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Chapter 1

Introduction

For societies throughout history, epidemics have often been a leading cause of
loss of life. It is even believed that the Antonine plague of 165AD saw the
beginning of the decline of the Roman Empire [56, 165] with a large portion of
its population decimated by the disease. This due to the soldiers of the empire
bringing back diseases from people and lands they had previously had no contact
with. Thus, from the earliest empires, humankind has struggled with the ever
evolving landscape of communicable diseases.

In 1977, it appeared as though humanity had turned a corner in its bid to
control and prevent infectious diseases. During that year, the last recorded case of
naturally occurring smallpox was recorded [91], a disease that had killed countless
of people over the course of millennia. For example, it is generally believed that
the Antonine plague was an outbreak of smallpox.

Since its eradication, progress has been made towards the eradication of other
diseases such as polio, malaria, measles and rubella to name a few [201]. This
is very much an ongoing campaign, with the first malaria vaccine seeing recom-
mendation by the World Health Organisation (WHO) for broad use in October
2021 [198].

It is not only human diseases which affect our society, zoonotic diseases have
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CHAPTER 1. INTRODUCTION

historically also played a large role in human history as entire food sources have
been wiped out. A recent example is that of the foot and mouth outbreak of
2001 in the UK [64, 88] in which approximatly 6.5 million animals were culled in
a successful campaign to bring the disease under control. The massive number
of animals that were killed resulted in a reported loss of around £8 billion [183]
in the combined public and private sectors of the UK.

Despite the large strides made in recent decades, 25% of yearly deaths are
still caused by communicable diseases [163]. As a result, current pharmaceutical
interventions are not enough to completely curtail such preventable losses. Cou-
pled with the fact that there are still a number of diseases which have no available
cure, such as AIDS, the disease caused by the virus HIV, as well as the fact that
antibiotic resistant diseases are of growing concern, we must turn our attention
in equal measure to understanding how these diseases spread from the context of
mathematical models.

Following the outbreak of the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) in 2019, the virus which causes the disease known commonly
as COVID-19 [202], we are starkly reminded that epidemics of such a scale are
not problems of the past. However, thanks to global cooperation of the scien-
tific community at a level not seen before, the virus was brought under control
by means of preventative non-pharmaceutical public health measures such as re-
striction of movements, quarantining, face masks and hand washing and also,
by the eventual roll-out of a global vaccination programme. In the early stages
of the disease, when the development of vaccines for the disease had just begun
[182], mathematical modelling played a key role in the decision making of gov-
ernments in relation to the public health measures they adopted. This is because
non-pharmaceutical interventions were all that were available while the race to
provide an effective vaccine was underway.

The foundation for much of modern epidemiological modelling can be traced
back to 1927 in a paper by Kermack and McKendrick [111] that outlines what
we refer today as the Susceptible-Infected-Recovered (SIR) model. This models
the evolution of the disease in well mixed population, i.e., all individuals in the
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population interact with an equal rate. Individuals start as susceptible and be-
come infected with some probability after coming into contact with an infected
individual, then once infected the individual recovers after some time. This type
of model is referred to as a compartmental model and has seen many extensions
since, taking into account factors such as incubation periods [90], vaccination
[167], age [53] etc.

While these models can be useful, they often lack the nuance that comes
with heterogeneous contact pattens within populations. As a result, research of
epidemiological models has turned to network science in recent years, largely due
to abundance of mobility data from sources such mobile phones [82, 192], air
traffic networks [31, 41, 100] etc.

Thanks to the internet and the vast amount of data being recorded in regards
to interactions, be they physical or online, network science has benefited greatly.
Network science is an area of mathematics that analysis complex networks such
as the brain [125], internet [4], commuting patterns [71] etc., in other words,
anything that can be reduced to interactions between objects, be they physical
things or individuals. Often by reducing complicated systems to such a simple
description, one can gain a deeper insight into how the interaction patterns affect
the system as a whole. The mathematical structure of a network, that is referred
to as a graph, consists of a number of vertices/nodes/hubs that are connected by
edges/links, However, the term network and graph are often used interchangeably.
There is often differences in the terminology depending on the author or field.

Much of the early analysis of complex networks was pioneered by the likes
of Erdős and Rényi around 1960 who discovered many results related to random
networks [60–62]. This allowed for the study networks/graphs at arbitrary scales
as graphs could now be described via more concise means via the probability of
a vertex having k edges attached to it. This means very large graphs could be
considered without the need to formulate very large matrices. At the same time,
there were a number of individuals such as Bevelas, Katz and Freeman, some
of whom were sociologists, who were attempting to quantify the importance of
vertices in a graph according to different metrics [21, 69, 70, 107]. This led to the
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CHAPTER 1. INTRODUCTION

concept of centrality measures in graphs, a concept even more important today
than it was then. This due to the enormous amounts of highly linked data that
is produces today, extensions of these original centrality algorithms allow us to
sort what data is more likely to be considered important.

By the 1990s the availability of cheap computers started to become more
widespread. As a result, many of these concepts of centrality were extended to
more complicated descriptions which could be solved by numerical means. At this
time individuals such as Wasserman, White, and Page began to look at network
science with the idea of analysing far larger networks than before [151, 195, 197].
In particular the work by Page was the basis for the web page ranking algorithm
used by Google.

As interest in network science grew, so did its applicability in other areas,
particularly in mathematical epidemiology where the likes of Newman formulated
the SIR model for networks [140, 144] and moved the theory forward. However,
many of the results used network epidemiology date back earlier (1970s) to the
study of percolation on networks by the likes of Mollison and Grassberger [81,
139]. Much of this work was done on configuration graphs, that is, graphs with
a set degree distribution. As a result, many of the results are specific to the
type of configuration graph, like the random graph of Erdős and Rényi discussed
previously. This was due to the lack of availability of much real network data.
Thus, in recent years, there has been a large increase in work done on data driven
network models. These are models which use real world networks to inform the
model, such as using the adjacency matrix to determine the coupling in some set
of ordinary differential equations which describe the evolution of a disease.

These data-driven models appear in various forms, the most basic being the
individual-based model as given in Ref. [10] by Anderson and May, named as such
because it ignores past interactions, and thus the state of each individual/vertex
is considered independent. This model has seen extensive use due to its rela-
tively simple description and has produced many interesting results such as the
epidemic threshold. This threshold is the combination of parameters in a model
at which the qualitative dynamics change from a disease being unable to sustain
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itself to causing an epidemic [194]. It is an incredibly important quantity when
using mathematical models to inform public health policy. There is an often
used extension to the individual-based model, and that is the pair-based model
(see for instance, Sharkey and Gleeson [78, 170]), which helps recover some of
the inaccuracy lost in the individual-based model. The pair-based model is still
an approximation, simply a better one. This does come at the cost of slightly
increased complexity.

While network epidemiological models help account for the heterogeneity in
contact patterns that the well mixed models of Kermack and McKendrick do not
account for, there is still a temporal aspect that is not accounted for. For such
static graphs (graphs that do not change with time), the contact patterns are
usually aggregated over some time span. This leads to contacts patterns that are
averaged over the time span. An extension which has seen an increase in interest
in the last decade is that of temporal graphs, i.e., graphs that change with time
[25, 180]. This is useful for contact patterns that are not well approximated by
an averaged static graph. For example, cattle trade networks [187] exhibit very
distinct seasonal trading patters, as a result, the ability for a disease to spread
can be dependent on the time the disease is introduced, it can also depend on
the length of time between contacts, if the timescale on which edges appear is far
slower than the rate at which individuals recover from the disease then it is likely
the disease will die out [123].

An important result is that from Valdano [189], which extends the concept of
epidemic threshold to temporal networks by taking into account the time scale on
which the contacts happen compared to the timescale of the disease. Recently,
much work has been done in order to try and generalise many of the results in
network science to the temporal setting [93, 153, 184, 189]. We will see in Chp. 3,
that we will extend both the individual-based and an improved pair-based model
to the temporal setting.

Both the discussed individual-based and pair-based models assume that each
vertex is a single entity/individual which interacts with others. While this as-
sumption can be useful, often this level of granularity is not needed. An alter-
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CHAPTER 1. INTRODUCTION

native approach is to use a meta-population model, a concept that comes form
ecology [86]. This assumes that each vertex in a graph/network is a smaller com-
munity part of the larger community the graph represents [22]. The assumption
is that this smaller community is well mixed and thus, the compartmental models
of Kermack and McKendrick can be used. This implies that the disease is able
to maintain itself in vertices, even in the absence of interactions. In the case
of the meta-population model the edges are weighted, meaning that there is a
real value associated with them. In this context the weight represents the rate
of travel from one vertex to another. In Ref. [22], Belik extents the concept of
meta-population models to commuting patterns of humans.

Similar to extending the individual-based and pair-based models to the tem-
poral setting, it is also possible to extend the meta-population models to the
temporal setting. This is done in rather natural way by allowing the weights of
the graph edges to depend on time as in Ref. [121], meaning, the rate of travel
between vertices is dependent on the time. This allows for complex periodic com-
muting patterns that see individuals leave their home vertex during the day, mix
with others, then return to their home vertex and mix with others there. We will
use this concept of temporal meta-population models in Chp. 4 in order to model
the spread of COVID-19.

While in this day and age we have more data than we know what to do with,
it can be the case that when attempting to construct a graph to model some
system there is no data available at the right granularity or even at all. This
is particularly the case in developing countries which do not have the means to
collect such detailed data. As a result, it is often easier to use mobility models
to construct the edges of a graph representing mobility of humans or even cattle
trades. Simini et al. in their seminal paper Ref. [174], develops a model (called
the radiation model) based on process of radiation which can accurately model
the movement of humans at large scales. This offers improvements over the long
used gravity model [33] that lacks a derivation like the radiation model, and is
based on assumptions and heuristics instead. We will see the radiation model
used in both Chps. 4 and 5 in order to construct networks modelling commuting
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and cattle trade.

Outline of Thesis. In Chapter 2, we introduce the basic terminology and
concepts needed for the rest of the chapters. In particular we introduce the
basics of graph/network theory, epidemiological models (both well mixed and on
networks), and mobility models (the gravity and radiation models). In Chapter
3, we introduce a general framework for epidemiological network models from
which the known individual-based and pair-based models can be derived. We
then introduce a more exact pair-based model by showing previous iterations are
a linearised version of it, and then we extend it further to the temporal setting.
In Chapter 4, we present a meta-population model for the spread of COVID-19
in Ireland which makes use of temporal commuting patters generated from the
radiation model. Finally in Chapter 5, we analyse a year worth of Irish cattle
trade data. We then fit a number of mobility models and show that an altered
version of the radiation model, which we call the generalised radiation model,
is able to accurately reproduce the distance distribution of cattle trades in the
country.
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Chapter 2

Theoretical Background

2.1 Network Theory

Network theory is a branch of mathematics that concerns itself with analysing
the interactions within complex systems. As such, network science has seen much
use in biology [77], sociology [51], applied mathematics and physics [57] etc.
Examples include, predator-prey food webs [102], the brain [96], social networks
both in person and online [156], and air travel [41].

In recent decades, network theory has experienced a huge increase in inter-
est, along with many other fields, thanks to the availability of cheap, powerful
computers [166] and importantly, increased availability of data. Much of this
data is made freely available [75], which aids with the testing and development
of theories.

Network theory has a very rich and interesting history, much of which lies in
the closely related field of graph theory that can trace its roots back to 1741.
This is when Euler’s work on solving the “seven bridges of Königsberg” [63] was
first published. In that work, Euler shows that is impossible, for the street layout
of Königsberg at the time, to traverse each of the seven bridges only once, by
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CHAPTER 2. THEORETICAL BACKGROUND

converting the problem from bridges and islands, to vertices and edges. Thus,
paving the way with some of the first graph theoretic results used.

There is often confusion as to the relationship between network theory and
graph theory. In reality they are much the same thing with different interests and
goals. Graph theory concerns itself with the mathematical object the graph and
results on this object. However, network theory concerns itself with problems,
often modelling some sort of interaction in another area of science [14, 117, 123,
125], which may be represented as a graph, and what can be learned about the
problem by using graph theoretic results. Thus, when we discuss networks and
graphs, we use the term network to refer to a real system of interactions, and
we use the term graph to refer to the mathematical object that they represent.
However, the difference between these two is not always clear, and so they may
be used synonymously at times.

The largest source of confusion is that fact that there can be slight differences
in terminology depending on the author/field/result. Throughout this thesis care
is made to be consistent in the use of terminology, but the alternatives will also
be presented to ensure the reader can follow sources if need be. The rest of this
section will deal with presenting the basics of graph/network theory required for
the later chapters.

2.1.1 Graphs

In this section we introduce the basic graph structures which provide the foun-
dation for all of graph theory. In essence, a graph is an object which maps a set
of vertices or nodes to each other via edges or links.

Definition 2.1 (Undirected Graph). An undirected graph [28] or sometimes just
called a graph is an ordered triple (V,E, ψ), where V is the set of vertices, E is the
set of edges, which is disjoint from V , and ψ is the incidence function, that maps
each edge in E to an unordered pair of vertices in V . The incidence function

10



2.1. NETWORK THEORY

for an undirected graph is defined as,

ψ : E −→ {{u, v}|u, v ∈ V }. (2.1)

As defined above, the set V contains what are referred to as vertices or nodes,
with the former more popular in graph theory and the latter more popular in
network theory. Similarly, the E contains what are referred to as edges or links.
Take for example, Fig. 2.1 which shows an example of an undirected graph. The
set of vertices are V = {a, b, c, d, e} and the set of edges are E = {u, v, w, x, y, z}.
The incidence function of this graph would then be ψ(u) = {a, e} = {e, a},
ψ(u) = {a, c} = {c, a}, ψ(w) = {e, b} = {b, e} etc. Also, loops/self-loops are
allowed in the definition of a graph, that is, edges which connected a vertex to
itself. For example, in Fig.2.2, the edge x is a self-loop with ψ(x) = {b}.

a

b

c
d

e

u

v

w
x

y

z

Figure 2.1: An example of a simple undirected graph.

The use of the incidence function may seem extraneous in the context of this
example as each edge is unambiguously identified by its incident vertices, this
type of graph is referred to as simple. However, graphs permit the existence
of multiple parallel edges between the same vertices as in Fig. 2.2. In such a
case, the adjacent vertices do not unambiguously identify the edge as we have
ψ(u) = ψ(w) = {e, b}.

A slight alteration to the definition above gives rise to another type of graph,
referred to as directed graph. These types of graphs are useful when dealing with
directed or one way interactions which are not reciprocal, e.g. hyper-links on web
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a

b

c
d

e

u

v

w

x

y

z

Figure 2.2: An example of a undirected graph with a loop, x, and multi-edge between e and b.

pages, linking to another page does not imply that it links back.

Definition 2.2 (Directed Graph). A directed graph [28] is an ordered triple
(V,E, ψ), where V is the set of vertices, E is the set of edges, which is disjoint
from V , and ψ is the incidence function that maps each edge in E to an ordered
pair of vertices in V . The incidence function for a directed graph is defined as,

ψ : E −→ {(u, v)|u, v ∈ V }. (2.2)

a

b

c d

e

u

v
w

x

y

z

Figure 2.3: An example of a simple directed graph.

In the example of the directed graph given in Fig. 2.3, the vertex set is given by
V = {a, b, c, d, e} and the edge set is given by E = {u, v, w, x, y, z}. The incidence
function maps the edges to the following ordered pairs of vertices, ψ(u) = (a, e),
ψ(v) = (c, e), ψ(w) = (e, c) etc.

We have now introduced the two basic graph structures, an undirected and
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2.1. NETWORK THEORY

directed graph. We provided the most general definition for these structures which
uses the concept of the incidence function. There are many types of restrictions
which may be made to these graphs which give rise to particular structures or
named graphs. Some of the most common are the following,

Definition 2.3 (Simple (Un)directed Graph). A simple (un)directed graph [28],
G = (V,E), is one in which self-loops and parallel edges are not allowed. This
implies the following incidence functions. For an undirected graph:

ψ : E −→ {{u, v}|u, v ∈ V, u 6= v}, (2.3)

where ψ is bijective. For a directed graph:

ψ : E −→ {(u, v)|u, v ∈ V, u 6= v}, (2.4)

where ψ is bijective.

Much of graph theory concerns itself with simple graphs, or at least graphs
that do not contain parallel edges, as result they often get special treatment. Since
the edges in graphs with no parallel edges can be unambiguously associated with
the vertices they are incident with, the incidence function is dropped and the
graph is specified as the ordered pair G = (V,E) where V is specified as before
and E is now a set of ordered or unordered pairs of vertices. For an undirected
graph E ⊆ {{u, v}|u, v ∈ V } and for a directed graph E ⊆ {(u, v)|u, v ∈ V }.

Definition 2.4 (Weighted Graph). A weighted graph [145], G = (V,E, ψ, ω), is
a graph which also has a weight function, ω, associated with it. This maps each
edge to some real value, i.e.,

ω : E −→ R. (2.5)

Much of the time in network science, one has some sort of values associated
with the edges in a graph structure, as a result, weighted graphs often play a
very important role. For example, in road transport networks, the weights often
represent factors such as average traffic congestion, road quality or number of
traffic lights etc. This information is vital in determining shortest paths from one
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CHAPTER 2. THEORETICAL BACKGROUND

vertex to another [160].

Definition 2.5 (Discrete-Time Temporal Graph). A discrete-time temporal graph
[25], G = (Gt1 , Gt2 , . . . , Gtnt

), is a sequence of nt graphs (and thus nt time-
stamps). Each of these graphs, Gti = (V,Eti), which represent a snapshot of the
network at some time ti, share the same vertex set V , but differ in their edge sets
Eti . The graph snapshots are all assumed of the same type, meaning that they
are all either directed/undirected, weighted/unweighted etc.

Note that continuous-time representations of temporal graphs are also possible
[146], however, as networks often deal with empirical data, which are just time-
stamped measurements, a discrete description is required. As a result, we will
not be dealing with continuous-time temporal graphs.

2.1.2 Matrix Representations of Graphs

While graphs are very useful structures, from the definitions given in the previous
section they can be difficult to deal with in many areas of mathematics. For this
reason matrix representations of graphs are used which allow for very powerful
tools, such as linear algebra, to be used when analysing graphs. They are also
far more natural descriptions for use on computers.

An adjacency matrix is a matrix that describes the number of parallel edges
connecting two vertices, or in the case of a weighted graph, the weight of edge
connecting two vertices. In order to associate with each (un)directed graph an
adjacency matrix, we first need to be able quantify this number. The number
of edges connecting two vertices u and v in an undirected graph is given by
|ψ−1({u, v})|, and the number of edges connecting u to v in a directed graph is
given by |ψ−1((u, v))|. These quantities are the cardinality of the pre-image of
the incidence functions. For example, take graph given in Fig. 2.2, we would have
|ψ−1({e, b})| = 2, |ψ−1({c, d})| = 1, etc. When dealing with adjacency matrices
it is often easier to represent each vertex as a unique integer in {1, 2, . . . , |V |}.
This way each vertex maps directly to row/column of the matrix.
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Definition 2.6 (Adjacency Matrix of an Undirected Graph). The adjacency
matrix A, of an undirected graph G = (V,E, ψ) is defined as,

Aij =

|ψ−1({i, j})| if i 6= j

2 |ψ−1({i, j})| if i = j.
(2.6)

In words, the entry in row i and column j is the number of edges connecting
vertex i and j or two times the number of edges connecting i and j when i = j,
i.e., when its a loop. The reason for multiplying the diagonal by 2 can be thought
of as accounting for the fact that self-loops touch the vertex twice. The practical
reason is that many results become nicer when including this multiplication on
the diagonal, thus it has become standard practice. Because the number of edges
from i to j is equal to the number of edges from j to i in an undirected graph
i.e., ψ−1({i, j}) = ψ−1({j, i}), the adjacency matrix for an undirected graph is
symmetric.

Definition 2.7 (Adjacency Matrix of a Directed Graph). For a directed graph,
the adjacency matrix is,

Aij =
∣∣ψ−1((i, j))

∣∣ . (2.7)

That is, the entry in row i and column j is the number of edges connecting
vertex i to j.

Take the examples of the graphs given in Figs. 2.1, 2.2, and 2.3. The adjacency
matrices for each of these graphs respectively are,

A =


0 0 1 0 1
0 0 0 1 1
1 0 0 1 1
0 1 1 0 0
1 1 1 0 0

 ,A =


0 0 1 0 0
0 2 0 0 2
1 0 0 1 1
0 0 1 0 0
0 2 1 0 0

 ,A =


0 0 0 0 1
1 0 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 1 0 0

 , (2.8)

where the vertices, {a, b, c, d, e}, are replaced by the matrix indices {1, 2, 3, 4, 5},
respectively.
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Definition 2.8 (Adjacency Matrix of a Weighted (un)directed Graph with no
parallel edges). The adjacency matrix, W, of a weighted graph G = (V,E, ω),
with no parallel edges is given by,

Wij =

ω({i, j}) if {i, j} ∈ E

0 otherwise,
(2.9)

in the case of an undirected graph, and

Wij =

ω((i, j)) if (i, j) ∈ E

0 otherwise,
(2.10)

in the case of directed graph. Hence, the adjacency matrix is simply the weights,
ω, on edges and zero if the edge does not exist.

It is important to note that it is not possible represent a general weighted
graph with parallel edges as an adjacency matrix as it is not fully determined
by the matrix. A decision must be made on how to represent parallel edges in
the matrix, for example, summing the weights for all edges connecting the same
vertices. However, in this case, the state of the original graph cannot be recovered
as it is unknown how many parallel edges there are, or what their weights are
based on such an adjacency matrix.

Definition 2.9 (Adjacency matrices of a Discrete-Time Temporal Graph). The
adjacency matrix, A[tk], of a discrete-time temporal graph, G = (Gt1 , Gt2 , . . . , Gtnt

),
at time tk, is simply given as the adjacency matrix of the graph, Gtk .

In other words, a discrete-time temporal graph is represented by a sequence
of adjacency matrices, where the particular definition of the adjacency matrix is
dependent on what kind of graph is used to represent each of the snapshots in
the temporal graph.

These matrix representations are used to develop methods and algorithms that
a deeper insight into structure of particular networks and help answer questions
such as, “which vertices are most important?” or “which vertices appear in the
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most number of shortest paths?”.

2.1.3 Network Properties and Measures

In this section we present a number of fundamental concepts in network science
which relate to the overall structure of a graph, both at a microscopic (i.e.,
vertices) and macroscopic (i.e., graph) level. An important question often asked
of graphs, is which vertices are most important, according to some metric. A
measure that attempts to answer such a question is called a measure of centrality.
However, many attempts to classify this idea of importance depends on things
such the vertex’s neighbours, or how many shortest paths it appears in etc.

Walks on Graphs

When analysing networks, there is often a need to discuss the ways in which it is
possible to traverse the graph and the effects these walks have. However, before
we discuss these topics, we introduce some terminology used when discussing
possible “walks” on graphs. For example, a walk may represent the flights taken
to from one location to another in an air transport network [41], or represent the
order of contacts in a social network in which a disease has spread [117].

Definition 2.10 (Walk). A walk [28] on a graph, G = (V,E, ψ), is an alternating
sequence of not necessarily unique vertices and edges, (v1, e1, v2, e2, v3, e3, . . . ),
which starts and ends with a vertex. Each edge, ei, is incident with the vertices
that precede and proceed it, i.e., ψ(ei) = (vi, vi+1) and similarly for an undirected
graph. In a simple graph, the walk may be fully determined by its sequence of
vertices (v1, v2, . . . ) as there are no parallel edges.

Definition 2.11 (Path). A path [28] is a finite walk in which all edges in the
sequence are unique. This induces a simple graph which is sometimes used as the
definition of a path.

Definition 2.12 (time-Respecting Path). Suppose we have a discrete-time tem-
poral graph G = (Gt1 , Gt1 , . . . , Gtnt

), where Gti = (V,Eti). The set Eti , refers

17



CHAPTER 2. THEORETICAL BACKGROUND

to the edge set at time ti. Then a time-respecting path, is a path given by
(v1, e1, v2, e2, . . . , vk, ek, vk+1), such that ei ∈ Etji , implies that tj1 < tj2 < · · · <
tjk .

Definition 2.13 (Non-Backtracking Path). A non-backtracking path, is a path
(v1, e1, v2, e2, . . . , vk, ek, vk+1), such that for its sequence of vertices, (v1, v2, . . . , vk),
for each double that appears (vi, vi+1), it may only appear once, and its reverse,
(vi+1, vi) may not appear at all.

Definition 2.14 (Non-Backtracking Path). Suppose we have a discrete-time tem-
poral graph G = (G1, G2, . . . , Gnt), where Gi = (V,Ei). The set Ei, refers to the
edge set at time ti, and of course, t1 < t2 < · · · , tnt . Then a time-respecting non-
backtracking cycle, is a cycle (v1, e1, v2, e2, . . . , vk, ek, v1) (as defined in Sec. 2.1.1),
where e1 ∈ Ei1 , e2 ∈ Ei2 , . . . , ek ∈ Eik and i1 < i2 < · · · < ik. Also, for the subse-
quence of vertices, (v1, v2, . . . , vk), for each double that appears (vi, vi+1), it may
only appear once, and its reverse, (vi+1, vi) may not appear at all.

Definition 2.15 (Cycle). A cycle [28] is a finite walk in which all edges and
vertices in the sequence are unique except for the first and last vertex which are
the same.

Definition 2.16 (Distance). The distance between two vertices is the number of
edges traversed in the shortest possible path (as defined above) between two ver-
tices. For weighted graphs, this is generalised to the path with smallest possible
sum of edge weights in the path.

Connectedness

With the above definitions related to walks in mind, we consider the idea of
contentedness of a graph. This tells us whether or not every vertex in a graph
is reachable (i.e. there exists a path) from every other vertex. However, this
idea of connectedness depends on whether the graph is directed or undirected.
Components of graph are used to describe the number of sub-graphs in which
every vertex is reachable by every other.
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Figure 2.4: An example of a walk on a simple graph. The walk starts from the vertex in the top left and
follows the edges denoted as red arrows (in the direction of the arrows), until it reaches its final vertex in the
bottom right.

Definition 2.17 (Connected). An undirected graph is connected if there exists a
path between every vertex. A connected sub-graph of a graph is called a connected
component if it is connected and there does not exist another larger connected
sub-graph containing it.

