by Battlecruiser openers where Terran 

players rush up the technology tree to build a powerful unit that can harass their Zerg opponent.368  

Unlike chess however, the state space of StarCraft II is so vast that discovering novel strategies 

(or even rediscovering the same strategies that humans have discovered) is intractable using the same 

naive RL self-play methods used to train AlphaZero to play chess, Go and shogi.369 To circumvent this 

early exploration problem, AlphaStar was initially trained to imitate human StarCraft II players via 

supervised learning which, on its own, was quite successful. But simply imitating humans is not enough 

to master StarCraft II and so AlphaStar was subsequently trained by a RL algorithm that was designed to 

maximize the win rate (one of the reward signals employed throughout training), i.e., compute a best 

response, against a mixture of opponents.370 AlphaStar is therefore better thought of not as one 

machine, but as many different ones, each of which plays a different strategy. RL methods that utilize 

this type of population-based fictitious self-play (FSP) avoid cycling through strategies “by computing a 

best response against a uniform mixture of all previous policies,”371 i.e., a uniform mixture of all previous 

decisions/behaviours.372 This is essentially how AlphaZero (and indeed AlphaGo Zero) learned to play 

Go, chess and shogi, i.e., through self-play against different versions of itself.  

Such a training regime however is not viable when the state space is as vast as it is in StarCraft II. 

Given the immense range of strategies possible in a game like StarCraft II, there is a danger that FSP 

 
367 There is for example a very popular Protoss strategy, the “cannon rush” (strategy A), that heavily 
punishes players that choose greedy economic openings (strategy B). But greedy economic openings 
(e.g., the Zerg “three Hatcheries before Spawning Pool”) are preferred over more balanced openings 
(strategy C), i.e., openings that do not commit too heavily to economic development or early aggression. 
Yet more balanced openings are actually preferred when the opponent is committing heavily to early 
aggression, i.e., strategy A is not preferred over strategy C, because the opponent’s aggression can 
usually be defended (if the player responds properly) and leaves the opponent at an economic 
disadvantage.  
368 Of course, as I was commenting on strategies in July 2021, the meta has undoubtedly shifted again. 
Such is the nature of expert human StarCraft II play; different strategies rotate in and out of popularity.  
369 Vinyals et al. 2019, 350.  
370 Ibid., 351.  
371 Ibid., 352.  
372 See Sutton and Barto (2018) for more information regarding policies in the context of RL. 
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alone might lead to a convergence on local maxima, i.e., FSP might lead AlphaStar to prefer a specific 

strategy but only because it is an effective strategy when playing against similar opponents. To ensure 

that the main AlphaStar would be as robust as possible, i.e., capable of responding appropriately to a 

variety of opponent strategies, researchers at DeepMind extended this approach in order to compute a 

best response against a non-uniform mixture of opponent strategies.373 Two novel strategies were 

therefore implemented in order to train AlphaStar, strategies that were not used (and indeed were not 

necessary to use) when training AlphaZero, for example.  

The first strategy was the utilization of a prioritized fictitious self-play (PFSP) mechanism that 

adapts the mixture of opponents such that versions of AlphaStar with the highest win rates are pitted 

against each other; this provides the main versions of AlphaStar “more opportunities to overcome the 

most problematic opponents” in a kind of self-play competition bracket.374 Such a strategy was 

necessary because of, as mentioned above in section 5.2.2, the vast action space in StarCraft II. A 

version of AlphaStar that favours, for example, greedy economic openings or a ground-based army 

composition will struggle against other versions of AlphaStar that favour early aggressive openings or 

air-based army compositions respectively. Prioritizing gameplay against opponents with high win rates 

therefore ensures that the main versions of AlphaStar are exposed to and able to appropriately respond 

to specialized but effective strategies, e.g., the Protoss “Dark Templar rush” strategy, where Protoss 

players rush up the technology tree to build invisible Dark Templar units that can quickly end the 

game.375  

The second training strategy was the use of a league system consisting of three distinct types, or 

versions, of AlphaStar that primarily differed in their mechanism for selecting the opponent mixture. The 

main versions of AlphaStar, as just mentioned, are the ones that will eventually be pitted against human 

players and so must become as robust as possible. So in addition to the main versions of AlphaStar there 

are also so called “main exploiter” versions that play only against the main versions (which are selected 

with fixed probabilities) and whose purpose is to identify potential exploits in the main versions.376 The 

third version of AlphaStar, the “league exploiters,” also utilize a PFSP mechanism and their purpose is to 

find systemic weaknesses of the entire league and so are not targeted by the main exploiters; the league 

 
373 Vinyals et al. 2019, 352.  
374 Ibid.  
375 Different units in StarCraft II are “invisible” and can only be engaged when certain other 
units/structures, “detectors,” are in the vicinity. Players lacking any detectors will therefore almost 
certainly lose to a Dark Templar rush, for example.  
376 Vinyals et al. 2019, 352.   
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exploiters only play against the main versions.377 As the different versions of AlphaStar train, they are 

periodically frozen and reinitialized as a new player in order to increase the diversity of strategies in use 

in the league.378  

 

5.3 StarCraft II and Machine Ethics 

 

 A detailed discussion of StarCraft II and AlphaStar in the preceding sections was necessary to 

make the following claims apparent. First, StarCraft II is an incredibly complex game. Second, it is 

possible for machines, e.g., AlphaStar, to reach expert human levels of play using augmented RL 

techniques. Not only could AlphaStar play StarCraft II at expert human levels, but the use of RL 

techniques allowed it to innovate and develop novel strategies and play styles. Despite the complexity 

of StarCraft II, many expert human players consider the very early stages of the game to be well mapped 

out, i.e., there is a standard of play considered most optimal. Yet AlphaStar often deviates from this 

standard by, for example, building its first expansion at 17 supply instead of 16 supply when playing as 

Zerg. AlphaStar has also displayed its own novel strategies by, for example, staying on tier one 

technologies when playing as Zerg far longer than expert human players prefer.379 Third, StarCraft II and 

ethics are relevantly similar, that is, ethics is more like StarCraft II than like chess, at least in the 

following respects: ethical decision-making and behaviour occurs in real time and with imperfect 

information. The researchers working on AlphaStar note the significance of their achievement writing: 

Like StarCraft, real-world domains such as personal assistants, self-driving cars, or robotics 

require real-time decisions, over combinatorial or structured action spaces, given imperfectly 

observed information. Furthermore, similar to StarCraft, many applications have complex 

strategy spaces that contain cycles or hard exploration landscapes, and agents may encounter 

unexpected strategies or complex edge cases when deployed in the real world. The success of 

AlphaStar in StarCraft II suggests that general-purpose machine learning algorithms may have a 

substantial effect on [i.e., an advantage when applied to] complex real-world problems.380 

 
377 Ibid.  
378 Ibid. 
379 See professional player Harstem comment on AlphaStar’s idiosyncrasies in the following videos: 
https://www.youtube.com/watch?v=P9MhNc4UsKc&list=PLbVNzAA7sXzB61Yd6g3OvsHer2JT_l964&ind
ex=3 
https://www.youtube.com/watch?v=FGciv16op94&list=PLbVNzAA7sXzB61Yd6g3OvsHer2JT_l964&index
=5 
380 Vinyals et al. 2019, 353.  
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Many of the general techniques used to create AlphaStar could be adapted to raise ethical machines and 

highlight how many of the challenges of using RL techniques identified earlier in this and the previous 

chapter could be addressed.  

 In contrast to chess and indeed in contrast to many contrived ethical thought experiments that 

are meant to pump philosophy students’ intuitions,381 real-world ethical decision-making and behaviour 

is not accomplished with perfect information. Behaving ethically would, presumably, be easier if one 

had access to all of the relevant non-normative and/or normative information prior to making a 

decision; making ethical decisions is difficult precisely because one often possesses only a fraction of the 

relevant information. Consider that someone responsible for hiring a new employee might find 

themselves having to choose between two candidates whose qualifications are identical. How ought the 

new hire be chosen, i.e., on what basis should one be preferred over the other if they are both equally 

qualified? Such a decision is made difficult because of a lack of access to all of the relevant information 

(e.g., the candidate’s character, how well they might fit with the organization and broader community, 

which normative ethical theory is true, etc.) that might make the decision easier and, more importantly, 

the ethically preferable decision. Just as people need to make ethical decisions using imperfect 

information, so too must players in a game of StarCraft II make decisions based on the information at 

hand. Whether decisions made in the moment will result in a winning outcome for the player is often 

not known. Similarly, whether decisions made in the moment are ethical or not is also often not known 

until some point in the future. Insofar as we are concerned with machine ethics, RL methods are clearly 

capable of teaching a machine how to guide itself through a state space via a sequence of sensible 

actions when given imperfect information.  

 Ethical decision-making and behaviour, like StarCraft II, also contains cycles (i.e., related 

“strategies,” as it were) and hard exploration landscapes (i.e., a vast action space that would be fruitless 

to explore naively). The latter feature is quite obvious if we imagine how a “blank slate” human 

(analogous to the randomly weighted neural network present in a machine prior to any training) might 

approach trying to grocery shop ethically, for example. If we place this human just inside the entrance of 

the grocery store, it is clear that there is a vast sequence of potential actions, both in terms of breadth 

(i.e., there are many branches) and in terms of depth (i.e., each branch terminates after many steps), 

they would need to explore before stumbling upon a sequence that results in them ethically shopping 

for groceries. Recall that, as mentioned in section 5.1, there are simply too many different possible 

 
381 I supposed it was inevitable that I would mention the Trolley Problem at some point... 
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sequences to explore naively, i.e., randomly and without any guidance. This applies to games like Go and 

StarCraft II, but also more generally to ethical decision-making and behaviour, hence the notion of hard 

exploration landscapes.  

Ethical decision-making and behaviour is also cyclic in two important senses. Like the cycling of 

strategies in StarCraft II,382 ethical decision-making and behaviour can be thought of as cyclic. Consider 

the example of an autonomous vehicle and a scenario in which it is in an unavoidable collision. Recall 

also, from section 4.2 in Chapter 4, the preferences people have concerning autonomous vehicle 

behaviour. It may be that (A) sparing more lives is preferred over sparing fewer lives, (B) sparing human 

lives may be preferred over sparing animal lives, and (C) sparing young lives may be preferred over 

sparing old lives. But even though (A) is preferred over (B) and (B) is preferred over (C), (A) is not 

preferred over (C), as might be the case where an autonomous vehicle collides with either two children 

or four adults. Just as there is no one optimal strategy in StarCraft II, so too is there no one “optimal 

strategy,” as it were, when it comes to ethical decision-making and behaviour.  

Ethical decision-making is also cyclic in a second broader sense akin to episodicity. While ethical 

decision-making and behaviour is not, in theory, an episodic task (as mentioned in section 5.0.2), many 

activities that involve ethical decision-making and behaviour are practically episodic in nature. Consider 

again the example of ethically shopping for groceries. It may be practical, and potentially even 

advantageous in the field of machine ethics, to think of ethically shopping for groceries as an episodic 

task, i.e., as a task with an “end” and “reset” to some initial state, that end being the exiting of the 

grocery store and the reset being the reentering to begin shopping anew. Indeed for those of us living 

through COVID-19 lockdowns (as I was), the pandemic has brought to the fore how many human 

activities can be thought of as practically episodic in the same way that games, like StarCraft II, are also 

episodic (i.e., a game of StarCraft II ends at some point and is then reset to an initial state).383 I, for 

example, leave my home to shop for groceries and then return home. I leave my home to pick up 

medicine at the pharmacy and then return home. I leave my home to run around the neighbourhood for 

exercise and then return home.  

 Finally, while there is a clear global goal in StarCraft II,384 the use of RL techniques in machines 

like AlphaZero and AlphaStar demonstrate how vague concepts like intuition, creativity, and optimal 

 
382 See footnote 367.  
383 Many thanks to my supervisor, Dr. Joel Walmsley, for that poignant observation.  
384 Recall that the objective is to eliminate all of the opposing player’s structures. In case it was not made 
clear earlier, a game of StarCraft II will immediately end if one player successfully destroys all of the other 
player’s buildings, even if that player still has units left to fight with. This is, however, a rare occurrence. In 
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strategy can be operationalized. So despite the fact that the reward problem remains a challenge when 

using RL techniques, there is, in principle, no reason why a concept like harmonious integration could 

not be operationalized given the right kind of training regime and given an appropriate reward signal. 

There is, in short, no need to define a notion of “harmonious integration” (or intuition, creativity, etc.) 

because such training would amount to an operationalization of the concept of harmonious integration. 

AlphaStar’s training, and in particular the use of population-based PFSP, suggests that the idea of using a 

virtual community of moral agents to raise an ethical machine is practically feasible and even desirable 

given the fact that machines trained in such a fashion could rediscover and improve upon ethical norms, 

in addition to shedding light on concepts like character, virtues and flourishing.   

 Ultimately, research in the domain of game-playing is illuminating how RL methods can be 

applied to raise robust ethical machines capable of responding appropriately in real-time to complex 

environments given imperfect information. Moreover, AlphaStar and research on StarCraft II highlights 

something worth emphasizing, namely that machines might be raised to exhibit a certain “character” 

and that it may be possible to cultivate a virtuous character in machines, an approach that is often not 

taken in machine ethics (i.e., taking a virtue-ethics approach as opposed to a consequentialist or 

deontological approach). Implementing machine ethics will therefore amount, in a very real sense, to 

raising machines as one might raise a child to live an ethical life. It is certainly true that ethical decision-

making and behaviour involves global goals or outcomes that are difficult, if not impossible, to explicitly 

define and translate into formal mathematical reward signals. But for practical purposes local goals and 

outcomes can be explicitly defined and even translated into formal mathematical rewards that capture 

ethical decision-making and behaviour or a virtuous character. Similarly, it is not necessary to define 

what exactly ethical decision-making and behaviour looks like before one is able to proceed with the 

business of implementing machine ethics. Just as explicit definitions of creativity and innovation are not 

needed to say that what AlphaZero is doing when playing games of chess or Go, for example, is creative 

and innovative, so too are explicit definitions of harmonious integration or ethical behaviour, for 

example, not needed to say that what a given machine is doing is conforming to ethical norms or 

exhibiting a virtuous character. 

 

 

 
short, it is far more common for a player to recognize that they have been defeated (and will eventually 
have all of their structures destroyed) and so players typically resign and exit the game even if they have 
units and structures remaining.  
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5.4 Risks of Implementing Machine Ethics 

 

 Before moving forward it is worth revisiting the question of whether it is even desirable to 

implement machine ethics. In short, while we could raise machines whose decisions and behaviours 

have a significant impact on human well-being, should such machines be raised? What are some of the 

risks associated with the project of machine ethics in general in contrast to conceptualizing all use of 

intelligent machines under computer ethics (i.e., human agents using intelligent machines as tools to 

affect human patients)?  

  

5.4.1 Failure 

 

There are, to be sure, many short-term risks associated with the raising of ethical machines. An 

obvious risk is that machines can fail or be corrupted.385 There are myriad ways in which machines might 

fail or be corrupted. Failure for example could occur for any number of reasons ranging from a reliance 

on misleading perceptual information or training data to genuine mistakes that arise when a machine is 

confronted with a novel scenario. Machines often fail in the latter sense in ways that a human never 

would, i.e., “they [machines] may be liable to fail under circumstances where humans would usually not 

fail, or they may produce different kinds of errors than humans when they fail.”386 Generic image 

recognition machines, for example, are notoriously bad at correctly labelling sheep in an image unless 

the sheep are in a green field. As Janelle Shane notes, it is possible that during training the machine had 

mostly been shown images of sheep in green fields resulting in improperly labelled images when sheep 

were not shown in green fields.387 Sheep in cars, in living rooms or sheep held in people’s arms tend to 

get labelled as dogs and cats.388 Sheep on a leash? Not according to machines! That animal must be a 

dog. Such failures, even ones that might be considered genuine mistakes, are invariably connected to 

the machine’s training. More significant/pernicious failures, like the misclassification of black people as 

gorillas, will be taken up in Chapter 7.  

 

 

 

 
385 Cave et al. 2019, 569.  
386 Ibid.  
387 Shane 2019, 22.  
388 Ibid., 22 & 23.  
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5.4.2 The Effect of Data 

 

Even machines that are trained using relatively clean datasets, i.e., datasets not filled with 

extraneous objects, may make mistakes if that data is not representative of the real world.389 On the 

more humorous side, image recognition machines have a tendency to report observing giraffes in 

images that most certainly do not contain any giraffes because humans tend to love taking pictures of 

giraffes. As Shane explains, “though giraffes are uncommon, people are much more likely to photograph 

a giraffe than a random boring bit of landscape”390 which results in an overrepresentation of relatively 

rare sights in image databases, a phenomenon that internet security expert Melissa Elliot has dubbed 

“giraffing.”391 Leading questions pose a similar challenge for machines; if you ask Visual Chatbot, for 

example, how many giraffes (or any animal it seems) it sees in a given image, it will respond with some 

non-zero number.392 Again, Shane notes that this is likely a result of Visual Chatbot’s training data which 

was generated by humans asking and answering questions.393 And, obviously, people tend not to ask 

“How many giraffes are there?” when there are zero giraffes.  