Definition 2.18 (Strongly Connected). A directed graph is strongly connected
if there exists a path between every vertex. A strongly connected sub-graph of a
graph is called a strongly connected component it is strongly connected and there
does not exist another larger strongly connected sub-graph containing it.

Definition 2.19 (Weakly Connected). A directed graph is weakly connected
if there exists a path between every vertex in an equivalent graph where the
reciprocal of each edge is added. A weakly connected sub-graph of a graph is
called a weakly connected component if it is weakly connected and there does not
exist another larger weakly connected sub-graph containing it.

It is often the case that algorithms assume that a graph is fully connected (cf.
centrality measures later in this section) for ease of description. However, this
usually does not pose a problem as the algorithms can simply be applied to the
connected components of a graph should it be disconnected. See Fig. 2.5 for an
example of a disconnected graph with 3 connected components.
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Figure 2.5: An example of an undirected graph with 3 components.

Degree

We now attempt to quantify how important a given vertex is in a graph in rela-
tion to to other vertices. One of the most simple such measures for quantifying
this idea of importance is that of the degree [145]. The degree of vertex in an
unweighted graph is a count of the number of vertices it is adjacent with. In
terms of the adjacency matrix, A, of a graph, G = (V,E, ψ), the degree of an
undirected graph is given by,

deg(i) =
∑
k∈V

Aik =
∑
k∈V

Aki. (2.11)

For directed graphs, degree is split into in-degree and out-degree as edges are
not reciprocal, and thus the adjacency matrix is not symmetric. The in-degree is
given by,

degin(i) =
∑
k∈V

Aki, (2.12)
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and the out-degree is given by,

degout(i) =
∑
k∈V

Aik. (2.13)

For weighted graphs, the definition remains the same, and so degree in a weighted
graph can be thought of the sum of the weights in/out of vertex. The left panel
in Fig. 2.6 shows an example of a random graph with 30 vertices where the
probability of connection was 0.1. The color of the vertices represent their degree
with a darker colour meaning higher degree.

The distribution of the degree of each vertex in a graph is referred to as the
degree distribution and turns out to be an incredibly useful tool for categorising
types of graphs. For example, take a random graph [60], also known as an Erdős-
Rényi graph. That is, a graph with nv vertices with the probability of an edge
existing between any 2 vertices as being p. Then it can be shown that the
distribution of the degrees within such a network follow a binomial distribution
[18],

P (k) =
(
nv − 1
k

)
pk(1− p)nv−k−1, (2.14)

where P (k) is the probability of a vertex having degree k.

In a similar fashion, the Albert-Barabási model [16] is another type of ran-
dom graph with a slightly different construction. It starts with a number of
vertices, and then progressively adds new vertices with n edges out at each step.
The edges are connected to the existing vertices in the graph with a proba-
bility proportional to their current degree, or out degree for a directed graph
(p = deg(i)/

∑
k∈V deg(k)), this is referred to as preferential attachment. As

shown in the original paper [16], the degree distribution of such a graph follows,

P (k) ∼ k−γ (2.15)

where γ is some positive value. This type of degree distribution is seen in numer-
ous examples in nature [17] and is characterised by its scale-free nature, hence,
graphs with this property are often called scale-free networks. The middle panel
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in Fig. 2.6 shows an example of an Albert-Barabási network. The initial number
of vertices was 2 with a degree of 0, at each step, a vertex was added with 2
outgoing edges until 30 vertices was reached. Similar to the other plots, color of
the vertices represent their degree with a darker colour meaning higher degree.

The last type of random graph we will look at is the Watts-Strogatz graph
[196] or small-world graph. This is another type of important random graph
which emerges from a specific construction. We start with a k-regular ring lattice
graph with nv vertices, that is, a graph where every vertex is placed on a ring and
then connected to the k/2 closest vertices on their left and right (every vertex has
degree k). Then, each edge is re-wired with some probability p. That means one
of the vertices the edge is incident with is randomly reassigned. This leads to a
network with a very small deviation in the degree distribution and has an average
degree very close to k (for small p). The important feature of this graph, is that it
makes the average distance between vertices very small (hence small-world) and
produces a clustering coefficient which is relatively high for small p. This helped
provide a greater understanding of the 6 degrees of separation phenomenon [1],
in which it is often seen that given any two people in the world, the average
number connections (acquaintances of acquaintances) it takes for them to reach
each other is 6. The right panel in Fig. 2.6 shows an example of a Watts-Strogatz
network. The graph contains 30 vertices, where each vertex started with 4 edges.
With probability p = 0.1, each edge was rewired.

Eigenvector Centrality

While degree centrality is useful in its own right, it is a rather basic description of
importance. Often, the importance of vertex in a network is dependent also on the
importance of the vertices that interact with it. This is where eigenvector central-
ity [145] can be of use, its measure of importance depends not only on neighbours,
but also on the importance of those neighbours. Eigenvector centrality is, as the
name suggest, a measure of a vertex’s importance based of the eigenvector asso-
ciated with the largest eigenvalue of the adjacency matrix. Suppose the vertex
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Erdős-Rényi Barabási-Albert Watts-Strogatz

Figure 2.6: An example of 3 graphs characterised by their degree distribution. The colour of each vertex
is determined of the degree of the vertex. A light colour (blue) indicates low degree whereas dark colour
(purple/black) indicates a high degree. Each graph has 30 vertices. In the left plot the probability of an edge
between vertices was p = 0.1. In the middle plot, the Albert-Barabási model started with 2 unconnected vertices,
at each step a vertex was added with 2 edges until 30 vertices was reached. The probability that one of the
edges was assigned to an already existing vertex i was given by p = deg(i)/

∑
k∈V deg(k). In the plot on the

right, the Watts-Strogatz model started as 4-regular graph where each edge was rewired with a probability of
p = 0.1.

set of the (un)directed graph is simply a list of integers, V = {1, 2, . . . , nv}, then
the eigenvector centrality of the ith vertex is given as the solution to,

ci = 1
λ

∑
k∈V

Aikck, (2.16)

where ci (a positive value) is the eigenvector centrality of vertex i. This is simply
the definition of an eigenvector re-written in a component-wise fashion. By the
Perron-Frobenius theorem [145], there is only one eigenvector of A that is all
positive, and its associated with its largest eigenvalue. This is only true if the
graph is strongly connected, and so, the centrality measure is only defined on
strongly connected graphs (an unconnected graph can always be split into its
strongly connected components). In matrix notation this is written as,

Ac = λc, (2.17)

where c is the vector of centrality components (also an eigenvector) c = [c1, . . . , cnv ]T .
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From eigenvector centrality, there are number of related extensions. Most
notably, these are Katz [107] and Page Rank [151] centrality, the latter of which
was developed by Larry Page for the Google search algorithm. These both at-
tempt to fix flaws in the original eigenvector centrality that appear under certain
conditions. Suppose that a directed graph has no outgoing edges from a vertex i,
then ci as defined above would be 0, even if every other vertex had an out-edge
into i. In many cases this vertex i should have some level of importance greater
than 0.

Katz centrality is defined by the solution to,

c = λ−1Ac + β1. (2.18)

This is related to the original eigenvector centrality as in Eq. (2.17) by adding
some non-zero parameter, β to every component. This allows vertices with no
out-edges to attain a non-zero level of importance, depending on the importance
of the vertices that have edges into the vertex. The parameter β is often set
to 1 as it has no effect on the relative difference between the Katz centrality of
each vertex. The parameter λ us usually chosen be chosen to be smaller than the
largest eigenvalue of A, as the solution to the above equation is not defined when
λ is set equal to the largest eigenvalue, and iterative methods will diverge if it is
larger (by properties of the spectral radius [120]).

The potential problem that Page rank centrality attempts to fix in both eigen-
vector and Katz centrality is that a vertex that has an in-edge from important
vertices will also ranked highly important. This is not always necessarily a prob-
lem. However, considering Page rank was designed with ranking web pages in
mind, this would clearly be a problem as there are websites with potentially mil-
lions of hyper-links out. This would lead to scenarios where my personal blog
would be ranked as highly as Amazon.com if it were to link to my site. This
problem is averted by weighting the adjacency matrix by the inverse of the out-
degree of the incoming vertex. The Page rank centrality is given as the solution
to,

c = λ−1AD−1c + β1, (2.19)
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where D = diag([degout(1), . . . , degout(nv)]T ). This has the effect of diluting the
amount of importance a vertex has to divvy out proportionally to the inverse of
its out degree. Values for β and λ are chosen by the same reasoning as in Katz
centrality.

In Fig. 2.7 we compare the centrality measures on the same random Erdős-
Rényi graph with 30 vertices and a probability of connection of p = 0.1. The
centralities were scaled such that their max value is 1 and the colour indicates
the level of centrality of vertex, with darker indicating higher centrality. Some of
the problems with eigenvector centrality as discussed earlier can be seen. Take
the vertex in top right for example. In eigenvector centrality it has a measure of
0 due to having no out links, even though its pointed to by a vertex with a high
number of edges. This problem does not appear in the other types of centrality of
indicated by the colour of the vertex. It is also apparent that the most important
vertex in each case is different. A certain measure of centrality is not necessarily
better than any other as it is quite dependent on what important means in the
context.

eigenvector centrality katz centrality page rank centrality

Figure 2.7: The eigenvector, Katz, and Page rank centrality on the same Erdős-Rényi graph with 30 vertices
and a probability of connection of p = 0.1. The left panel shows eigenvector centrality, the middle panel shows
Katz centrality and the right panel shows Page rank centrality. In all cases the centrality values were rescaled by
dividing by their max value such that the maximum centrality is given as 1. The colour of each vertex indicates
its measure of centrality with darker indicating higher centrality.
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Closeness and Betweenness Centrality

Instead of using eigenvector based methods for measuring centrality, it is possible
to instead define it using shortest paths. While related to the previously described
eigenvector methods, they quantify importance in a slightly different way. Two
such popular measures of centrality are closeness [21] and betweenness [197].
Closeness centrality determines the importance of vertex based on its average
distance to every vertex. The closeness of vertex i is defined as,

ci = 1∑
k∈V d(i, k)

, (2.20)

where d(i, k) is the distance between i and k. In other words, it’s the inverse of
the sum of all distances out of a vertex. This is useful for determining how easy
it is to travel from one vertex to another. As in the case of the Watts-Strogatz
model, it is identified by a very low average closeness.

Betweenness is a similar concept built on top of the idea of shortest paths.
However, betweenness centrality determines whether or not a vertex is important
depending on the number of shortest paths it is part of. The betweenness of a
vertex i is defined as,

ci =
∑
k,l∈V
k 6=l 6=i

σkl(i)
σkl

, (2.21)

where σkl is the number of shortest paths from vertex k to l and σkl(i) is the
number of shortest paths from k to l which go through vertex i. Thus, the higher
the number of shortest paths a vertex is part of, the more central a role it plays in
the graph. This is particularly important in areas such as power grid management
[92], in which vertices represent power stations and edges represent power lines.
Vertices with high betweenness would reduce robustness of the network as a whole
and make it more susceptible to total failure in the case of an important power
station going down.

In Fig. 2.8 we present an example of both closeness and betweenness centrality
on the same random network with 30 vertices where each edge has a probability
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of occurring of 0.1. The darker colours indicate a higher measure of centrality.
We see that both of the examples give the same vertex the highest centrality
score, this is expected as a vertex that is in many shortest paths will also be close
to many other vertices. However, we see that closeness centrality tends to give a
much higher score, particularly to vertices without any in-edges.

closeness centrality betweenness centrality

Figure 2.8: The closeness and betweenness centrality on the same Erdős-Rényi graph with 30 vertices and
a probability of connection of p = 0.1. The left panel shows closeness centrality and the right panel shows
betweenness centrality. In all cases the centrality values were rescaled by dividing by their max value such that
the maximum centrality is given as 1. The colour of each vertex indicates its measure of centrality with darker
indicating higher centrality.

Following our discussion of centrality and measure of importance of vertices
in a graph, we note that this plays an important role in network epidemiology
[85]. It allows us to infer what vertices in a graph could potentially act as super
spreaders, and thus, which vertices should be monitored for outbreak of disease.
This can be incredibly useful for diseases such as Bovine Tuberculosis [142], where
herds act as vertices and trades between them act as directed edges. However,
before we attempt to model the spread of disease on networks, we first discuss
epidemiological models which describe the evolution of a disease in well mixed
populations. This will give us a grounding in mathematical epidemiology from
which we can extend ideas to networks.
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2.2 Compartmental Epidemiological Models

Infectious diseases typically display a wide range of clinical symptoms as well as
a broad spectrum of transmission dynamics which vary over both temporal and
spatial scales when looking at the level of populations. These dynamics are often
difficult to concisely and fully capture in a closed model. However, many such
diseases display similar characteristics and thus, it is possible to abstract away
many of dynamics of specific diseases and class them as belonging to different
phenological models which places the population into different classes or com-
partments based on the characteristics of the disease they are associated with.
The most common such groups being those who are susceptible to catching the
disease, those who have the disease and are infectious and those who have recov-
ered and are immune or dead. This particular model is discussed in greater detail
below.

2.2.1 Ordinary Differential Equation Models

One of the first and most well known mathematical epidemiological models is
what is now referred to as the Susceptible-Infected-Recovered (SIR) model, first
introduced by Kermack and McKendrick in 1927 [111]. The model defines 3
quantities, the number of susceptible S(t), infected I(t) and recovered R(t) at
time t. The evolution of the disease is described by the following set of integro-
differential equations,

dS

dt
=− S(t)

(
−
∫ t

0
β(θ)e−

∫ θ
0 µ(a)dadS

dt
(t− θ)dθ + β(t)I(0)e−

∫ t
0 µ(a)da

)
, (2.22a)

dI

dt
= d

dt

(
−
∫ t

0
e−

∫ θ
0 µ(a)dadS

dt
(t− θ)dθ + I(0)e−

∫ t
0 µ(a)da

)
, (2.22b)

dR

dt
=−

∫ t

0
µ(θ)e−

∫ θ
0 µ(a)dadS

dt
(t− θ)dθ + µ(t)I(0)e−

∫ t
0 µ(a)da, (2.22c)
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where the following condition must also be satisfied and is a direct result of the
above system of equations.

N = S(t) + I(t) +R(t). (2.22d)

n refers to number of initial individuals in the system and is assumed to remain
constant for all time. Mixing within the population is assumed to be uniform
and homogeneous. This is an important assumption which will later justify the
use of networks to model epidemics later.

The parameters in the above equations are defined as the following. The
probability of moving from S to I after being in group S for time t is β(t) and
the probability of moving from I to R after being in group I for time t is µ(t).
A common assumption used in the context of this model, especially in network
science, is to take µ(t) ≡ µ and β(t) ≡ β as constants, which is not the most
realistic assumption one can make, but provides a good approximation of the true
dynamics none the less. This is because the assumption of constant recovery rate
implies that the process is exponentially distributed with rate µ [26] (as shown
later in this section). Thus, the average time it takes to recover according to the
model is given by 1/µ. As a result, one can choose µ to be the inverse of the true
average time to recover, and so, the model will match the true average recovery
time of the disease.

With the previous assumption we find the following simplifications of the
model are attained. By substituting the constant values for β and µ into Eqs. (2.22),
we get the following for dI

dt
,

dI

dt
= d

dt

(
−
∫ t

0
e−θµ

dS

dt
(t− θ)dθ + I(0)e−tµ

)
. (2.23)

Thus, giving us

I(t) = −
∫ t

0
e−θµ

dS

dt
(t− θ)dθ + I(0)e−tµ. (2.24)

We do the same thing for dS
dt

and substitute in the constant values for β and µ
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and obtain,

dS

dt
= −S(t)

(
−
∫ t

0
βe−θµ

dS

dt
(t− θ)dθ + βI(0)e−tµ

)
,

= −βS(t)
(
−
∫ t

0
e−θµ

dS

dt
(t− θ)dθ + I(0)e−tµ

)
,

= −βS(t)I(t),

(2.25)

where the last step is obtained directly from Eq.(2.24). Similarly, we may rewrite
dR
dt

as the following,

dR

dt
= −

∫ t

0
µe−θµ

dS

dt
(t− θ)dθ + µI(0)e−tµ,

= µI(t).
(2.26)

Using the simplified formulations for both dS
dt

and dR
dt

, as well as Eq. (2.22d) we
may write,

dI

dt
= −dS

dt
(t)− dR

dt
(t),

= βS(t)I(t)− µI(t).
(2.27)

Combing all the above we arrive at the following system of equations that make
quite frequent appearance in literature due to their simple and intuitive nature
compared to the original general model of Eqs. (2.22):

dS

dt
= −βS(t)I(t), (2.28a)

dI

dt
= βS(t)I(t)− µI(t), (2.28b)

dR

dt
= µI(t). (2.28c)

Now assuming for a moment that we hold the number of susceptibles steady
and that no more can be infected, we obtain,

dI

dt
= −µI(t). (2.29)
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The solution to which may be obtained by rudimentary Ordinary Differential
Equation (ODE) techniques [181],

I(t) = I(0)e−µt. (2.30)

From the above equation I(t) gives the number of individuals left infected after
time t, meaning that the proportion who have recovered after time t is given by,

I(t) = 1− e−µt. (2.31)

This is the cumulative distribution function of the exponential distribution with
parameter µ, thus implying that the time to recovery according to SIR model is
exponentially distributed.

time; t (days)

0 20 40

0

500

1000

S(t)

I(t)

R(t)

Figure 2.9: An example solution to the SIR model, given by Eqs. (2.22). The parameters used were a population
size of N = 1000, β = 1/1000 and µ = 1/10. The initial conditions were set to I(0) = 1 and S(0) = 999 and the
system was integrated from t = 0 to t = 50.

We show an example solution of the SIR model for a population of N = 1000
in Fig. 2.9. S(t) is given by the red line, I(t) is given by the green line and R(t)
is given by the blue line. The parameters used were β = 1/10000 and µ = 1/10,
with initial conditions of S(0) = 999, I(0) = 1, and R(0) = 0.
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This formulation, which is a direct consequence of the original SIR model, is
sometimes referred to as density dependent. This is due to the fact that the force of
infection βI(t) is directly proportional to the number of infected. An alternative
formulation is often used and is what is referred to as frequency dependent and
is given as,

dS

dt
= −βS(t)I(t)

N
, (2.32a)

dI

dt
= β

S(t)I(t)
N

− µI(t), (2.32b)

dR

dt
= µI(t). (2.32c)

The term frequency dependent is used because the force of infection in this case,
βI(t)
N

, is no longer dependent on the population size but the fraction of individuals
who are infected. For the rest of the chapter we shall use the density dependent
formulation unless specified otherwise.

While the SIR model remains popular, likely due to a mixture of simplicity,
history and range of qualitative behaviour, there are numerous such compartment
models in literature. There are the Susceptible-Infected-Recovered-Susceptible
(SIRS) [179], Susceptible-Infected-Susceptible (SIS) [189] and Susceptible-Exposed-
Infected-Recovered (SEIR) [124] just to name a few. Each of these compartments
adds a new set of dynamics (or even just a sub-population) to an epidemiological
model. For example, in the previous examples, the SEIR model adds an exposed
compartment to the SIR model. This allows for the latent effects of a disease
to be modelled [90], helping to improve realism in the model as often it takes a
number of days for an infected person to become infectious, depending on the
disease. Other compartments sometimes seen are vaccinated [52] or quarantining
[5] individuals.

32



2.2. COMPARTMENTAL EPIDEMIOLOGICAL MODELS

2.2.2 Stability Analysis

When dealing with such epidemiological models often the goal is not to model
or predict exactly the number of infected individuals at a given period of time,
but rather, investigate what scenarios could give rise to epidemics or vice versa.
This leads naturally to the area of stability analysis of fixed points. The fixed
points of the SIR model are all such points, [S∗, I∗, R∗]T , (superscript T is used
to denote the transpose) for which the ODEs defining the model as in Eqs. (2.28)
attain the value zero. This corresponds to the solutions of the following set of
equations

−βS∗I∗ = 0, (2.33a)

βS∗I∗ − µI∗ = 0, (2.33b)

µI∗ = 0. (2.33c)

This implies that if the system were to start with initial conditions [S∗, I∗, R∗]T ,
the system would stay at this state for all of time. From Eqs. 2.33, it is clear
that the fixed points of the system are any points which satisfy [S∗, 0, R∗]T and
S∗+R∗ = N . This makes intuitive sense as if there are no infected in the system,
no more can be produced and the susceptible and recovered remain at the same
levels for all time, assuming the total population, N , remains constant. It is
worth noting that no endemic fixed points are possible with the standard SIR
model, i.e., a fixed point with non-zero infected individuals. In order for such a
fixed point to be possible variable populations must be introduced, which is often
done by adding birth and death dynamics.

It is unsurprising that a system with no infected individuals will not produce
any. As such, a better question may be for what parameters β and µ would an
epidemic occur should the system be perturbed slightly from its fixed point of
[S∗, 0, R∗]T . To give the disease the best chance at producing an epidemic we start
with the fixed point [N, 0, 0]T , which we shall refer to as the Basic Disease-Free
Equilibrium (basic DFE). We define an epidemic in the SIR model as instability
of the basic DFE.
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Assume that 0 < δ � 1 and perturb the basic DFE such that the state of
the system at time 0 is [N − δ, δ, 0]T which is approximately [N, δ, 0]T due to N
being much larger than δ. Thus, at time 0 we have,

dI

dt
(0) > 0 ⇐⇒ Nβ

µ
> 1. (2.34)

This gives the condition that in order for an epidemic to occur in the SIR model,
at the basic DFE, the parameters must satisfy the condition that Nβ

µ
> 1. In

the frequency dependent formulation this condition is also independent of the
population size and is given by β

µ
> 1. This quantity is what is often referred to

in literature as the basic reproduction number, R0 [190]. That is, the number of
expected secondary cases produced by a single infected individual. This quantity
can be more formally derived by computation of the next-generation matrix [54,
190], a method we will use in Sec. 2.3.2. When this value is greater than one, the
number of infected in the system will increase over time.

In order to demonstrate the long-term effects of the basic reproduction number
R0, we define R∞, called the outbreak size as the limit of the number of recovered
as time goes to infinity, i.e.,

R∞ = lim
t→∞

R(t). (2.35)

This quantity tells us how many individuals in the system became infected over
the course of an outbreak due to the fact that limt→∞ I(t) = 0. From Ref. [37],
this can be shown to be the solution to the equation

1−R∞ − e−R0R∞ = 0, (2.36)

which is a function of the basic reproduction number R0. We show the outbreak
sizes for a population of N = 1000 in Fig. 2.10. We assume a value of µ = 1/10
and then vary the values of β such thatR0 varies from 0 to 4. As is clearly evident
from the plot, for R0 > 1 the outbreak size, R∞, begins to quickly increase giving
rise to an epidemic.

34



2.3. NETWORK EPIDEMIOLOGICAL MODELS
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Figure 2.10: The final outbreak sizes for the SIR model against the reproduction number R0 = Nβ/µ. The
parameters used were µ = 1/10 and β ranging from 1/10000 to 1/2500.

2.3 Network Epidemiological Models

One of the main assumptions in the previously discussed ODE models for mod-
elling epidemics is the assumption that the population is well mixed. This as-
sumption may be a good approximation for small areas with little to no inter-
action with individuals outside the given area. However, such areas in today’s
world are few and far between. When modelling on the scale of countries it is not
feasible to assume that individuals who are thousands of kilometers away are just
as likely to interact as with their neighbours. The goal of this section is to intro-
duce techniques for modelling epidemics on networks, thus taking into account
heterogeneous contact and interaction patterns. Due to combinatorial explosion
in combinations of contact chains when dealing with networks, some trade-offs
must be made by ignoring causal relationships when formulating probabilities of
infection occurring, this will be first seen in the Individual-Based (IB) model.

First we describe a static contact network. Let G = (V,E) be a simple
undirected graph (note we drop the incidence function ψ for a simple graph)
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which represents the usual contact patterns in a population. V = {1, 2, . . . , nv}
is the set of vertices which represent individuals. E ⊆ {{i, j}|i, j ∈ V } is the
set of edges which represents a contact between individuals. nv is the number of
vertices and ne is the number of edges.

Rather than describing the expected number infected as in the case of the well
mixed ODE epidemiological models, when dealing with networks we shall instead
describe the probability of a particular vertex/individual belonging to a given
compartment in the epidemiological model. We let Ω be the set of compartments
or states which the vertices may attain. For example, in the SI or SIS model,
Ω = {S, I}, in the case of the SEIR or SEIRS model Ω = {S,E, I, R} etc.
However, we will continue with the example of the SIR model for consistency. In
this case we have Ω = {S, I, R}.

With each vertex, we associate a state, ui, which describes the compartment
vertex i belongs to. For example, we may have ui = S, ui = I or ui = R etc. in
the SIR model. We will use the more compact notation si to imply ui = S and
similarly for I and R. Clearly, we have ui ∈ Ω. The state vector of the entire
network is then given by u = (u1, u2, . . . , unv)T , which has |Ω|nv = 3nv state
combinations. Clearly, this is a huge number even for relatively small graphs.

By assuming that the infection process is a Markovian process, we may use
the master equation to move the system forward in time. We let P (u, t) denote
the probability of the network being in state u at time t and W (u|v, t) denote
the transition rate of moving to state u given the network is in state v at time t.
The rate of change of the probability of the vertices being in the combination of
states u at time t is given by the relation,

∂P

∂t
=

∑
v 6=u∈Ωnv

[W (v|u, t)P (u, t)−W (u|v, t)P (v, t)] . (2.37)

This would be a huge computational task to compute the probability of all com-
binations of states at each time step for graphs with many vertices.

36



2.3. NETWORK EPIDEMIOLOGICAL MODELS

2.3.1 Individual-Based Model

A compromise must be made between correctness and computability of the prob-
lem. The first port of call, as with many probabilistic problems, is to assume
statistical independence in the state of vertices, essentially forgetting all their
past interactions. In this case, the probability of a vertex changing state is only
dependent on the current sate of the its neighbours. This assumption of indepen-
dence is what is referred to as an IB model. With the assumption of independence,
we write the IB model by describing the marginal probabilities of the network via
a system of ODEs. We let PSi(t), PIi(t) and PRi(t) denote the marginal proba-
bilities of vertex i being in state S, I and R respectively at time t. This produces
a far smaller system of 3nv− 1 equations compared to the 3nv − 1 needed for the
full master equation description as in Eq. (2.37). This is due to the fact that the
master equation sums over the probability of every single combination of possible
states, which for the SIR model is number of compartments to the power of the
number of vertices. The minus 1 is due to the fact that an equation may be left
out as total probability must always be conserved. This reduced system can be
rigorously derived from the master equation, as we will see in Chp. 3.