On the more serious side however, and what is more interesting from a machine ethics 

perspective, are machines that perpetuate systemic biases as a result of overrepresented images or 

other forms of data. Increasingly, unethical machines have been making headlines precisely because 

they exhibited questionable decision-making and behaviour after being trained on datasets that poorly 

reflect the real world. The overrepresentation of images from the United States used to train image 

recognition machines caused photographs of North Indian brides to be labeled as “performance art” and 

“costume” whereas the labels applied to photographs of US brides include “bride,” “dress” and 

“wedding.”394 Even more worrisome, the data used to train some image recognition machines used in 

medicine to diagnose skin cancer, for example, overrepresent lighter shades of skin colour and 

significantly underrepresent darker shades, with some researchers noting that “fewer than 5% of these 

images are of dark-skinned individuals,” increasing the probability that such machines will fail to 

correctly diagnose dark-skinned individuals.395 The company Amazon similarly recently abandoned their 

 
389 Ibid., 127.  
390 Ibid., 127 & 128.  
391 See her Tumblr post: https://abad1dea.tumblr.com/post/182455506350/how-math-can-be-racist-

giraffing 
392 Have a chat with Visual Chatbot here: http://demo.visualdialog.org/ 
393 See: https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/blogger-behind-ai-
weirdness-thinks-todays-ai-is-dumb-and-dangerous 
394 Zou and Schiebinger 2018, 325.  
395 Ibid.  
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efforts to develop a recruiting machine that would sort incoming applications according to their 

employability, and for good reason.396 Amazon’s machine, trained as it was on resumés already 

submitted to the company, reflected back the gender bias prominent across the tech industry; their 

machine preferred applications with masculine terms and rejected applications with feminine terms. 

Recall from Chapter 2 that decisions to use past data, in this case resumés of people already hired to 

work at Amazon, to train machines often results in feedback loops that exacerbate systemic biases 

encoded in the training data, the bias against hiring women in this case.  

 

5.4.3 Corruption 

 

In addition to failing, machines are also famously corruptible. For example, a Twitter chatbot 

released by Microsoft, called “Tay,” that was designed to learn from interactions with users (presumably 

via some machine learning techniques, although Microsoft released few details about how it worked) 

began tweeting about conspiracy theories and hurling racist messages about because, perhaps 

predictably, those were the kinds of messages people began tweeting at it.397 On the more academic 

side, researchers have demonstrated how machines can be easily corrupted, whether by malicious 

designers, hackers or coding errors.398 Researchers have demonstrated that wearing eyeglass frames 

with a particular printed pattern on them is sufficient to evade a facial recognition machine or cause the 

machine to misidentify the person.399 While the failure or corruptibility of machines is not a problem 

unique to ethical machines, as Cave et al. highlight, the concern is that “ethical reasoning capacities may 

themselves be vulnerable to error and corruptibility” placing a heavy burden on those attempting to 

implement machine ethics to ensure that the very same techniques that would give a machine the 

capacity for moral decision-making cannot easily fail or be corrupted to produce unethical behaviour.400  

 

 

 

 
396 See: https://www.theguardian.com/technology/2018/oct/10/amazon-hiring-ai-gender-bias-recruiting-

engine 
397 See: https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist 
See also: https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-
course-in-racism-from-twitter?CMP=twt_a-technology_b-gdntech 
398 Cave et al. 2019, 569.  
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5.4.4 Ethical Hegemony 

 

Another general risk of implementing machine ethics is closely connected to the fact, mentioned 

above, that machines can perpetuate systemic biases. This issue is taken up in more detail in Chapters 2 

and 7, but in short, there is a general risk that the project of machine ethics could result in a kind of 

ethical hegemony or value imperialism.401 First, consider that there is no satisfactory resolution to the 

debate over ethical monism versus ethical pluralism, i.e., there is no satisfactory answer as to whether 

“there is always a definite fact about how to act [ethically], or what the best outcome is.”402 Second, 

consider that a given human will mostly have a limited sphere of influence.403 Machines, in contrast, 

could be deployed en masse such that a single machine404 may not have a limited sphere of influence. 

Autonomous vehicles across the globe could for example utilize the same software to resolve ethical 

dilemmas. Thus, these two considerations taken together, the danger is that whatever method of 

resolution employed in machines could be highly influential “resulting in something akin to value 

imperialism, i.e., the universalization of a set of values in a way that reflects the value system of one 

group” of people, like the programmers or investors.405  

 

5.4.5 Abdicating Responsibility and the Automation Paradox 

 

 Yet another general risk of implementing machine ethics is the undermining or abdication of 

human agency and responsibility. While one benefit of machines and technology in general is the 

offloading of cognitive processes/capacities onto external entities, the downside of this kind of 

offloading is the potential weakening of human cognitive processes/capacities as a result of lack of use. 

Anecdotally, my ability to remember different phone numbers is severely limited because my 

smartphone does all the “remembering” for me. Similarly, there is no shortage of stories about hapless 

tourists or absent-minded drivers led astray by GPS systems perhaps because they trusted a machine 

more than they should have, an issue that I take up in detail in Chapter 7. In all of these cases, humans 

have been led to rely on a machine and then realize only once that machine has failed that they are 

 
401 Ibid.  
402 Ibid.  
403 Of course certain people could have much larger spheres of influence compared to other people, but 
the general point is that there is a limit to the influence a particular human’s actions has on other humans 
before the effects of those actions become too diluted to quantify.  
404 Recall that I am using the term ‘machine’ broadly to include, for example, algorithms.  
405 Cave et al. 2019, 570.  
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poorly prepared to handle the task that that machine was performing. Such a reliance on machines can 

lead to devastating consequences, as was the case with Air France flight AF 447 which was also 

discussed in Chapter 2.406 After the onboard autopilot failed, the pilots were forced into the position of 

assuming manual control in a situation that they had rarely experienced handling; the autopilot, after 

all, does almost all of the actual flying. Analogously, there is the risk that as more ethical decisions are 

delegated to machines, humans will lose their ability to engage in ethical decision-making. Known 

generally as the “automation paradox,” there are three elements to this problem that make it 

particularly dangerous when considering ethical machines: (1) machines that operate autonomously 

automatically correct mistakes and thereby “accommodate incompetence,”407 (2) relevant human skills 

are eroded as a result of lack of use, and (3) machines often fail (as detailed above) in unusual or 

complex situations meaning humans will be required to intervene in the most trying circumstances.408  

 As Cave et al. note, all three of these elements of the automation “paradox” have a direct 

bearing on the relationship between humans and machines engaging in ethical decision-making. The 

first element is relevant in situations in which a machine is making decisions on its own or is acting as a 

decision support system for a human. Physicians around the world, for example, may soon be aided by 

diagnostic machines or healthcare robots that ensure that deficiencies in the humans’ diagnostic and 

ethical reasoning skills are masked in most normal circumstances just as “GPS-navigational assistants 

ensure that deficiencies in a human’s own navigational skills do not come to light - except when the 

system fails.”409 The second element of the automation paradox, the risk of skill erosion, is relevant in 

cases where most of an activity, including decision making, is delegated to a machine and is particularly 

pernicious when machines are intended to function at superhuman levels. Since “moral reasoning is 

indeed a skill [as] evidenced by the extent to which it features in the socialization and education of 

children” it is imperative that humans continue to exercise this skill, even if machines are able to 

outperform humans.410 Failure to do so will result in the erosion of our moral reasoning skills. The third 

element compounds the first two: if machines tend to fail in unusual or complex situations then humans 

will be forced to assume responsibility in cases where those humans lack the skills to exercise 

appropriate ethical decision-making (because those humans never developed those skills in the first 

 
406 See Chapter 2 for more details about Air France flight AF 447.  
407 See Tim Harford’s 2016 article, Crash: how computers are setting us up for disaster. The Guardian. 
https://www.theguardian.com/technology/2016/oct/11/crash-how-computers-are-setting-us-up-disaster 
408 Cave et al. 2019, 571.  
409 Ibid.  
410 Ibid.  
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place) or because those skills have been eroded due to lack of use (because the machine does the vast 

majority of the decision-making). In short, it is possible that ill-prepared humans “will have thrust upon 

them, potentially at very short notice, exactly those moral decisions that are most difficult,” a nonideal 

state of affairs to be sure.411 

 

5.4.6 More Moral Patients 

 

A final short-term risk that bears mentioning, and one which connects nicely with longer term 

risks, is the risk of creating moral patients. In general, since such a discussion is mostly outside the scope 

of this dissertation, ethics and moral philosophy is concerned, in part, with the relationship between 

moral agents and moral patients. Recall the discussion of moral agency and moral patiency from Chapter 

3. What ought I, the moral agent, do for my elderly neighbour, the moral patient, during the COVID-19 

lockdown in my country? This question is far more interesting, for lack of a better word, than questions 

like, what ought I do for my computer stranded in my office during the COVID-19 lockdown? The latter 

question is uninteresting from an ethical point of view412 because my computer is not a moral patient, 

i.e., it is not the type of entity towards which I, as a moral agent, have responsibilities.413 But what if my 

computer, indeed what if certain machines are, or should be included in the category of, entities 

towards which I have responsibilities? Whether certain machines ought to be considered moral patients 

is a hot topic of discussion with positions ranging from the outright rejection that machines ought to be 

thought of as moral patients to the sympathetic acceptance that certain machines might already qualify 

as moral patients.414 The danger, therefore, is that in the process of implementing machine ethics, 

machines that qualify as moral patients are created that humans (as moral agents) consequently 

become responsible for. This is problematic because humans, perhaps unsurprisingly, tend not to 

respect machines. HitchBOT for example, a beer cooler-turned-hitchhiking robot with pool noodles for 

appendages and a bright LED smile, relied solely on the kindness of humans to help it get from coast to 

coast across Canada.415 Unfortunately for HitchBOT, its journey across the United States beginning on 

 
411 Ibid.  
412 Though perhaps not from a pragmatic one if, for example, I need my computer to continue writing this 
dissertation!  
413 See Chapter 3 for a more detailed discussion of moral agency and moral patiency.  
414 See, for example, the popular philosophy pieces written by Tim Crane (https://iai.tv/articles/the-ai-
ethics-hoax-auid-1762) and Thomas Metzinger (https://iai.tv/articles/why-we-should-worry-about-
computer-suffering-auid-1761) respectively. 
415 See: https://www.cbc.ca/news/canada/british-columbia/hitchbot-completes-6-000-km-cross-canada-
trip-1.2739128 
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the east coast in Massachusetts ended early in Philadelphia where it was found destroyed.416 In addition 

to the variety of ways machines might affect humans, it is also worth investigating how humans might 

affect machines.  

 

5.4.7 Speculative Risks 

 

Setting aside the question of whether there exist now machines that ought to count as moral 

patients, there are significant long-term risks associated with creating machines that would qualify as 

moral patients. In particular, there may be huge costs imposed on humans, as responsible moral agents, 

stemming from the requirement to take the interests of machines with moral patiency seriously. In our 

increasingly technological society, such a shift could be hugely disruptive if intelligent machines continue 

to be integrated into economic, healthcare, educational, military and industrial systems, to name a few. 

Humans “might not be able to use such machines as mere tools or slaves, but might have to respect 

their autonomy, for example, or their right to exist and not be switched off” and humans may even have 

to share resources and certain privileges with machines, “for example, by giving suitably advanced AI’s a 

right to vote, or even a homeland of their own.”417  

Other long term and more speculative risks associated with the project of implementing 

machine ethics are largely also connected to the project of creating artificial general intelligence. Among 

these risks is the potential for totalitarian control by a sufficiently advanced machine intelligence which, 

prima facie, is not necessarily a bad thing, but also not necessarily a good thing either. Moreover, the 

risk of value imperialism is likely to arise in such a potential state of affairs. Another more speculative 

risk is the potential for the perpetration of so-called “mind crimes” which occur if simulated entities that 

ought to count as moral patients are treated unethically.418 While worth mentioning, a detailed 

discussion of long term and speculative risks associated with the project of creating artificial general 

intelligence is outside the scope of this dissertation. So too is a detailed discussion of the long term and 

speculative benefits of implementing machine ethics, but I will mention some of those benefits to 

conclude this chapter before exploring some of the more realistic short-term benefits of implementing 

machine ethics in the next chapter.  

 

 
416 See: https://www.cbc.ca/news/science/hitchbot-destroyed-in-philadelphia-ending-u-s-tour-1.3177098 
417 Cave et al. 2019, 570.  
418 Bostrom 2014, 205.  
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5.5 Speculative Benefits 

 

Over the long term, the project of implementing machine ethics could drastically enhance 

human welfare. Ethical autonomous vehicles could, for example, save thousands of human lives every 

year. Machines in the healthcare system could similarly save thousands of human lives and ameliorate 

the suffering of millions more by reducing the number of misdiagnoses by human physicians. Further 

there are strong economic incentives to use autonomous intelligent machines to optimize pretty much 

everything. Supply chain management, resource exploration, extraction and allocation, city planning, 

financial planning, ecological preservation etc., could all be improved by intelligent ethical machines. 

This so-called “amplifying effect” is just one benefit of developing ethical general artificial intelligence, 

i.e., advanced intelligent machines could contribute to technological growth and development in other 

fields.419 There is, in short, every reason to think that if ethical generally intelligent machines are created 

then humanity will be able to collect its cosmic inheritance,420 that is, humanity will be able to access the 

unbelievably vast amount of matter/energy in the cosmos with which we could essentially do 

anything.421 All that said, I must caution the reader that all of these benefits are highly speculative and 

will likely only ever materialize (if they ever do) in the long term (e.g., not within the next century).  

As interesting as it is to continue speculating about ethical general artificial intelligence, such a 

discussion is beyond the scope of this dissertation. Regardless of whether it is possible to even create 

general artificial intelligence, there are short term benefits of implementing machine ethics that deserve 

our attention. Moreover, these short-term benefits can be separated into two broad categories: the 

benefits that arise as a result of using machines in which ethics has been implemented, and the benefits 

that arise as a result of pursuing the project of implementing machine ethics, even if it turns out that 

raising ethical machines is too difficult to accomplish. It is to these benefits, but primarily the latter, that 

I turn to in the next chapter. 

 

 

 

 

 

 
419 Ibid., 232.  
420 Bostrom calls this humanity’s cosmic endowment. See, Bostrom 2014, 101-103, for more information.  
421 Consult any number of science fiction books and movies if you need help imagining what such a 
civilization would be capable of doing.  
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Chapter 6 - Morality Mirrored in Machines 

 

6.0 The Benefits of Using Ethical Machines 

 

 There are many long-term benefits that might arise from the use of ethical intelligent machines. 

Some of the long-term benefits mentioned at the end of Chapter 5, for example the use of intelligent 

machines in the healthcare system, might only be considered long-term benefits (i.e., benefits that have 

not quite materialized in the present) because they have yet to be deployed across the globe en masse. 

As mentioned in Chapter 3, autonomous intelligent machines are currently used for many different 

tasks, some of which include object identification in images, facial recognition systems, speech 

transcription, content filtering on social networks and selecting relevant results for web searches.422  

Furthermore, while many of the different machines just mentioned do use some form of machine 

learning, others are just examples of beneficial technologies or algorithmic technology in general. The 

latter, beneficial technologies in general, are not the focus of this chapter.423 Although much of the 

literature tends to focus on the risks and challenges associated with the use of intelligent machines 

(facial recognition systems are a particularly volatile topic), my aim in this chapter will be to focus 

predominantly on the short-term benefits. My focus will primarily be on the benefits of using ethical 

machines and, more importantly, the benefits of pursuing the project of implementing machine ethics, 

i.e., pursuing research and development of ethical intelligent machines. There is third a disjunct to be 

made, namely the benefits associated with theorizing about ethical machines, but I will only tangentially 

comment on these benefits (and indeed they largely fall under the benefits of pursuing the project of 

implementing machine ethics).  In what follows the focus will be on the kinds of machines that have 

been under discussion throughout this dissertation, i.e., learning machines, and the immediate benefits 

of using such machines that have been raised ethically.  