We assume that A is the adjacency matrix for the graph G which represents
contacts in the network. Assuming β is the transition rate of becoming infected
on contact with an infectious individual, the transition rate of a vertex, i, moving
from susceptible to infected is given by the quantity β

∑
j∈V AijPIj(t). With this

quantity in mind, we may write the ODEs for the IB model as,

dPSi
dt

= −β
∑
j∈V

AijPIj(t)PSi(t), (2.38a)

dPIi
dt

= β
∑
j∈V

AijPIj(t)PSi(t)− µPIi(t), (2.38b)

dPIi
dt

= µPIi(t). (2.38c)

such that
PSi + PIi + PRi = 1, (2.38d)
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and where µ is the transition rate of moving from the I to the R compartment,
i.e., the rate of removal or recovery.

The above set of equations are the time continuous version of the IB model.
It is often the case that a time discrete version is preferred due to the fact that
temporal networks are often considered as discrete snapshots. The discrete time
version is given as,

dPSi
dt

= −

[∏
j∈V

(
1− βAijPIj(t)

)
− 1

]
PSi(t), (2.39a)

dPIi
dt

=

[∏
j∈V

(
1− βAijPIj(t)

)
− 1

]
PSi(t)− µPIi(t), (2.39b)

dPRi
dt

= µPIi(t). (2.39c)

Although they are similar in description, the β parameters in both the continuous
and discrete time models of the network IB model represent different quantities
with the former being a transition rate and the latter being a probability.

As in the case of the well mixed SIR model, stability analysis may also be
performed on epidemiological network models. For this analysis, it is easier to
use the linearised version of the model given by Eqs. (2.38). Due to the nature
of the system, it may be written in a more concise matrix description. Let
PS(t) =

[
PS1(t), PS2(t), . . . , PSnv (t)

]T be the vector of marginal probabilities of
the system being entirely in the susceptible compartment. Similarly for PI and
PR. We may then rewrite the system as,

dPS

dt
= −βPT

S (t)API(t), (2.40a)

dPI

dt
= βPT

S (t)API(t)− µPI(t), (2.40b)

dPR

dt
= µPI(t). (2.40c)

The fixed points of the system,
[
P∗S

T ,P∗I
T ,P∗R

T
]T

, are the values for which the
derivatives in Eqs. (2.40), attain the value zero. It is straight forward to show
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that the only fixed points in the system are of the form
[
P∗S

T , 0,P∗R
T
]T

, where
P∗S + P∗R = 1. This is the same as we saw in the well mixed case (cf. Sec. 2.2.2),
where no infected individuals implies that no more can be introduced to the
population, as such, the number of susceptible and recovered remains constant
for all time.

In the network case, we define an epidemic in terms of instability of the basic
DFE, that is, instability of the fixed point

[
1T ,0T ,0T

]T . Thus, we start from
a perturbed basic DFE,

[
(1− δ)T , δT ,0T

]T , which is approximately equal to[
1T , δT ,0T

]T where δ = [δ1, . . . , δnv ]T and for all i ∈ V , 0 < δi � 1. Substituting
this value into Eq. (2.40b) gives,

dPI

dt
= (βA− µId)δ, (2.41)

where Id is the identity matrix. Standard analysis of linear systems tells us that
this system is unstable if the largest eigenvalue, λmax, of βA−µId is greater than
zero. λmax is given by the largest solution of λ to the characteristic equation,

det (βA− µId− λId) = det
(

A− (µ+ λ)
β

Id
)

= 0. (2.42)

Thus, the largest eigenvalue of the matrix A, which we will call σmax, is related
to λmax by,

σmax = µ+ λmax

β
, (2.43)

which implies that λmax > 0 when σmax > µ
β
. This is the necessary condition

for an epidemic to occur on average in the IB SIR model. This is sometimes
referred to as the epidemic threshold (cf. Sec. 2.2.2). Unsurprisingly, this is the
same quantity produced in the well mixed case, although the parameters carry
different meanings.

In Chp. 3 we will see this model extended to the Pair-Based (PB) model
which no longer assumes independence between the states of vertices, but instead
assumes conditional independence between triples of vertices, thus increasing ac-
curacy by reducing the likelihood of echo chambers forming (see Fig. 3.2).
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2.3.2 Meta-Population Models

In this section, we introduce the concept of epidemiological meta-population mod-
els [22, 42, 43, 87]. This class of models may be thought of as compromise between
the well mixed ODE models (see Sec. 2.2.1) and the network models described
in the previous section. As mentioned previously, there is merit in models which
assume homogeneous mixing, as long as that assumption is true, or at least ap-
proximately true. With meta-population models, the population is split up into a
number of groups which will correspond to the vertices in a graph. These groups
are chosen based on individuals’ geographical proximity. It is assumed that within
these groups, the individuals are close enough together that it is justified to as-
sume they mix in a uniform manner. It is even possible to use these models at
the level of household [95], however this sort of granularity requires a lot of data
and strong assumptions of individuals contact patterns. Thus, the well mixed
models may be used to model the spread of disease within each group. However,
movement of individuals between groups is allowed via travel/commuting [193]
etc. These travelling individuals correspond to edges in the graph. This allows
infected individuals to spread disease outside their home group/vertex, thus, al-
lowing the disease to spread throughout the overall population. Parameters can
be chosen specific to each geographical location [3, 109] which may represent
things like number of hospitals present or education level etc. This can produce
more realistic behaviour by making it more difficult for a disease to take hold in
certain locations. The use of commuting/travel networks gives rise to more real-
istic infection patterns in the sense that areas with a large influx of individuals
will see the disease break out first, which is often seen in real life examples, with
diseases hitting dense cities much harder [161].

These meta-population models can be more useful in practice than the pure
network models, as each vertex in the network models represent an individual.
When trying to model the spread of disease across large scales, the number of
vertices required in the contact network would be in the millions or hundreds
of millions making computation of models, such as the IB model, difficult. The
meta-population models allow for a huge reduction in the number of vertices re-
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quired by allowing a single vertex to represent a large number of people. Another
use of the meta-population models comes from the use of empirical data. When
commuting/travelling data is available, it will be aggregated to some level, often
down to some sort of administrative or geographical areas. Thus, it is relatively
straightforward to apply this data to meta-population models by defining vertices
as the same such areas.

We now formally define the SIR meta-population model on a network. We
have a population in some geographical location we wish to model the spread
of disease in. The location is split up into nv sub-locations labeled from 1 to
nv. Each sub-location i, has a population Ni(t) associated with it. Unlike in
the previous case of the SIR model for a single population where we assumed
a constant population, the populations associated with each vertex depends on
time due the ability of individuals to travel between vertices. We do however,
have the sum of the sub-populations conserved by N =

∑
i∈V Ni(t), where N is

the sum of all sub-populations. The rate at which individuals travel from location
i to j is constant and denoted by ωij. This quantity may be informed by empirical
data or generated from mobility models such as the gravity model or radiation
model, which will be discussed in the next section (Sec. 2.4). As we will see in
Chp. 4, the travel rates may depend on time with the use of a temporal graph.
We represent this network of populations and travels between them as a directed
weighted graph, G = (V,E, ω), where the vertices, V = {1, . . . , nv}, represent
the sub-locations of the same label and the edges, E, represent the rate of travel
between the sub-locations. The weights of the edges are the travel rates such
that ω((i, j)) = ωij. Thus, the weighted adjacency matrix, W, of G, is given by
Wij = ωij. For example, in Fig. 2.11, the adjacency matrix is given by,

W =

 0 ωab ωac

ωba 0 ωbc

ωca ωcb 0

 . (2.44)

Ignoring the effects of travel for the moment, the evolution of the disease in
each vertex is governed by the same system of equations as in Eqs. (2.28). For
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Figure 2.11: A simple example of the quantities associated with a graph representing a travel network. There
are 3 vertices a, b and c. The populations associated with these nodes are denoted by na, nb and nc respectively.
The rate of travel of individuals between vertices are denoted by wab for the number travelling, on average, from
a to b etc.

each vertex i, the number of individuals on average belonging to each of the
three S, I and R compartments at time t are denoted by Si(t), Ii(t) and Ri(t)
respectively and are given as follows,

dSi
dt

= −βSiIi, (2.45a)

dIi
dt

= βSiIi − µIi, (2.45b)

dRi

dt
= µIi, (2.45c)

where the population at any given time is determined by,

Ni = Si + Ii +Ri. (2.45d)

Here, β is interpreted as the rate of contact between susceptible and infectious
individuals multiplied by the probability of infection on contact and µ is the
rate of recovery. For travelling individuals, it is assumed that it does not matter
what compartment they belong to, the rate of movement, ωij, is the same for all
compartments. This assumption in general is not necessary. For example, a quar-
antining compartment could be added which would have little to no movement
between vertices. Thus, the rate of change of the number of susceptible individ-
uals in a vertex at time t, is given by the quantity

∑
j∈V (ωjiSj(t)− ωijSi(t)),
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similarly for the other compartments. With this quantity, we write the evolution
of a vertex i, in the meta-population SIR model as,

dSi
ddt

= −βSiIi +
∑
j∈V

(ωjiSj − ωijSi) , (2.46a)

dIi
dt

= βSiIi − µIi +
∑
j∈V

(ωjiIj − ωijIi) , (2.46b)

dRi

dt
= µIi +

∑
j∈V

(ωjiRj − ωijRi) , (2.46c)

An interesting result of these set of equations are their relationship to the reac-
tion diffusion equations, specifically the Fisher-Kolmogorov–Petrovsky–Piskunov
(FKPP) equation [29, 42] which is defined as,

∂u

∂t
= D

∂2u

∂x2 +mqu, (2.47)

where u(x, t) is some function in x and t, and D, m, and q are constant pa-
rameters. The formulation of the above equation is of the same form used in the
original paper by Fisher in Ref. [65]. Given the vertices are arranged in a line such
that vertex i is in position i, and the travel rates are given by ωij = ωδi−1,j+ωδi+1,j

where δij is the Kronecker delta, i.e., travel is only allowed between neighbours.
Then, the set of equations given by Eqs. (2.46), relate directly to the FKPP equa-
tion. It can be shown in this case that with sufficiently localised initial conditions,
the system exhibits a travelling wave speed in the proportion of infected individ-
uals of approximately

√
ω as shown in Ref. [42]. As such, the meta-population

models may be thought of a generalised (in the sense that the wave front travels
along a graph rather than spatially) and discretised reaction diffusion equation.

Often populations of large geographical areas are already in a diffusive equi-
librium and populations remain constant, at least compared to the timescales of
the model. Thus, it is sometimes required that the population of vertices in the
meta-population model remain constant over time. Given the travel rates of the
model, the population of each vertex in diffusive equilibrium is determined by
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the balance Ni(∞)/Nj(∞) = ωji/ωij. Thus, with constant travel rates, the only
way to ensure a constant population within each vertex is to choose the travel
rates such that ωij = ωji, making the graph undirected, and thus, the adjacency
matrix W, symmetric. When allowing for temporal travel rates, there are more
realistic options available for necessitating a constant population. For example,
in the case of commuting, these travel rates may periodic functions. More will
be discussed on this in Chp. 4.

Epidemic threshold

As with the previous epidemiological models, the concept of epidemic threshold is
just as important, i.e., what combination of parameters gives rise to an epidemic.
The fact individuals can move between vertices complicates things slightly. The
overall level of infectious individuals may be rising, however, in particular vertices
the level may be lowering due to a high rate of travel out. As a result, we must
be careful with how we define an epidemic in the meta-population SIR model.
This is most easily done by establishing the basic reproduction number, R0, at
the basic DFE. Thus, we define an epidemic in the meta-population SIR model
as any condition that produces R0 > 1 at the basic DFE. This set of parameters
which produce R0 = 1 we call the epidemic threshold.

In order to compute the reproduction number, and thus epidemic threshold,
we follow [54] and compute the next generation matrix of the system. Firstly,
only the infection subsystem is considered, which is all equations that describe the
production of new infected individuals as well as changes in the state of already
infected individuals. Linearising the infection subsystem of equations near the
basic DFE, which is defined as

[
ST , IT ,RT

]T =
[
MT ,0T ,0T

]T , gives,

dIi
dt

= βNiIi +
∑
j∈V

(ωjiIj − ωijIi) , (2.48)

where N = [N1, . . . , Nnv ]T , S = [S1, . . . , Snv ]T and similarly for I and R. We shall
refer to the infected compartment in vertex i as infected state i. Now the goal is
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to write the system above as,

dI
dt

= (T + Σ)I, (2.49)

where T and Σ are both matrices. Tij describes the rate at which infected
individuals in infected state i give rise to infected individuals in infected sate
j and Σij describes the rate at which individuals move from infected state i to
infected state j except on the diagonal, which describes the rate at which infected
individuals leave/enter the infected state i not via another infected state. This
produces the matrices,

Tij = βNiδij, (2.50)

Σij = −µδij + ωji − δij
∑
k∈V

ωik, (2.51)

Writing these equations using their full matrix specification gives,

T = diag(βN) (2.52)

Σ = WT − diag ((µId + W) 1) . (2.53)

As shown in Ref. [54], the basic reproduction number of the system is determined
by,

R0 = ρ
(
TΣ−1) = ρ

(
diag(βN)

(
WT − diag ((µId + W) 1)

)−1
)

(2.54)

where ρ denotes the spectral radius operator, that is, the largest magnitude of
all eigenvalues of the matrix. If the travel rates are assumed to be zero, we get
the basic reproduction number to be,

R0 = ρ
(
diag(βN) (µId)−1) = βmaxi(Ni)

µ
, (2.55)

which is exactly the condition found in the well mixed SIR model (see Eqs. (2.34)).
However, in this case, the maximum of all populations maxiNi is used in the
reproduction number.
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The network models for the spread of disease which we have looked at are
what are referred to as data-driven models [199], in that they require an adjacency
matrix, usually informed by empirical data, in order to run them. While these
models are very useful, it is often the case there is no network data available on
the system we wish to model, especially in less developed countries where data
collection is not a priority. In such cases we may turn to mobility models, which
are able to generate likely movements of individuals and thus, let us build contact
networks.

2.4 Network Mobility Models

An important aspect of developing good network models for contagion dynamics
on large scales, is one’s ability to accurately model the movement of individuals
[19] between vertices in the context of meta-population models or model inter-
actions between individuals in the context of contact network models. Much
of the time empirical movement data is used [41, 168]. This has both its uses
and drawbacks. While it offers a good representation of the mobility or contacts
within/between groups, there are often biases which depend on how and when
the data was collected. Take the 2016 census in Ireland [36] for example. The
census asked where individuals had travelled on the day. This provides snapshot
into the behaviour of individuals movement patterns at a particular moment in
time. However, the static nature of such data presents challenges, as there is no
clear way in how to use the data in other contexts. For example, if the data was
collected on a Sunday, is it a good approximation for Monday, or in the case of
restricted movement as seen during the COVID-19 pandemic, how does one use
the data to inform movements when usual patterns would change. These kind of
questions have no clear answers. As a result, many researchers turn to either the
gravity [152, 175] or radiation [129, 134, 174] models which may easily adapt and
respond to changes in movement behaviours as well as external factors.

Mobility in complex systems is a very difficult thing to model as it involves
many complicated interactions and quantities within the system that are often
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too numerous and difficult to measure. The goal of the mobility models we will
look at is to attempt to take advantage of universal properties of mobility that
appear in empirical data [134], leading to very simple descriptions. As a result,
likelihood of mobility between locations in some system may be described using
just population size and distance. In the case of the radiation model, it does not
even need parameters fit in the most simple case.

2.4.1 Gravity Model

The gravity model is based on the simple assumption that the likelihood of an
individual travelling from one location to another is directly proportional to the
product of the locations’ populations, divided by some function of the distance
between them. This model has seen wide use in literature with its first appearance
dating back to 1859 [35]. While often used for human mobility, it also sees
extensive use in regression analysis for predicting international trade [155].

Given a number of locations in a geographical area labeled 1, . . . , nv, where
location i has population Ni and the distance between two locations i and j

is denoted by dij, then expected number of travellers per unit time, Tij, from
location i to j is given by,

Tij = Nα
i N

β
j f(dij). (2.56)

The name gravity model becomes apparent due to the formulation being related
to Newton’s law of gravity. In the above equation, the parameters α and β are
adjustable exponents which take into account specific properties of the area being
modelled. These parameters are usually fit using a linear regression, and thus,
the gravity model requires empirical data to fit against. As we will see in the
next section this is not a necessity in the radiation model. A case against the
gravity model as often used in research is its lack of a rigorous derivation from
first principles. It does however result from entropy maximisation techniques as
proven in [200]. Although, this derivation shows the values of α and β to be 1
and gives no hint as to what the cost function as denoted by f in Eq. (2.56) is to
be.
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The deterrence function, f , is a sort of cost function that penalises locations
for being further away. The most common forms of the function are the expo-
nential function f(d) = e−γd [33] and the power-law function f(d) = d−κ [134],
both single parameter functions which must also be fit from empirical data. More
complicated functions are possible such as a combination of power-law and expo-
nential [128] or even the log-normal distribution [74].

In the case of very low or zero counts in the number of travellers between
locations in the empirical data, the estimations provided by the above model
when fit using linear regression can perform very poorly. It can significantly
under or over predict the total number of travellers when compared to the actual
data. There are a number of attempts to alleviate this problem [33] such as fitting
using a poisson or modified poisson regression models. However, it is possible to
obtain better results using what are referred to as constrained gravity models.
These models ensure that certain quantities are matched in the prediction such
as overall flow of individuals, total flow out of locations, total flow into locations
or a combination. There are 4 constrained models in common use, the total
flow constrained gravity model, the production constrained gravity model, the
attraction constrained gravity model and the doubly constrained gravity model
[89].

In the total flow constrained gravity model, the total number of travellers
between locations is matched to some quantity. Thus, if there are m travellers
overall, the model produces

∑
i,j Tij = m, where Tij are the expected travellers

from i to j. Thus, the flow constrained gravity model is formulated as,

Tij =
mNα

i N
β
j f(dij)∑

k,lN
α
kN

β
l f(dkl)

. (2.57)

In the production constrained gravity model, the predicted total number of trav-
ellers out of a location matches a required amount. Thus, the model produces∑

j Tij = ui, where ui denotes the required total number of individuals travelling
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out of location i. The production constrained gravity model is given by,

Tij =
uiN

β
j f(dij)∑

kN
β
k f(dik)

. (2.58)

The attraction constrained gravity model’s description is similar to the production
constrained model model in that they are both singly constrained. The attraction
constrained model has the predicted total number of travellers into a location
match a required amount. Thus, the model produces

∑
i Tij = vj where vi is the

required total number of individuals travelling into location i. The attraction
constrained gravity model is given as,

Tij = vjN
α
i f(dij)∑

kN
α
k f(dkj)

. (2.59)

Finally, in the doubly constrained or production-attraction constrained gravity
model, both the predicted total number of travellers out of location and the total
number of travellers into a location match required amounts. Thus, the model
produces

∑
j Tij = ui and

∑
i Tij = vj where ui is the required total number

of individuals travelling from location i and vj is the required total number of
individuals travelling into location j. The doubly constrained gravity model is
given as,

Tij = aibjuivjf(dij), (2.60a)

ai =

(∑
k

bkvkf(dik)

)−1

, (2.60b)

bi =

(∑
k

akukf(dki)

)−1

, (2.60c)

where the equations ai and bi are normally solved by iterative means.
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2.4.2 Radiation Model

The goal of the radiation model is much the same as the gravity model. It
attempts to model the flow of individuals between various locations by attempting
to take advantage of universal patterns that are often seen in mobility data. This
allows for a short and concise description of the probability of an individual
travelling from one location to another by approximating the likelihood using
only a few explanatory variables. In the case of the basic gravity model [174],
there are no parameters which require fitting. This provides a huge advantage in
comparison to the gravity model which requires a substantial amount of data in
order to be able to fit its numerous parameters. It also means that the radiation
model may be used when there is no empirical data available to fit against.

The radiation model is still relatively young, with it first being introduced
in 2012 [174], this is in stark contrast to the gravity model which has been dis-
cussed in some form or another for well over a century [35]. This may be due
to the formulation of the radiation model not being as obvious as the gravity
model, however, they can be shown to be equivalent with certain distributions of
populations [94].

A key difference between the two mentioned models is that the gravity model
only depends on the properties, usually just population, of the home and desti-
nation locations. This not the most realistic assumption as for locations that are
far apart, the probability of travelling from one to another is likely affected by
the number of locations in between as well as their own attractiveness. Simply
put, an individual is less likely to travel to a destination location when there are
numerous locations with a very high attractiveness between the source location
and the destination location. Fortunately, the radiation model makes this exact
assumption.

In order to derive the radiation model, the probability of a travel between two
locations is modelled as an emission/absorption process of particles, hence the
name radiation model. Suppose there are nv locations labeled 1, . . . , nv such that
location i has a population of Ni. The distance between two locations i and j
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is denoted by dij. Given some probability distribution p(z) which represents the
distribution of the attractiveness of a benefit in a location. We define a benefit as
anything which would attract an individual to a location, for example, number of
jobs. Then, each location has ni random variables zi (which represent benefits and
their attractiveness) drawn from p(z) associated with it. Given that an individual
is travelling from location i, it is assumed they will choose the closest location
which has a benefit higher than in their own location. Mathematically, this can
be written,

qij =
∫ ∞

0
pni(z)psij(< z)pmj(> z)dz,

= NiNj

(Ni + sij)(Ni +Nj + sij)
.

(2.61)

That is, qij is the probability of a single traveller leaving from location i choosing
location j. The quantity denoted by px(z), is the probability that the maximum
value attained after x extractions from the random distribution p(z) is z. Simi-
larly, px(< z) and px(> z) are the probabilities that the maximum value attained
after x extractions from the random distribution p(z) is less than or greater than
z respectively. The variable denoted sij, is the sum of all populations within a
circle centered at i with a radius of dij not including the populations of i and j

themselves.
sij =

∑
k;dik<dij
k 6=i 6=j

Nk. (2.62)

Let ui denote the total number of individuals leaving location i, as in gravity
model. Then, the probability that exactly x travellers leaving from i arrive at j
is given by the binomial distribution,

Pij(x) = ui!
x!(ui − x)!

qxij(1− qij)ui−x, (2.63)
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and thus, the expected number of travellers, Tij, from i to j is given as,

Tij = uiqij

= ui
NiNj

(Ni + sij)(Ni +Nj + sij)
.

(2.64)

This can be directly compared to the production constrained gravity model which
predicts the exact same quantity with the same constraint.

2.5 Summary

In this chapter we have introduced the basics required for the rest of the chap-
ters. We start with defining networks and their graph representations along with
definitions and measures pertaining to them. We then introduce the SIR model
for well mixed populations which is the starting point for much epidemiological
modelling. In this model we derive the condition necessary for an epidemic to
occur and how it relates to the basic reproduction number, R0.

After developing the theory for the SIR model in the well mixed case, we show
how the model can be extended to the network case by two means, the IB model,
which we develop further in Chp. 3, and the meta-population model, which is
used in Chp. 4. The IB model assumes that each vertex in the graph represents
a single individual, whereas the meta-population model assumes each vertex is
a small community on which the original well mixed epidemiological models can
be used. For both of these cases we also compute the basic reproduction number
and thus, the condition required for an epidemic to occur.

Following the discussion of epidemics on networks, we introduce two models
for mobility which can be used to build networks in the absence of empirical
data. These are the gravity and radiation models. Both work by assuming that
the attractiveness between two vertices is proportional to some function of their
populations and distance between them. We will use the radiation model in
Chp. 4 in order to build commuting patterns under various movement restriction
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scenarios. In Chp. 5 will extend and generalise the radiation model in order to
describe the distribution of cattle trades in Ireland and compare its performance
to the gravity model.
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Chapter 3

A Systematic Framework For the
Modelling of Epidemics on
Temporal Networks

In this chapter we present a modelling framework for the spreading of epidemics
on temporal networks from which both the Individual-Based (IB) and Pair-Based
(PB) models can be recovered. We have previously discussed the formulation of
the IB model in Sec. 2.3, which approximates the spread of disease on a network
by assuming statistical independence in the state of the vertices. The proposed
temporal PB model that is systematically derived from this framework offers an
improvement over existing PB models and moves away from edge-centric descrip-
tions as in the contact-based model [117] while keeping the description concise and
relatively simple. For the contagion process, we consider a Susceptible-Infected-
Recovered (SIR) model, which is realized on a network with time-varying edges
(specifically a discrete-time temporal graph which we define in Sec. 2.1.1). We
show that the shift in perspective from IB to PB quantities enables exact mod-
elling of Markovian epidemic processes on temporal networks which have no more
than one non-backtracking path between any two vertices. On arbitrary networks,
the proposed PB model provides a substantial increase in accuracy at a low com-
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putational and conceptual cost compared to the IB model. From the PB model,
we analytically find the condition necessary for an epidemic to occur, otherwise
known as the epidemic threshold. We identify an epidemic by looking at the
stability the Basic Disease-Free Equilibrium (basic DFE), that is, the state of the
system before any infected individuals are present.

3.1 Overview

In recent years epidemiological modelling, along with many other fields, has seen
renewed activity thanks to the emergence of network science [18, 135, 145, 203].
Approaching these models from the view of complex coupled systems has shed
new light onto spreading processes where the early black-box Ordinary Differ-
ential Equation (ODE) models, such as those developed by Kermack and McK-
endrick, had their limitations [99, 110]. These ODE models assume homogeneous
mixing of the entire population, which may be an appropriate approximation for
small communities. However, when attempting to model the spread of disease
at a national or international level, they fail to capture how heterogeneities in
both travel patterns and population distributions contribute to and affect the
spread of disease. Epidemiological models on complex networks aim to solve this
problem by moving away from averaged dynamics of populations and mean-field
descriptions. Instead, the focus is on interactions between individuals or meta-
populations, where the spreading process is driven by contacts in the network
[42, 169, 194].