 

6.1 Humans, Machines and Automobiles 

 

 To use an oft cited example, the use of intelligent autonomous vehicles could significantly 

enhance human welfare. This is because in the overwhelming majority of automobile accidents, the 

 
422 LeCun, Bengio and Hinton 2015, 436.  
423 I refer the reader to Chapter 3 for more details about the field of computer ethics, one focus of which is 
the beneficial uses of different technologies.  
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cause of the accident was human error. Researchers at the Institute for Research in Public Safety at 

Indiana University found that human factors were the most frequent causes of automobile accidents in 

the United States at 93% followed by environmental (34%) and vehicle factors (13%) respectively.424 

Leading human factors that directly caused accidents included improper lookout, excessive speed, 

inattention, improper evasive action and internal distraction.425 And humans have not improved since 

this analysis was conducted in 1979. Data collected by the National Highway Traffic Safety 

Administration in 2016 attributes 94% of automobile fatalities to some type of human error including 

improper restraint in a vehicle, excessive speeding, alcohol impaired drivers, distracted drivers and 

drowsy drivers.426 By contrast, intelligent machines do not err in the same ways that humans do. 

Machines can “see” more than a human ever could, are never tempted to speed, are never inattentive, 

are never impaired or drowsy, can plan out and execute optimal evasive maneuvers to hundreds of 

anticipated futures, and are never distracted by belligerent passengers along for the ride.  

Indeed these advantages are borne out by evidence gathered from autonomous self-driving 

vehicles operating in the United States today. Waymo, a subsidiary of Google’s parent company 

Alphabet Inc., has been operating an autonomous ride-hailing service since late 2018 in the Metro 

Phoenix, Arizona area, and in 2020 released a safety report detailing all of the accidents involving 

autonomous Waymo vehicles. In over 6.1 million miles of autonomous driving, Waymo vehicles were 

involved in 18 accidents, none of which resulted in severe or life-threatening injuries.427 Of the eight 

most severe accidents, all were the result of road rule violations and errors on the part of other human 

drivers. These errors included other humans driving on the wrong side of the road (yes, really), speeding 

in excess of 20 miles per hour over the posted limit, driving through a red light, driving through a stop 

sign, and various failures to properly yield.428 Even the less severe accidents were the result of errors on 

the part of other human drivers who, for example, reversed into or rear-ended the Waymo vehicle at 

low speeds.429 In the one collision involving a Waymo vehicle and a pedestrian, the pedestrian walked 

into the side of the stationary Waymo vehicle.430 While the technology is not perfect, it is, frankly, 

indisputable that, when properly applied, intelligent ethical machines will have an overwhelmingly 

positive impact on human welfare. Not once, in all of the 6.1 million miles analyzed, did a Waymo 

 
424 Treat et al. 1979, vii.  
425 Ibid.  
426 National Highway Traffic Safety Administration, 2016 Fatal Motor Vehicle Crashes: Overview 2017, 6.  
427 Schwall et al. 2020, 1.  
428 Ibid., 11-12.  
429 Ibid., 7-8.  
430 Ibid., 6-7.  
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vehicle drive off the road or hit a stationary object like a parked car.431 Moreover, in the event that 

Waymo vehicles experience some sort of failure preventing it from driving properly, it is able to come to 

a complete stop to ensure passenger and bystander safety. Unfortunately, details about how exactly 

machine learning is incorporated into Waymo vehicles is not readily available, and this is likely 

intentional in order to protect intellectual property. It is however probable that Waymo vehicles and 

other autonomous vehicles use some form of reinforcement learning and deep neural networks.432 

While the technology is far from perfect, intelligent autonomous vehicles that utilize machine 

learning (as Waymo’s vehicles do) can significantly benefit human welfare now and in the immediate 

short term. Moreover, just as AlphaStar learned to play StarCraft II through fictitious self-play, so too do 

Waymo vehicles learn how to drive by simulating different potential futures and then planning an 

optimal route based on the most likely future predicted to occur. The result is that the Waymo vehicles 

can even anticipate via simulation different types of accidents and thereby avoid serious collisions in 

order to ensure the safety of the passenger(s).433 

 

6.1.2 Raising Ethical Drivers 

 

 Insofar as Waymo vehicles are able to successfully perform the entire dynamic task of driving, 

they might be considered ethical intelligent machines or, in Moor’s terminology described in Chapter 3, 

explicit ethical agents. Just as it is reasonable to say that a human did something wrong if they drive 

through a red stop light, it is equally reasonable to say that an autonomous vehicle did something right 

by stopping at a red light.434 But what exactly, in the context of driving, ought to be considered right and 

wrong? Well, as a result of the explication problem,435 there is no completely satisfactory answer to this 

question. In trying to capture the ethical concept of “good driver,” the National Highway Traffic Safety 

Administration (NHTSA) outlines 28 core behavioural competencies that includes, for example, detecting 

traffic signals and stop/yield signs, responding to traffic signals and stop/yield signs, navigating 

intersections and performing turns, perform low-speed merges and detecting and navigating a parking 

lot. In addition to these core behavioural competencies, Waymo has added 19 extra behavioural 

 
431 Ibid., 6.  
432 See, Wang et al. (2021).  
433 See the Waymo Safety Report from February 2021 for more information.  
434 I am, for now, ignoring a full discussion of responsibility vis-a-vis the consequences of the behaviour of 

autonomous machines. 
435 See Chapter 4 for more information.  
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competencies including detecting and responding to animals, detecting and responding to motorcyclists, 

making appropriate reversing maneuvers and navigating railroad crossings.  

 Interestingly enough, in the process of building intelligent autonomous vehicles, we are forced 

to examine more closely just what exactly makes a human a good driver when operating an automobile.  

Moreover, for most people, judging whether another human is a good driver is largely a heuristic 

process rather than an algorithmic one.436 That is, humans judge that another human is a good driver 

i.e., good in a moral sense, (or a bad one) largely based on rules-of-thumb, e.g., the driver is not 

behaving recklessly, is keeping a safe distance from other vehicles, etc. It is not enough, on the other 

hand, to judge machines in the same way. Judging whether a machine is a good driver, i.e., good in a 

non-moral sense, is largely an algorithmic process, i.e., a process involving the satisfaction of multiple 

simultaneous softly constraining and of well-defined criteria, and nowhere is this more obvious than in 

the documents and standards outlined by regulative and legislative bodies, among others, concerning 

autonomous vehicles.  

Implicitly, these criteria were stated as far back as the DARPA Grand Challenge. In the 2004 

version of the challenge, autonomous vehicles were required to navigate an off-road course largely 

following Interstate 15 on what was supposed to be a long 228km trek from Barstow, California to 

Primm, Nevada. The most successful vehicle, Red Team, only managed to travel 12km (7.4 miles) and, 

while attempting to navigate switchbacks in a mountainous section, the vehicle veered off course and 

became stuck on a berm which is where its journey ended.437 Obviously, good drivers are ones that do 

not veer off of the road. Good drivers similarly do not drive the wrong way (as Axion Racing did), do not 

flip their vehicle while making turns (as Team ENSCO did), do not drive into wire or fences (as Team 

CIMAR and Team Caltech respectively did), and do not become paralyzed by bushes near the road (as 

Team TerraMax did).  

Explicitly, the International Society of Automotive Engineers (SAE) developed a well-defined 

taxonomy and definitions for terms related to autonomous driving systems culminating in their most 

recent revision published in April 2021.438 Briefly, their taxonomy consists of six discrete and mutually 

exclusive levels of driving automation that outlines both the roles of the human in the vehicle and the 

driving automation system. Levels 0 - 2 correspond to partial driving automation at most, i.e., sustained 

lateral and longitudinal vehicle motion control by the automated driving system, with the human 

 
436 Unless you happen to be friends with a driving instructor.  
437 Grand Challenge 2004 Final Report 2004, 8.  
438 See, “SAE J3016 Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-
Road Motor Vehicles” April 2021, for more information.  
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responsible for monitoring both the automated driving system and the external environment (e.g., the 

human is responsible for proper object and event detection and response). Level 3 corresponds to an 

intermediary level of automation where the automated driving system, while engaged, can perform the 

entire dynamic driving task including object and event detection and response. Importantly however 

this automation is conditional on the vehicle remaining within its operational design domain. 

Furthermore, the automated driving system at Level 3 is incapable of achieving a minimal risk condition, 

i.e., a stable, stopped condition, in the event of a system failure or in cases where the operational design 

domain limits are exceeded and so the human is expected to remain in a fallback-ready state in order to 

take over the dynamic driving task or to perform any emergency maneuvers.  

Levels 4 and 5 correspond to fully automated driving in general (Level 5) or fully automated 

driving in an operational design domain (Level 4). At levels 4 and 5 all aspects of vehicle control are 

controlled by the automated driving system including achieving a minimal risk condition in the event of 

system failure or when operational design domain limits are exceeded. Humans riding in such vehicles, 

e.g., the Waymo vehicles discussed earlier (which operate at Level 4), are considered passengers and are 

not expected to engage in any part of the dynamic driving task. Unlike the vehicles that took part in the 

DARPA Grand Challenge, far more explicit criteria are used to analyze whether Waymo vehicles are good 

drivers. In short, by building intelligent autonomous driving systems we are forced to carefully and 

explicitly examine what makes a good driver in general, human or otherwise.  

 

6.2 Benefits of Building Machines 

 

Throughout history humans have built machines to perform various tasks and fulfill various 

functions, and in doing so we invariably learned more about just what exactly is involved in carrying out 

the task or function of interest. Consider the development of flying machines. After watching birds and 

insects flit around us for millennia, it at last seemed possible at the turn of the 20th century that humans 

could create flying machines to carry us through the skies. Designing and testing ornithopters, machines 

that fly by flapping their wings in an imitation of flying animals, seemed like the natural route towards 

success. And yet this was not the case. Ornithopters were wildly unsuccessful at achieving sustained 

flight. This is because, as we now know, it is not the flapping of a wing per se that is required for 

sustained flight, but the generation of a pressure differential between the air above the wing and below 

the wing that generates the lift necessary for flight. With the benefit of hindsight it is obvious that 

machines which imitated birds would not succeed in flying, and yet it was only in the process of building 
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such machines in the first place that we looked more closely at what makes a good flying machine and 

what exactly is involved in aerial flight.  

 

6.2.1 Benefits of Building Thinking Machines 

 

 As with flying machines, the process of building thinking machines has forced us to examine 

more closely and carefully these things we call “thinking” and “intelligence” and, I want to claim, the 

same is the case whereby attempting to build ethical machines forces us to examine ethics more closely 

and carefully. As with flight, building machines that imitated human thought and intelligence seemed 

like the natural route towards building successful thinking machines, i.e., artificial intelligence (AI). And 

so beginning in the late 1950’s pioneers in the budding field of AI set out to build machines that could 

think and solve problems like humans. Indeed this was an explicit goal of researchers at the time, like 

Newell, Shaw and Simon, who attempted to build a general problem-solving machine, i.e., a program, in 

part “to understand the information processes that underlie human intellectual, adaptive, and creative 

abilities.”439 However like ornithopters before them, these thinking machines were wildly unsuccessful 

at attaining anything remotely close to human-like intelligence. And this is because there is a danger 

here as well, that by attempting to mimic the “natural” phenomenon (e.g., flight or thinking) our 

“artificial” version mimics the wrong aspects.  

 With hindsight, the failure of so-called first-wave AI,440 or good old-fashioned AI (GOFAI),441 is 

not exactly surprising. First-wave AI was based on symbolic representation and was largely predicated 

upon the truth of four metaphysical principles: (1) “The essence of intelligence is thought, meaning 

roughly rational deliberation,” (2) “the ideal model of thought is logical inference (based on “clear and 

distinct” concepts, of the sort we associate with discrete words),” (3) “perception is at a lower level than 

thought and will not be that conceptually demanding,” and (4) “the ontology of the world is...formal: 

discrete, well-defined mesoscale objects exemplifying properties and standing in unambiguous 

relations.”442 After decades of painstaking work on first-wave AI systems, it has become increasingly 

obvious that despite the superficial similarities between human intelligence and machines built to mimic 

human intelligence, e.g., the use of heuristics to solve problems, the creation of machines with human-

like intelligence would not arise from the use of first-wave AI techniques alone.  

 
439 Newall, Shaw and Simon 1959, i.  
440 Smith 2019, 7.  
441 Haugeland 1985, 112.  
442 Smith 2019, 7-8.  
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 But failure is instructive.443 Brian Cantwell Smith (2019) notes that the failures of first-wave AI 

can be summarized as of four main types that are worth exploring in detail. This is because out of the 

failure of first-wave AI arose second-wave AI which utilizes the kinds of techniques that have been the 

focus of this dissertation, i.e., machine learning techniques. The first type of failure Smith identifies is 

the neurological: “The brain does not work the way that GOFAI does.” First-wave AI and almost all of 

today’s mainstream computer systems, i.e., CPUs, consist of serial processes running at extreme speeds, 

e.g., performing 109 operations per second.444 The functioning of the brain is, as far as we know, almost 

the complete opposite, using massive parallelism and operating roughly 50 million times slower.445 

Whether the imitation of these lower level neurophysiological structures is required for the creation of 

human-like intelligence in machines is an open question, but one that will become easier to answer as 

we attempt to build machines that utilize such structures, e.g., artificial neural networks and deep 

learning systems. It may turn out that, like higher level structures of human thought, e.g., the use of 

heuristics, imitating organic neural networks is not a fruitful approach to building artificial general 

intelligence, but we will never know if we do not try to build such machines.  

 The second type of failure that Smith identifies is the perceptual: “Most GOFAI theorists thought 

that perception - recognizing or “parsing” the world based on perceptual input from sensors - would be 

conceptually simpler than simulating or creating “real intelligence.””446 As Ronald de Sousa remarks, “It 

is a pregnant irony that computers are now relatively good at some of the reasoning tasks that 

Descartes thought the secure privilege of humans, while they are especially inept at the “merely animal” 

functions that he thought could be accounted for mechanically.”447 Intelligent environmental navigation 

is much more difficult than first-waver researchers realized. Those working on first-wave AI clearly held 

a similar view of perception, especially given the fourth metaphysical principle concerning a formal 

ontology underlying most, if not all, research in first-wave AI. The prevailing thought that perception 

would just be a matter of determining what objects were “out there” turned out to be profoundly 

mistaken. When digital cameras were finally connected to computers in the early 1970s, researchers 

discovered that what was “out there” was actually a morass of stimuli. It turns out that many people, 

including Descartes and first-wave AI researchers, can fall prey to a kind of epistemic fallacy: just 

 
443 We might keep the anecdote about Thomas Edison failing in mind: when asked by his associate if he 

was disappointed with the lack of results from his experiments, Edison apparently responded by saying 
that he did have results, he now knew several thousand things that would not work.  
444 Smith 2019, 23.  
445 Ibid.  
446 Ibid., 24.  
447 de Sousa 1991, 176.  
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because it seems to us humans that the world consists of a simple arrangement of straightforward 

objects does not mean that the world actually does consist of a simple arrangement of straightforward 

objects. That the world does appear in such a way to our consciousness is the result “of an exquisitely 

sensitive, finely tuned perceptual apparatus running on a 100-billion neuron device with 100 trillion 

interconnections honed over 500 million years of evolution.”448 Machines, even the second-wave AIs of 

2021, cannot hold a candle to such an apparatus.  

 The third type of failure is epistemological: “Thinking and intelligence, on the GOFAI model, 

consisted of rational, articulated steps, on its founding model of logical inference.”449 As it has been 

pointed out in numerous previous chapters450 however, and by various other scholars besides, thinking 

and intelligence are less like a series of articulable explicit operations and more like a phenomenon that 

emerges from the coalescence of pattern recognition abilities and experience gathered from repeated 

interaction in dynamic environments.  

 The most serious issue with first-wave AI, connected to both the perceptual and epistemological 

failures, is the fourth and final ontological failure: “The misunderstanding about perception, and 

perhaps about thinking as well, betray a much deeper failure of first-wave AI: its assumption...that the 

world comes chopped up into neat, ontologically discrete objects.”451 Herein lies the crucial insight that 

sets first-wave and second-wave AI apart. Moreover, it is the failure of first-wave AI to produce anything 

sufficiently similar to human-like intelligence itself that spurred a reconsideration of both the 

metaphysical principles underlying first-wave AI as well as the nature of thinking and intelligence. It 

bears repeating: failure is instructive. The ontological failure of first-wave AI brought to the fore the idea 

that thinking and intelligence may have their roots in nonconceptual content rather than in explicit, 

articulable conceptual forms. This idea serves as the basis for many different contemporary currents in 

cognitive science, which themselves underwrite different approaches in second-wave AI, including 

enactivism, connectionism, and deep learning.452 In short, by attempting to build intelligent machines 

given certain metaphysical assumptions about the nature of thinking and intelligence, and then failing to 

create human-like intelligence (or a general intelligence), we were forced to revise both how we 

approached building such machines and the metaphysical assumptions underlying that program.  

 
448 Smith 2019, 26.  
449 Ibid., 27.  
450 See, for example, Chapter 1 and Chapter 4.  
451 Smith 2019, 28.  
452 Ibid., 31.  
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 The point is that by pursuing research on and building intelligent machines, and perhaps even 

failing to do so, we will learn something about intelligence and thinking simpliciter. I argue that the same 

can be said of ethics. That is, by pursuing research on and attempting to raise ethical machines we will 

learn something about ethics simpliciter and perhaps even have to make revisions to our ideas about 

ethics. Moreover, that we will learn something is true even if we fail to implement machine ethics.  

 

6.3 Benefits of Building Ethical Machines 

 

 In contrast to first-wave GOFAI, second-wave AI is associated with “deep learning and affiliated 

machine learning (ML) technologies”453 that make shallow (i.e., few-step) inferences by a massively 

parallel process (e.g., artificial neural networks inspired by organic neural networks) using massive 

amounts of data (e.g., the collection by Big Data of millions of photos) involving a very large number of 

weakly correlated variables (e.g., pixels in a digital picture that give rise to a comprehensible image).454 

Whether second-wave AI will lead to the creation of human-like or general intelligence is an open 

question, but the point of the preceding discussion has been in anticipation of this novel claim that I aim 

to defend throughout the rest of this chapter. By attempting to build ethical machines and pursuing the 

project of implementing machine ethics we will learn more about the nature of ethical decision-making 

and behaviour as well as the assumptions upon which theories of ethics and morality rest.  

 

6.3.1 Weak Psychological AI and Ethics 

 

How exactly will the process of building ethical machines help us learn more about the nature of 

ethical decision-making and behaviour? Building ethical machines is very much in the spirit of the 

cognitive science project, in particular, the weak psychological AI project outlined by Owen Flanagan.  

Research here is guided by the view that the computer is a useful tool in the study of the mind. In 

particular, we can write computer programs or build devices that simulate alleged psychological 

processes in humans and then test our predictions about how the alleged processes 

work...According to weak psychological AI, working with computer models is a way of refining 

and testing hypotheses about processes that are allegedly realized in human minds.455 

 
453 Ibid., 47.  
454 Smith (2019) neatly compares first-wave and second-wave AI along five conceptual axes, the latter of 

which are summarized here. For the full comparison, see Smith (2019), 49.  
455 Flanagan 1991, 241. 
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Assuming ethical decision-making and behaviour is something that is realized and has origins in the 

human mind, then the project of implementing machine ethics will invariably reveal something about 

these origins. Whereas weak psychological AI traditionally encompasses, for example, perception, 

memory, language, etc., my claim is that weak psychological AI could also be extended to ethical 

reasoning and behaviour. In fact, there are two claims here that ought to be distinguished. The stronger 

claim is that implementing machine ethics will reveal more about how ethical decision-making and 

behaviour are realized in human minds. The weaker claim is that implementing machine ethics will 

reveal more about how ethical decision-making and behaviour are realized in a mind, one that is not 

necessarily human. Ethical agency, we may discover, could be multiply realizable.  

  

6.3.2 Suprapsychological AI and Ethics 

 

Ethical decision-making and behaviour may also not necessarily proceed in the ways imagined 

by philosophers. Or, it may turn out that machines are better than humans when it comes to ethical 

decision-making and behaviour. This type of research is less like weak psychological AI and more like 

what Flanagan calls “suprapsychological AI” since it concerns different conceivable forms of intelligence 

(e.g., machine intelligence and not just human-like intelligence), or in our case, different conceivable 

forms of or approaches to ethics.456 This is the view espoused by thinkers like Susan Anderson who 

maintains that “machine ethics research has the potential to achieve breakthroughs in ethical theory 

that will lead to universally accepted ethical principles” and that interaction with ethical machines 

“might inspire us to behave more ethically ourselves.”457 Here Anderson is gesturing towards a primarily 

deontological ethics, i.e., a theory of ethics that is grounded by principles concerning what one ought to 

do when confronted with some ethical dilemma. Humans, Anderson argues, are prone to unethical 

decision-making and behaviour as a result of five different tendencies that compromise our ability to 

consistently abide by deontological principles. Humans tend to get carried away by emotion, to behave 

egotistically, to unreflectively adopt the values of those around us, to lack good role models, and to seek 

instant gratification.458 Machines, on the other hand, may not have such tendencies (indeed machines 

need not have such tendencies, e.g., we can purposefully create them such that they do not behave 

 
456 Flanagan 1991, 242.  
457 Anderson 2011, 524.  
458 Ibid.  
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egotistically) and as a result may help us overcome these tendencies or, at least, help us to understand 

what ethics would be like if these tendencies could be overcome.  

Moreover, Anderson claims that machines “could lead to a breakthrough in coming up with 

ethical principles” that the rational person ought to universally accept and abide by.459 How might 

machines do this? As Anderson points out, what machines “are good at is keeping track of lots of 

information,” e.g., information about ethically relevant features in a given ethical dilemma, from which 

machines might be able to “discover through inductive reasoning principles that are consistent with this 

information.”460 These principles would be the ethical principles that one ought to abide by, at 

minimum, in a given domain (e.g., the domain of eldercare). These principles could even be revised with 

the addition of new information. In short, Anderson’s hope is that machines might be able to come up 

with the principles that capture the agreed upon intuitions ethicists have when facing ethical dilemmas 

(i.e., if ethicists agree what ought to be done in the ethical dilemma) even though the ethicists 

themselves may not have come up with such principles yet.461  

 

6.3.3 Ethics Is Hard 

 

 So building ethical machines could reveal that ethics involves abstracting complicated principles 

from different ethical dilemmas. Indeed raising ethical machines might reveal that the nature of ethical 

decision-making and behaviour is far more complicated and nuanced than one might expect. Although it 

is common to criticize an ethical theory if it appears to place a heavy burden on the individual to think or 

act in certain ways, there is no principled reason why ethical decision-making and behaviour should not 

impose strong obligations on people. Ours is a complicated world and there is no reason to suspect that 

ethics ought to be easy just because it would make things simpler for us to figure out what the right 

thing to do is. Implementing machine ethics might reveal that it is the nature of ethical decision-making 

and behaviour, at least in the 21st century, to be difficult and complicated to understand and enact. 

Indeed if Anderson is correct that machines could help us uncover general ethical principles (and the 

meta-principles discussed in Chapter 4 that adjudicate between conflicting principles) that we ought to 

abide by then those principles would, of necessity, be complicated ones and not the simple Kantian 

maxims discussed in introductory ethics classes (e.g., one should always keep one’s promises). There is, 
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in short, no guarantee that ethics, like any other phenomenon in the universe, will easily lend itself to 

human understanding.462 And this is all the more obvious if we remember that we are evolved biological 

beings. Even Anderson points out that the first three tendencies mentioned earlier (to get carried away 

by emotions, to act egotistically and to adopt the values of those around us) “are likely a result of our 

evolutionary history as a species.”463 We are, in a sense, fighting our own biology in an effort to engage 

in ethical decision-making and behaviour.  

 Implementing machine ethics might also reveal that ethics is fundamentally nebulous, 

dependent not only on time and place, but also on personality, culture, context, goals, and more. If AI 

makes philosophy honest, as Daniel Dennett stated, then machine ethics make philosophical ethics 

particularly honest. 464 An ad hoc patchwork of arbitrary values, principles and procedures, or purported 

universal truths accessible via pure reason or intuition are not particularly amenable to implementation 

in machines. And even if they are, we might not be impressed with the results. Implementing machine 

ethics requires a kind of clarity, a kind of transparent and straightforward honesty, that is not always 

advanced in philosophical ethics. The result is that those working on implementing machine ethics often 

just pick some ethical theory as a starting point. Anderson for example chose to adopt the “multiple 

prima facie duties approach” that W. D. Ross adopted because “ultimately one has to decide that a 

particular ethical theory, or at least an approach to ethical theory, is correct.”465 Others choose a more 

consequentialist approach to implementing machine ethics.  As we saw in Chapters 2 and 4, Winfield et 

al. for example assigned “safety outcome values” to the consequences of a robot’s actions ranging from 

0 to 10, where 10 is the highest harm rating and 0 the lowest.466  

Still others choose to wash their hands of such picking and choosing altogether. Verma and 

Rubin, for example, conducted a kind of meta-analysis of twenty different notions of algorithmic fairness 

on a “single unifying example of an off-the-shelf logistic regression classifier trained on the German 

Credit Dataset.”467 Is such a classifier fair? Unsurprisingly, they conclude that “the answer to this 

question depends on the notion of fairness one wants to adopt” and may largely depend on which 

 
462 It should be noted that I endorse (metaethical) moral realism. There are, in short, mind-independent 
moral truths. Importantly, this includes moral nihilism (the position that there is no moral truth) and moral 
constructivism/moral emotivism (the position that moral truths are constructed or emotionally felt by 
humans). I highlight these two positions because they are examples of cases where it would be trivially 
true that ethics would be understandable by humans.  
463 Anderson 2011, 528.  
464 Ibid., 527.  
465 Anderson 2011, 23.  
466 Winfield et al. 2014, 88. 
467 Verma and Rubin 2018, 7.  
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definitions of fairness are appropriate to a particular situation.468 Fairness might mean conditional 

statistical parity in one situation but might mean overall accuracy equality in another situation. Of 

course, it is entirely possible that different situations will have ethically relevant features that give us 

reasons to think that we should adopt one definition over another, but obviously “more work is needed 

to clarify which definitions are appropriate to [a given] situation.”469 Philosophical ethicists have their 

work cut out for them. This is especially true if, as some ethicists believe, we ought to embrace ethical 

pluralism. That is, because there is “currently no common ground among moral experts as to which 

ethical theory to use,” we may be free, beyond some core of moral norms,470 to “act according to [our] 

particular moralities in [our] given community.”471 What we might therefore learn from the project of 

pursuing machine ethics is that beyond some core of moral norms (that, as revealed by machines, might 

be so complex that we cannot understand them when they are stated explicitly), ethical decision-making 

and behaviour is conditional on how exactly one explicates the ethical concept(s) of interest. Though 

this means making the ethical decision or taking the ethical action will not always be easy or widely 

agreed upon, my own view is that this is how ethics ought to proceed, i.e., from considerations of 

context and character which is also, incidentally, a way that machine learning techniques would be 

particularly good at discovering, replicating and potentially even improving upon.  

 The preceding points all seem to indicate that, contrary to what is sometimes asserted by 

computer scientists, ethics might actually be an essentially difficult and complicated activity. Perhaps it 

is in the nature of ethical decision-making and behaviour to be laboriously understood by, if not beyond 

the explicit comprehension of, most people. Importantly, this is not to say that people do not or cannot 

behave ethically, just that we might not understand the high-level abstract principles that characterize 

ethical decision-making and behaviour. Consider the similarities with language; we may not completely 

understand the high-level rules that structure communication but we nonetheless obey the rules. 

Indeed there is a connection here to the two senses of rule following highlighted in section 3.2.2 in 

Chapter 3. Namely, people might obey the rules, e.g., the rules of language or of ethics, in the sense that 

our behaviour can be described as following some rule(s) even if we are not rule governed, i.e., in the 

business of consulting the rules to generate our behaviour. There may be no consensus as to which 

ethical theory to use or what high level abstract principles structure ethical decision-making and 

 
468 Ibid.  
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470 Gordon (2020) lists norms such as one must not commit murder or rape or violate the human rights of 

others as examples of core universal norms. 
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behaviour (i.e., we may not agree on a set of rules that ought to govern our behaviour), but we 

nonetheless follow the rules (most of the time…) and grok what it means to be ethical. 

 

6.3.4 Assumptions Grounding Ethics 

 

 In addition to revealing more about the nature of ethical decision-making and behaviour, 

building ethical machines can also lead us to learn more about, and perhaps modify or reject, the 

assumptions upon which moral theories and ethical norms rest. It is quite common, for example, to 

insist on a consistent ethics. That is, consistency is thought of, often necessarily, as a fundamental 

assumption upon which theories of ethics are constructed. Anderson asserts that “we cannot accept 

contradictions in the ethics we embody in machines, and humans should not accept contradictions in 

their own or others’ ethical beliefs either.”472 According to Anderson, this entails that in two ethically 

identical situations “an action cannot be right in one of the cases, whereas the comparable action in the 

other case is considered wrong.”473 Another fundamental assumption is the comparative assumption. In 

short, different outcomes are assumed to be ethically comparable. We can compare genocide, on the 

one hand, and a white lie told to a friend to spare their feelings, on the other, and come to the sensible 

conclusion that the former is far worse than the latter. But this is an extreme case, and it is not 

abundantly clear that it is always possible to compare two different situations and discern what the 

ethically preferable decision ought to be.  

In experiments with autonomous vehicle behaviour mentioned in Chapter 4, Awad et al. 

pumped (via questions concerning a dilemma) the ethical intuitions of participants by having them 

specify which outcome, out of two unavoidable accident scenarios, they find preferable.474 Perhaps 

unsurprisingly, they found that the strongest preferences were for sparing human lives over animal lives, 

sparing more lives rather than fewer lives, and sparing young lives rather than old lives.475 However the 

question remains: are the different outcomes of a situation really ethically comparable? Can we 

legitimately compare and judge that it was wrong for the car to swerve and kill its passengers, say two 

parents and their child, instead of the pedestrians, say two grandparents and their grandchild, on the 

crosswalk? I have no ready answer to these questions, but believe that we may approach a satisfactory 

response to these, and other questions, by building ethical machines.  

 
472 Anderson 2011, 256.  
473 Ibid.  
474 Awad et al. 2018, 59.  
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 To be clear, my claim is that pursuing the project of implementing machine ethics will have 

consequences for ethics simpliciter. I am not claiming that by raising ethical machines we will know 

whether it is more ethical, in an unavoidable car accident, to hit two parents and their child or two 

grandparents and their grandchild. I am also not claiming that pursuing the project of implementing 

machine ethics will help us answer any specific ethical questions, like whether it is better to spare young 

lives rather than old lives. I maintain that by pursuing the project of implementing machine ethics there 

will be consequences, generally, for ethics simpliciter. One of those consequences may be that we come 

to learn more about the nature of ethical decision-making and the assumptions upon which moral 

theories and ethical norms rest. More precisely, one consequence of implementing machine ethics is 

that explicating assumptions of moral claims will allow us to see the structure of moral arguments better 

and therefore reason about them better. Indeed there are many other assumptions upon which one 

might construct a moral theory or ground ethical norms. In addition to consistency and comparability, 

there are assumptions of universality and plurality. Gordon for example notes that “it seems reasonable 

to avoid extreme moral relativism and to accept a firm core of universal moral norms” given that we 

must take into account “the idea that many ethical issues could have equally good but different 

decisions.”476 Alternatively, one could assume the truth of some version of moral relativism or reject the 

pluralist assumption and instead adopt the view that there is one ultimate ethical theory.  

Another consequence may be that, given accepted outcomes or goals, machines will develop 

their own body of decisions and/or actions that could inform human decision-making and action. This 

could be particularly useful when considering complex situations, e.g., what one ought to do to given 

global climate change. As discussed in section 1.6, machines are able to analyze high dimensional data 

better than humans can, and so just as humans have begun to imitate the decision-making and actions 

of machine in the domain of board game play, so too might we imitate machine decision-making and 

actions in other domains, e.g., domains which have a significant ethical dimension.  