There have been many improvements made in regards to network models,
e.g., generalised multi-layer network structures or more specifically temporal net-
works that allow for the network structure to change with time [100, 116, 123,
135]. Temporal networks are a natural way of representing contacts and lead
to an insightful interplay between the disease dynamics and the evolving net-
work topology [106, 122, 173]. With the ever growing availability of mobility
and contact data it has become easier to provide accurate and high-resolution
data to inform network models. The results can be extremely useful tools for
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public-health bodies and other stakeholders [75, 76, 187].

In previous works, a widely used epidemiological concept is the IB model [145,
171, 189], (see Sec. 2.3). It assumes statistical independence in the state of each
vertex. A major problem associated with such a model is that it suffers quite
badly from an echo chamber effect due to the fact that there is no memory of
past interactions due to statistical independence.

Figure 3.1: A 2-vertex graph with both vertices connected by an edge for all time. The quantities PI1 (0) = 2
and PI1 (0) = 2 refer to the initial conditions of the SIR model shown in Fig. 3.2.

In order to demonstrate this phenomenon of echo chambers, we consider a
graph as in Fig. 3.1, made up of 2 vertices which are connected for all time,
i.e., a temporal realisation of a static graph. We give the two vertices initial
conditions such that their initial probability of being infected is 0.2, i.e. PI1(0) =
PI2(0) = 0.2 using the notation introduced in Sec. 2.3 for the IB model. Then, by
running the IB model and comparing the results to the average of many Monte-
Carlo (MC) realisations of the stochastic SIR infection process that the IB model
attempts to describe, we can judge the accuracy of the IB model by how close to
the average of the MC realisation it is.

In Fig. 3.2, we show the results of running the IB model (red curve) as well as
the average of 104 MC realisations (green curve) for 40 time steps. The parameters
used were β = 0.4 and µ = 0.2. The y-axis shows the average proportion of the
number of recovered which PRavg = 1

2 (PR1(t) + PR2(t)). From this very simple
example, it is clear how the IB model fails in describing the true process by vastly
overestimating the probability of contracting the disease at some point during the
evolution of the model.

There have been efforts to ameliorate this problem by introducing memory at
the level of each vertex’s direct neighbours. These models referred to as Contact-
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Figure 3.2: The average number of recovered individuals in the SIR model according to the IB model (red curve)
and the average of 104 MC realisations (green dashed curve). The parameters used were PI1 (0) = PI2 (0) = 0.2,
β = 0.4 and µ = 0.2.

Based [117] or PB [68] and have been shown to significantly reduce the echo
chamber effect, depending on the underlying network structure. These two mod-
els differ in their initial approach. The contact-based model takes an edge-based
perspective, which extends the message-passing approach [106, 114], and all dy-
namic equations are formulated in terms of edges. By contrast, the PB model
keeps the vertex-based approach of the IB model and dynamic equations are in
terms of vertices.

This chapter is largely based on our work in Ref. [98], in which we extend the
PB model to a temporal setting giving a Temporal Pair-Based (TPB) Model. We
show how it can be drastically reduced and simplified under a certain dynamical
assumption [172]. We deal specifically with SIR models. Once the TPB model is
written in concise form, it is then possible to show that the contact-based model
is equivalent to a linearised version of the TPB model. We then establish the
conditions for an epidemic to occur according to the TPB model, also known
as the epidemic threshold. We investigate how the TPB model performs on a
number of synthetic and empirical networks and investigate what kind of network
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topologies work best with the TPB model.

3.2 Reduced Master Equations

Let us start by considering a discrete time temporal network, G = (G1, . . . , Gnt)
(as in Sec. 2.1.1), to be a series of nt networks where Gt = (V,Et) denotes the
network at time step t. The networks all share the same vertex set, V , but differ
in their temporal edge sets, Et. Let nv = |V | be the number of vertices and
ne,t = |Et| be the number of edges at time t. The adjacency matrix for the
network at time t will be denoted by A[t], and A[t]

ij = 1 implies a directed edge
between vertices i and j at time t. If the network is undirected then we have
A[t]
ij = A[t]

ji .

Let Ω be the set of compartments in an epidemiological compartment model,
that is, in the SIR model: Ω = {S, I, R}. Let xt = [x1, x2, . . . , xnv ]T ∈ Ωnv be the
vector whose i-th element refers to the state of the i-th vertex, i.e., xi = S means
vertex i A[t]

ij = A[t]
ji . belongs to compartment S, similarly for other compartments.

The evolution of the disease is then described by the discrete-time and space
master equation [73],

∆P (x, t) =
∑

y∈Ωnv

[W (x|y, t)P (y, t)−W (y|x, t)P (x, t)] , (3.1)

and thus, we assume that the infection process is Markovian. P (x, t) is the
probability of the network being in the particular configuration of states given
by x at time t and W (x|y, t) is the transition rate of the network moving from
the configuration of states y to x at time t. These equations describe the entire
process on the network. However, in order to progress the system forward one step
in time, the probabilities of all combinations of state vectors must be found. This
usually is not feasible for network processes with potentially billions of vertices
as for the SIR process the total combination of states is given by 3nv .

As an alternate approach, it is possible to describe the evolution of the disease
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using a system of Reduced Master Equations (RMEs) [171], that describes the
evolution of subsystems within the network, such as individual vertices, removing
the need to obtain every possible combination of states. An important note is
that these RMEs are in fact not themselves true master equations as they are not
necessarily linear due to the fact that the transition rates of the subsystems are
nonlinear combinations of the transitions rates of the original system. However,
we shall continue to use the term RME introduced by the author of Ref. [171].
We use the following notation for the joint marginal probabilities,

Pxi1 ,xi2 ,...,xik (t), (3.2)

which is the probability of realising the states xi1 , xi2 , . . . , xik for the vertices
i1, i2, . . . , ik at time t respectively. For denoting the condition marginal probabil-
ities we use the similar notation,

Pxi1 ,xi2 ,...,xik |xj1 ,xj2 ,...,xjk (t), (3.3)

for the probability of the vertices i1, i2, . . . , ik being in the states xi1 , xi2 , . . . , xik ,
respectively, at time t, given that the vertices j1, j2, . . . , jl are in the states
xj1 , xj2 , . . . , xjl respectively, at time t also. We use the following notation for
the marginal transition rates,

Wxi1 ,xi2 ,...,xik |yi1 ,yi2 ,...,yik (t), (3.4)

which is the transition rate of vertices i1, i2, . . . , ik respectively moving to the
states xi1 , xi2 , . . . , xik at time t, given they are in the states yi1 , yi2 , . . . , yik .

When we wish to specify a particular realisation of xi, we denote it by Si, Ii or
Ri to imply xi = S, xi = I or xi = R respectively. Employing this new notation
we start with the RME, which describes the evolution of individual vertices,

∆Pxi(t) =
∑
yi∈Ω

[
Wxi|yi(t)Pyi(t)−Wyi|xi(t)Pxi(t)

]
, (3.5)

The next section deals with how to approximate the quantities given above in
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the RME.

3.3 SIR Network Model

For SIR dynamics, the evolution of each vertex in each compartment is given as
the following,

PSi(tn+1) = PSi(tn) + ∆PSi(tn), (3.6a)

PIi(tn+1) = PIi(tn) + ∆PIi(tn), (3.6b)

PRi(tn+1) = PRi(tn) + ∆PRi(tn), (3.6c)

where ∆PSi(tn) is defined by the RME in the previous section as Eq. (3.5). Filling
in the transition rates we find,

PSi(tn+1) = PSi(tn)−WIi|Si(tn)PSi(tn), (3.7a)

PIi(tn+1) = PIi(tn)−WRi|Ii(tn)PIi(tn) +WIi|Si(tn)PSi(tn), (3.7b)

PRi(tn+1) = PRi(tn) +WRi|Ii(tn)PIi(tn). (3.7c)

Note that transition rates such as WRi|Si are not present, as they are impossible
and thus attain a value of 0. PRi can be recovered using the conservation of the
probabilities PSi + PIi + PRi = 1. In order to compute the transition rates we
define the following quantities: the probability of infection on contact, β, and the
rate of recovery, µ. The quantity A[tn], is the temporal adjacency matrix of the
network on which the process is occurring. Following directly from Ref. [68], the
transition rates of moving from S to I, and I to R are given by,

WIi|Si(tn) = β
∑
j1∈V

A[tn]
ij1
PIj1 |Si(tn)− β2

∑
j1<j2∈V

A[tn]
ij1
A[tn]
ij2
PIj1 ,Ij2 |Si(tn)

+ · · · − (−β)nv−1
∑

j1<···<jnv−1∈V

A[tn]
ij1
· · · A[tn]

ijnv−1
PIj1 ,...,Ijnv−1 |Si(tn),

(3.8a)

WRi|Ii(tn) = µ. (3.8b)

61



CHAPTER 3. A SYSTEMATIC FRAMEWORK FOR THE MODELLING
OF EPIDEMICS ON TEMPORAL NETWORKS

Equation (3.8a) can be thought of as analogous to the binomial distribution,
where the probability of at least 1 success out of nv − 1 trials is given as,

P (k > 0) = 1−
(
nv − 1

0

)
β0(1− β)nv−1

=
(
nv − 1

0

)
β −

(
nv − 1

1

)
β2 +

(
nv − 1

2

)
β3 − · · ·+

(
nv − 1
nv − 1

)
(−β)nv−1,

(3.9)
where β is the probability of success and k is the number of successes. The
difference to Eq. (3.8a) however, is that the probability of success is different for
each “infection attempt” as it depends on the current state of the system, as well
as the state of the adjacency matrix. These equations describe the probabilistic
SIR process on temporal networks. Note that the system of equations is not
closed as they lack a description for their joint conditional probabilities PIj1 ,Si
as well as all higher order quantities. There are a number of ways in which this
problem can be tackled, usually by making a number of numerical or dynamical
approximations [79, 117, 189, 194].

In the next sections we attempt to improve on and unify many existing
approaches showing how they are derived from the system of RMEs given by
Eqs.(3.7) and (3.8).

3.3.1 Temporal Individual-based Model

One of the most commonly used epidemiological models on networks is the IB
model, which has been extended to the temporal setting in Ref. [189]. We re-
fer to this extension as the Temporal Individual-Based (TIB) model. The key
idea is the assumption of statistical independence of vertices or the mean field
approximation, i.e., the factorisation

Pxi1 ,xi2 ,...,xik (tn) = Pxi1 (tn)Pxi2 (tn) · · ·Pxik (tn). (3.10)
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By assuming this independence of vertices, we solve the problem of Eq. (3.8a)
not being closed with it simplifying to,

WIi|Si(tn) = β
∑
j1∈V

A[tn]
ij1
PIj1 (tn)− β2

∑
j1,j2∈V

A[tn]
ij1
A[tn]
ij2
PIj1 (tn)PIj2 (tn)

+ · · · − (−β)nv−1
∑

j1<···<jnv−1∈V

A[tn]
ij1
· · · A[tn]

ijnv−1
PIj1 (tn) · · ·PIjnv−1

(tn).
(3.11)

Under the assumption of independence, the conditional probability is cancelled
by the definition of conditional probability, i.e.,

PIj1 |Si =
PIj1 ,Si
PSi

=
PIj1PSi
PSi

= PIj1 (3.12)

Upon factorising Eq. (3.11), it may be written more concisely as,

WIi|Si(tn) = 1−
∏
k∈V

(
1− βA[tn]

ik PIk(tn)
)
. (3.13)

Upon substituting the transition rates WIi|Si and WRi|Ii under the assumption of
statistical independence, the full TIB model is written as,

PSi(tn+1) = PSi(tn)
∏
k∈V

(
1− βA[tn]

ik PIk(tn)
)

(3.14a)

PIi(tn+1) = PIi(tn)(1− µ) + PSi(tn)

(
1−

∏
k∈V

(
1− βA[tn]

ik PIk(tn)
))

, (3.14b)

which is the same as the IB model given in Sec. 2.3, only discretised and extended
to temporal graphs. The quantity which is multiplied by PSi(tn) is the proba-
bility of a vertex not becoming infected under the IB model. This model closes
Eq. (3.8a) at the level of vertices, thus ignoring all correlations with other vertices
at previous times. However, ignoring all past correlations causes the model to
suffer quite badly from an echo chamber effect [173] (see Sec. 3.1). This echo
chamber has the effect of vertices artificially amplifying each others probability
of being infected, PIi , at each new time step, as the marginal probability of each
vertex is highly correlated with the rest of the network and the factorisation of

63



CHAPTER 3. A SYSTEMATIC FRAMEWORK FOR THE MODELLING
OF EPIDEMICS ON TEMPORAL NETWORKS

Eq. (3.8a) means each vertex forgets its past interactions. As demonstrated in
Ref. [173], in the absence of a recovered compartment, a static network of two
linked vertices for non-zero initial conditions has probabilities of being infected
which converge according to limn→∞ PI0(tn) = limn→∞ PI1(tn) = 1 for the TIB
model.

Further simplifications of the TIB model are often seen [145, 171] by taking
numerical approximations of the product in Eqs. (3.14). Given a sequence of
numbers (ri)Ni=1 such that |ri| < 1 for all i, one obtains,

N∏
i=1

(1− ri) = 1−
N∑
i=1

ri +
N∑
i=1

N∑
j=1

rirj −
N∑
i=1

N∑
j=1

N∑
k=1

rirjrk + . . .

≈ 1−
N∑
i=1

ri.

(3.15)

Using this numerical approximation, Eqs. (3.14) become

PSi(tn+1) = PSi(tn)

(
1−

∑
k∈V

βA[tn]
ik PIk(tn)

)
(3.16)

PIi(tn+1) = PIi(tn)(1− µ) + PSi(tn)
∑
k∈V

βA[tn]
ik PIk(tn). (3.17)

The TIB model which we have just derived in one of the simplest network
models for the spread of disease one can use. The form of the model comes down
to the choice of the level of statistical independence which is assumed for the
vertices in order to close Eq. (3.8a). Hence, in the next section we see how an
alternative assumption in the independence of vertices leads to a more accurate
model.
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3.3.2 Temporal Pair-based Model

In contrast to the TIB model, instead of assuming independence of vertices we
can approximate the marginal probabilities in terms of combinations of lower
order marginals using some form of moment closure [68, 172]. Here, we make
an equivalent assumption to that of the message passing approaches [106, 173].
The assumption we make is that the graph contains no more than a single time-
respecting Non-Backtracking (NBT) path (see Sec. 2.1.3) from one vertex to
another (the path may be taken multiple ways through time, but the vertex
sequence must be the same). If the graph is undirected, then this implies the
graph contains no time-respecting NBT cycles. In other words, starting at some
initial vertex i that leaves via vertex j, there is no way to find a time-respecting
path returning to this vertex that does not return via j. This must mean that
under the assumption of this model, an undirected graph must be a tree-graph
in the static case, or in the case of a temporal graph, tree-like when it is viewed
in its static embedding of the supra-adjacency representation [25].

These assumptions allow us to write all higher order moments in Eq. (3.8a)
as a combination of pairs PSi,Ik . To show why this is possible, consider the three
vertices i, j, k connected by two edges through i. If conditional independence of
these vertices is assumed given we have the state of i, then one can make the
following assumption,

Pxi,xj ,xk = Pxj ,xk|xiPxi =
Pxi,xj
Pxi

Pxi,xk
Pxi

Pxi =
Pxi,xjPxi,xk

Pxi
. (3.18)

This has the effect of assuming that there exists only a single time-respecting
NBT path from one vertex to another, as it implies that the flow of probability
from j to k must occur through vertex i and does not occur through any other
intermediary vertex. In the Sec. 3.5, we will investigate how this assumption holds
up on graphs which do not satisfy the previously mentioned condition. The result
obtained in Eq. (3.18) is often referred to as the Kirkwood closure [114]. Under
the above assumption of conditional independence, the following simplification is
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obtained for Eq. (3.8a),

WIi|Si(tn+1) = 1−
∏
k∈V

(
1− βA[tn]

ik

PSi,Ik(tn)
PSi(tn)

)
. (3.19)

However, we run into the problem that we have no description for pairs of vertices.
Thus, we derive expressions for their evolution from the RMEs for pairs of vertices
which is given by,

∆Pxi,xj(t) =
∑

yi,yj∈Ω

[
Wxi,xj |yi,yj(t)Pyi,yj(t)−Wyi,yj |xi,xj(t)Pxi,xj(t)

]
, (3.20)

For PSi,Ij , we obtain

PSi,Ij(tn+1) = PSi,Ij(tn) + ∆PSi,Ij(tn)

= PSi,Ij(tn) +WSi,Ij |Si,Sj(tn)PSi,Sj(tn)−WIi,Ij |Si,Ij(tn)PSi,Ij(tn)

−WSi,Rj |Si,Ij(tn)PSi,Ij(tn)−WIi,Rj |Si,Ij(tn)PSi,Ij(tn).
(3.21)

Note that the above equation requires a description for PSi,Sj also, which we find
to be the following,

PSi,Sj(tn+1) = PSi,Sj(tn) + ∆PSi,Sj(tn)

= PSi,Sj(tn)−WSi,Ij |Si,Sj(tn)PSi,Sj(tn)

−WIi,Sj |Si,Sj(tn)PSi,Sj(tn)−WIi,Ij |Si,Sj(tn)PSi,Sj(tn).

(3.22)

Since only the probabilities PSi,Ij and PSi,Sj are needed in order to describe
the RMEs in Eq. (3.19), we consider those two combinations of states. From
Ref. [68], we obtain the exact transition rates for pairs of vertices and find that
we can factorise the pair-wise transition rates similar to Eq. (3.8a). Here, we give
the expression for PSi,Ij |Si,Sj only, while the rest of the pair-wise transition rates
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are given in Appendix A:

WSi,Ij |Si,Sj(tn) =[
1− β

∑
k1∈V

A[tn]
ik1
PIk1 |Si,Sj(tn) + β2

∑
k1<k2∈V

A[tn]
ik1
A[tn]
ik2
PIk1 ,Ik2 |Si,Sj(tn)

− . . . +(−β)nv−2
∑

k1<···<knv−2∈V

A[tn]
ik1

. . .A[tn]
iknv−2

PIk1 ,...,Iknv−2 |Si,Sj(tn)


×

[
β
∑
k1∈V

A[tn]
jk1
PIk1 |Si,Sj(tn) − β2

∑
k1<k2∈V

A[tn]
jk1
A[tn]
jk2
PIk1 ,Ik2 |Si,Sj(tn)

+ . . . −(−β)nv−2
∑

k1<···<knv−2∈V

A[tn]
jk1

. . .A[tn]
jknv−2

PIk1 ,...,Iknv−2 |Si,Sj(tn)

 . (3.23)

In the above equation, the term in the first pair of square brackets corresponds to
the probability that vertex i does not become infected and the term in the second
pair of square brackets corresponds to the probability that vertex j becomes
infected. Upon applying our moment closure technique, Eq. (3.23) may be written
as,

WSi,Ij |Si,Sj(tn) =

∏
k∈V
k 6=j

(
1− βA[tn]

ik

PSi,Ik(tn)
PSi(tn)

)1−
∏
k∈V
k 6=i

(
1− βA[tn]

jk

PSj ,Ik(tn)
PSj(tn)

) . (3.24)

By introducing the following functions, the RMEs for pairs as well as the
individual vertices can be written more concisely. The probability that vertex i

does not become infected at time step tn+1, given that i is not infected at time
step tn is denoted by

Ψi(tn) =
∏
k∈V

(
1− βA[tn]

ik

PSi,Ik(tn)
PSi(tn)

)
. (3.25)

Similarly, the probability that vertex i does not become infected at time step
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tn+1, given that i is not infected at time step tn while excluding any interaction
with j, is given by

Φij(tn) =
∏
k∈V
k 6=j

(
1− βA[tn]

ik

PSi,Ik(tn)
PSi(tn)

)
. (3.26)

Then, the evolution of the state of every vertex in the network is determined by
the following closed set of equations,

PSi(tn+1) = Ψi(tn)PSi(tn) (3.27a)

PIi(tn+1) = (1− µ)PIi(tn) + (1−Ψi(tn))PSi(tn) (3.27b)

PSi,Ij(tn+1) = (1− µ)
(

1− βA[tn]
ij

)
Φij(tn)PSi,Ij(tn)

+ Φij(tn) (1− Φji(tn))PSi,Sj(tn) (3.27c)

PSi,Sj(tn+1) = Φij(tn)Φji(tn)PSi,Sj(tn). (3.27d)

This approximation allows a large increase in accuracy compared to TIB
model while only adding two equations to the final model. All past dynamic
correlations are now tracked by the model and so the echo chamber effect is elim-
inated, but only with direct neighbours, that is, vertices which share an edge. A
major benefit of this particular TPB model over other existing iterations [79, 117]
is that this model can be implemented as an element-wise sparse matrix multipli-
cation rather than having to iterate through all edges for every time step making
it extremely computationally efficient and fast on even large networks. It also
benefits from a low conceptual cost by not deviating from a vertex-based perspec-
tive, like the contact-based models, which move to the perspective of edges and
thus define the model in terms of the line-graphs and non-backtracking matrices
[117].

Similar to Ref. [173], we can compare TPB models to the TIB model using the
two vertex example. In that illustrative configuration, we consider two vertices
connected by an undirected static edge and give the two vertices some initial
non-zero probability PI1(0) = PI2(0) = z of being infected. We then run the
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TIB and TPB models for some given parameters β and µ and compare it to the
ground truth, which is the average of a number of MC realisations.

In Fig. 3.3, we show the two vertex example from Fig. 3.1 again, however,
this time we also plot the TPB model. It is apparent how the TIB model fails to
capture the true SIR process on the network due to the previously discussed echo
chamber induced by assuming statistical independence of vertices. It becomes
clear that the TPB model accurately describes the underlying SIR process for
this simple example as each vertex is able to recover the dynamic correlations of
past interactions with direct neighbours.
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Figure 3.3: Running 40 time steps of the TIB (green curve) and TPB (red curve) SIR model as well as the
average over 105 MC simulations (blue dashed curve) for the two vertex example given in Fig. 3.1. Parameters:
β = 0.4, µ = 0.2, and initial conditions PI1 (0) = PI2 (0) = 0.2.

Equivalence Between The Contact-based and Pair-based Models

The contact-based model as defined in Ref. [117], is an extension of the message
passing approach to the spreading of epidemics. It moves from considering indi-
vidual vertices to edges in the network, thus tracking pairs of vertices similar to
our pair based model. The central component is θij(tn), which is the probability
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that node j has not passed infection to node i up to time step n. From θij(tn),
the quantity PSi(tn) may be computed as,

PSi(tn+1) = PSi(t0)
∏
j∈V

θij(tn+1). (3.28)

This equation is the basis for the contact-based model and allows us to easily
compare with the PB model as it describes the same quantity as our Eq. (3.27a).
The authors also assume that the evolution of θij(tn) satisfies the following rela-
tion,

θij(tn+1) = θij(tn)− βA[tn]
ij

PSi,Ij(tn)
PSi(tn)

(3.29)

θij(t0) = 1.

In the PB model, the evolution of the susceptible probability, given by Eq. (3.27a),
can similarly be rewritten in terms of its initial conditions,

PSi(tn+1) = Ψi(tn)PSi(tn) (3.30a)

= PSi(t0)
n∏

m=0

Ψi(tm) (3.30b)

= PSi(t0)
∏
j∈V

n∏
m=0

(
1− βA[tm]

ij

PSi,Ij(tm)
PSi(tm)

)
. (3.30c)

From equating (3.28) and (3.30) it is clear that if the models are exactly
equivalent then θij is defined by

θij(tn+1) =
n∏

m=0

(
1− βA[tm]

ij

PSi,Ij(tm)
PSi(tm)

)
. (3.31)

However, this contradicts the assumption made by Eq. (3.29). Thus the PB
and contact-based models are only equivalent if the following linearisation is as-
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sumed:
n∏

m=0

(
1− βA[tm]

ij

PSi,Ij(tm)
PSi(tm)

)
≈ 1−

n∑
m=0

βA[tm]
ij

PSi,Ij(tm)
PSi(tm)

, (3.32)

which then implies Eq. (3.31) can be written as

θij(tn+1) = 1−
n−1∑
m=0

βA[tm]
ij

PSi,Ij(tm)
PSi(tm)

− βA[tn]
ij

PSi,Ij(tn)
PSi(tn)

(3.33a)

= θij(tn)− βA[tn]
ij

PSi,Ij(tn)
PSi(tn)

. (3.33b)

This shows that the contact-based model is a linearised version of the PB model.

We have shown that form our framework we are able to derive a number of
existing models such as the TIB and contact-based models, and we derive a new
concise form of the PB model in a temporal setting which also does not rely
on any numerical linearisation. In the next section we compute the conditions
necessary for an epidemic to occur in our TPB model.

3.4 Epidemic Threshold

One of the most important metrics used in epidemiological modelling is the epi-
demic threshold, which has been discussed in previous sections (cf. Sec. 2.3). It
allows us to determine the critical values of the model parameters at which a
transition in qualitative behaviour occurs and an epidemic occurs. In order to
determine these parameters, we first need the fixed points of the system, as their
stability can aid us in the definition of an epidemic. The fixed points are given
as,

PSi(tn) = S∗i , PIi(tn) = 0, PRi(tn) = R∗i ∀i, (3.34)

where S∗i +R∗i = 1. From this definition it is clear that there exists a whole class
of Disease-Free Equilibriums (DFEs), which must be considered. At the critical
point, defined by some function of the model parameters, the DFE becomes
unstable and on average an epidemic occurs. Defining an epidemic in the SIR
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model is a bit more difficult compared to the Susceptible-Infected-Susceptible
(SIS) model due to the fact that the flow of probability is in only one direction
between compartments S → I → R. Therefore, the class of DFE solutions are
always asymptotically stable. Thus, we will look at classifying the initial stability
of the SIR model as we perturb it from the state,

PSi(tn) = S∗i , PIi(tn) = 0, PRi(tn) = 0 ∀i, (3.35)

which we shall define as the basic DFE. If it is unstable that means the disease has
a chance to take hold and will spread through the network causing an epidemic
before dying out. We now look at small perturbations from the basic DFE, if
they vanish then the disease will die out and will not have a chance to propagate
through the network. We shall define an epidemic in the SIR model as instability
of the basic DFE under such perturbations. First, we look to linearise the differ-
ence equation for PIi(tn+1) near the basic DFE, this translates to linearising the
non-inear function Ψi(tn). Under the assumption PIi(tn) = εi for every vertex i

such that 0 < εi � 1, we find,

0 ≤
PSi,Ij(tn)
PSi(tn)

≤ εj (3.36)

by the fact that for the joint probability PSi,Ij(tn) ≤ min{PSi(tn), PIj(tn)}. Thus
for εi � 1 we may assume PSi,Ij (tn)

PSi (tn) ≈ εj. Upon substituting this into Ψi(tn) we
find that

Ψi(n) ≈
∏
k∈V

(
1− βA[tn]

ik εk

)
≈1−

∑
k∈V

βA[tn]
ik εk,

(3.37)

We can then use this to linearise PIj(tn+1) from Eq. (3.27). While εi � 1
holds, so does the approximation,

PIi(tn+1) ≈ PIi(tn)(1− µ) +
∑
k∈V

βA[tn]
ik PIk(tn). (3.38)
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This linearisation eliminates PSi(tn) from the equation. Interestingly, this is ex-
actly the form of the SIS model in the TIB framework for which the epidemic
threshold is easily found [189]. Therefore, we find that the SIS and SIR mod-
els share the same epidemic threshold condition. We introduce the matrix M[tn],
called the infection propagator, which is a linear map that describes the evolution
of the SIR model close to the basic DFE:

M
[tn]
ij = βA[tn]

ij + δij(1− µ). (3.39)

Following Ref. [189], we find that the condition required for an epidemic to
occur is given by

ρ (M) = ρ

(
M[tnt ]

nt−1∏
k=1

M[tk]

)
> 1, (3.40)

where M is the infection propagator written in terms of the supra adjacency
matrix [25] and ρ is the spectral radius operator, i.e., it gives the largest eigenvalue
by magnitude. The matrix M is given by,

M =



0 M[t1] 0 · · · · · · 0
0 0 M[t2] · · · · · · 0
0 0 0 · · · · · · 0
... ... ... . . . ...

0 0 0 . . . M[tnt−1]

M[tnt ] 0 0 · · · · · · 0


. (3.41)

For the values of β and µ which the above Eq. (3.40) is satisfied, implies that when
a disease is introduced into the network the basic DFE is unstable for a period
of time. What this means is that in the equivalent SIS model with the same
parameters, the proportion of infected vertices never settles on a DFE. We wish
to show that the equivalence in Eq. (3.40) is true. First, we partition λId −M
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into 

λId −M[t1] 0 · · · · · · 0
0 λId −M[t2] · · · · · · 0
0 0 λId · · · · · · 0
... ... ... . . . ...

0 0 0 . . . −M[tnt−1]

−M[tnt ] 0 0 · · · · · · λId


, (3.42)

then, by use of the following formula for the determinant of 2× 2 block matrices,
which is derived by applying the determinant to Schur’s complement, we may say
that,

det

(
A B
C D

)
= det(A)× det

(
D−CA−1B

)
, (3.43)

where A,B,C and D are matrices of sizes p×p, p×q, q×p and q×q respectively.
Then from the above partitioning we get,

det(λId−M) = det(λId) det
(
λId−M1 + 1

λ
E1

)
, (3.44)

where the two new matrices introduced are given as,

Mk =



0 M[tk+1] 0 · · · · · · 0
0 0 M[tk+2] · · · · · · 0
0 0 0 · · · · · · 0
... ... ... . . . ...

0 0 0 . . . M[tnt−1]

0 0 0 · · · · · · 0


, (3.45)

and

Ek =


0 0 · · · · · · 0
... ... . . .

0 0 . . . 0
M[tnt ]∏k

i M[ti] 0 · · · · · · 0

 . (3.46)

By continuing the partitioning of the matrices in this way, we are able to reduce
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the determinant to,

det(λId−M) = det(λId) det
(
λId−M1 + 1

λ
E1

)
= det(λId)2 det

(
λId−M2 −

1
λ2 E2

)
...

= det(λId)nt−2 det
(
λId−Mnt−2 + (−1)nt

λnt−1 Ent−2

)
= det(λId)nt−1 det

(
λId + (−1)nt

λnt−1 Ent−1

)
.

(3.47)

Now, by computing the determinant for the identity matrix and substituting in
the expression for Ent−1, we find that the above expression is given as,

det(λId−M) = λnv(nt−1) det
(
λId + (−1)nt

λnt−1 Ent−1

)
= det

(
λntId + (−1)ntM[tnt ]

nt−1∏
k

M[tk]

)
,

(3.48)

thus proving that the largest eigenvalue, λmax, of the matrix M is equivalent to
σnt

max, where σmax is the maximum eigenvalue of M[tnt ]∏nt−1
k M[tk].

We now aim to test the accuracy of our TPB model compared to the TIB
model and investigate under what graph structures it performs well. We also test
our findings for the epidemic threshold.

3.5 Results

In this section, we compare the accuracy of the TIB model and the TPB model
against the ground truth MC average, that is, direct stochastic simulations. In
short, we show how the TPB model can offer a massive increase in accuracy and
also discuss when it fails to accurately capture the true dynamics of the stochastic
SIR process. Furthermore, we validate the analytical epidemic threshold.
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3.5.1 Synthetic Networks

Now we test our results on a number of randomly generated static graphs, in-
cluding that of a tree-graph in order to test our hypothesis that our TPB model
is exact on tree-graphs. In total, we consider 4 different randomly generated
graphs, all consisting of 100 vertices. They are Erdős-Rényi, Barabási-Albert,
Watts-Strogatz and random tree-graphs respectively. For the first 3 mentioned
random graphs, see Sec. 2.1.1 for details of their construction. Details on the
parameters used in the graphs generation follow.

The assumption in the TPB model is conditional independence between ver-
tices with a neighbour in common, given the common neighbours state, is equiv-
alent to assuming the graph contains only a single time-respecting NBT path
between any two vertices. In the case of an undirected static graph, this condi-
tion is equivalent to implying the graph is a tree-graph.
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Figure 3.4: (a) A random tree network made up of 100 vertices. The tree is generated by taking the breadth
first search tree starting from a randomly selected vertex of an Erdős-Rényi graph with connection probability
p = 0.05. (b) Time series of the TIB (solid green) and TPB (solid red) SIR model as well as 105 Monte-Carlo
(MC) simulations (dashed blue) for the tree network shown in panel (a). The parameters used were β = 0.4,
µ = 0.02, and PIk (0) = 0.1 for all vertices.

To illustrate this reasoning, we consider a static tree graph. In order to
generate the graph, we start with a randomly generated Erdős-Rényi graph where
the probability of two vertices being connected by an edge is p = 0.05. We then
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randomly choose a vertex and perform a breadth first search (see Refs. [28, 145]
for more details on graph search algorithms). The resulting breadth first search
tree produces a random tree graph. All vertices start from some initial non-zero
probability PIi(0) = 0.1 of being infected. We then run the TIB model and
the TPB model for the parameters β = 0.4 and µ = 0.2 and compare it to the
ground truth, which is the average of a number of MC realisations. Fig. 3.4 b)
plots the average probability of a vertex belonging to state I according to each
model, that is PIavg = 1

nv

∑nv
k=1 PIk . The TIB model is depicted as the solid red

curve, the TIB model is shown as the solid green curve and the average of the MC
realisations is shown as the dashed blue curve. The figure shows how the TIB
model fails to capture the true SIR process on the graph due to the previously
discussed echo chamber induced by assuming statistical independence of vertices.
It becomes clear that the TPB model accurately describes the underlying SIR
process for this simple example as each vertex is able to recover the dynamic
correlations of past interactions with direct neighbours. As we will see from the
next section, temporal graphs that are well approximated by tree-graphs are also
well approximated by the TPB model.
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Figure 3.5: (a) A random Erdős-Rényi graph made up of 100 vertices. The probability of connection was
taken as p = 0.05. (b) Time series of the TIB (solid green) and TPB (solid red) SIR model as well as 105

Monte-Carlo (MC) simulations (dashed blue) for the Erdős-Rényi graph shown in panel (a). The parameters
used were β = 0.05, µ = 0.005, and PIk (0) = 0.01 for all vertices.

As we have established the case in which our TPB model is exact, we turn
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our attention to general graphs which permit more than 1 time-respecting path
between any two vertices and thus, we should see our model deviate from the MC
average. However, the question remains, in what cases does our model provide a
substantial improvement over the IB model? We start with testing our model on
an Erdős-Renyi random graph made up of 100 vertices. We set the probability of
connection between vertices at p = 0.05. In Fig. 3.5 (b), we show the results of
running the TIB, TPB, and the average of 105 MC realisations of the SIR model
on a realisation of the Erdős-Renyi graph. We run each model for 500 time steps
and set the parameters to β = 0.05 and µ = 0.05. The average probability of
being in the infected state across the entire graph is plotted for each model, with
the TPB model given by the solid red curve, the TIB model given by the solid
green curve, and the average of the MC realisations given as the green dashed
curve. Looking at the curves, we see both models fail to line up with the MC
average, however the IB model appears to perform worse by attaining a larger
peak of average probability of infection when compared to the PB model. The
TPB would appear to perform worse in the later stages, however this is explained
by the IB depleting its pool of “susceptible probability” early on, as seen by the
higher peak, thus in the later stages there is a higher probability that vertices
have already recovered, and thus, less of a probability of them being currently
infected.

Next we turn to the Barabási-Albert model. We generate a random Barabási-
Albert directed graph consisting of 100 vertices. We start the graph with 2
unconnected vertices, then at each step of constructing the graph, we add a new
vertex with 2 out edges, the probability of which vertices these edges connect to
is outlined in Sec. 2.1.1. This process is repeated until 100 vertices are reached
(see Fig. 3.5 (a) for a visualisation of the generated graph). In a fashion similar
to the previous example, we run the TPB, TIB models, as well as compute the
average of 105 MC realisations of the SIR model on our random graph. The
results of running the models using β = 0.05 and µ = 0.05 is given in Fig. 3.6
(b), which shows the average probability of being in the infected state across the
entire graph with the TPB model given by the solid red curve, the TIB model
given by the solid green curve, and the average of the MC realisations given by
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Figure 3.6: (a) A random Barabási-Albert directed graph made up of 100 vertices. The graph construction
starts with unconnected vertices with a vertex with two out edges being added at each step of the construction.
(b) Time series of the TIB (solid green) and TPB (solid red) SIR model as well as 105 Monte-Carlo (MC)
simulations (dashed blue) for the Barabási-Albert graph shown in panel (a). The parameters used were β = 0.05,
µ = 0.005, and PIk (0) = 0.01 for all vertices.

the dashed blue curve. In this case, it is clear that the TPB produces far more
accurate results by lying closer to the MC average when compared to the TIB
model which appears to produce quite different dynamics.

The last synthetic graph type we consider is the Watts-Strogatz graph. Like
in the previous examples, we construct a graph with 100 vertices. We initialise a
graph in a ring, where each vertex is connected to the neighbour to its left and
right (thus each vertex has a degree of 2), then with probability p = 0.05, each
of the edges has one of its incident vertices randomly reassigned. The generated
graph is depicted in Fig. 3.7 a). We then run the TPB and TIB SIR models on
the graph and compare it to the average of 105 MC realisations. The parameters
used in this case were β = 0.15 and µ = 0.05. Fig. 3.7 b) shows the average
probability of being in the infected state across the whole graph for the TPB
model as the solid red curve, the TIB as the solid green curve, and average of the
MC realisations as the dashed blue curve. For this graph, we achieve remarkable
agreement between the TPB model and MC average, likely due to the fact that
the graph is very close to a tree structure. The TIB model on the other hand
overestimates the prevalence of the disease by a huge amount.
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Figure 3.7: (a) A random Watts-Strogatz graph made up of 100 vertices. The graph starts as a ring with
each vertex connected to the vertex to its left and right. Then each edge has an incident vertex reassigned with
probability p = 0.05. (b) Time series of the TIB (solid green) and TPB (solid red) SIR model as well as 105

Monte-Carlo (MC) simulations (dashed blue) for the Watts-Strogatz graph shown in panel (a). The parameters
used were β = 0.15, µ = 0.005, and PIk (0) = 0.01 for all vertices.

We have seen that our TPB model appears to perform better on particular
graph structures with few possible time-respecting NBT paths between vertices.
As a result, we look at the number of possible time-respecting NBT paths in each
of the synthetic networks analysed and compare this to the performance of the
TPB models in each case. In order to quantity the number of time-respecting
NBT paths are possible in the network, we introduce the non-backtracking acces-
sibility matrix, a concept inspire by the accessibility matrix in Ref.[122]. First,
we define the non-backtracking matrix of a temporal graph as,

B
[tk1 ,tk2 ]
e,f =

1, if e2 = f1, e1 6= f2 and e ∈ Ek1 , f ∈ Ek2 ,

0, otherwise,
(3.49)

where tk1 , tk2 are time steps such that tk1 < tk2 and e = (e1, e2) and f = (f1, f2)
are edges active at those times, respectively. Of course for static graphs, all edges
are active for all time, this description becomes more useful when we consider
the temporal empirical networks in the following section. Note that the NBT
matrix is defined over two time-steps and is indexed over the aggregated edge set
Eagg =

⋃nt
k=1Ek. This matrix tells us if it is possible to traverse an edge e at time
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tk1 and then traverse edge f at time tk2 given that the edge f starts from where
edge e finished and f does not bring us back to where e started from. Using this
matrix, we define the NBT accessibility matrix as,

B[tl] =
l∏

k=2

⊗(Id⊕B[tk−1,tk]), (3.50)

where the two operations ⊗ and ⊕ are Boolean multiplication and addition re-
spectively [131], and so the matrix B is a binary matrix. Thus, the element B[tl]

e,f

tells us if there is a NBT path that starts with traversing e and ends by traversing
f which is up to length l at up to time tl. Now, in order to determine how many
possible paths there are between any two vertices up to length l, we define two
new matrices, the in and out incidence matrices. Let the in-incidence matrix of
a graph, J in, be given by,

J in
i,e =

1, if edge e is an in edge of vertex i

0, otherwise,
(3.51)

and let the out-incidence matrix of a graph, Jout
i,e , be given by, temporal graph,

where,

Jout
i,e =

1, if edge e is an out edge of vertex i

0, otherwise.
(3.52)

Now, we transform B[tl] from the edge space to the vertex space by using the
two incidence matrices defined above. This will allow us to determine how many
unique NBT paths (unique in the route taken and not the times edges are tra-
versed) there are between any two vertices up to length l at up to time tl from
the expression,

C[tl] = JoutB[tl]JinT . (3.53)

The quantity C[tl]
ij is a matrix indexed over the vertices, which tells how many

unique NBT paths there from vertex i to j. In a graph for which the TPB model
is exact, each entry in this matrix would be at most one. We call the proportion
of entries in the matrix C[tl] greater than one, the NBT reachability proportion
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and denote it by c(tl).

In Fig. 3.8 we plot the NBT reachability proportion from time 1 up to 50 for
each of the synthetic networks shown in Figs. 3.5, 3.6, and 3.7. In other words we
plot the proportion of vertex pairs which have more than 1 NBT path connecting
them. The red curve refers to the Erdős-Rényi graph, the green curve refers to the
Barabási-Albert graph, and the blue curve refers to the Watts-Strogatz graph.

time, t (day)

0 20 40
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Figure 3.8: The NBT reachability proportion, c(t) of the synthetic networks given in Figs. 3.5, 3.6, and 3.7.
The red curves refer to the Erdős-Rényi (ER) graph, the green curves refer to the Barabási-Albert (BA) graph,
and the blue curves refer to Watts-Strogatz graph. For each graph, the, c(t) was computed for 50 time steps.

We see that the NBT reachability proportion in the Erdős-Rényi graph ap-
proaches one almost immediately, far surpassing both the Barabási-Albert graph
and the Watts-Strogatz graph. The Barabási-Albert and Watts-Strogatz graphs
attain far lower values, with the Watts-Strogatz graph starting lower, but even-
tually surpassing the Barabási-Albert graph. These results appear to line up
with the agreement between the MC averages and the TPB models for each of
the considered synthetic graphs. The Erdős-Rényi graph, with the highest NBT
reachability proportion, performs almost as poorly as the IB model, whereas the
other 2 graphs, with very low proportions, perform far better than the IB model.
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Now, we will validate our analytical findings for the epidemic threshold of
the TPB SIR process. For this purpose, we fix a value for µ and then for
increasing values of β, perform a number of MC simulations for long times
in order to get a distribution of the final out break size, which is given by
R∞ = limn→∞

1
nv

∑nv
k=1 PRk(n). Again, we use the same generated synthetic

graphs as given in Figs. 3.5, 3.6, and 3.7, on which we run the models and MC
simulations. In the long-term dynamics of the SIR process, R∞, will usually ex-
ceed the observation time of the network. Therefore, periodicity of the networks
is assumed in a similar way to Ref. [189] when computing the final outbreak sizes.
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Figure 3.9: The final outbreak size, R∞, for the random graphs given in the Figs. 3.5, 3.6, and 3.7. The red
curves refer to the Erdős-Rényi (ER) graph, the green curves refer to the Barabási-Albert (BA) graph, and the
blue curves refer to Watts-Strogatz graph. R∞ was computed for different values of β with a fixed value of
µ = 0.05. For each graph, R∞ was taken as the average of the final number of recovered individuals of 103 MC
simulations for each value of β. The initial conditions of each simulation was set so that each individual had
a 0.01 chance of starting infected. For each graph, the analytically computed critical β at which the epidemic
threshold becomes greater than one is plotted as a vertical curve of the same colour.

In Fig. 3.9 we see the distribution of final outbreak proportions for each ran-
dom graph against their critical β as computed from the epidemic threshold of
the TPB model. For the parameters, we fix µ at the value 0.05 and then vary β
for from 0 up to 0.1, running 103 MC simulations for each of the values of β. We
then plot the average final outbreak size, R∞, of each of these 103 simulations
as the red curve for the Erdős-Rényi graph, the green curve for Barabási-Albert
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graph and the blue curve for the Watts-Strogatz graph. We then compute the
analytical epidemic threshold for this value of µ from Eq.3.40 for each of the con-
sidered graphs, and plot those values as vertical lines. The epidemic threshold for
the Erdős-Rényi graph is given as the red vertical line, for the Barabási-Albert
graph as the green line, and the Watts-Strogatz graph as the blue line. Note
that the epidemic threshold of the Erdős-Rényi and Watts-Strogatz lie very close
together.

For values of β that are greater than the computed epidemic threshold in the
Erdős-Rényi and Watts-Strogatz graphs, there is an obvious but gradual change in
dynamics as local outbreaks no longer die out, but now propagate throughout the
network leading to larger final outbreak sizes, thus showing agreement with the
analytical result for the epidemic threshold. However, this change in dynamics
is not as clear in the case of the Barabási-Albert graph, where the epidemic
threshold is far higher than in the other two cases. It is important to note as well
that this difference in the epidemic threshold is due to the difference in network
structure as the value for µ is held constant in each case. The Barabási-Albert
R∞ values appear to level off before the epidemic threshold and don’t increase
after it. This likely due to the network structure itself being particularly robust
against epidemics, in part because of its directedness.

Overall, for the considered synthetic graphs, our model offers large improve-
ments over the individual based model for all cases except the case of the Erdős-
Renyi graph, but still does not overestimate the peak as much as the IB model,
thus still offering an improvement. We have also confirmed that our model is
exact on tree graphs. So far we have not considered temporal graphs or graphs
generated from empirical data, and so, in the next section we test the performance
of our model on 2 real world temporal networks.

3.5.2 Empirical Networks

In this section, we consider two empirical temporal networks that both vary in
structure and temporal activity. For each of the empirical networks we wish to
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test our findings that the TPB model offers an increase in accuracy over the
TIB model. Similarly to previous section where we test our models on synthetic
networks, we run the TIB and TPB SIR models for all the empirical networks
for given values of β and µ and then compare them to the average of a suffi-
ciently large number of MC simulations. This allows us to quantify how well the
different models approximate the dynamics of the true SIR process. The consid-
ered networks are now discussed and an overview of their properties are given in
Tab. 3.1.

Table 3.1: List of empirical networks.

Network List
Network Vertices Agg. Edges Avg. Edges Snapshots

Conference 405 9699 20.02 3509
Cattle Trades 111513 1041054 347.17 365

Irish Cattle Trade

The Cattle Trades network consists of all trades between herds within the Repub-
lic of Ireland during the year 2017 with a temporal resolution of one day [187] (cf.
Tab. 3.1). Due to the nature of the trade data, interactions are directional. Thus,
this data set is modelled by a directed graph, where each vertex represents a herd
and each edge represents a trade weighted by the number of animals traded. The
aggregated degree distribution of the graph as shown in Fig. 3.10 (b) indicates a
scale-free behaviour often seen in empirical networks. The graph appears to be
quite sparse as is evident from Fig. 3.10 (a), with an average of only 347 edges
per day while having an aggregated 1,041,054 edges over the entire year. The
data also displays a strong bi-modal seasonal trend with there being two distinct
peaks while there tends to be very little trades occurring on Sundays when the
data points lie near zero. Although we ignore external drivers of the disease, this
model still offers insight into how susceptible to epidemics the graph is as trade
is the main vector of non-local transmission. There are a number of infectious
diseases that affect cattle, such as Foot and Mouth Disease and Bovine Tubercu-
losis, the latter of which is still a major problem in Ireland, thus effective models
for the spread of infectious diseases among herds are particularly useful tools. In
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the present study, we focus on the SIR dynamics, but the TPB model framework
can easily be extended to other models,
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Figure 3.10: (a) Time series of number of active edges per day in the network. (b) In- and out-degree of the
network aggregated over the entire year worth of data.

From Fig. 3.11 we can compare the performance of the TIB and TPB models
on the cattle trades network. The figure shows a year worth of the average
probability of being infected PIavg of both models and the average of 103 MC
realisations for the same choice of parameters. In both plots, the solid red curve
refers to the TPB model, the solid green curve refers to the TIB model, and the
dashed blue curve refers to the average of the MC realisations. The parameters
used were β = 0.5 for the panel a) and β = 0.3 for panel b), in both cases
µ = 0.005 and the initial conditions were set to PIi(0) = 0.01 for every vertex.

As in the case of the synthetic graphs, we now look at what proportion of
vertex pairs are connected by more than one NBT path, i.e., the NBT reachability
proportion, as well as the final outbreak sizes, R∞, in comparison to the analytical
epidemic threshold. In Fig. 3.12 (a) we see the evolution of the NBT reachability
proportion over the course of a full year for the cattle trade network. It is quite
clear from the figure that the proportion is particularly low over the time period,
staying relatively close to zero for nearly 100 days. This helps provide insight into
why the TPB model performs so well on this particular data set in comparison to
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Figure 3.11: TIB (solid green) and TPB (solid red) SIR models on the Irish cattle trade network together
with the average of 104 Monte-Carlo simulations (dashed blue). Panels (a) and (b) show the time series for the
average probability of being infected PIavg , for different sets of parameters. Both panels assumed that µ = 0.005
and initial conditions of PIi (0) = 0.01 for every vertex i, panel (a) uses β = 0.5 and panel (b) used β = 0.3.

the TIB model. The low NBT reachability proportion means that there are few
opportunities for echo chambers to occur as in the example given in Sec. 3.3.2,
and so, this allows us to justify the use of the TPB model on this data set while
the NBT reachability proportion remains low.

According to the analytical epidemic threshold as given by Eq. (3.40), we find
the critical β for the cattle trade network to be 0.0049, given the value for µ as
0.005. This is plotted as the vertical line given in Fig. 3.12 (b). The other curve
in this figure is the final outbreak sizes R∞ for the same value of µ = 0.005, but
for varying values of β. We compute the final outbreak size, R∞ by running 103

MC realisations for each of the values of β until there are no infected individuals
left, the initial condition of each run is set such that each individual has a random
chance of 0.0001 of starting the simulation as infected. We then take the average
of the final number of recovered individuals. The epidemic threshold in this case
is very small and we can see that near the critical β, R∞ stays very close to initial
proportion of infected, but as β begins to increase further away from the critical
value, R∞ begins to increase rapidly.

As is evident from Fig. 3.11, the TPB model offers a significant improvement
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Figure 3.12: (a) The NBT reachability proportion of the cattle trade network over one year. (b) The final
outbreak size, R∞, for different values of β with a fixed value of µ = 0.005. R∞ was computed from the average
of the final number of recovered individuals of 103 MC simulations for each value of β. The initial conditions
of each simulation was set so that each individual had a 0.0001 chance of starting infected. The analytically
computed critical β at which the epidemic threshold becomes greater than one is plotted as the vertical line.

over the TIB model as there is far better agreement with the MC average for
both sets of parameters, with the IB model deviating quite far. The reason for
such a significant improvement can be explained by the fact that the TPB model
is exact on graphs where the NBT reachability proportion is zero. However,
because the cattle trade network is a production network, there exist very few
scenarios where there are many possible NBT paths between herds, making the
graph structure highly tree-like in its supra-adjacency embedding. This can be
explained by the fact that the existence of such cycles are inefficient and cost
prohibitive in the trade process. As a result the graph is well approximated by a
tree-graph. Therefore, the SIR process is well approximated by the TPB model
for such a graph.

Conference Contacts

The second data set (cf. Tab. 3.1) is the Conference network described in Ref. [75].
It includes the face-to-face interactions of 405 participants at the SFHH confer-
ence held in Nice, France 2009. Each snapshot of the network represents the

88



3.5. RESULTS

aggregated contacts in windows of 20s. Since this data set describes face-to-
face interactions, each contact is bi-directional and so an undirected graph is the
natural choice to model these interactions.
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Figure 3.13: (a) Time series of number of active edges per time-step in the network. (b) In- and out-degree of
the network aggregated over the entire data set.

In Fig. 3.13 (a) we see that the edge activity in this case shows a number of
peaks occurring then quickly dying out with a large break of no activity for many
hours. These are explained by breaks between sessions at the conference during
which the participants converse and interact as well as an overnight break as the
conference lasted more than 24 hours. Because of the time scale and observation
period of this particular temporal graph, it is not feasible to model the spread
of disease as infection and recovery is unlikely to occur within the observation
period, which is approximately 30 hours. However, we can use our model to
simulate the spread of viral information or “gossip” using the same dynamics as
the SIR model. Infection is equivalent to receiving some information in such a
way that it becomes interesting enough to for the individual to try and spread to
those they contact in the future and recovery is equivalent to growing tired of the
information and no longer inform others they meet. As shown in Fig. 3.13(b),
there is a clear heavy tail with most vertices having a relatively small aggregated
degree, meaning most individuals had relatively few interactions in comparison
to the most popular individuals.
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Figure 3.14: TIB (solid green) and TPB (solid red) SIR models on the conference network together with the
average of 104 Monte-Carlo simulations (dashed blue). Panels (a) and (b) show the time series for the average
probability of being infected PIavg , for different sets of parameters. Both panels assumed that µ = 0.005 and
initial conditions of PIi (0) = 0.01 for every vertex i, panel (a) uses β = 0.5 and panel (b) used β = 0.05.