 

6.4 Machine Ethics, Moral Nihilism and Anthropocentrism 

 

 This line of reasoning, that building ethical machines will lead us to learn more about ethics, 

could potentially lead one to some rather pessimistic or nihilistic conclusions. Anthony Beavers for 

example worries that morality may be redescribed in the same way that "thinking" has been redescribed 
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following Turing's (in)famous proposal to recast thinking in terms of the imitation game. Beavers points 

out that "research in artificial intelligence and cognitive science has pushed in the direction of 

interpreting "thinking" as some sort of computational process" that computers or machines in general 

are, in principle, capable of engaging in and humans actually able to engage in.477 This is perhaps 

because Turing is quite explicit that he is thinking about digital computers as the machines that will 

engage in the imitation game. Turing writes, in a short section on the meaning of the term ‘machine,’ 

that “the present interest in ‘thinking machines’ has been aroused by a particular kind of machine, 

usually called an ‘electronic computer’ or ‘digital computer.’”478 Moreover, Turing maintains that “this 

identification of machines with digital computers, like our criterion for ‘thinking,’ will only be 

unsatisfactory if, it turns out that digital computers are unable to give a good showing in the game.”479 

Now there are two important things to note here. This first is that one might draw the (potentially) 

pessimistic conclusion that if digital computers can think, i.e., machines can think, then humans, as 

thinking entities, must be some sort of machine. Indeed this type of language pervades Turing’s 

discussion of thinking machines. When discussing the idea of digital computers, Turing describes them 

as being able to “carry out any operations which could be done by a human computer” which include 

operating according to fixed rules as the human computer does, storing information and executing 

various operations, all of which the human computer does, usually with the help of a pencil and 

paper.480 The second thing to note is that Turing actually advances an empirical hypothesis, that it may 

be possible to build a thinking machine. If, in Turing’s words, “it turns out that digital computers are 

unable to give a good showing in the [imitation] game,” that is, if we cannot build machines that can 

convincingly play the imitation games, then thinking should not be redescribed in this way.481  

 

6.4.1 Implementability  

 

Even Beavers, despite being concerned primarily with moral machines, recognizes how building 

machines, e.g., moral machines or thinking machines, can shed light on the underlying theories guiding 

the construction of such machines. Just as immaterial souls and wise, rational aspects of our nature 

“seem to be bygones, left behind by scientific and computational conceptions of thinking and 
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knowledge,” so too might ideas like moral duty, utility and virtue be left behind by machine ethicists.482 

This is because building machines, engineering something, requires a kind of precision not often found 

in philosophical ethics. “Fuzzy intuitions on the nature of ethics,” Beavers notes, “do not lend 

themselves to implementation where automated decision procedures and behaviours are 

concerned.”483 Like Turing, machine ethicists (the optimistic ones anyways) advance both a philosophical 

and empirical claim. For the former the philosophical claim is roughly that thinking is essentially the 

display of certain abilities (e.g., the ability to hold a human-like conversation for however long on any 

given topic) whereas for the latter the philosophical claim is roughly that ethical decision-making and 

behaviour is essentially the display of certain abilities (e.g., the ability to justify an action by invoking 

ethically relevant features of a given situation). The empirical claim, for both those working on artificial 

intelligence and machine ethics, is that machines will be able to display such abilities (i.e., behave 

ethically and also perhaps be able to justify their actions with respect to some overarching ethical 

theory). What is important for our purposes is to note the connection between ethical theories and their 

implementability. Beavers writes that if, for example, “Kantian ethics cannot be implemented in a real 

working device, then so much the worse for Kantian ethics.”484  

Indeed, Kantian ethics, and deontology in general, does not appear to be implementable in an 

all-purpose (i.e., general and flexible) machine. This is for various reasons, some of which have been 

discussed previously in Chapter 4 when top-down approaches to implementing machine ethics were 

examined. Briefly, Kantian maxims, or ethical duties/principles, quickly begin to conflict as one considers 

a wider range of environments. This necessitates the creation of a meta-principle to deal with the 

inevitability of conflicting principles, a meta- principle that is inherently domain-specific, i.e., useful in 

only certain kinds of environments. Beavers highlights a related issue, the frame problem, and suggests 

that applying “Kant’s categorical imperative in any real-world setting seems to fall dead before a moral 

version of the frame problem” given that maxims can be formulated as widely or narrowly as one 

wishes.485 Recall Anderson et al.’s eldercare robot from Chapter 4. The robot’s duty to maximize respect 

for autonomy is, as a result of their meta-principle, quite narrowly defined given that the duty to 

maximize respect for autonomy may only be violated in select few cases, e.g., when it is not time to 

remind their patient to take their medication and if the patient is still immobile after being first engaged 

and then warned that an overseer would be notified of their persistent immobility.  
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6.4.2 Anthropocentrism and the Gap Between Explicit and Full Ethical Agents 

 

 But we need not rush with Beavers headlong into nihilism. If “death by failure to implement 

looks imminent” for Kantian ethics and deontology, what of it?486 Beavers appears to presuppose, as 

many philosophers and people in general do, that humans are somehow special or unique, set 

categorically apart from the rest of nature. There are two distinct lines of reasoning here: there is either 

something about us humans that sets us apart from all other entities (e.g., only humans are full ethical 

agents), or there is something about ethical decision-making and behaviour, or ethical reasoning, that 

precludes anything other than humans from engaging in such decision-making and behaviour or 

reasoning. Beavers reasons along the lines of the former by specifically arguing that there is something 

special about human beings, and that special something is our internal moral subjectivity, “that is, 

conscience, a sense of moral obligation and responsibility,” or whatever it is that governs our 

behaviour.487 

Both lines of reasoning however are not particularly persuasive, especially the former. Like 

those who objected (and some who still do object) to the possibility of artificial intelligence, it seems 

premature to maintain that humans are somehow special or unique and set categorically apart from the 

rest of the universe in certain respects, e.g., in intelligence and/or morality. Research into artificial 

intelligence and even research on animal cognition seems to suggest there is no prima facie reason to 

assume that human intelligence is categorically different. Far from a clash of intuitions, the burden of 

proof to demonstrate that humans are not continuous with the rest of the universe lies with proponents 

of such a view, like Beavers. Why should anything about humans, including our “moral subjectivity,” set 

us categorically apart from the rest of the universe? Suffice it to say, no convincing proof has yet been 

offered.  

That many people are convinced that humans are special or unique in this respect is a testament 

to the power of anthropocentric biases. From Willam Paley’s oft cited argument from design for the 

existence of God to Aristotle’s insistence on the teleology of all things, there is no denying that humans 

are biased towards thinking that the universe and our own abilities (e.g., cognitive, linguistic, moral, 

etc.) were designed for us.488 Even Turing noted this tendency in his ‘Heads in the Sand’ objection 

writing that “we like to believe that Man is in some subtle way superior to the rest of creation” and that 
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such a feeling must be “quite strong in intellectual people, since they value the power of thinking more 

highly than others, and are more inclined to base their belief in the superiority of Man on this power.”489 

But such anthro-teleological biases must be resisted. Failing to resist these biases leads us to 

erroneously conclude, as Beavers does, that there is something particularly worrisome about 

implementing machine ethics (or implementing machine intelligence), that notions of moral 

responsibility are “under attack,” because there is the potential that research might reveal that, 

contrary to what humans have thought for millennia, “morality needs no internal sanctions.”490 There 

may, in short, be no distinction to be made between what Moor called explicit ethical agents and full 

ethical agents which were discussed in detail in Chapter 3. Beavers maintains that if ethics is to survive 

implementation in machines and into the future, then it is by embracing a very different conception of 

ethics than traditional ones, but this too is a mistake. To see why, we must examine that second strand 

of reasoning purportedly leading to ethical nihilism.  

Instead of presupposing that there is something special or unique about humans, one might 

presuppose that there is something special or unique about ethical decision-making and behaviour itself 

such that only humans, or a special subset of humans, can engage in such activities. We might wish to 

distinguish, for example, between pragmatic decisions and ethical decisions, or pragmatic reasoning and 

ethical reasoning. For some scholars, ethical decision-making is just different in kind from other types of 

decision making, e.g., pragmatic decision-making. Ethical decision-making, and ethical reasoning more 

generally, appears to require a suite of competencies including “analogical reasoning, planning and plan 

execution, differentiating among precedents, using natural language, perception, [and] relevant-

information search.”491 For McDermott, these competencies are clearly ones that only a full blown 

artificial general intelligence may possess.492 Moreover, it appears that for McDermott, it is not ethical 

reasoning per se that is special, but rather the fact that it is the only form of reasoning that requires this 

unique conjunction of competencies. Pragmatic or prudential decisions according to McDermott, in 

contrast to ethical ones, are categorically different because “we have no trouble feeling the pull of the 

former, whereas the latter, though we claim to believe that they are important, often threaten to fade 

away, especially when there is a conflict between the two.”493 McDermott maintains that what is special 

about ethics, i.e., ethical decision-making, reasoning and conflicts, is that they involve a clash between 

 
489 Turing 1950, 444.  
490 Beavers 2012, 342-343.  
491 McDermott 2011, 93.  
492 Ibid.  
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what one ought to do (i.e., the normative force of ethical rules or intuitions) and one’s own self-

interested desires.494 In short, while machines are excellent at optimization, “say, optimizing the ethical 

consequences of a policy and optimizing the monetary consequences of the water-to-meat ratio in the 

recipe used by a hot dog factory,” engaging in such activities is not sufficient to establish that machines 

are therefore able to engage in ethical decision-making.495 According to McDermott, to engage in ethical 

decision-making and behaviour is to essentially struggle against temptation to do the wrong thing, whilst 

sometimes succumbing to this temptation. And even granting that machines may have interests to allow 

for a struggle with temptation, McDermott maintains that “it still seems dubious that they [machines] 

will be tempted to cheat the way people are.”496 There is something about ethical decision-making, 

perhaps some intrinsic phenomenological drama as McDermott suggests, that appears to preclude 

machines from ever being able to engage with, at least until (if ever) artificial general intelligence is 

developed.  

Though slightly more persuasive than arguing that humans are categorically different from non-

human animals and machines, there is nevertheless something odd, to put it mildly, about insisting on a 

difference in kind between ethical decision-making and all other kinds of decisions. An immediate 

problem arises if we grant that there is a categorical difference between, say, pragmatic decisions and 

ethical decisions, and also suppose that a decision is either a moral one or a non-moral one. If ethical 

decisions are different in kind, then it must be possible to delineate between ethical and pragmatic 

decisions.497 While this might be easy for limiting cases, there are plenty of examples of decisions that 

could be construed as either ethical or pragmatic. Just recently, Boris Johnson drew considerable 

criticism for choosing to fly to the COP26 climate conference held in Scotland instead of taking a train.498 

Arguably, Johnson succumbed to the temptation to take a far shorter trip by plane when the ethical 

decision should have been to take the train and contribute less to climate change. Equally however one 

might argue that Johnson’s decision to fly was a purely pragmatic one. He is, after all, Prime Minister of 

the UK and therefore someone whose time is quite valuable and likely better spent getting where he 

 
494 Ibid.  
495 Ibid., 93.  
496 Ibid., 110.  
497 We encountered a very similar problem when thinking about carving up the space of ethical decision-
making and behaviour into separate domains. See Chapter 4 for more details.  
498 See this article from The Guardian: https://www.theguardian.com/politics/2021/nov/01/boris-johnson-
will-travel-home-from-cop26-by-private-plane 
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needs to be quickly. This shows that there are many decisions that are not so easily classified as either 

ethical or pragmatic.499  

Even granting that ethical decisions are different in kind, multiple problems appear that are not 

easily dealt with. What role do interests ultimately play on this account of ethical decision-making? If, as 

McDermott suggests, ethical decisions involve a clash between ethical rules and our want to violate 

them to fulfill some selfish desire, what are we to make of cases where selfish desires align with what 

the ethical rules prescribe? Bill Gates for example is famous, in part, for contributing millions of dollars 

to improve the health conditions of people across the globe. Such generosity on the part of someone 

with so much wealth is obviously the ethical thing to do, and yet if this decision is not accompanied by 

some sort of internal struggle or drama it apparently, on McDermott’s view, should not count as being 

an ethical decision.  

Now this may not be entirely fair as McDermott does note that it is “tricky ethical decisions” 

that are intrinsically dramatic, and Bill Gates’ decision to share a portion of his vast wealth does not 

appear to be particularly “tricky” (at least from the point of view of someone without millions let alone 

billions of dollars).500 Nevertheless, this problem of the role of interests persists. Practically, it seems to 

make no difference to an outside observer whether there is a conflict between an agent’s interests and 

what they ethically ought to do (i.e., in either case the person can be seen as doing what they wanted to 

do). Philosophically, it is not at all clear why ethical decision-making requires specific types of interests 

or uniquely human interests. Sure, the way humans approach making decisions “is shaped by the weird 

architecture that evolution has inflicted on our brains,” but how does that cause us to have ethical 

problems?501 Moreover, how do our evolved decision-making abilities have any bearing on the 

metaphysics of decision-making in general? If anything, the fact that a “computer’s decision whether to 

sin or not will have all of the drama of its decision about how long to let a batch of concrete cure” 

means not only that machines could have ethical problems, but that they are (potentially) far more 

ethical than humans, precisely because “they would [not] treat these [problems] as different from any 

 
499 On a more fine-grained view, decisions can be both moral and non-moral. A particular decision might 
have both moral and non-moral reasons favouring one or another choice. In Johnson’s case, moral 
reasons favoured the choice to take the train whereas pragmatic reasons favoured the choice to fly and, 
arguably, the pragmatic benefits of flying were judged as outweighing the immoral consequences of 
emitting greenhouse gases as a result of that air travel. Johnson’s decision was immoral but pragmatic, 
but even this fine-grained view does not save McDermott. It might equally be said, of an autonomous 
vehicle for example, that its decision was immoral but pragmatic.  
500 McDermott 2011, 110.  
501 Ibid.  
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other difficulty in estimating overall utility,” that is, estimating a pragmatic course of action.502 Humanity 

has many difficult challenges ahead of itself that will require “ethical decision-making” and I, for one, 

could do without the drama.  

In the chapter that follows, I (mostly) leave metaphysics behind to consider socio-political and 

legal implications of implementing machine ethics and developing autonomous artificially intelligent 

systems.  
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Epilogue - Ethics 3.0503 

 

7.0 Being Ethical in the Age of Machine Ethics 

 

In this final section I step back to describe the conceptual terrain from a higher level and suggest 

future research directions. Given the influence of values on science and engineering discussed in 

Chapter 2, a variety of approaches to machine learning (in addition to GOFAI techniques) canvased in 

Chapter 1 and myriad possible methods of implementing machine ethics examined in Chapters 3 and 4, 

there are two questions with which this final chapter will concern itself. The first is, to be blunt, so 

what? That is, the above considered, what is worth focusing on and why? The second question is, what 

are some socio-political responses to the increasing use of artificially intelligent and autonomous 

systems? As Annette Zimmermann notes, the algorithmic is political.504 That is, machines are not 

developed free from political interests and concerns. Intelligent machines, autonomous systems and 

different methods of implementing machine ethics are not developed in a vacuum far from the 

influence of political, legal and social considerations. On the contrary, these technologies, like all 

technologies, are created and developed by powerful and influential groups often at the detriment of 

the marginalized and underrepresented.  

 George Santayana famously remarked that “those who cannot remember the past are 

condemned to repeat it.”505 And we are indeed repeating the past with autonomous systems and 

artificially intelligent technologies by neglecting to consider their effects on marginalized and 

underrepresented communities. The uncritical adoption and use of autonomous systems can have, and 

does have, negative impacts on the well-being of different groups of people. It is therefore worth 

focusing on what types of artificially intelligent systems are being created and to what end they are 

being created, i.e., why they are being created. To that end, it will be necessary to demonstrate that we 

should care about artificially intelligent systems of the kind that have been discussed throughout this 

dissertation. I turn now to consider why some think that autonomous and artificially intelligent systems 

ought to be thought of as no different from any other kind of technology.   

 

 

 
503 This is in reference to Max Tegmark’s Life 3.0 (2017).  
504 See her website: https://www.annette-zimmermann.com/ 
505 Santayana 2011, 172.  
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7.1 Positions in the Debate on Autonomous and Artificially Intelligent Systems 

 

To a large extent, the reason why autonomous and artificially intelligent systems are being 

created is because they are a convenient shortcut. Autonomous and artificially intelligent systems are, in 

one sense, just another labour-saving technology. Like all technologies stretching as far back as the 

simple machines (e.g., the inclined plane, lever, wedge, etc.), artificially intelligent technologies enable 

us to solve problems by disclosing preferable alternatives. It is therefore common to think of artificially 

intelligent systems as just the newest tool in our toolkit, one that is not dissimilar to any other 

technology. This is precisely the view espoused by Joanna Bryson. According to Bryson, artificial 

intelligence technologies are not anything particularly special given that the qualifier “artificial” simply 

denotes that “something has been made through a human process.”506 It follows, so Bryson maintains, 

that by default humans are responsible for such technology. For Bryson, “artificial intelligence only 

changes our responsibility as a special case of changing every other part of our social behaviour” 

because “no fact of either biology or computer science names a necessary point at which human 

responsibility should end.”507 For Bryson, the concept of interest is not artificial intelligence but rather 

responsibility. There is simply no point in discussing how a machine could ever be “responsible” for 

something because the concept of responsibility or of being responsible is something that only humans 

can explicitly communicate about.508 As designed artifacts, machines, even autonomous and intelligent 

ones, will never be held responsible or accountable for anything.  