Fig. 3.14 shows the time series of the different models for two probabilities of
infection: β = 0.5 in (a) and β = 0.05 in (b). In both cases the µ = 0.05 and
the initial condition for each vertex is given as PIi(0) = 0.01. In both panels, the
average probability of belonging to the infected compartment, PIavg, is plotted for
the TPB model as the solid red curve, for the TIB curve as the solid green curve,
and the average of the 104 MC realisations as the dashed blue curve. Again, one
can observe that in every case the TPB approximation offers an improvement
over the TIB. However, compared to the MC simulations, it still performs quite
poorly, barely outperforming the IB model in panel (a).

In order to explain why the TPB model fails to provide a reasonable increase in
accuracy when compared to the TIB model for this particular data set, we look at
the NBT reachability proportion over time in Fig. 3.15 (a). When compared to the
equivalent plot for the cattle trade dataset in Fig 3.12 (a), the NBT reachability
proportion in this data set is far higher, with approximately a 10 times difference
between scales. This can be compared to the NBT reachability proportion of
the Erdős-Rényi graph in Fig. 3.8, which has a similar scale in NBT reachability
proportion and performs approximately the same as the TIB model in the SIR
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Figure 3.15: (a) The NBT reachability proportion of the conference network over the first 2.5 hours. (b)
The final outbreak size, R∞, for different values of β with a fixed value of µ = 0.005. R∞ was computed
from the average of the final number of recovered individuals of 103 MC simulations for each value of β. The
initial conditions of each simulation was set so that each individual had a 0.01 chance of starting infected. The
analytically computed critical β at which the epidemic threshold becomes greater than one is plotted as the
vertical line.

simulations (cf. Figs. 3.5 and 3.14)

The reason we do not see a good agreement with the MC average for this
particular data set is due to the underlying topology of the graph, which is a
physical social interaction network where individuals congregate in groups and
most or all in the group interact with one another. This leads to large clusters
that give rise to many possible NBT paths between vertices. The more time-
respecting NBT paths that exist between any two vertices, the worse the TPB
model will perform. It is for this reason that we see a relatively large deviation
from the MC simulations for the TPB model.

For the conference network, we computed the critical β to be 0.0029 for given
the value of µ was taken to be 0.005. In Fig. 3.15 (b), we show how the final
outbreak size R∞ increases for varying values of β where we fix the value of µ at
0.005 and show the computed critical β as a vertical line. To compute R∞ we run
103 simulations until there are no infected individuals left for each of our values
of β and then take the average of the final number of recovered left. The initial
conditions of each simulation was such that each individual had a probability
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of 0.01 of starting infected. Similarly to the other scenarios, we see agreement
between the analytical epidemic threshold critical β and the final outbreak sizes
R∞. As the values of β move further away from this critical β, the final outbreak
size R∞ also begins to increase, whereas, below the critical value, R∞ stays very
close to the initial conditions.

3.6 Summary

In this chapter, we have presented work done on SIR PB models by systemati-
cally extending them to a temporal setting and investigating the effect of non-
backtracking cycles on the accuracy of the model on arbitrary network structures.
We have found that the existence of many such non-backtracking cycles leads to
a deviation in the PB model from the true SIR process due to the echo cham-
ber effect they induce. Thus, the PB model is best suited to network structures
which do not contain many cycles, such as production networks. We also find
that our analytical finding for the epidemic threshold holds up when compared
to numerical simulations by, showing a qualitative change in the final outbreak
proportion.
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Chapter 4

A Meta-Population Model for
the Spread of SARS-CoV-2

In this chapter we present results on an all-Ireland network modelling approach
to simulate the spreading the Severe Acute Respiratory Syndrome Corona Virus
2 (SARS-CoV-2), commonly known as the coronavirus. In the model, vertices
correspond to locations or communities that are connected by edges indicating
travel and commuting between different locations. While this proposed mod-
elling framework can be applied on all levels of spatial granularity and different
countries, we consider the island of Ireland as a case study.

The network comprises 3440 Electoral Divisions (EDs) in the Republic of Ire-
land and 890 Super Output Areas (SOAs) in Northern Ireland, which corresponds
to local administrative units far below the NUTS 3 regions. The local dynam-
ics within each vertex follows a phenomenological SIRQ compartmental model
including classes of Susceptibles, Infected, Recovered and Quarantined inspired
from Ref. [132]. For better comparison to empirical data, we extend that model
with a compartment for Deaths. We consider various scenarios including the 5-
phase roadmap laid out by the Government for Ireland of Spring and Summer
2020. In addition, as proof of concept, we investigate the effect of dynamic non-
pharmaceutical interventions that aim to keep the number of infected below a
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given threshold. This is achieved by dynamically adjusting containment mea-
sures on a national scale, which could also be implemented at a regional (county)
or local (ED/SOA) level. We find that – in principle – dynamic interventions
are capable to limit the impact of future waves of outbreaks, but on the down-
side, in the absence of a vaccine, such a strategy can last several years until herd
immunity is reached.

4.1 Overview

On 30th January 2020, the World Health Organisation (WHO) declared the newly
emergent novel coronavirus pathogen, Severe Acute Respiratory Syndrome Coro-
naVirus 2 (SARS-CoV-2), to be a public health emergency of international con-
cern [48, 148]. This characterisation was later updated to pandemic status on
11th March 2020 [44]. Following its initial detection in a cluster of patients expe-
riencing acute respiratory symptoms in the city of Wuhan, in the Hubei province
of China [38], the spread of SARS-CoV-2, which causes the coronavirus disease
(COVID-19), globally in in the months following led to unprecedented social and
economic disruption [46, 55]. Despite widespread efforts to contain the virus
through a series of non-pharmaceutical, and later, pharmaceutical interventions,
global figures show cumulative reported cases standing at over 500 million, with
deaths from the virus totalling over 6.3 million. From the start of the pandemic
it was clear that there was an urgent and ongoing need to understand how the
virus spreads, in order to effectively protect populations as the race to produce a
vaccine began: an undertaking that in most cases would take years.

On the 16 March 2020, the first COVID-19 vaccine entered human trials [182].
In the coming months, mass vaccination campaigns began around the globe, with
Ireland’s first dose given on 29 December 2020 [178]. Within the first month of
vaccination campaigns beginning globally on 14th December, approximately 35
million doses were administered in 49 countries worldwide [50]. Immunisation of
billions of people around the world was logistical tour de force, with the current
figure standing at 4.78 billion individuals with at least one dose of vaccine, that
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is, 61.2% of the world’s population.

As COVID-19’s grip on the world, as well as our daily lives begins to slip
into distant memory, it is our duty to look back on events passed in order to
assess the effectiveness of our models so that when, and not if, we are faced with
another pandemic, we are better equipped with the proper mathematical tools
to face the challenge swiftly and effectively. The effects of a global disease are
most pronounced in the absence of an effective vaccine, thus, the models we will
look at assume the absence of such. Until such pharmaceutical means are widely
available, the best available mitigation strategies include the use of face masks,
sanitisation, and social distancing. During the course of the COVID-19 pandemic,
authorities implemented lockdowns to promote these measures. Mathematical
models are invaluable in providing us with an insight into the processes by which
the disease spreads [27, 112, 119, 130, 132, 154] and are able to help inform
decisions on the best course of action to take in the form of non-pharmaceutical
interventions [9, 157, 158, 168].

The model proposed in this chapter and the numerical results arising from it
are to be understood as a contribution to the scientific and public discussion of
possible spreading scenarios and the impact of intervention measures including
realistic levels of compliance. We will clearly state the model ingredients and
assumptions and elaborate on conclusions that can be drawn based on these limi-
tations; some of which are unlikely for any practical purpose, but worth exploring,
e.g., for worst-case scenarios.

We start with an introduction of the model equations for the local and net-
worked dynamics in sections 4.2 and 4.3, respectively. This includes a discussion
of the local dynamics from a geometric point of view, where we sketch the tra-
jectories and equilibria in phase space. Then, we continue with a case study of
Ireland in section 4.7 including realistic mobility data and compliance levels with
respect to movement restrictions. Besides an unlikely, worst-case scenario, we
consider different levels of increased awareness during the post-lock-down period
in section 4.7.1. In addition, in section 4.7.2, we explore effects of dynamic inter-
ventions to keep the prevalence below a given level. These dynamic lockdowns
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are considered at different levels of spatial granularity.

4.2 Local Dynamics

We start with the model for the local, well mixed dynamics at a single vertex
as the basis for the network model. We assign proportions of the population
belonging to one of 5 compartments, Susceptible (S), Infected (I), Quarantined
(Q), Recovered (R) and Dead (D). Hence, we call this the SIQRD model. These
compartments are defined as follows,

Susceptible S Individuals who have not been infected by the disease.

Infected I Individuals who are infected with the disease and are capable of
transmission.

Quarantined Q Individuals who are infected with the disease, but are quaran-
tined or self-isolating and thus not transmitting.

Recovered R Individuals who have recovered from the disease and are consid-
ered immune.

Dead D Individuals who have died from the disease.

We may model these class of models as a simple extension of the original
Kermack and McKendrick SIR model [111], inspired by Ref. [132]. Between
these five compartments, we assume that the number of individuals N , remains
constant for all time. Note that those belonging to the D compartment do not
contribute to the dynamics but still count towards the total population. Given
that each individual may belong to just one compartment at any time, we model
the flow of individuals from one compartment to another as given in Fig. 4.1.
The rate of movement between compartments is given by the quantities which
annotate the arrows and movements between compartments are only possible via
these transmission/recovery/death routes. We use S(t) to denote the number of
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individuals belonging to S at time t and similarly for the other compartments.
The reason we do not include a vaccination compartment is that we aim to model
the spread of the disease in its absence, as was the case for the first year of the
COVID-19 pandemic. It is under this condition in which the virus can have the
largest impact.

Figure 4.1: The rates at which individuals move from one compartment into another.

The set of equations which govern the dynamics as depicted in Fig. 4.1, are
given by,

dS

dt
=− βI

N
S (4.1a)

dI

dt
=βI
N
S − µI − αI − κI (4.1b)

dQ

dt
=κI − µQ− αQ (4.1c)

dR

dt
=µI + µQ (4.1d)

dD

dt
=αI + αQ. (4.1e)

The above system of Ordinary Differential Equations (ODEs) assume homoge-
neous mixing of the population, which can be a good approximation for small com-
munities, and small number of deaths. The parameters of the ODE model (4.1)
refer to the rates of moving from one compartment to another and population
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size:

β the rate of contact multiplied by the probability of infection on contact.

µ rate of recovery.

κ rate of moving from infected to quarantined.

α rate of death.

N total population size such that N = S(t) + I(t) +Q(t) +R(t) +D(t).

S

I

R

N

N

S0

D
=
0

D
>
0

outbreak trajectory
with deaths

Figure 4.2: Sketch of the outbreak dynamics in the local SIQRD model (4.1) for R0 > 1, shown as a (red)
trajectory from the disease-free equilibrium Se = N to one of the stable equilibria with 0 < Se < S0 in the
projection of the (S, I,Q,R,D) phase space onto the (S, I,R) subspace. S0 is the herd immunity threshold
separating the triangular family of equilibria into the (pink) unstable and (blue) stable parts.

Much insight into the network dynamics can be gained from geometric analysis
of the local, single-vertex dynamics as given in Eqs. (4.1). In the (S, I,Q,R,D)
phase space, system (4.1) has a whole family of stationary solutions (equilibria).
They are given by

Ie = Qe = 0 and Se +Re +De = N, (4.2)
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which correspond to disease-free conditions, and form a triangular surface shown
in Fig. 4.2. We refer to these state as the Disease-Free Equilibriums (DFEs).
This family includes the important Basic Disease-Free Equilibrium (basic DFE),

Se = N and Ie = Qe = Re = De = 0, (4.3)

which is the state of the system before any infected individuals are introduced.
To discuss stability of equilibria, it is convenient to define the basic reproduction
number of the system which has been discussed in Chps. 2 and 3. This gives
the expected number of secondary cases produced by a single infected individual
introduced to the basic DFE. This can be obtained by either linearising the system
of Eqs. (4.1) near the basic DFE or by finding the next generation matrix [54] of
the system and finding its spectral radius. The latter approach is more useful for
complicated models with many infectious compartments, which will be the case
for the network model. The necessary condition for an epidemic to occur is that
dI
dt
> 0, thus we have,

βI

N
S − µI − αI − κI > 0.

βN

(α + κ+ µ)S
> 1.

(4.4)

The quantity on the left of the second inequality above is what we refer to as the
effective reproduction number,

R∗0 = βN

(α + κ+ µ)S
, (4.5)

and gives the expected number infections produced by a single infected individual
introduced to a DFE with the number of susceptibles being S(t).

Suppose we perturb the state of the system at the basic DFE such that

[S, I,Q,R,D]T = [N − δ, δ, 0, 0, 0]T . (4.6)

Upon substituting in S = N , the quantity on the left hand side of the second

99



CHAPTER 4. A META-POPULATION MODEL FOR THE SPREAD OF
SARS-COV-2

inequality in Eq. (4.4), is the basic reproduction number of the local SIQRD
model, which we denote,

R0 = β

α + κ+ µ
. (4.7)

In other words the basic reproduction number is just the effective reproduction
number at the basic DFE. When 0 < R0 < 1 , all equilibria are stable, meaning
that no disease outbreaks can occur. When R0 > 1 , the basic DFE turns
unstable, and disease outbreaks become possible. To be more specific, the family
of equilibria is divided into the (pink) unstable part with S0 < Se ≤ N , which
contains the basic DFE, and the (blue) stable part with 0 ≤ Se < S0, shown in
Fig. 4.2. The instability threshold separating the two parts is given by

S0 = N

R0
. (4.8)

Guided by these observations, we define herd immunity, whether achieved natu-
rally or by means of vaccination, in terms of stable equilibria. Herd immunity in
a broad sense can be described as when the susceptible population becomes low
enough that the disease is no longer able to spread as much of the population is
already recovered or dead. In the local SIQRD model (4.1), we define herd immu-
nity as a disease-free state of the system such that a small increase in infected I

decays monotonically to zero (no outbreak). We say that the system has reached
herd immunity when,

0 ≤ S(t) < S0. (4.9)

In other words, herd immunity is represented by a stable equilibrium. We call
S0 = N/R0 the herd immunity threshold.

In Fig. 4.2, a disease outbreak is depicted as the (red) trajectory from the basic
DFE, giving a peak in infected I(t) around the herd immunity threshold S0, to
one of the (blue) herd immunity equilibria that lie below S0. The lower the S0,
the higher the peak in I(t). Thus, bringing the herd immunity threshold S0 closer
to N for a period of time and then back to its original position, e.g., via imposing
temporary public-health restrictions, can modify the outbreak trajectory so that
ultimate herd immunity is achieved in a controlled way, that is, with a peak in

100



4.3. NETWORK CONTAGION MODEL

I(t) that remains below some desired level.

4.3 Network Contagion Model

While the ODE model (4.1) can be justified for small communities, it fails at
capturing the dynamics that occurs at large spatial scales and cannot account
for heterogeneities in a population and interaction between meta-populations via
mixing/commuting [22]. For this reason, we develop a network framework by
splitting the population up into a number of smaller communities based on their
geographic location. Ideally, these communities are small enough to justify a well
mixed ODE model at the local level. We model our interaction/travel network
as a simple weighted directed graph G = (V,E, ω). Every community i ∈ V =
{1, . . . ,M}, corresponds to a vertex in the network. The edge weights, ω(i, j) :=
ωij, between two vertices represent the rate of travel per unit time from locations
i to j. The existence of an edge (i, j) implies there is travel from locations i to
j, conversely, no edge implies there is no travel, and thus ωij = 0. The rate of
travel, ωij can vary with time or remain static. We denote the population of
each vertex at time t as Ni(t) such that the sum of all populations gives the total
N =

∑
i∈V Ni. We also assume that while the populations in each location may

change, the total population N must be conserved. Taking this into account, as
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in Sec. 2.3.2, the resulting SIQRD meta-population model is given by,

dSi
dt

= −βIi
Ni

Si +
∑
j∈V

(ωjiSj − ωijSi) , (4.10a)

dIi
dt

= βIi
Ni

Si − µIi − αIi − κIi +
∑
j∈V

(ωjiIj − ωijIi) , (4.10b)

dQi

dt
= κIi − µQi − αQi +

∑
j∈V

(ωjiQj − ωijQi) , (4.10c)

dRi

dt
= µIi + µQi +

∑
j∈V

(ωjiRj − ωijRi) , (4.10d)

dDi

dt
= αIi + αQi +

∑
j∈V

(ωjiDj − ωijDi) , (4.10e)

where the compartments Si(t), Ii(t), Qi(t), Ri(t), and Di(t), represent the number
of individuals who are susceptible, infectious, quarantining, recovered or dead in
vertex i at time t, respectively. This means we also have Si + Ii + Qi + Ri +
Di = Ni for each vertex i. In all cases it is assumed that the travel rate from
a vertex to itself, ωii = 0, which intuitively makes sense as the travel rates only
account for movement between vertices, also, as the network is modelled by a
simple graph, self loops are not allowed. Also, the net number of individuals
leaving/entering a vertex in the susceptible group only due to travel and not
transmission/recovery/death, is given by the term

∑
j∈V (ωjiSj − ωijSi), similarly

for the other compartments. The rate of travel in each compartment is assumed
to be the same, i.e., the rate of travel is not dependent on the compartment,
infected individuals travel just as much as susceptible.

The proposed modelling framework may account for travel as commuting pat-
terns, that is, individuals return to their original location, details on the how this
is achieved will be looked at in detail in Sec. 4.6. The distance travelled between
locations often follows a power-law or heavy-tail distribution and can be described
by a gravity or radiation population model [29, 30, 82, 174, 176, 177]. Thus the
probabilities of movement between vertices according to these models can be used
to determine the travel rates. Alternatively, empirical movement data can inform
the model by using, for example, census data [36]. From these data sources one
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can either build a static network or have the rates update depending on the time.
Note that the proposed network model does not account for any importation from
outside the considered network.

It is often the case that one wants the population of each location to have
population remain constant, or at least be periodic over the course of a day. In
the case of static travel rates, the only way to ensure that the population of each
location remains the same for all time is to have the out travel rates equal to the
in travel rates, i.e., ωij = ωji. This ensures that the same number of individuals
that leave the vertex also enter it. Otherwise, the population of each vertex
will tend towards a diffusive equilibrium given by the solutions of the balance
N s
i /N

s
j = ωji/ωij [22], where N s

i represents the population of vertex i in diffusive
equilibrium. For travel rates which depend on time, one can have some periodic
function, for example sin(2πt). This allows individuals to flow out of a vertex for
half a day and then flow back into the vertex at the same (but negative) rates.
This will be explored in Sec. 4.6.

Given this model, the next natural question is when does an epidemic occur
and how do the quantities of the epidemic threshold as well as the herd immunity
threshold change in comparison to the local well mixed model. It is clear that
the addition of the travel terms as well as the multiple infected compartments Ii
makes their computation significantly more difficult.

4.4 Reproduction Number

For the fully networked case [cf. Eqs. (4.10)], the basic reproduction number
R0 can be computed from the system’s next generation matrix G [190]. This
takes into account the couplings between the nodes when computing the stability
of the disease-free equilibria. The entry, Gij, of this matrix corresponds to the
expected number of new infections in node i caused by an infected individual
introduced in vertex j. In order to derive the next generation matrix, we start
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with the infection subsystem of the original model, which is simply,

dIi
dt

= βIi
Ni

Si − µIi − αIi − κIi +
∑
j∈V

(ωjiIj − ωijIi) . (4.11)

This describes the evolution of all the infected compartments. Note that we
don’t consider Q an infected compartment as it cannot produce new infections.
We now split the infection subsystem into two parts, the terms which produce
new infections, and all other terms. Let Ui be the terms which contribute to new
infections, thus we find,

Ui = βIi
Ni

Si. (4.12)

We let Vi denote the rate of movement to other compartments in vertex i not due
to infection. This implies that,

Vi = −µIi − αIi − κIi +
∑
j∈V

(ωjiIj − ωijIi) . (4.13)

By construction, it is clear that Ii = Ui + Vi.

We define two new matrices T and Σ such that T = Jac(U) and Σ = Jac(V),
where U = [U1, . . . , UM ]T and V = [V1, . . . , VM ]T and Jac refers to the Jacobian
matrix. This gives rise to a linearised version of Eq.(4.11) at the point the Jaco-
bians are evaluated at, i.e.,

dI
dt

= (T + Σ)I (4.14)

where we let I = [I1, I2, . . . , IM ]T denote the state vector of the infection subsys-
tem. After computing the derivatives of T and Σ we obtain the following,

Tij = δij
βSi
Ni

, (4.15)

where δij is the Kronecker delta function and thus, T is a diagonal matrix. Sim-
ilarly, we find,

Σij = −µ− α− κ+ ωji − δij
∑
k∈V

ωik. (4.16)
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Writing these as matrix equations instead produces,

T = βdiag
(
S ◦N−1) , (4.17)

where S = [S1, . . . , SM ]T and N = [N1, . . . , NM ]T . The operator ◦, denotes the
Hadamard (element wise) product and the inverse of N is in relation to this
operator. We also find,

Σ = −(µ+ α + κ)Id + WT − diag(W1), (4.18)

where W is the weighted adjacency matrix of the network where Wij = ωij.
Finally, following [190], the next generation matrix is given by

G = −TΣ−1 = −βdiag
(
S ◦N−1) (−(µ+ α + κ)Id + WT − diag(W1)

)−1
.

(4.19)
Then, the effective reproduction number R∗0 for the networked system is given by
the spectral radius ρ of the next generation matrix,

R∗0 =ρ(G). (4.20)

That is, the largest eigenvalue by magnitude of the matrix G. This provides a
condition necessary for the stability all disease-free equilibria (Ii = Qi = 0, Si +
Ri+Di = Ni for all i ∈ V ). It also gives a natural definition for herd immunity in
the network which we define as all states S such that the reproduction number,
R∗0 < 1 (cf. the definition of herd immunity for the local dynamics in Sec. 4.2).
This critical point of the effective reproduction number we refer to as the herd
immunity threshold. All scenarios discussed in the next sections are simulated
using our library for modelling epidemics on networks, EpiGraph [97], which is
implemented in C++ and freely available on GitHub.
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4.5 Network Data

The travel network we consider combines the Republic of Ireland and Northern
Ireland for a total of 3409 vertices. For the Republic of Ireland, it makes up 2992
of vertices in the network and they represent an electoral division as defined by
the Central Statistics Office (CSO), for which small area population statistics
are published from the 2016 census [58]. Similarly, for Northern Ireland, vertices
refer to 417 superoutput areas which are administrative areas of a similar size as
defined by the Northern Ireland Statistics and Research Agency (NISRA) [147].
In both cases the spatial resolution corresponds to the local administrative units
below the category-3 regions of the Nomenclature of Territorial Units for Statistics
(NUTS) [11]. The edges in network we take to be the travel rates from one vertex
to another which will computed in the next section. Due to the availability of
detailed statistics on travel between EDs from the CSO, the construction of travel
rates will be constructed from movements seen in the Republic of Ireland and
Northern Ireland will be assumed to follow similar patterns.

The EDs and SOAs, which are the vertices in our network, can be seen in
Fig. 4.3, coloured by their population density (population per km2). As evident
from the figure, this gives us a relatively fine grained view of the islands population
statistics. This is important for determining the rate of travel between vertices,
which is heavily dependent on population size.

For example, take Fig. 4.4, this shows the number of travellers in and out of
each vertex in the Republic of Ireland, compared to its population size. In the
cases of both travellers into a vertex and out of a vertex, there is a clear linear
relationship between the number of travellers entering/exiting. Although, the
relationship in number of travellers into a vertex vs population of that vertex is
not as clear as the case of travellers out, the relationship is still there.

Each of these EDs and SOAs belong to 1 of 32 counties on the Island. This
alternative designation of areas is important, as often, in the case of the Republic
of Ireland, decisions in the later stages of the COVID-19 pandemic, decisions were
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Figure 4.3: A plot of the EDs and SOAs administrative regions of the island of Ireland using the TM75
(EPSG:29903) projection. The colour of each area represents the number of population per km2. Note that the
color gradient is log10 scaled.

made specific to these county regions. See Fig. 4.5 for a visual representation of
the counties and their population density.

4.6 Mobility Model

In this section we discuss the mobility model used to generate the travel rates
ωij, between vertices. As discussed in Sec. 2.4, when determining possible values
for the travel rates ωij, much of the time empirical movement data is used [168].
However, unless there is much data available under enough varied conditions, the
data can be difficult to use, especially during times in which the data is not a good
representation of current travel trends (such as in government mandated travel
restrictions). As empirical data only provides a snapshot into the behaviour of
individuals movement patterns at a particular moment in time, it can be more
useful to make use of mobility models which can react to changes in various
scenarios for which the data is not available.
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Figure 4.4: The plot on the left (red) shows the population of an ED against the number of individuals
travelling out. The plot on the right (green) shows the population of an ED against the number of individuals
travelling out. The data in both cases in from the 2016 census in the Republic of Ireland [36].

As we only have movement data available which was collected from a census
questionnaire [36] we would face such a difficulties. The census gives commuter
flows between “Electoral Divisions”, these are the Republic of Ireland’s smallest
administrative areas. Another drawback when using empirical movement data
is that it can be difficult to amalgamate data from different sources. As we are
attempting to model COVID-19 across the island of Ireland, we require data from
various governing bodies which may differ in approach and availability of data.
For example we don’t have the same level of commuting data in Northern Ireland
as we do in the Republic of Ireland and we also do not have any data on cross
border travel/commuting. Thus, we turn to the radiation model [129, 134, 174]
which has seen much success in the last decade in terms of modelling human
mobility.