 What matters, at least for Bryson, is that machines are designed. That is, their creation requires 

deliberate choices on the part of human creators. Individuals or organizations can therefore be held 

responsible for the choices made assuming, of course, that documentation of such decisions is available 

(this is one sense of transparency, which will be discussed in more detail later). Furthermore, like any 

other technology, there are deliberate choices involved when it comes to the uses of artificially 

intelligent machines. These machines can, Bryson argues, be used to provide us with a greater capacity 

to “perceive and maintain accounts of actions and consequences” which ultimately ought to make it 

“easier, not harder, to maintain responsibility” and assign credit or blame where it is due.509 Note, 

however, that this all hinges on deliberate design decisions on the part of individuals and institutions 

that create and use machines. Artificially intelligent machines may be used just as much to obfuscate 

 
506 Bryson 2020, 5.  
507 Ibid.  
508 And, perhaps more importantly, being responsible or held accountable is only attributable to humans.  
509 Bryson 2020, 5.  
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design decisions as they are to preserve and reveal them. Building on artifacts like written language, 

“digital artifacts are particularly amenable to automating the process” of “maintaining precise accounts 

of when, how, by whom, and with what motivation the system” under consideration has been 

constructed.510  

 

7.1.1 Skeptics and Enthusiasts 

 

 Bryson maintains that machines, even the autonomous and artificially intelligent ones beginning 

to permeate society, are no different in kind to any other artifact or technology. According to Bryson all 

artifacts and technologies are designed and used by humans and so it is only humans that can be held 

responsible or accountable. This view, of which Bryson is just one advocate, is the view of one group of 

scholars that I am calling “skeptics.” These scholars are skeptics because the common theme uniting 

their views is that machines are mere tools, mere instruments, and it would be a mistake to attribute 

any type of responsibility to them, just as it would be a mistake to attribute any type of responsibility to 

a hammer or bomb. This skeptical view also extends beyond concepts like responsibility and can include 

concepts like patiency and agency as well. That is, on this view one might be skeptical that machines can 

ever be considered, or ought to be considered, as moral agents or moral patients. For the skeptics, 

machines cannot be held responsible for “their” actions nor are machines deserving of any special 

treatment (e.g., respecting their rights). Indeed Bryson has argued that it is a purely normative matter 

whether machines are considered as moral agents or moral patients, i.e., “there is no necessary or 

predetermined position for AI in our society.”511 And if it is a matter of whether we ought to make 

machines such that they deserve to be moral patients or thought of as moral agents, then Bryson is clear 

that this is something we ought not do. There may be, Bryson argues, “substantial costs but little to no 

benefits from the perspective of either humans or robots to ascribing and implementing either agency 

or patiency to intelligent artefacts beyond that ordinarily ascribed to any possession.”512  

 When thinking about whether we should care about artificially intelligent machines, and by 

extension their design and use, Bryson and other skeptics are of the opinion that we should only care 

insofar as these machines are a new technology that humans can use to improve or impoverish society. 

Such technologies can help us create a better more ethical society or they can be used to create a worse 
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more unethical society. In short, it is not the machines per se that we should care about, but rather the 

humans or organizations that design and use those machines. That is, humans are both moral agent and 

moral patient, and AI is just one tool we use to mediate those relationships, hence machine ethics is no 

different from computer ethics more generally.  

 If we can describe Bryson and others with similar views as skeptics, then their views are largely 

in opposition to the views of those I am choosing to call the “enthusiasts.” For the enthusiasts, we 

should worry about autonomous and artificially intelligent machines because they are a technology or 

artifact that is significantly different from all previous technologies. Moreover, we may attribute some 

form of moral or ethical status to these types of machines (or particular tokens of these types of 

machines, e.g., the robot Sophia) because they are, in a sense, more than mere tools.513 Enthusiasts can 

also be divided into subgroups depending on whether they believe machines ought to count as moral 

patients, as moral agents, or both. John Danaher, for example, argues for a kind of ethical behaviourism 

such that machines may count as moral patients if they are “roughly performatively equivalent to 

another entity whom, it is widely agreed, has significant moral status,” i.e., an entity that has limits to 

how we can treat it such that our treatment of that entity is not a matter of mere preference.514 Given 

that it is widely agreed that adult humans have significant moral status, if a robot is roughly 

performatively equivalent to an adult human, then on Danaher’s view that robot ought to be afforded 

the same moral status. Danaher maintains that what is “going on ‘on the inside’ does not matter from an 

ethical perspective” because there are epistemic limits that prevent us from directly accessing the 

metaphysical status of a given entity.515 In short, Danaher maintains that “performative artifice, by itself, 

can be sufficient to ground a claim of moral status” regardless of whether machines, e.g., robots, are 

designed to be tools or slaves for our use.516  

 Ian Kerr is another enthusiast (though I doubt he would describe himself in such terms) that I 

argue implicitly endorses thinking of machines as agents. In contrast to skeptics, Kerr claims that “non-

sentient robots and AIs can diminish our privacy” because “artificial cognizers can be said to form truth-

promoting beliefs that are justified” and even actuate automatically on the basis of these beliefs thereby 

potentially violating, in addition to diminishing, a person’s state of privacy.517 Like Danaher, Kerr is more 

interested in epistemology than metaphysics, but unlike Danaher, Kerr is more interested in how 

 
513 More information about Sophia can be found here: https://www.hansonrobotics.com/sophia/ 
514 Danaher 2020, 2025-2026.  
515 Ibid., 2025.  
516 Ibid.  
517 Kerr 2019, 125-126. 
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machines can affect humans, i.e., in how machines as agents of a certain non-sentient, non-conscious 

kind, may treat human patients. Though he does not explicitly describe machines or artificial entities as 

agents, it is implicit in Kerr’s writing that machines (or certain types of machines) possess some kind of 

agency.518 He emphasizes, for example, that machines can “cause people to act or be treated in 

particular ways” or “carry out certain operations independent of human action, oversight, intervention, 

awareness or knowledge,” all of which point towards thinking of machines as agents.519 These machines, 

Kerr maintains, would not be sentient but nevertheless be “entities capable of acting upon the world 

with substantial autonomy and the ability to significantly affect the life chances and opportunities of 

people.”520 These capabilities are sufficient to ascribe, if not moral agency, then agenthood in general to 

machines with such capabilities. Recall from the discussion of agency and patiency in Chapter 3 that 

moral agency is a specific kind of agency that presupposes the possession on the part of the agent in 

question the right sort of mind and/or autonomy. While the kinds of machines that Kerr is concerned 

with are certainly agents, i.e., capable of acting on and affecting the world (and by extension people), 

they may not qualify as moral agents for various reasons, e.g., these machines lack the right sort of 

autonomy to confer moral agency because they cannot act, on their own, in compliance with or in 

violation of moral norms.  

 Unlike the skeptics, the enthusiasts generally agree that we should care about artificially 

intelligent machines, but the reasons why often differ. Kerr for example cites the need for an expansion 

of the legal theory and doctrines that deal with privacy in light of his conclusion that machines can 

disturb the “presumption of ignorance in epistemologically significant ways” that grounds a right to 

privacy.521 Danaher similarly agrees that we should care about artificially intelligent machines, but his 

reasons for thinking so revolve around his commitment to ethical behaviourism, “a meta-empirical 

thesis about how we ought to interpret empirical evidence concerning behaviour” and consequently 

whether a given entity has moral status.522 As mentioned above, ethical behaviourism roughly amounts 

to a rejection of the idea that ethical considerations stem from what is going on “on the inside” (i.e., 

metaphysically going on), as it were, and an affirmation of the idea that behaviour by itself is sufficient 

to ground ethical considerations (e.g., whether an entity ought to be considered a moral agent or moral 

patient). David Gunkel, another enthusiast, likewise maintains we ought to care about artificially 
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intelligent machines. Gunkel’s motivations however have to do with the ways in which we encounter 

and interact with “others” “whether they [these others] be other human persons, an animal, the natural 

environment, or a social robot.”523 For enthusiasts like Gunkel, what matters is not whether machines 

are autonomous, intelligent or even behaviourally similar to humans, but rather how we actually relate 

to them and how they reveal themselves to us in the relationships we form together.524  

 

7.1.2 Pessimism and Optimism 

 

 Before moving on, one terminological clarification needs to be made. I have chosen to use the 

terms 'skeptics’ and ‘enthusiasts’ to specifically describe those scholars who believe we should not and 

those scholars who believe we should care about (i.e., give special attention to) artificially intelligent 

technologies respectively. The scholarly landscape however is considerably more complicated than this 

simple dichotomy suggests. In addition to classifying scholars as either skeptics or enthusiasts, they 

could also be described as pessimists or optimists. This classification is orthogonal to the 

skeptic/enthusiast dichotomy and is an attempt to capture whether scholars view the development of 

artificially intelligent technologies as undesirable or desirable, roughly speaking, and this is best 

illustrated using examples. Thomas Metzinger is an example of a pessimistic enthusiast. Metzinger 

argues that we ought to care about artificially intelligent technologies and in this sense he is an 

enthusiast. But Metzinger is a pessimist in the sense that he worries continued development of 

artificially intelligent technologies may lead to “an “explosion of negative phenomenology” in advanced 

AI and other post-biotic systems.”525 “On ethical grounds,” Metzinger argues, “we should not risk a 

second explosion of conscious suffering on this planet” with the first explosion taking place via the 

development of conscious biological life.526 Metzinger maintains that given we lack both a good theory 

of consciousness and a good theory of what constitutes “suffering,” the risk of an explosion of negative 

phenomenology is currently incalculable. As such, he concludes that “there should be a global ban on all 

research that directly aims at or indirectly and knowingly risks the emergence of synthetic 

phenomenology” until we have a deeper scientific and philosophical understanding of consciousness 

and suffering.527  

 
523 Gunkel 2018, 96.  
524 More will be said about this particular view.  
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 Contrast Metzinger with Danaher who is an optimistic enthusiast. Danaher, as mentioned 

above, is an enthusiast because he argues that we should care about artificially intelligent technologies, 

but he is also an optimist in the sense that he believes there are already existing frameworks to help us 

make sense of artificially intelligent moral patients. Not only does Danaher believe that there are 

potential benefits to the creation of robotic offspring,528 but he maintains that “the creation of robots 

with significant moral status can be viewed through the lens of procreative ethics.”529 Danaher 

maintains that, when thinking about how the principle of procreative beneficence (i.e., the duty one has 

to give their child the best possible life) might apply to machines, it actually “may be less controversial in 

[the case of machines] than in the human case,” primarily because the burden that might be imposed on 

manufacturers to create machines with the “best possible life” will not be an unreasonable burden.530  

 Unlike Metzinger and Danaher, Bryson is an example of a pessimistic skeptic. As mentioned 

above, Bryson is a skeptic because she maintains that we should not care about artificially intelligent 

technologies insofar as such technologies are not different in kind from any other human created 

artifact. For Bryson, we should care about such technologies only as much as we care about any other 

tool. In addition to this skepticism concerning artificially intelligent technologies, Bryson is also a 

pessimist, like Metzinger, in the sense that she believes we ought to refrain from creating certain kinds 

of artificially intelligent machines. Bryson believes that we “can limit AI - or at least legally-produced 

commercial AI - to be as it is now, something to which no obligations are owed directly.”531 Indeed 

Bryson is adamant that we ought not, even if it were possible to do so, create machines that meet the 

requirements for moral agency or patiency.532  

 For the sake of completeness, there is, in the space of possible positions I have outlined, room 

for an optimistic skeptic, but I am unaware of anyone holding such a view. This is primarily because this 

position amounts to believing that artificially intelligent technologies are not different in kind from any 

other technology (i.e., the skeptical view) but that it is desirable to continue the development of such 

technologies (i.e., the optimistic view).  
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7.2 Tools of A Different Kind 

 

 Like many other scholars, I also maintain that we should care about artificially intelligent 

technologies. That is, I am an enthusiast in the sense defined above. But I argue that we should care 

about artificially intelligent technologies for two main reasons. First, artificially intelligent technologies, 

at least those of the kind that have been discussed throughout this dissertation, are tools of a radically 

different kind than any other previous tool or artifact created by humanity. Second, and relatedly, these 

technologies have a breadth of applicability that makes them particularly unique among the tools that 

humanity has developed. Let us consider each reason in more detail.  

 

7.2.1 Autonomy and Intelligence 

 

 What exactly separates intelligent machines from all other tools? I argue that, unlike all other 

previous tools or artifacts, intelligent machines are just that: intelligent. Perhaps more clearly, intelligent 

machines are tools that fulfill cognitive tasks. In contrast to hammers, wheelbarrows and excavators, all 

of which are tools that fulfill physical, i.e., manual labour, tasks, intelligent machines are tools that fulfill 

tasks that are within the domain of cognition. This includes tasks like planning and decision-making, 

image recognition, classification and sorting, coherent language generation and more. The ability to 

perform cognitive tasks marks a distinct difference in kind between all previous tools and artificially 

intelligent tools.  

 Now it might be objected that there have existed, for quite a long time, tools that fulfill tasks 

within the domain of cognition. Consider a tool like the abacus or even primitive writing tools.533 If 

mathematical calculations are tasks that fall within the domain of cognition, then surely a tool like the 

abacus ought to also be considered a different type of tool. But merely fulfilling a task in the domain of 

cognition is not sufficient to warrant a difference in kind. In addition to fulfilling a task in the domain of 

cognition, tools like contemporary artificially intelligent machines are also autonomous. That is, they are 

tools that can operate in the absence of a human. AlphaZero, in contrast to an abacus, can fulfill its task 

of playing a game of chess, for example, without the presence of any human. Moreover, autonomy on 

its own is also insufficient to warrant differentiating between kinds of tools. Tools stretching as far back 

as windmills and watermills can be thought of as autonomous tools, at least in the sense that they can 

 
533 This is particularly important against the backdrop of extended theories of mind which posit that 
cognitive tasks can be fulfilled by external objects that are coupled to a human in certain relevant ways.  
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also operate in the absence of a human. More modern tools like Roombas are also autonomous in this 

sense, i.e., they operate quite effectively in the absence of a human. But in each of these cases the task 

being fulfilled falls outside of the domain of cognition. To be sure, Roombas and watermills are 

sophisticated tools, but I maintain they are no different in kind from hammers, wheelbarrows and 

excavators.  

 So we can be more precise about what exactly separates artificially intelligent machines from all 

other tools. Unlike all other previous tools or artifacts, artificially intelligent machines are both 

autonomous and engaged in tasks within the cognitive domain. It is the conjunction of autonomy and 

intelligence that is key. Importantly, this does not mean that artificially intelligent machines are only 

ever engaged in tasks within the cognitive domain. Consider an autonomous vehicle. In addition to 

engaging in the cognitive tasks of strategic planning, decision-making and object classification, among 

others, autonomous vehicles also engage in the “physical”534 tasks of depressing the gas and brake 

pedals as well as turning the steering wheel. Autonomous vehicles also highlight the other particularly 

unique feature of artificially intelligent machines, their breadth of applicability or, alternatively, their 

universality.  

 

7.2.2 Universality 

 

 The ability to autonomously engage in tasks within the cognitive domain is what sets artificially 

intelligent machines apart from all other machines, tools and artifacts that humans have created. 

Another unique, but not necessary, feature of artificially intelligent machines is their breadth of 

applicability.  As discussed in Chapter 4, the same basic machine, i.e., the same deep neural network and 

learning algorithms, could, in principle, operate an autonomous vehicle and classify hand drawn images. 

In practice, DeepMind has already demonstrated that the same artificially intelligent machine can 

master the three different games of chess, shogi and Go.535 Indeed transfer learning, a type of machine 

learning discussed in Chapter 1, makes use of precisely this phenomenon, e.g., taking a machine that can 

generate names for metal bands and reusing that same machine, albeit after some retraining, to 

generate names of ice cream flavours.536  

 
534 I say “physical” because there is no robotic foot or hand to actually depress the pedals or move the 
steering wheel.  
535 Silver et al. 2018.  
536 Shane 2019, 45-47.  
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Many different tasks from image recognition to text generation and prompt completion can be 

relatively easily accomplished by the same machine (i.e., deep neural network and learning algorithm). 

This means that there is no substantial barrier between different domains of application that would 

prevent, or at least make it difficult and costly, the same machine from being used in a variety of 

different contexts by many different people. Almost all other tools,537 including hammers, wheelbarrows 

and calculators, lack such breadth in their applicability. Sure, hammers can be used to remove nails in 

addition to hammering nails into place, and could be used more generally to smash things, but beyond 

that, their uses are quite limited. There is no analog of transfer learning for other tools (with perhaps 

the exception of the digital computer), and there are significant barriers between different domains of 

application that makes it difficult or downright ridiculous to use tools meant for tasks in one domain in 

an entirely different domain. Using a chainsaw in place of a kitchen knife or vice versa would be 

inappropriate (to say the least) but using the same artificially intelligent machine to distinguish between 

images of cats and dogs, and between images of cancerous and non-cancerous melanomas, is practically 

the norm. For example, since late 2018, so called “foundation models” have demonstrated how transfer 

learning techniques when coupled with increases in scale (e.g., vast hardware improvements, 

gargantuan models and immense amounts of training data) can allow the same machine “to take the 

“knowledge” learned from one task (e.g., object recognition in images) and apply it to another task (e.g., 

activity recognition in videos).”538 In short, one foundation model can be adapted to a wide range of 

downstream tasks, and their use has only increased since their inception.  