We use the radiation model (as first discussed in Sec. 2.4) to generate the
rate of commuting in the SIQRD contagion model. In the radiation model, the
probability that a single traveller who leaves from i goes to j is given by,

qij = ninj
(ni + sij)(ni + nj + sij)

, (4.21)
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Figure 4.5: A plot of the counties of the island of Ireland using the TM75 (EPSG:29903) projection. The
colour of each area represents the number of population per km2. Note that the color gradient is log10 scaled.

where ni is the population at vertex i and,

sij =
∑

k;dik<dij
k 6=i 6=j

nk, (4.22)

is the sum of all populations within a circle centered at i whose radius is the
distance between i and j. dij is the distance between vertex i and j. The sum
does not include the populations of i and j themselves.

Then we assume that the probability that an individual in vertex i decides to
travel out on a given day and then chooses vertex j is given by,

uiqij = ui
ninj

(ni + sij)(ni + nj + sij)
, (4.23)

where ui is the probability that an individual in vertex i travels on a given day.
We take this number ui, to be average proportion of travellers out of an ED in the
CSO [36] data. In Fig. 4.6 we see the distribution of the proportion of travellers
out of vertices, with the green vertical line showing the average proportion to be
0.43, thus we take ui = 0.43 for all i ∈ V . We assume that this value of the
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average proportion of travellers out of a vertex also holds for Northern Ireland
where we do not have the data available in the same level of detail.
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Figure 4.6: The distribution of the proportion of travellers out (red line) of all electoral divisions in the
Republic of Ireland as reported from the 2016 census [36]. The vertical green line shows the average value on
the horizontal axis of proportion of travellers out.

We can now test the performance of this model against empirical data. To do
this we only consider the sub-network which consists of the Republic of Ireland.
For each individual in every ED i, we randomly decide they travel and go to
ED j according to Eq. (4.21). We then compare the generated travel distance
distribution from our randomly assigned travellers to the empirical data in order
to compare the performance of the radiation model. From Fig. 4.7, it is clear
that the standard radiation model performs quite poorly (green line with triangle
markers) when compared with the empirical distance distribution (red line with
circle markers). It quite clearly overestimates the number of travels which occur
below 10km and underestimates the number of travels which occur above that
distance. There are a number of reasons why this might be the case, either the
data we have is a poor representation of the true travel patterns in the country,
or else the radiation model is that as universal as often assumed as shown in
Refs. [6, 105]. These Generalised Radiation Models (GRMs) are better able to
capture some of the underlying properties specific to the scale of the area as well
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as properties such as difficulty of movement which would be higher in countries
with less developed transport systems and road networks. However, GRMs come
at the cost of parameters which require fitting, losing some of the advantage of
gained over using a gravity model. We will look at a very simple extension to
the gravity model, in line with the definition of GRM in Ref. [6] rather than
Ref. [105]. We introduce 2 exponents to the model such that Eq. (4.23) becomes,

uiq
∗
ij = ui

nγ1
i n

γ2
j

(nγ1
i + s∗ij)(n

γ1
i + nγ2

j + s∗ij)
. (4.24)

This new quantity q∗ij is the probability an individual travels to vertex j given
they leave from i under the new GRM. The quantity s∗ij is given by,

s∗ij =
∑

k;dik<dij
k 6=i 6=j

nγ2
k . (4.25)

We fit the two parameters, γ1, γ2, using maximum likelihood estimation tech-
niques. Specifically, using all pairs of home and destination travels, Γ, according
to the 2016 census data, we maximise the quantity,

L(γ1, γ2) =
∑

(i,j)∈Γ

log(uiq∗ij). (4.26)

Using the LBFGS algorithm to maximise the above, we found the parameters
which best fit the data be γ1 = 1.456 and γ2 = 0.748, decreasing the effect of
destination vertices and increasing the effect of home vertices. The value for ui
was taken to be the quantity 0.43 as discussed previously. In the same fashion
as described above, we generate travels according to the new GRM with the best
fit parameters and compare the generated distance distribution to the empirical
distribution. The generated distance distribution can be seen in Fig. 4.7 as the
blue line with square markers. When compared to the standard Radiation Model
(RM) there is much better agreement between the data and the GRM, and so we
use this model in generating the travel rates for the model.

As the quantity given above, uiq∗ij, is the probability of an event happening
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Figure 4.7: The distribution of travel distances in the Republic of Ireland as reported from the 2016 census
[36] (red line with circle markers) as well as the RM (green line with triangle markers) and GRM (blue line with
square markers).

over the course of day, we first need to convert that probability into a rate [66]
in order to use it in our model and assign it to ωij. Assuming that the time
between travel events is exponentially distributed, the rate of travel from vertex
i to vertex j is given by,

ωij = − ln(1− uiq∗ij). (4.27)

This defines the average rate of travel out of a vertex. However, with a constant
travel rate we run into the problem, as mentioned in Sec. 2.4, that the population
of each vertex does not stay constant and heads towards a diffusive equilibrium.
In order to prevent this from happening, we make our travel rates depend on time
in a manner similar to Ref. [121], such that,

ωij(t) = −π
2

sin(2πt) ln(1− uiq∗ij). (4.28)

This new travel rate has a period of 1 day with the travel rates turning negative
in the second half of the day. As the function is odd about all times t = k+ 1

2 for
k ∈ N, it ensures that the same number of travellers that leave a vertex in a given
day return by the end of day. The reason for the π

2 coefficient is that it implies the
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average rate of travel in the time intervals (k, k+ 1
2) is exactly − ln(1−uiq∗ij) and

in the time intervals (k + 1
2 , k + 1), it is exactly ln(1− uiq∗ij) (note the difference

in signs), in both intervals, k ∈ N. The intuition behind the form of our temporal
travel rates is to roughly approximate the daily commuting flow of individuals in
the network.

4.7 Case study: Ireland

For the remainder of this chapter, we elaborate on the spreading of COVID-19 in
Ireland as a case study, under the assumption of no viable vaccine. The network
model given by Eqs. (4.10) is informed by publicly available data detailed in the
next section.

4.7.1 First Wave of COVID-19

In order to demonstrate the general feasibility of the proposed modelling frame-
work, we attempt to model the first outbreak of COVID-19 on the island of
Ireland. However, due to the difference in approaches between the Irish and UK
government, with restrictions coming into effect and lifting at different times,
we make the assumption that Northern Ireland has the same restrictions as the
Republic of Ireland and shares the number of infections and deaths for the sake
of fitting the model.

After the initial outbreak and first restriction of initial movements (lock-
down), the plan for reopening the Republic of Ireland was first published in
May 2020 as the 5-phase roadmap for reopening society & business for reducing
lock-down restrictions as outlined by the Irish Government in May 2020 [162].
However, as was seen, the roadmap had to be continuously changed and adapted
as new information became available and the effectiveness of lock-down efforts
became known. Of the first 5 phases of reopening outlined by the government,
the first 3 were followed according to the original plan without alteration [149].
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This saw the number of infected in the country fall to almost 0 detected cases.
Thus we consider the first wave of COVID-19 as the date of first infection to the
end of phase 3. See Fig. 4.9. Prior to the reopening phases, two important dates
in the first wave of COVID-19 are the dates during which schools first closed and
the issue to work from home and restrict movement. These dates, along with the
dates the reopening phases became active, and a broad outline of the restrictions
associated with them are given in Tab. 4.1.

Figure 4.8: A visual representation of the journeys out of a particular electoral division in the Dublin area (red
area) to surrounding electoral divisions with different restrictions in place with a compliance of 70%. Labels (a),
(b), (c), and (d) correspond to travel restrictions of none, 20km, 5km, and 2km, respectively.

The effect of the movement restrictions on the travel rates as defined in Sec. 4.6
can be seen in Fig. 4.8 which depicts the travels out of a particular area (here
an electoral division in Dublin; red area) are affected by the different travel re-
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Table 4.1: Travel and gathering restrictions during the first wave of the COVID-19 outbreak. Restriction come
into effect on the given date of the event.

Event Date Max Distance Social distancing
school closure 12-03-20 no restrictions recommended reduction
initial lockdown 27-03-20 2km essential meetings only
phase 1 18-05-20 5km essential meetings only
phase 2 08-06-20 20km maximum of 4 people
phase 3 29-06-20 no restrictions maximum of 4 people
phase 4 paused 20-07-20 no restrictions small gatherings

strictions as given in Tab. 4.1. As the travel radius is reduced, the movement is
confined to a more local vicinity. Note that travel beyond the travel radius is still
present due to non-compliance. Specifically, the rate of travel between locations
which are outside of the allowed travel radius are scaled by 1 minus the compliance
factor, which we take to be 0.7. This level of compliance is supported by findings
of a nation-wide series of phone interviews accounting for essential/justified and
non-essential travel [108].
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Figure 4.9: The number of new daily recorded infections (red) and deaths (green) in the Republic of Ireland
during the year 2020 as published by Ordinance Survey Ireland [47]. The vertical lines indicate when a new
phase with associated restrictions in being entered.

Our model attempts to follow the historic evolution of the disease during
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the first wave of the outbreak. In order to fit our model to the data, we assume
reasonable parameters for the SIQRD model, with β being the only free parameter
we fit against. That is, the rate of contact multiplied by probability of infection
on contact. We allow β to take on a different value for the duration of each of
the phases listed in Tab. 4.1.

When fitting to the reported deaths [47], we let the initial condition of the
model be a very small quantity of infected individuals (0.01) added among loca-
tions. We then integrate the model and fit the model deaths to the number of
actual deaths, shifted by back 20 days, by means of least squares. Looking at
Fig. 4.10, we see the total number over time of deaths across all vertices in the
network (red line), with the reported deaths (green dashed line), with a 20 day
backwards shift, plotted over the model deaths. We denote the total number of
deaths across all vertices in the network as D(t) =

∑
i∈V Di(t) and similarly for

all other compartments. Comparing the two curves, we see reasonable fit to the
deaths is achieved.
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Figure 4.10: The cumulative number of deaths in the Republic of Ireland shifted back 20 days (red solid line)
during the year 2020 as published by Ordinance Survey Ireland [47] and the cumulative deaths according to the
SIQRD model (green dashed line) using the parameters given in Tab. 4.2. The vertical lines indicate when a
new phase with associated restrictions in being entered.

Using deaths to fit the model gives the best chance at producing realistic
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parameters for the model, the reason being that the recorded number of deaths is
far likely to be closer to the true value than the recorded infections. The reason
for fitting to the deaths with a 20 day delay is due to the fact that the data which
reports daily deaths in Fig. 4.9 is the date the death is reported rather than date
of actual death, this lag in reporting can vary quite a bit, with a median time
to report of 18 days and mean of 63 days as reported by the CSO [101]. With
this in mind we tested fitting the model against deaths with delays ranging from
1–30 days and found 20 days to give the best fit. For the parameters, we assume
that the average time before recovery or death is 10 days , with a proportion of
0.03 of all cases ending in death [34, 133]. Hence we choose µ = 0.97/10 and
α = 0.03/10. We assume that the average time before quarantining is 2.5 days,
hence we choose κ = 1/2.5, we do not have as strong an argument for this value
of κ other than it seems to be a reasonable assumption and was used in Ref. [5].
See Tab. 4.2 for a list of the parameters for each stage of the first wave of the
infection, including the fitted values for β.
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Figure 4.11: The 10 day incidence rate of infections in the Republic of Ireland shifted back 8 days (red solid
line) during the year 2020 as published by Ordinance Survey Ireland [47] and the total number of infected across
the entire network (I + Q) according SIQRD model (green dashed line) using the parameters given in Tab. 4.2.
The vertical lines indicate when a new phase with associated restrictions in being entered.

Now, using the β parameters from each phase from fitting the number of
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Table 4.2: Parameters used to model the first wave of COVID-19 in Ireland during the events given in Tab. 4.1.
R0 is computed from the system parameters.

Event β µ κ α R0
pre restrictions 0.69 0.097 0.4 0.003 1.38
school closure 0.55 0.097 0.4 0.003 1.1
initial lock-down 0.43 0.097 0.4 0.003 0.86
phase 1 0.49 0.097 0.4 0.003 0.98
phase 2 0.49 0.097 0.4 0.003 0.98
phase 3 0.49 0.097 0.4 0.003 0.98

deaths, we can check how well the model compares to the reported number of
infections [47]. We do at expect quite as good a fit as with the number of deaths,
as the number of reported infections is heavily dependent on the rate of testing
over time which was known to be highly variable [49]. In Fig. 4.11, we see the
total number of infected according to our model, I+Q, as the red line and the 10
day (the same as our assumed average time to recovery or death) incidence rate
of the reported infections as the dashed green line. Similar to the deaths, we shift
the 10 day incidence rate back by 8 days. This is to account for the average 6
day lag between contracting the disease and becoming infectious [59] (which our
model does not account for), as well as the reported expected time for reporting
positive results of PCR tests of 2 days. We see that our model gives a higher
number of infected compared to the reported figures, however, we see that the
curves follow the same patterns with their peaks lining up. It is expected that the
model produces a higher number of infected as the reported number of infections
only gives the number of infected within the small testing pool of individuals and
will not capture asymptomatic individuals or those who self isolate without being
tested.

Now, we run the model using the fitted parameters to simulate the first wave,
we then allow the model to return to pre-lock-down conditions with no restrictions
on movement or gatherings, with the parameters returning to the pre-restriction
state as in Tab. 4.2. It is important to note that at this stage, we do not consider
any reintroduction or roll back to earlier phases during the course of the simulated
outbreak. This corresponds to a worst-case scenario (which is how we shall refer
to this scenario), should the island have not have introduced any subsequent
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lock-downs in the presence of rising infections and deaths.

As defined in Eq. (4.7), the basic reproduction number of the local dynamics
[cf. Eqs. (4.1)] only exceeds the critical value of R0 = 1 during pre lock-down
and school closure. Conversely, initial lock-down, phases 1, 2 and 3 have a R0

value below unity and – neglecting network-related effects – exhibit a burn out
of an outbreak and self-guided decrease of the number of infected.

We introduce a very small number of infected individuals to every vertex in
the network (0.01 individuals), on 20th February, 2020, that is, 21 days before the
school closure date, and run the model such that the disease spreads naturally and
without control. On the 12th March, we introduce the initial lock-down measures,
which take some time to reach full effect. Individuals’ movement is limited to 2km
and this is adhered to with 70% compliance, as discussed previously. The level of
compliance to movement restrictions is kept constant at 70% in the simulations.
In Sec. 4.7.2 we will investigate the effect of different levels of compliance with
restrictions in the context of lock-down restrictions that are location dependent
(cf. Fig. 4.20).

We account for social distancing by reducing the rate of mixing within commu-
nities, this is accounted for with the parameter β (cf. Tab. 4.2 for the respective
parameter values). During phases 1 and 2, the travel radius increased to 5km
and 20km, respectively, and we assume the same level of compliance. Travel re-
strictions are removed in phase 3 (cf. Tab. 4.1). Each of the numbered phases
have a duration of 21 days.

Fig. 4.12 depicts the time series of all five compartments – aggregated over
all vertices. In the network case of the SIQRD model, we denote the sum of
the total number of individuals in each vertex belonging to compartment S as
S(t) =

∑
i∈V Si(t), and similarly for the other compartments. The S, I, Q, R

and D compartments are given by the red, green, blue, yellow and cyan coloured
curves respectively. The number of individuals is shown on a log10 scale and the
grey vertical lines show when the various events given in Tabs. 4.1 and 4.2 begin,
and thus what restrictions are in place and what parameters are in use. For the
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Figure 4.12: Total number of individuals in the worst-case scenario across the entire network belonging to
each compartment, as stated in the legend, over time with a log10 scale on the y-axis. Parameters as in Tab. 4.2
and a 70% compliance to movement restrictions. The beginning of each successive event is indicated by the grey
labeled vertical lines in the plot. After the initial wave (post phase 3), the parameters are set back to that of
the pre lock-down values.

reopening phase, the parameters and restrictions are assumed to be the same as
that of the pre-restriction phase.

One can see two distinct peaks: (i) a small peak that occurs before the lock-
down and (ii) a second peak that occurs once all lock-down measures are lifted.
It is clear that unless some of the measure are maintained, then the lock-down
will just have the effect of delaying the epidemic and result in a second wave
with a prevalence that – in this unlikely worst-case scenario – is 100 times higher
than the first one and exceeds any realistic capacity of the health-case system.
The number of infected eventually reaches zero due to a depletion of the pool of
susceptibles.

Following the geometric analysis of the local dynamics (cf. Sec. 4.2), the
trajectory lands at one of disease-free equilibria Ie = 0 . A change in parameters,
e.g., rate of contact time probability of infection on contact, β, or a rescaling of the
population to the number of remaining susceptibles can render this state unstable
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again. Then, a perturbation to the networked system, for instance, introduction
or importation from outside, has the potential to trigger an additional outbreak.

For the simulation run given in Fig. 4.12 we compute the next generation
matrix as in Eq. (4.19) at each day and find its spectral radius giving rise to
the network’s effective reproduction number R∗0. That is, the expected number
of infections generated by a single infected individual for the given number of
susceptible individuals in each vertex. This is in comparison to the basic re-
production number, R0, which is the expected number of infected individuals
generated by a single infected individual in the basic DFE, the values for which
are given in Tab. 4.2. The time evolution of R∗0 is plotted as black dashed curve
in Fig. 4.13.
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Figure 4.13: The effective reproduction numbers R∗0 (green dashed, values on right y-axis) over time as
calculated from the basic reproduction number and spectral radius of the next generation matrix given by
Eq. (4.19), respectively, together with the number of infected and quarantining (red solid, values on left y-axis)
in the network in the doomsday scenario as shown in Fig. 4.12.

The value of R∗0 shows the potential for the disease to spread at each phase
in the simulation. From Fig. 4.13 we can see clearly that when R∗0 falls below
unity, the number of infected also begins to fall. We also note the point of herd
immunity is reached is in when the number of susceptibles crossed the point where
the R∗0 goes below 1 in the final reopen phase which has no restrictions.
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As stated above, the parameters are chosen to match the actual number of
deaths in the Republic of Ireland. See Figs. 4.10 and 4.11 for a detailed compar-
ison to reported data. The simulated results, however, are not meant to reflect
this range of confirmed cases, but following the logic of the model, refer to all
infected individuals including asymptomatic, non-diagnosed and untested.

Figure 4.14: The spatial distribution of infected individuals per km2 around the two distinct peaks shown in
Fig. 4.12 at (a) 26th March 2020 (b) 17th September 2020. Parameters as in Tab. 4.2.

Figure 4.14 shows spatially resolved snapshots of the prevalence of the disease
per km2 on March 26th 2020 and 17th September 2020 respectively (cf. Ref. [103]
for a map based on data of reported, confirmed cases) according to the SIQRD
model simulation in Fig. 4.12. Fig 4.14 (a) corresponds to the disease prevalence
at the first peak before the lock-down. The disease remains in the East of the
country for the most part with the exception of big towns and cities. In contrast,
on 17th September 2020, see Fig 4.14 (b), the outbreak covers the entire country
and affects every electoral division. So far in our model we have assumed that after
leaving the phase 3 reopening, the parameters return to their values pre-pandemic,
which is an unlikely scenario and was not seen after the initial outbreak of COVID-
19, which saw that individuals were far more careful with taking preventative
measure such as social distancing and wearing face masks [108].

We investigate the degree to which the effect of the preventative measures
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Figure 4.15: Evolution of the combined infected and quarantined compartments I + Q, aggregated over the
entire network for varied post-lock-down conditions. The red curve corresponds to the parameters given in
Tab. 4.2 (cf. Fig. 4.12). The other curves vary the parameter β in the post-lock-down phase as stated in the
legend: β = 0.65, β = 0.6 and β = 0.55. Other parameters are as given in Tab. 4.2.

mentioned above have on reducing the size of the peak in the so called worst-case
scenario as modelled in Fig. 4.12. As shown in Fig. 4.15, we model the effect of
different levels contact rates by varying the parameter β during the final lifting
of restrictions after phase 3. The plots depict the time series of the aggregated
infected and quarantined compartments I+Q. A reduction to 0.55 from the orig-
inal rate of contact times probability of infection, i.e., β, leads to a significantly
smaller and delayed second peak (yellow curve), while the basic reproduction
number of the local dynamics remains above unity (cf. Tab. 4.2). This value
for β is the same as the fitted value during the school closure phase, indicating
that a consistent low level lock-down, although with a basic reproduction num-
ber greater than 1, could be a means to reach herd immunity while keeping the
peak of infections relatively low. However, this peak of hundreds of thousands of
infected is still likely to overburden the island’s healthcare capacity.

We now investigate the effect of the heavy-tail distribution of travel across the
network and whether or not it causes a lack of sensitivity in initial conditions.
We run the model for a number of random initial seeds under a no lock-down
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Figure 4.16: Time series of the sum of the combined I and Q compartments over the entire network for 50
random initial locations under a no lock-down scenario, that is, the parameters used for the entire simulation
are those listed under pre lock-down in Tab. 4.2. For each scenario, the initial location started with a single
individual.

scenario (see Fig. 4.16) where for each run only a single individual is placed in one
ED or SOA at the start of the simulation. The resulting time series are shown in
Fig. 4.16.

One can see that the timing of the peaks are all within ∼ 1 week of each other
and their amplitudes are near identical. In the presented 50 cases, the initial
location is selected uniformly at random from all network vertices. We note that
deliberately selecting urban or rural locations appears to have little qualitative
impact. While there are definite differences in amplitude and timing of the peaks
due to initial conditions, they qualitatively all behave quite similar, thus showing
a large degree of insensitivity to initial conditions.

4.7.2 Dynamic Interventions

In this section, we discuss the scenario of a flexible lock-down policy as was seen
in use globally, including in the republic of Ireland [149]. The policy monitors the
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prevalence of the disease within the island and aims to keep it below the capacity
of the health-care system. There are 2 policies which we consider, they are are i)
Island Interventions and ii) Regional interventions. The island intervention policy
considers some threshold, Ith, as the maximum number of infected throughout
the entire island that can be present before an all island lock-down is triggered.
Whereas, the regional intervention policy considers some threshold, Ic

th, as the
maximum number of infected permitted in each county (cf. Fig. 4.5). Any county
which surpasses this threshold goes into a lock-down scenario independent of the
other counties.

Such a procedure corresponds to dynamic [39, 113, 115] or active [9] inter-
ventions. In both policies, we simulate until phase 3 as before to maintain the
agreement with reported deaths. Afterwards, if the conditions for lock-down are
met, the island/county goes back an into initial lock-down and then progresses
from there through phases 1 – 3, until the condition is met again.
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Figure 4.17: The number of individuals, aggregated over the entire network, belonging to the combined I
and Q compartments over time (using the parameters in Tab. 4.2) under a dynamic lock-down strategy taking
Ith = 104. The model simulates the historic events up to phase 3 before implementing the island wide dynamic
lock-down process. The dashed line shows the equivalent model without the dynamic lock-down strategy shown
in Fig. 4.12.
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Figure 4.18: The number of individuals, aggregated over the entire network, belonging to the combined I
and Q compartments over time (using the parameters in Tab. 4.2) under a dynamic lock-down strategy taking
Ith = 103. The model simulates the historic events up to phase 3 before implementing the island wide dynamic
lock-down process. The dashed line shows the equivalent model without the dynamic lock-down strategy shown
in Fig. 4.12.

Island Interventions. In detail, we consider two scenarios with different thresh-
old parameters, which are inspired by the reported, maximum number of hospi-
talized cases during the first wave in April 2020 [103]: (i) Ith = 104 , as shown in
Fig. 4.17 and (ii) Ith = 103 as depicted in Fig. 4.18. In both figures, the worst-
case scenario of Fig. 4.12 is added as dashed curves. For the case of Ith = 104,
the number of susceptible individual left is approximately 6.3 × 106 out of the
starting 6.6× 106, and thus, is far below the required level for herd immunity to
take effect.

Under the assumptions of the considered network model, it would take many
years for a significant depletion of the pool of susceptibles. From Eq. 4.8, we
find the herd immunity threshold, given the parameters in pre-lock-down phase
of Tab. 4.2, to be approximately 4.5× 106 susceptible individuals. Extrapolating
from Fig. 4.17, we see that approximately 3 × 105 individuals recover over a
period of 1 year and 9 months, or 1.6 × 105 per year. Assuming this rate of
depletion form the susceptible population is maintained over the entire course of
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the pandemic (which it would certainly not be, it does however give us an upper
bound), it would take approximately 28 years for the number of susceptibles to
reach the herd immunity threshold. By the same reasoning, this would lead to a
total number of approximately 1.4 × 105 deaths over the course of many waves.
Even with a large threshold Ith = 104 for the maximum number of infected cases,
the feasibility of such a strategy is questionable due to the time it would take to
reach herd immunity of on the island.

The re-introduction of lock-down measures to account for rising numbers of
infected can change the stability of the disease-free equilibria Ie = 0. However,
as soon as the restrictions are relaxed, e.g., after phase 3, an unstable family
of these equilibria re-emerges and the outbreak pattern repeats. Suppressing the
occurrence of unstable disease-free equilibria requires other forms of interventions.
One could consider, for example, a fishing-type extension of the model [8, 24, 40].
This will basically turn the rate κ in the local dynamics (4.1) into a function
of the number of infected, e.g., κ(I) = h

1+I/Ic with a consumption/fishing rate
h (here: rate of isolation) and a reference capacity Ic for κ(I) = h/2. This I
dependence will account for contact-tracing effects, which are especially effective
for low numbers of infected. As a consequence, a high rate h of isolation will be
able to push the basic reproduction number [cf. Eq. (4.7) or Eq. (4.20)] below
the critical value of R∗0 = 1 and change the stability of the equilibria Ie = 0.