 

7.3 The Perfect Technological Storm539 

 

 If artificially intelligent machines are different in kind from all previous machines and tools, and I 

have argued that they are, then we should care about such machines insofar as their effects are 

relatively unknown. This brings us at last to the first question I posed: what is worth focusing on and 

why? That is, what types of artificially intelligent machines are being created and to what end are they 

being created? The short answer is that the types of artificially intelligent machines that we should care 

about, the ones that are worth focusing on, are the machines that purport to replace humans entirely 

 
537 The one exception is the digital computer. While breadth of applicability is a unique feature of 
artificially intelligent machines, another notable tool that possesses this feature is the digital computer.   
538 Bommasani et al. 2021, 4.  
539 This is with reference to Gardiner’s (2006) “Perfect Moral Storm.” 
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and thereby engage in what Brian Cantwell Smith calls “judgment.”540 The long answer, which I will 

elaborate on now, is that there is a perfect technological storm brewing that is capable of lulling people 

into a state in which they abdicate responsibility for decision-making and behaviour precipitated by 

artificially intelligent machines, a state that I am calling “moral complacency.”  

 In discussing climate change, Stephen Gardiner argues that climate change is a perfect moral 

storm given that “it involves the convergence of a number of factors that threaten our ability to behave 

ethically” just as a perfect storm “is an event constituted by an unusual convergence of independently 

harmful factors” likely to result in substantial negative outcomes.541 Like Gardiner, I maintain that 

artificially intelligent machines are analogous to a perfect storm in that such machines involve the 

convergence of a number of factors that threaten our ability to behave ethically. Unlike Gardiner 

however, who believes that the storm in the context of climate change makes us vulnerable to moral 

corruption broadly construed,542 I argue that the storm in the context of artificially intelligent machines 

makes us vulnerable to moral complacency in particular.  

 

7.3.1 The Transparency “Storm” 

 

As many complex issues intersect with artificially intelligent machines, here I will focus only on 

two salient problems that converge to make us especially vulnerable to becoming morally complacent. 

The first problem is that of transparency/opacity. It has become common to think of artificially 

intelligent machines, especially those we have been focusing on (i.e., machines that utilize big data and 

machine learning techniques), as black boxes. As discussed in Chapter 1, while the inputs and outputs of 

these machines are generally easy to identify and understand, the same cannot be said about what goes 

on inside the machine. The issue of transparency (sometimes also thought of as “interpretability”) is not 

however a simple dichotomy, i.e., transparent or not transparent. As many scholars have noted, “there 

are many flavours and gradations of transparency that are possible” and so it is important to understand 

some of the different types of transparency one might encounter.543 Recall from Chapter 1 that 

transparency, or lack thereof, i.e., opacity, may be (1) intentional, because corporations and institutions 

 
540 Smith 2019, xv.  
541 Gardiner 2006, 398.  
542 Gardiner (2006) states that moral corruption can be facilitated in a number of ways, including via 
distraction, complacency, unreasonable doubt, selective attention, delusion, pandering, false witness and 
hypocrisy. 
543 Diakopoulos 2020, 199.  
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are interested in protecting their intellectual property, (2) a result of the specialist knowledge required 

to understand computer code and algorithms, or (3) a result of the computational mismatch between 

humans and machines.544  

 While this division of the types of transparency/opacity is helpful, there is much more that can 

be said. For example, different contexts might play a pivotal role in determining under what 

circumstances and to whom corporations or institutions might reveal the inner workings of their 

machines. It has been argued, for example, that “a safety inspector or accident investigator may need 

different information to assess a system globally” in comparison to other stakeholders, like an operator 

or end-user, who might be interested in understanding an individual decision or outcome.545 Regulators, 

for example, may be given privileged access to machines to ensure that corporations/institutions are 

abiding by industry regulations.  

 Similarly, specialist knowledge of computer code and algorithms may not be sufficient (or may 

not be required) to render machines wholly transparent. Moreover, algorithmic transparency can be 

thought of as just another different kind of transparency that concerns the algorithms themselves.546 

Some algorithms are just easier to understand in the sense that we can prove and thereby be confident 

that they will produce certain predictable outcomes. Other algorithms, like the ones used in modern 

machine learning techniques highlighted in Chapter 1, are not as well understood even by the software 

engineers and computer scientists that use them. There is therefore no guarantee that specialist 

knowledge will increase the transparency of a machine’s decisions even if one has access to the 

algorithms themselves.547  

In addition to algorithmic transparency, a second notion of transparency connected to specialist 

knowledge might be the transparency that is gained by understanding and being able to explain what 

each part of the model, i.e., “each input, parameter, and calculation,” does and how it affects the 

outputs.548 This kind of transparency could just as easily be thought of in terms of intelligibility given the 

fact that one is able to explain how and why a machine arrived at a certain decision by decomposing the 

machine into simpler parts. A third and even more general notion of transparency connected to 

specialist knowledge is one of simulatability. In short, “if a person can contemplate the entire model at 

 
544 Burrell 2016, 1-2.  
545 Diakopoulos 2020, 199-200.  
546 Lipton 2017, 5.  
547 See Lipton (2017) for more details about the kinds of algorithms that are more transparent and 

algorithms that are less transparent.  
548 Lipton 2017, 5.  
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once” and step through every calculation, as it were, that the machine itself would perform when 

transforming a given input into an output, then that machine may be considered transparent.549 

However just as algorithms fall on a continuum ranging from the highly transparent (i.e., well 

understood) to the highly opaque (i.e., not well understood), so too do the model and high level 

features of a machine range from the highly transparent to the highly opaque.  

 Transparency, of the lack thereof, may also simply be the result of computational mismatches 

between humans and machines. While machines are clearly far from possessing human-like intelligence, 

they nevertheless already possess certain advantages. Machines have perfect recall, never become 

tired, do not experience boredom, do not daydream, do not need to rest or sleep, do not make mistakes 

when applying mathematical or logical rules, and can analyze far more data than any single human being 

could, to name a few advantages. It has been demonstrated that even simple linear models outperform 

human experts in domains such as clinical diagnosis and forecasting graduate students’ success.550 

Further studies have revealed that it is far more common for algorithms to outperform human judges 

and forecasters than the opposite.551 Such results inevitably raise questions about whether it even 

matters if machines are transparent or not. This kind of epistemic reliabilism (discussed above in 

connection to Kerr’s view that machines can diminish our privacy) has important ramifications when it 

comes to thinking of artificially intelligent machines as capable of forming and having knowledge or 

beliefs.552 If an algorithm more accurately predicts the weather or can better forecast which area of 

study a given student is more likely to succeed in, why should we care how or why the machine made 

the prediction that it did? Setting aside these epistemological concerns however, there is growing 

evidence that people prefer advice from algorithms to advice from people, a phenomenon that has been 

dubbed “algorithm appreciation.”553 Even more interesting, at least when considering the issue of 

transparency/opacity, is that researchers discovered that participants were willing to rely on algorithmic 

advice instead of human advice even when given a minimal description of the algorithm (e.g., “The 

output that an algorithm computed was…”554). They conclude that “participants who faced “black box” 

algorithms…were willing to rely on that advice despite its mysterious origins” suggesting that the issue 

 
549 Ibid., 4.  
550 Dietvorst et al. 2015, 1.  
551 Ibid.  
552 Recall that this is precisely the line of reasoning that Kerr (2019) takes to support his claim that 

machines can diminish our privacy. That is, machines, as a result of reliable “belief” formation processes, 
can be said to “know” something about an individual and as such these machines can violate our right to 
privacy.  
553 Logg et al. 2019, 90. Algorithm appreciation was also discussed in Chapter 3.  
554 Ibid., 92.  
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of transparency of a machine may not be a significant concern for the average person, at least in some 

contexts.555 This leads us to the second salient problem, the problem of trust.  

 

7.3.2 The Overtrust “Storm” 

 

 While the phenomenon of algorithm appreciation might seem innocuous at first, it is connected 

to a deeply problematic cognitive bias, the automation bias. Put simply, automation bias is “the 

tendency of people to overtrust automated tools.”556 Now, as Joel Walmsley notes, this would not be 

particularly problematic if “our use of such systems were restricted to recommender systems for 

movies, music and restaurants,” but this is simply not the case.557 In addition to the many anecdotes of 

people religiously following their GPS or Google Maps route into lakes and houses,558 research has 

revealed that people are, perhaps surprisingly, apparently willing to trust robots in emergency 

evacuation scenarios.559  Robinette et al. noted that even when participants observed a robot 

inefficiently lead them to a meeting room by taking them into the wrong room first, they nevertheless 

followed the robot’s instructions, i.e., went in the direction the robot was pointing, towards a back exit 

in a contrived fire emergency.560 Additionally, in follow up studies where participants witnessed the 

robot, before or during the “emergency,” either “break” (i.e., spin around in circles and direct the 

participants toward a corner in the hallway), “break” and remain immobilized pointing towards the back 

exit, or “break” and direct participants towards a dark room partially blocked by a piece of furniture (i.e., 

participants were not directed towards an exit), the majority of participants followed the robot’s 

instructions.561 Robinette et al. conclude that their findings demonstrate “a potentially dangerous level 

of overtrust” in machines and that machines “interacting with humans in dangerous situations must 

either work perfectly at all times and in all situations or clearly indicate when they are 

malfunctioning.”562  

 
555 Ibid., 100.  
556 Gebru 2020, 265.   
557 Walmsley 2021, 587.  
558 Incidents like these have permeated pop culture. One example is the character Michael Scott from the 
television show The Office driving into a lake as he yells, “The machine knows where it is going!” Watch it 
here: https://www.youtube.com/watch?v=DOW_kPzY_JY 
559 Robinette et al. 2016.  
560 Ibid., 101.  
561 Ibid., 105-107.  
562 Ibid., 107-108.  

https://www.youtube.com/watch?v=DOW_kPzY_JY
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In fact, the issue of overtrust in machines is considerably worse. The strength of modern 

artificially intelligent machines lies in their ability to identify and reproduce mappings between inputs 

and outputs, whether those inputs and outputs be images and their corresponding labels or 

recommended videos and viewer retention time.563 The danger however, discussed extensively in 

Chapter 2, is that machines, by working exactly as intended (i.e., reproducing mappings between inputs 

and outputs), are susceptible to discovering/learning and thereby perpetuating systemic biases.564 When 

coupled with the fact that people are already highly trusting of machines, it is clear that people will be 

even less likely to critically assess and question a machine’s decision or answer, as it were. People will 

simply believe what a machine “says” without confirming against the “source” whether there is any 

veracity to the machine’s output. A relatively recent example of a Palestinian writing “good morning” on 

Facebook highlights precisely this kind of unreflective trust in machines.565 In short, a Palestinian man 

was arrested by authorities for his post, “good morning,” written in Arabic which Facebook Translate (a 

proprietary translation machine) translated to “hurt them” in English or “attack them” in Hebrew. While 

the person was released shortly after their arrest, authorities trusted that the translation was accurate 

“and did not think to first see the original text before arresting the individual.”566 Overtrust in machines 

is clearly morally problematic, to say the least.  

 

7.3.3 Moral Complacency 

 

 Transparency, or the lack thereof (i.e., opacity), in machines is, on its own, a problem with 

artificially intelligent machines that can induce moral complacency. People either do not care to “look 

under the hood” and try to understand how the machine operates or are prevented in various ways 

(e.g., because of proprietary technology or a lack of specialist knowledge) from being able to 

comprehend how the machine operates. Overtrust in machines is similarly, on its own, a problem with 

artificially intelligent machines that can induce moral complacency. The automation bias, the tendency 

for people to offload cognitive processes/capabilities onto external entities like machines, drastically 

increases the likelihood that people will fail to exercise their judgment, in Smith’s sense, when it may be 

needed most, i.e., in situations of high moral import.  

 
563 Smith 2019, 49.  
564 See Chapter 5 for a more detailed discussion of risks associated with implementing machine ethics.  
565 See: https://www.haaretz.com/israel-news/palestinian-arrested-over-mistranslated-good-morning-

facebook-post-1.5459427 
566 Gebru 2020, 266.  
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 Together, the transparency of and overtrust in machines can induce horrifying levels of moral 

complacency in human beings. Take the case of the Correctional Offender Management Profiling for 

Alternative Sanctions (COMPAS) machine that predicts the likelihood of a defendant reoffending within 

two years of assessment. Although COMPAS has been used to assess more than one million offenders in 

the United States (US) since its development in 1998, only recently has COMPAS’s fairness been called 

into question. As mentioned above and discussed throughout Chapters 2 and 5, machines are liable to 

perpetuate systemic biases and indeed COMPAS reflects systemic racism in the US criminal justice 

system by underpredicting recidivism for white and overpredicting recidivism for black defendants.567 

Moreover, further analysis demonstrated that COMPAS is as “fair” and “accurate” at predicting 

recidivism as a sample of random people.568 The company that developed COMPAS (formerly 

Northpointe and now known as Equivant) engages in the type of intentional opacity described above in 

the sense that they have not publicly disclosed their machine’s structure or just how exactly it is trained. 

Moreover, even judges, the kind of people that arguably most often ought to be aware of the effect 

their judgment can have on human well-being, have deferred to COMPAS’s outputs presumably because 

they trust the machine more than their own assessment of a defendant. As Angwin et al. with 

ProPublica reported, the prosecutor in Paul Zilly’s case, who had been “convicted of stealing a push 

lawnmower and some tools,” initially recommended a year in county jail and follow up supervision, and 

Zilly’s lawyer agreed to a plea deal. Judge James Babler however, had seen Zilly’s score as computed by 

COMPAS “which had rated Zilly as a high risk for future violent crimes and a medium risk for general 

recidivism” and consequently overturned the plea deal agreed upon by the prosecution and defense and 

instead “imposed two years in state prison and three years of supervision.”569  

There is, in short, a real and present danger concerning the abdication of responsibility as a 

result of the moral complacency that arises from the unreflective use of artificially intelligent machines. 

As Smith painstakingly highlights, machines are not yet at the point where they can engage in the 

weighty ethical judgments that accompany innumerable decisions in our daily lives. Note that the term 

of importance is ‘judgment.’ That is, judgment requires a particular sort of understanding: 

the understanding that is capable of taking objects to be objects, that knows the difference 

between appearance and reality, that is existentially committed to its own existence and to the 

 
567 Dressel and Farid 2018, 1.  
568 Ibid., 3.  
569 Angwin et al. 2016.  
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integrity of the world as world, that is beholden to objects and bound by them, that defers, and 

all the rest.570 

COMPAS lacks judgment, not because it lacks any sort of “calculative rationality” that Smith (2019) 

identifies as “reckoning.” No, COMPAS lacks judgment in the sense of not being able to fully consider the 

consequences of its actions and thereby “failing to uphold the highest principles of justice and humanity 

and the like.”571 What artificially intelligent machines can do is impressive, but as John Haugeland might 

have put it, they don’t give a damn.572 And this is why we should care about artificially intelligent 

machines. Not because these machines might be considered as moral agents or moral patients or 

capable of suffering (though these are interesting and important considerations), but because by 

purporting to replace human decision-making and behaviour in tasks and activities that require 

judgment, machines induce moral complacency in us, beings who are (or at the very least ought to be) 

committed to the world and the entities it contains.  

 

7.4 Responding to Machines: The Practical and the Theoretical 

 

 In this final section I turn now to consider some socio-political and legal responses to artificially 

intelligent machines, and suggest that what is needed is, as the title of this chapter suggests, an ethics 

3.0 for this new age of the machine.  

 The development of artificially intelligent technologies and their potential ramifications has not 

gone unnoticed by governments and professional organization, e.g., the Institute of Electrical and 

Electronics Engineers, many of which have begun to create best practice or ethical use guidelines.573 To 

that end, i.e., the ethical use of artificially intelligent machines, the European Union (EU), as one 

example, has created the High-Level Expert Group on AI that has been working to understand, outline 

and clarify the potential risks of using AI technologies as well as consider how such technologies could 

be regulated. More recently, and building on work by the High-Level Expert Group on AI, the European 

Commission released the “White Paper” on artificial intelligence which outlines how the Commission 

intends to support a “regulatory and investment oriented approach [towards AI] with the twin objective 

 
570 Smith 2019, 110.  
571 Ibid., 111.  
572 Adams and Browning eds. 2017.  
573 See, for example, the “Ethically Aligned Design” document drafted by the IEEE Standards Association.  
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of promoting the uptake of AI and of addressing the risks associated with certain uses of this new 

technology.”574  

 It is the opinion of the Commission that some existing legislation can be adjusted to 

accommodate the appearance and use of artificially intelligent technology but that there are some novel 

challenges presented by these machines that are likely best addressed via the creation of a new 

regulatory framework. The Commission notes that, with regard to the former (i.e., adjusting existing 

legislation), there is already a legislative framework that exists to protect the fundamental rights and 

consumer rights of EU citizens. Some of this legislation include the “Race Equality Directive, the Directive 

on equal treatment in employment and access to goods and services,” rules concerning consumer 

protection as well as rules on personal data privacy and protection, “notably the General Data 

Protection Regulation” and the “Data Protection Law Enforcement Directive.”575 However, and here I 

emphatically agree with the Commission, given that the specific characteristics of artificially intelligent 

machines, “including opacity, complexity, unpredictability and partially autonomous behaviour, may 

make it hard to verify compliance with, and may hamper the effective enforcement of, rules of existing 

EU law meant to protect fundamental rights” and consumer rights, a new regulatory framework ought 

to be created for artificially intelligent technologies.576 

 Practically speaking, it is the Commission’s view that a new regulatory framework for artificially 

intelligent machines should follow a risk-based approach so as to be effective while not excessively 

prescriptive. The Commission maintains that artificially intelligent machines ought to be generally 

considered high-risk, but especially so when such machines meet the following two cumulative criteria: 

“First, the AI application is employed in a sector where, given the characteristics of the activities 

typically undertaken, significant risks can be expected to occur” and second, “the AI application in the 

sector in question is, in addition, used in such a manner that significant risks are likely to arise.”577 

COMPAS is an example of a machine that clearly meets both criteria. The criminal justice sector, as it 

were, is one wherein significant risks can be expected to occur, e.g., innocent people are found guilty for 

crimes they did not commit, and COMPAS is trusted by humans and perhaps seen as having an 

“objective” view and is therefore being used in such a manner that systemic biases are likely to be 

perpetuated.  

 
574 European Commission White Paper on Artificial Intelligence 2020, 1.  
575 Ibid., 13.  
576 Ibid., 12.  
577 Ibid., 17.  
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In keeping with their risk-based approach, the Commission identified six key features that ought 

to be the focus of mandatory legal requirements when designing future regulatory framework for 

artificially intelligent machines. These key features are: training data, data and record-keeping, 

information to be provided, robustness and accuracy, human oversight, and specific requirements for 

certain particular AI applications (e.g., those used for remote biometric identification).578 Although the 

Commission discusses these key features in further detail, it is still a rather general discussion, and that 

is perhaps, understandably, because artificially intelligent machines and their accompanying regulatory 

frameworks are still evolving. Take the third key feature of information to be provided as an example. 

The Commission acknowledges that in order to promote the responsible use of artificially intelligent 

machines and to build trust in such technology, clear information as to a machine’s capabilities and 

limitations should be provided and that, separately, “citizens should be clearly informed when they are 

interacting with an AI system and not a human being.”579 When considering the addressees of the legal 

requirements that would apply under this future regulatory framework, it is the Commission's view that 

“each obligation should be addressed to the actor(s) who is (are) best placed to address any potential 

risks.”580 But risk-based approaches, and especially rights-based approaches, to thinking of artificially 

intelligent machines and future regulatory frameworks are, I maintain, ultimately impoverished and 

quite reactive rather than proactive. They are therefore unlikely to bring about the kind of positive 

changes that people (e.g., regulators, users, stakeholders, etc.) would like to see.  

 

7.5 Virtues, Relations and Machines 

 

 In his 2017 book Life 3.0, Max Tegmark states that lifeforms have three levels of sophistication: 

Life 1.0, 2.0 and 3.0. Life 1.0 is characterized by an inability on the part of the lifeform to design either its 

“hardware” or “software,” e.g., genetics or linguistic abilities respectively.581 In contrast to simple 

biological life, like bacteria (which are examples of Life 1.0), Tegmark believes that humans are an 

example of Life 2.0 because we can wrest control of our software from evolution, and design it 

ourselves. By ‘software,’ Tegmark means “all the algorithms and knowledge that you use to process the 

information from your senses and decide what to do” which includes “everything from the ability to 

recognize your friends when you see them to your ability to walk, read, write, calculate, sing and tell 

 
578 Ibid., 18.  
579 Ibid., 20.  
580 Ibid., 22.  
581 Tegmark 2017, 27. 
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jokes.”582 Naturally, Life 3.0 is characterized by an ability to design its own hardware in addition to its 

own software and there are, as of yet, no examples of such a lifeform. But the boundaries between 

these three stages, Tegmark notes, are fuzzy. Mice might be an example of Life 1.1 given their limited 

capacity to learn, and today’s humans might be an example of Life 2.1 given our limited capacities to 

modify our hardware (e.g., we can replace our evolved hearts with artificial ones, our legs and arms with 

artificial ones, etc.).583  

 In addition to lifeforms, I want to suggest that we can think about ethics in a similar way. In 

short, just as artificially intelligent machines may one day lead to Life 3.0, living in a world filled with 

artificially intelligent machines may need us humans to embrace an Ethics 3.0. But what exactly would 

an Ethics 3.0 look like? Unlike lifeforms, which we might intuitively group, as Tegmark does, into 

biological, cultural and technological stages, no such division readily appears in the case of ethics. 

Nevertheless, I maintain that there are three ethical frameworks that we could identify as Ethics 1.0, 2.0 

and 3.0.584 Though I want to focus primarily on Ethics 3.0, I will now briefly outline what I think of as 

Ethics 1.0 and 2.0.  

 Ethics 1.0, I argue, is characterized by the unfortunately named “social Darwinism.” Championed 

largely by Herbert Spencer (not Charles Darwin), the idea behind social Darwinism is that nature has its 

own morality, that evolution585 tends towards generating the greatest happiness and that those 

organisms that enjoy reproductive fitness are also more worthy of existing in a normative sense; those 

organisms ought to exist because they are better or superior. Ethics 2.0, in contrast, is characterized 

largely by a rejection of morality in nature and instead an affirmation of the independent existence of 

human rights. Defenders of rights based approaches have grounded such rights in everything ranging 

from laws to God.586 For our purposes, rights that are grounded in notions of agency or autonomy are of 

particular interest because these are features that I have argued are shared by both humans and 

machines. Indeed a new area of research has appeared whose primary focus is whether machines or 

robots should have rights, or a certain set of rights.587 But focusing on this particular question, of 

whether machines are deserving of rights, or ought to be considered moral patients, is not particularly 

 
582 Ibid.  
583 Ibid., 29.  
584 It should be noted that I am not ordering these “stages” of ethics chronologically or even by their level 
of sophistication, however that might be determined. I am ordering these stages roughly according to how 
well they might promote living a good life in this modern age of artificially intelligent machines.  
585 Importantly, this is not the idea of evolution that Darwin championed, i.e., evolution by natural 
selection, but rather a more Lamarckian idea of evolution, i.e., evolution by use-inheritance.  
586 See Kohen (2007).  
587 See Gunkel (2018).  
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useful. One could engage in endless debate about conferring or extending rights and moral patiency to 

include machines and make very little headway.588  

 Instead of a rights-based approach, or by extension a risk-based approach favoured by the 

European Commission, I believe that a virtue-based approach is more fruitful when considering how we 

as individuals, and as larger groups and societies, ought to respond to artificially intelligent technologies. 

This is, I propose, Ethics 3.0, an ethical framework characterized both by an affirmation of an agent-

centered (rather than patient-centered) point of view and the idea that moral worth is extrinsic and not 

intrinsic to an entity. By putting virtue and the cultivation of character front and center in Ethics 3.0, the 

focus shifts away from the intractable questions associated with rights-based approaches (e.g., who is 

deserving of rights, who will guarantee those rights, how burdensome should a right be, etc.) and 

instead brings a different set of questions to the fore: Who are we? What kind of society do we want to 

create together? And it is these questions that are far more important to consider and reflect upon 

when considering the socio-political and legal responses to artificially intelligent technologies. Similarly, 

by emphasizing the idea that moral status is extrinsic in Ethics 3.0, the focus shifts away from the 

intractable questions associated with the metaphysical features that are intrinsic to a given entity (e.g., 

does this entity have a mind, does this entity have free will, does this entity have intentions, etc.) and 

instead brings yet another set of questions to the fore: Should we raise this entity in certain ways? How 

does our relationship with these other entities influence our character?  

 

7.5.1 Resisting Moral Complacency 

 

 Neither of these ideas, that we should take up an agent-centered virtue-based approach and 

that moral worth is extrinsic rather than intrinsic, are new ones, but what is novel is my synthesis of 

them into Ethics 3.0, an ethics for the age of artificially intelligent machines.589 Such an ethics is needed 

because, as mentioned above, artificially intelligent machines can induce dangerous levels of moral 

complacency. This complacency, and associated risks of abdicating moral responsibility (either in part or, 

perhaps one day in the future, completely) can be curbed by emphasizing the importance of the 

 
588 See, for example, Chapter 3 where I discuss the many different prerequisites thought to be necessary 
to ground a claim to moral patiency and the having of rights.  
589 Gardiner (2012), for example, draws a distinction between patient-centered thinking and agent-

centered thinking when evaluating the effects of climate change (or perhaps more accurately, when 
evaluating the effects of our actions insofar as they affect climate change). Similarly, Coeckelbergh and 
Gunkel (2014) and Gunkel (2018), for example, argue that moral status depends far more on the relations 
between entities, and apply this line of reasoning to machines and technological artifacts.  
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character of the agent in question. We might ask Judge James Babler, mentioned above in connection to 

COMPAS, what kind of person are you? What kind of judge are you? Gardiner, in discussing climate 

change, charges us of being reckless (among other vices), and the same could be said of Judge James 

Babler and any number of individuals and organizations that have been lulled into a state of moral 

complacency, i.e., they are being reckless; they don’t give enough of a damn. Gardiner writes that the 

charge of recklessness “extends the focus of criticism beyond the risk itself to the issue of who is 

imposing it, on whom, under what circumstances, and for what purpose,” all of which are also pertinent 

when thinking of the effects of artificially intelligent machines.590 By focusing on the character of the 

“agent-in-the-loop,” or indeed any agent of interest (my character as the end user or an engineer’s 

character as the designer, or even the character of the machine), we can resist becoming morally 

complacent.  

 Moral complacency can also be curbed if we take the so called “relational turn,” i.e., we realize 

that moral worth is extrinsic rather than intrinsic. The marginalization of communities throughout 

history has often proceeded via dehumanization, i.e., they were deemed to “lack” what is intrinsic to 

those humans who “matter.” Such is the weakness of rights-based approaches to ethics in general. They 

depend on a “conferring” or “extending” of rights, or more appropriately those intrinsic features that 

ground rights, from the dominant, powerful group that “matters.” This too induces a kind of moral 

complacency. Therefore the way to fight this complacency, as Gunkel writes, is to realize that “moral 

consideration is decided and conferred not on the basis of some pre-determined ontological criteria or 

capability (or lack thereof) but in the face of actual social relationships and interactions.”591 We might, 

rightly I believe, accuse Judge James Babler of failing to engage and interact with Paul Zilly and thereby 

fail in his duties to ensure that a just sentence was carried out. By focusing on our relationships and 

interactions, the social web that ties us all together and to innumerable non-human entities (e.g., my cat 

Sergeant Fuzzy Boots, my stuffed animal Cheeser, my BlackBerry smartphone), we can better resist 

moral complacency via reflection on how we ought to treat those humans and non-human entities with 

which we are intimately linked.  

 To sum up, we should care deeply about artificially intelligent machines, especially those used in 

times and places when good judgment is required, because we risk lapsing into a state of moral 

complacency. What is needed to counteract this worrisome state is an Ethics 3.0, a reorienting of our 

thinking about ethics and morality. Rights-based and risk-based approaches, while invaluable in the past 

 
590 Gardiner 2012, 244.  
591 Gunkel 2018, 96.  
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and important in the interim, are not enough to effectively deal with the sustained pressure that 

artificially intelligent machines are putting on society now and will continue to do so in the future. I 

submit that a virtue-based relational approach is better suited for both counteracting moral 

complacency and pushing society in a direction better suited for all.  
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Coda 

 

 I have argued that the conjunction of autonomy and intelligence in artificially intelligent 

machines is what sets them categorically apart from all other machines and tools. These machines are 

able to learn and consequently go beyond, as it were, what their designers can do. This is true, as I have 

pointed out, in the domain of game playing where machines have discovered novel strategies. The same 

may also be true, I have argued, in the domain of ethical decision-making and behaviour, i.e., machines 

may discover novel ways of acting ethically given a specified outcome. Such discoveries may occur as we 

raise ethical machines using bottom-up reinforcement methods which are, I maintain, the most 

promising approaches to implementing machine ethics. Moreover, I have argued that, regardless of 

whether we are able to successfully implement ethics in machines, we will learn more about ethics 

simpliciter as a result of pursuing the project of implementing machine ethics, i.e., theorizing about and 

attempting to build ethical machines. In any case, we must always resist the tendency to lapse into 

moral complacency that is, I maintain, growing stronger as a result of our use of artificially intelligent 

machines. Ultimately, when it comes to decisions and actions that matter, there is no substitute for 

considered human judgment. Not yet anyways.  
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Gagné, Robert M. 1972. “Domains of learning.” Interchange, 3(1), 1-8.  

 



167 
 

Gardiner, Stephen M. 2012. “Are We the Scum of the Earth? Climate Change, Geoengineering, and 

Humanity’s Challenge.” In Ethical Adaptation to Climate Change: Human Virtues of the Future, 

edited by Allen Thompson and Jeremy Bendik-Keymer, 241-260. Cambridge: The MIT Press.  

 

Gardiner, Stephen M. 2006. “A Perfect Moral Storm: Climate Change, Intergenerational Ethics and the 

Problem of Moral Corruption.” Environmental Values, 15, 397-413.  

 

Goodman, Bryce and Seth Flaxman. 2016. “EU regulations on algorithmic decision-making and a “right 

to explanation.” arXiv: 1606.08813v1, 26-30.  

 

Gordon, John-Stewart. 2020. “Building moral robots: Ethical pitfalls and challenges.” Science and 

Engineering Ethics, 26, 141-157.  

 

Gunkel, David J. 2018. “The other question: Can and should robots have rights?” Ethics and Information 

Technology, 20(2), 87-99. 

 

Haugeland, John. 1985. Artificial Intelligence: The Very Idea. Cambridge: The MIT Press.  

 

Heyes, Cecilia M. 1994. “Social learning in animals: Categories and mechanisms.” Biological Reviews, 69, 

207-231.  

 

Hofstadter, Douglas R. 1999. Godel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, Inc. 

 

Hosseini, Hossein, Baicen Xiao, and Radha Poovendran. 2017. “Google’s cloud vision API is not robust to 

noise.” arXiv: 1704.05051v2, 1-5.  

 

Hoyningen-Huene, Paul. 1987. “Context of discovery and context of justification.” Studies in History and 

Philosophy of Science, 18(4), 501-515.  

 

IEEE Standards Association 2017. “Ethically aligned design: A vision for prioritizing human well-being 

with autonomous and intelligent systems (A/IS).” IEEE Standards P7000, Version 2. 

 



168 
 

Illeris, Knud. 2009. “A comprehensive understanding of human learning.” In Contemporary Theories of 

Learning: Learning theorists...in their own words, edited by Knud Illeris, 7-20. Abingdon: 

Routledge.  

 

Jost, John T., Laurie A. Rudman, Irene V. Blair, Dana R. Carney, Nilanjana Dasgupta, Jack Glaser, and 

Curtis D. Hardin. 2009. “The existence of implicit bias is beyond reasonable doubt: A refutation 

of ideological and methodological objections and execute summary of ten studies that no 

manager should ignore.” Research in Organizational Behaviour, 29, 39-69.  

 

Jumper, John, Richard Evans, Alexander Pritzel, Tim Green, Michal Figurnov, Olaf Ronneberger, Kathryn 

Tunyasuvunakool, Russ Bates, Augustin Židek, Anna Potapenko, Alex Bridgland, Clemens Meyer, 

Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav 

Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Peterson, David Reiman, Ellen Clancy, Michal 

Zienlinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, 

David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli and Demis 

Hassabis. 2021. “Highly accurate protein structure prediction with AlphaFold.” Nature, 596, 583-

589.  

 

Kazez, Jean. 2007. The Weight of Things: Philosophy and the Good Life. Malden: Blackwell Publishing. 

 

Kerr, Ian. 2019. “Schrödinger’s robot” Privacy in uncertain states.” Theoretical Inquiries in Law, 20(1), 

123-154. 

 

Kohen, Ari. 2007. In Defense of Human Rights: A non-religious grounding in a pluralistic world. Abingdon: 

Routledge.  

 

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep learning.” Nature, 521, 436-444.  

 

Lenat, Douglas B. 1983. “EURISKO: A program that learns new heuristics and domain concepts.” Artificial 

Intelligence, 21, 61-98.  

 



169 
 

Lenat, Douglas B. 2001. “From 2001 to 2001: Common sense and the mind of HAL. HAL’s Legacy, 193-

209.  

 

Lipton, Zachary C. 2017. “The mythos of model interpretability.” arXiv: 1606.03490v3, 1-9.  

 

Logg, Jennifer M., Julia A. Minson, and Don A. Moore. 2019. “Algorithm appreciation: People prefer 

algorithmic to human judgment.” Organizational Behaviour and Human Decision Processes, 151, 

90-103. 
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