Regional Interventions. Next, we consider another scenario that accounts for
regional lock-downs at the level of counties. In our dynamic intervention model
this corresponds to each county having its own Ic

th, that is, the threshold of in-
fected individuals belonging to the sum of the I and Q compartments in each
county. Thus, once the county surpasses this threshold, another lock-down is
triggered sending the county back to the initial lock-down as listed in Tab. 4.2,
after which the county progresses through the various phases 1 – 3, before reopen-
ing and assuming the parameters of the pre-lock-down state. This entering and
lifting lock-down is repeated ad infinitum. When lock-down phases differ between
counties, we assume that the travel restrictions in and out are followed with the
compliance of the county being travelled to. When we run the simulations using
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the regional interventions, the model operates at the level of ED and SOA but
their travel and interaction dynamics are consistent across counties. The param-
eters used for each phase are the same as those given in Tabs. 4.1 and 4.2. For
this run we took the maximum number of infected per county Ic

th = 1400 and
again, the model is allowed to run without intervention until phase 3 to match
the historic number of deaths.
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Figure 4.19: Total number of individuals (aggregated over counties) belonging to the sum of the I and Q
compartments. Parameters as in Tab. 4.2. The simulation follows the historic events up to phase 3 as before
after which the dynamic county lock-down strategy is used and the total number of infected in each county
becomes desynchronised. The four counties with the largest cites in the island are explicitly denoted in the
legend. Every other county is shown as a transparent cyan line. The threshold quantity used was Ic

th = 1400,
and is shown as a black horizontal dashed line.

From Fig. 4.19 we see some interesting dynamics when we view the evolution
of the number of infected in each county. Each time after Dublin re-enters lock-
down due to dynamic lock-down, after only a few days to weeks the numbers
start rising again. This is not due to its own dynamics, but due to its interaction
with neighbouring counties, which are either not yet in lock-down, or have a high
number of infected and are still travelling, though at far reduced rates, due to a
level of non compliance with restrictions.

It can be seen that the secondary peaks in Dublin, when it is in lock-down,
lines up with the bulk of peaks in the cyan curves. It is only once all the other
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counties enter lock-down do we see the numbers in Dublin begin to drop. We
conclude that treating such counties in isolation is not a good strategy due the
strong coupling between each county that is not eliminated when some counties
remain free to travel even only within their own borders.
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Figure 4.20: Number of individuals (aggregated over counties) belonging to the combined I+Q compartments
for compliance of 100% (top), 90% (middle) and 0% (bottom). The colours of the curves are the same as that
in the legend of Fig .4.19. Other parameters as in Tab. 4.2. The simulation follows the historic events up to
phase 3 as before, after which, the dynamic county lock-down strategy is used and the total number of infected
in each county becomes desynchronised. The threshold quantity used was Ic

th = 1400, and is shown as a black
horizontal dashed line.

Next, we investigate the impact of compliance to movement restrictions. Pre-
viously, we considered a compliance level of 70%, as such, we now look at the two
extreme value of compliance as well as close to full compliance in order to com-
pare the effects of the 70% compliance, that is, we consider 0%, 90%, and 100%
compliance. Fig. 4.20 depicts the evolution of the disease using a dynamic county
lock-down strategy as in Fig. 4.19, but using 100% compliance in the top panel,
90% in the middle panel and 0% in the bottom panel. As previously, the model
is run to match the historic deaths up until phase 3. The rest of the parameters
used in each simulation are the same.
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One can see that even with 0% compliance (bottom plot of Fig. 4.20), the
secondary peaks that occur in Dublin (the peaks that line up with the bulk of
the cyan curves) due to travel from outside the county are very similar to the
equivalent simulation using 70% (cf. Fig. 4.19) as well as 90% (cf. middle panel
of Fig. 4.20). Only in the plot with 100% compliance (cf. top panel of Fig. 4.20),
do we see the lack of large secondary peaks that keep the number of infected in
Dublin above the threshold level of Ic

th = 1400, or else bring it back beyond that
level. And so, we conclude that unless near 100% percent compliance with travel
restrictions is observed, the effect of a county level dynamic lock-down strategy
will not have the desired effect as Dublin will be greatly effected by the lock-down
status of the rest of the island’s lock-down status. Thus, an alternative strategy
could be to consider a lock-down strategy which considers restrictions in only
Dublin and the rest of the island.

4.8 Summary

We have proposed a dynamical network model to study the spreading of SARS-
CoV-2 that accounts for travel or commuting between vertices of a network. As
a case study, we have presented results from numerical simulations for Ireland,
where the model is informed from publicly available data on geographical regions,
population, and mobility in both the Republic of Ireland and Northern Ireland.
The network model is flexible in terms of spatial granularity and parameter selec-
tion. We have focused on the first 3 phases of the governmental 5-phase roadmap
for reopening society and business in order to model the first wave of the disease
on the island and considered different initial conditions, parameters, and mobil-
ity data including realistic levels of adherence to movement restrictions. We have
observed that the roadmap will lead to a decline of case numbers. However, once
the restrictions are lifted, the numbers will rise again, even if an increased level
of awareness is considered.

Finally, we have elaborated on a procedure of dynamic interventions that
re-introduce lock-down measures, if a certain threshold of infection is reached.
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Following such a protocol, the overall number of infected cases can be controlled
and safely kept below a prescribed threshold, which can be selected according
to the capacity of the health-care system. We have considered that containment
measures would be re-introduced on a country-wide level, but a more regional
approach (county level) appears feasible as well. It is likely that in the long term,
the disease will be contained best by vaccination and not by the development of
natural herd immunity [7]. While we have not considered the effects of vaccina-
tion in this work, in our model naturally acquired herd immunity, or population
resistance, will develop slowly over a long period of time. This is true even with
our assumption that infection confers long-lasting resistance, and it is far from
clear that this actually the case.

In this chapter we introduced a generalised radiation model which was able
generate commuting patterns, and matched the distance distribution of empirical
travel distances as was reported from the 2016 census in Ireland. In the next
chapter we look at the applicability of this radiation model to cattle trade.
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Chapter 5

Models for Cattle Trade

Despite the importance of trade networks in understanding the spread of infection
and disease in farm animal populations, we still lack models that are able to
accurately predict these movements on a temporal and spatial scale. Many of the
trade networks that have been studied from the context of infection spread have
been undertaken as static time-aggregated approximations [143, 187]. Using this
approach, we lose the underlying dynamics which characterise animal movement
due to trade. An understanding of the mechanisms that influence animal trade
is needed to improve our ability to optimise and predict future disease outbreaks
in these animal populations.

Beef and dairy farming are important contributors to the economy within the
Republic of Ireland, with the agri-food and drink sectors generating 10% of Ire-
land’s exports to the value of approximately €13 billion in 2020 [104]. The cattle
population in Ireland is approximately 6.5 million, which outnumbers the human
population by approximately 1.5 million [138]. Given this context, outbreaks of
animal disease have the potential to create considerable national disruption and
associated adverse economic impact. These impacts were observed during out-
breaks of foot and mouth disease in Ireland during 1967 and 2001 [45, 83] and
especially in the UK in 2001 [88], where approximately 6.5 million cattle were
culled resulting in a staggering loss of £8 billion to their economy [183].
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As an example, Bovine Tuberculosis (BTB), caused by infection with My-
cobacterium bovis, is an important endemic disease of cattle. There has been a
national eradication programme in Ireland since the late 1950s, including a range
of ongoing surveillance and control activities [142]. Nonetheless, infection remains
prevalent and widespread throughout the country. Further, cattle movement is
recognised as an important constraint to eradication [142]. There is substantial
ongoing movement of cattle in Ireland [138], and an improved understanding of
the cattle movement network [186, 187]. With robust models for cattle trade in
Ireland, it would be possible to test various scenarios, including trading restric-
tion strategies, and determine their effectiveness as part of a national eradication
programme. Within this chapter, we elaborate on a framework for cattle trades,
based on trades data within, to and from the Republic of Ireland during the year
2017.

As an initial step, a network is often analysed via many common network
measures in order to get a sense of the underlying topology, be it static or time-
varying. This enables us to determine whether or not the static aggregated net-
work is a good approximation and what information is lost by temporal aggrega-
tion of the data. In our analysis, we look at the network as both a time-aggregated
static embedding and a temporal network.

In the context of human mobility, there are two models which have been
extensively compared to each other against various empirical data sets, including
the radiation [6, 174] and gravity [33, 94] models as introduced in Sec. 2.4. While
there has been much research into developing models for human mobility, the
same cannot be said for cattle trade. However, there has been much analysis of
these networks and their properties [12, 76, 159, 187]. As a result, their behaviour
and structure is generally well understood. We will attempt to take advantage
of particular aspects of the cattle trade network, which shares similarities with
human mobility, in order to develop an accurate model for cattle trade.

The radiation model [134, 174] is a parameter-free probabilistic model that
is derived under the assumption of human mobility dynamics and population
distributions. Thus is not suitable for cattle trade networks in an unaltered state.
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The main issue with the radiation model is that it is assumed the probability of
a trade into a vertex is highly dependent on population size of that vertex, which
while true for human populations, does not hold for cattle herds. We will look at
applying a generalised radiation model [6, 105] which allows for a wider range of
dynamics at the cost of adding parameters to the model.

The gravity model [33, 89, 175] is a parameterised model that is a generali-
sation of the law of gravity applied to trade and mobility settings. It is usually
dependent on the in-flow and out-flow of the vertices while being inversely pro-
portional to some function of the distance between them. We include analysis of
the gravity model as it sees much use in the context of international trade [155,
191].

The structure of this chapter is as follows. We first discuss construction of
cattle trade networks from the available data. As the cattle trade network is
a combination of a number of trade processes, we split it up into a number of
networks such that each new network represents only a single trading process,
i.e., direct herd-to-herd trades, herd-to-mart trades, mart-to-herd trades etc.

We analyse each of the considered cattle trade networks in their time aggre-
gated form by computing centrality measures in order to gain a better under-
standing of the underlying trade process. Then to determine the applicability of
theses measures to the full temporal networks we investigate the causal fidelity
of the networks. Then, we build on the theory of the generalised radiation model
we introduced in Chp. 4, and compare it to the gravity model. Following this, we
discuss the application of the trade model to network epidemiological models.

5.1 Analysis of Trade Networks

Before attempting to model cattle trade networks, it is vital to first understand
the underlying dynamics. In the following, we provide an in-depth analysis of
various aspects of the networks in both their temporal and time-aggregated forms.
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In order to properly model these trade networks, the model should be able to
reproduce many of the findings in our analysis. Then in Sec. 5.2, we develop a
model that accessibility describes the empirical data.

5.1.1 Cattle Trade Data

The data set of cattle trades we consider during our analysis is that of all recorded
trades between herds in Ireland (noting that this and all subsequent mentions of
Ireland refer to the state and not the island) during 2017. The data was obtained
from the Centre for Veterinary Epidemiology and Risk Analysis (CVERA) in
University College Dublin, as the result of collaborative work in Ref. [98]. There
are many types of trade which may occur, for example, from herd to abattoir,
from herd-to-herd, importing from abroad, exporting to abroad, etc. However,
we are only interested in modelling trades between herds, thus, we only consider
the types of trades which facilitate this. This may happen as either a direct trade
from one herd to another (’direct herd-to-herd trades’) or as an indirect trade
from one herd to another via a mart (’indirect mart trades’). Of these two types
of trade, there are approximately 1.2 million over the course of the year, and they
will be used to construct the temporal networks. The temporal resolution of the
data set is relatively granular at one day. Due to the timescale on which cattle
are moved, this provides an incredibly detailed view of cattle trades.

From this data we construct four different temporal networks which show
varying topological and qualitative behaviours. Due to the fact that trades be-
tween herds occur via two distinct process (direct trade between herds or indirect
trade via mart), it is worthwhile to consider these processes in their own networks.
Thus, we consider the four following distinct networks:

1. Direct herd-to-herd trades.

2. Indirect herd-to-herd trades via marts.

3. Herd to mart trades.
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4. Mart to herd trades.

The direct herd-to-herd trade network represents trades which happen directly
between herds, i.e., the animals were not bought via a mart. The indirect herd to
herd trades via marts represents the trades between herds which happened via a
mart. This network bypasses the marts completely by connecting the selling and
buying herd with and edge. Then we consider the herd-to-mart trades and mart
to herd trades networks. These networks are represented by bi-partite graphs as
the marts do not trade with each other and herd-to-herd trades are considered in
the first two networks in list given above. It is important to note that although
we consider the herd-to-mart and mart-to-herd networks separately, cattle never
reside in the mart, but move on to another herd. Thus, for every herd-to-mart
trade, there is a corresponding mart-to-herd trade and vice versa.

5.1.2 Cattle Trade Network Representation

In this section we describe the formulation of the cattle trade networks from the
data. In our cattle trade networks, vertices are considered as herds or marts and
edges are considered as trades. For these networks we do not consider the number
of animals traded, simply whether or not a trade occurred, thus we model the
cattle trade networks as discrete-time directed graphs, G = (Gt1 , Gt2 , . . . , Gtnt

)
where Gti = (V,Eti). See Sec. 2.1.1 for a description of temporal graphs.

Suppose we have temporally resolved cattle trade data with nv herds and
the trades aggregated into nt uniformly spaced windows labeled 1, 2, . . . , nt (see
Tab. 5.1.3 for the exact numbers of vertices/edges in each network). These win-
dows could be at the level of one day, week, month, etc. The set of vertices, V ,
is used represent the herds/marts, and the set of edges at time ti, Eti , is used
to represent the trades between herds/marts. Moving forward we represent these
temporal network as a sequence of adjacency matrix, or series of adjacency ma-
trices as in Sec. 2.1.1. Suppose we have two herds i and j, and we let A[tk] denote
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the adjacency matrix for time tk, then

A
[tk]
ij =

1 if there is a trade from herd i to j at time tk
0 otherwise,

(5.1)

While this representation is useful for analysing the temporal graph in its full
form, we first wish to examine each of our cattle trade networks in their time
aggregated form as explained in the next section.

5.1.3 Static Network Analysis

We begin the investigation of the cattle trade networks by looking at their
aggregated static representations [93]. This flattens our previously defined di-
rected temporal graphs, G = (Gt1 , Gt2 , . . . , Gtnt

), into weighted directed graph,
G̃ = (V, Ẽ), by removing the temporal dimension. The set of vertices, V , re-
mains the same and the set Ẽ is the aggregated set of edges and is specified by
Ẽ =

⋃T
i=1 Eti . The weight of an edge in the aggregated static graph is equal

to the number of times it appears in the corresponding temporal graph. This
is simply how many times a given herd trades to another over the total times-
pan of the temporal graph. The adjacency matrix, Ã, of the aggregated static
representation is defined as,

Ã =
nt∑
i=1

A[ti], (5.2)

where Aij represents the weight of the edge connecting i to j or the number of
trades from herd i to j over the entire time span of the original temporal graph.

Centrality

We now compute a number of standard centrality measures on the static aggregate
graphs in order to better understand the underlying topology and trade process
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when aggregated over the entire data set. Knowing which herds or marts are
most important can help to inform our choice of trade model. The first centrality
measure we compute is the degree distribution [145].
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Figure 5.1: The degree distributions for the static network representations of the (a) direct herd-to-herd
network, (b) indirect herd-to-herd via mart network, (c) herd-to-mart network, and (d) mart-to-herd network.
The red curves with circle marker denote the out degree and the green curves with square marker denote the in
degree.

The degree distribution of the static aggregated graph of each network tells us
the total number of trades that occur in and out of each herd/mart. In Fig. 5.1
we see the degree distribution for the direct herd-to-herd trade trades in panel
(a), for the indirect herd-to-herd trades via marts in panel (b), for the herd-to-
mart trades in panel (c), and mart-to-herd in panel (d). The out-degree for each
graph is given as the red curves with circle markers and the in-degree for each
graph is given by the green curves with square markers. We notice that all 4
plots quite clearly display the properties of a scale-free graph, i.e., a distribution
that asymptotically tends to the form p(x) = x−θ [16]. This corresponds to a
linear curve with slope −θ when plotted on a log scale, as log(p(x)) = −θ log(x),
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However, there is quite a difference in the distributions for two of the curves,
the in-degree in panel (c) and the out-degree in panel (d). This is because these
curves relate to the trades in and out of the marts respectively. As there are only
86 marts in our data set, in which approximately 9.6×105 trades occur, they will
of course have much higher degrees than the herds as there is far less choice of
which mart to trade with than which herd to trade with.

While degree centrality is a useful measure for its simplicity and ease of un-
derstanding, it does not take into account the importance of a vertex relative to
others through interaction. Two such measures of centrality which take this into
account are betweenness centrality [197], which measures importance based on
the number of shortest paths which go through a vertex, and page rank centrality
[151], which is a type of eigenvector based centrality originally developed for rank-
ing web pages and used in Google’s search engine. For a detailed introduction
and discussion on both of these types of centrality, see Sec. 2.1.1.

For the betweenness centrality, we computed this for the aggregated static
graphs of the direct herd-to-herd trade and indirect herd-to-herd trade networks
only. This is because, in the case of the herd-to-mart and mart-to-herd networks,
the marts only trade in or out and herds don’t trade with each other. This leads
to a situation in which the betweenness centrality is zero for every vertex in these
networks due to the directionality edges and bi-partedness of the graphs. For the
betweenness centrality in both cases, the scores were normalized such that they
are between zero and one. The distribution of the betweenness centrality measure
is plotted in Fig. 5.2 (a) on a double log10 scale. From the figure, we see similar
results to that of the degree centrality in that there is some scale free behaviour
resulting in a few vertices that are central to network. In terms of disease spread
these are often referred to as “sentinel nodes”, as they have the capacity to act
as early indicators of epidemics, as they are likely to see the disease very quickly
after it enters the network [23, 150].

For the page rank centrality, we also computed this on the aggregated static
graphs of the networks, like before, only on the direct herd-to-herd trades and the
indirect herd-to-herd trades via marts. This is again due to the bi-partite and
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Figure 5.2: Distributions of the (a) betweenness and (b) page rank centrality for the direct herd-to-herd trade
network (red line circle markers) and the indirect herd-to-herd via mart network (green curve square markers).

directed structure of the herd-to-mart and mart-to-herd networks which make
quantifying importance difficult as the network is largely disconnected, as we will
see later in this section. For these two networks degree distribution provides a
better picture of vertex centrality.

For this measure of centrality, the importance is influenced by the number of
edges pointing into a vertex, but also the importance of the vertices the edge is
coming out of. The distribution of page rank centralities is given in Fig. 5.2 (b)
where the direct herd-to-herd trades is given as the red curve with circle markers
and the indirect herd-to-herd trades via marts is given as the green curve with
square markers. The centralities were both normalised such that the sum of all
centralities is one. From the plots, it is clear there is some agreement between both
centrality measures of the herd-to-herd direct and herd-to-herd indirect networks.
The bulk of herds appear to be unimportant in connecting the network via trades,
however, there exists a relatively small number of particularly influential herds
which are responsible for a significant portion of all trades, and also, important
in connecting herds to one another. Thus, care should be taken in the modelling
to ensure that the importance of these nodes are reproduced. This is because
these nodes play a vital role, not just in terms of their trade, but also in terms
of the spread of infection and disease. That is, if one of these important nodes
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were infected while trading freely, a large portion of the network would be quickly
infected. If a goal of these trade models is to allow for the investigation of various
disease control strategies by means of trading strategies, then the activity of these
influential herds should be reproduced by the models.

Connectivity

We now turn our focus to large scale network measures, as given in Tab. 5.1.3.
These measure give a sense of how connected the network is, i.e. how easy it
is to travel from one node to another. The first measure computed is the size
of the Giant Strongly Connected Component (GSCC), i.e., the number of nodes
it is composed of. The GSCC is the (not necessarily unique) largest subgraph
of a directed graph for which a path exists between any two vertices. For the
considered trade networks we found the sizes of their GSCC to be 17649 (8.83%),
21975 (10.99%) 1, (∼0%) and 1, (∼0%) for the direct herd-to-herd, indirect herd-
to-herd via mart, herd-to-mart and mart-to-herd trade networks respectively. The
reason for the difficulty in measuring centrality for herd-to-mart and mart-to-herd
is evident from the size of their GSCC, which is 1. In other words, there exist no
paths in which you can return to the starting vertex of that walk.

The next measure computed is the size of the Giant Weakly Connected Com-
ponent (GWCC). The GWCC is the largest subgraph of an undirected realisa-
tion of a directed network for which a path exists between any two nodes. For
the considered trade networks, the sizes of the GWCC were computed to be
73256 (36.64%), 94313 (47.17%), 82584 (42.31%) and 58099 (29.06%) for the di-
rect herd-to-herd, indirect herd-to-herd via marts, herd-to-mart and mart-to-herd
trade networks respectively. Looking at the edge density of all four networks, we
notice that they are very sparse with quite a majority of the trades occurring via
marts. With such sparse static representations, we would expect the temporal
realisations of these trade networks to be even more sparse as these static net-
works ignore any temporal causality which is an important aspect of temporal
networks. Finally, we look at the diameter of the networks. This quantity is
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the longest shortest path that exists between any two vertices. Given that no
path exists between most pairs of vertices (as indicated by a small GSCC), we
restrict the diameter to just the largest GSCC of the networks, otherwise the
diameter would be infinite (a distance between nodes for which no path exists is
infinite). The diameter is found to be 30, 20, 0, and 0 for the direct herd-to-herd,
indirect herd-to-herd via marts, herd-to-mart, and mart-to-herd trade networks,
respectively.

direct indirect herd to mart mart to herd
No. Vertices 199,908 199,908 199,908 199,908
No. Edges 243,531 968,418 382,035 382,035
Edge Density 6.09×10−6 2.42×10−5 9.56×10−6 9.56×10−6

GSCC 17,649 21,975 1 1
GWCC 73,256 94,313 82,584 58,099
Diameter 30 20 0 0

Up to now in this chapter we have only considered the trade networks in
their static form, aggregated over time. While this offers a useful insight into the
structure of the network, it does not account for any temporal patterns, which
are important aspects of the true network. This is especially true in the case
of cattle trade which sees very seasonal activity (see Fig. 3.10). We look at the
network in its full temporal setting in the next section.

5.1.4 Temporal Network Analysis

We now consider the full temporal network representation of the cattle trade
data sets. Temporal networks is an area that is currently under much active
research, as such, the approach to their analysis is not as standard as their static
network counterparts. The first measure we look at is what is referred to as
causal fidelity, a measure based on the accessibility matrix as given in Ref. [122].
We saw a temporal matrix based on this concept in Chp. 3 which we called the
Non-Backtracking (NBT) matrix. Given the analysis on the static aggregated
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representations of the networks, we would like some sense of how close they are
to their temporal networks. Without some measure of closeness, it is difficult to
interpret the static measures from the context of the temporal networks. Causal
fidelity is a very simple measure that gives the fraction of paths in the static
network which can be realised in a time respecting manner. In order to calculate
this quantity we first need the accessibility matrices of both the aggregated and
temporal networks. The accessibility matrix of a temporal network including
paths up to length n an up to time tn is given as the following,

H(n) =
n∏
k=1

(
A[tk] + Id

)
, (5.3)

where A[ti] is the adjacency matrix of the temporal graph at time ti as defined
in DEc. 2.1.1. The quantity Hij(n) tells us how many time respecting paths of
length n there are between vertex i and j up to time tn. The accessibility matrix
of a static graph including paths up to length n is given as,

H(n) =
n∑
k=0

Ãk
, (5.4)

where Ã is the adjacency matrix of the static time-aggregated graph as given by
Eq. (5.2). The quantity Hij tells us how many (not time-respecting) paths there
between vertex i and j of length n in the static time aggregated graph.

With the definition of the accessibility matrices in mind, the causal fidelity
up to time step tn is defined as

φ(H(n))
φ(H(n))

, (5.5)

where the function φ is simply the number of non-zero values in the matrix. For
the three considered networks, we computed the causal fidelity at up to day 60
for both the direct herd-to-herd network and the indirect herd-to-herd network
and plot the results in Fig 5.3.

The times at which the minimum values for causal fidelity occur are at tn = 31
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with a value of 1.3× 10−4 for the direct her-to-herd trades and at n = 14 for the
indirect herd-to-herd trades with a value of 8.3 × 10−5. From the results of the
causal fidelity, it is clear that the time-aggregated static network representations
only tell a small part of the story. Unless the total time being looked at is a small
number of days, i.e., less than approximately ten days, most paths, which exist
in the time-aggregated static networks, will not be possible to realise in a time
respecting manner in their temporal counterparts. It may be the case that the
time-aggregated static network gives a good approximation after many months,
however the computation of causal fidelity is quite a computationally expensive
process, and so we only compute up to 60 days. It can be seen in both trades
networks (Fig 5.3) that the causal fidelity begins to increase after a certain point
when most of the edges that are appearing in time have been seen before, making
many of the paths that were possible in the time-aggregated static networks now
also possible in the full temporal networks.
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Figure 5.3: Plot of the causal fidelity for the direct herd-to-herd network (red curve) and indirect herd-to-herd
via marts network (green curve) for the first 60 days of the date set. The minimum value of each curve occurs
at the time indicated by the vertical line of the same colour.

In order to reason why the causal fidelity is so low for these networks, we
investigate the waiting-times between successive trades in or out of a herd, this is
sometimes referred to as the inter-event time [164]. Fig 5.4 shows the distribution
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of these waiting-times for all four of our networks. The distribution of waiting-
times which were computed are only for herds which had more than one trade
during the year our data set spans, this is because waiting-times require at least
two trades to have occurred. With the double log10 scale, it is clear that the
possible waiting-times vary over orders of magnitudes with the average being
26.4, 13.2, 39.4, and 0.075 days for the direct herd-to-herd, indirect herd-to-
herd, herd-to-mart, and mart-to-herd networks respectively. These waiting-times
however, do not indicate how many trade partners a herd had during a particular
time step, only that at least one trade occurred. Going by the average waiting-
times, days during which a herd makes a trade is quite rare, being approximately
between every one to one and a half months, except in the case of the mart-to-
herd trades, but this expected as marts only exist to be platforms to trade, thus
they will have very high rates of activity. The chance then of a herd making
a trade with a partner they have traded with before is even lower and depends
on some measure of loyalty or chance of an edge reoccurring in the network.
Because an edge exists in the time-aggregated static network for every time step
it makes sense the causal fidelity is so low. It is because most of the paths in
the time-aggregated static networks are not time-respecting as it takes so long
for edges to reappear in the temporal network, which when they do, gives rise to
new time respecting paths that occur in both the time-aggregated static networks
and temporal networks, increasing causal fidelity.

We have introduced and analysed a number of cattle trade networks and
gained a deeper understanding of their structure. In the next section we introduce
a number of potential models which attempt to recreate the cattle trade networks.
The metric by which we determine good fit is by how well the distance distribution
of trades is matched.

5.2 Models for Cattle Trade

We now have a broad sense of the structure of our four cattle trade networks, in
both their full temporal realisation, as well as their time aggregated static forms.
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Figure 5.4: Plot of the distribution of waiting-times between trades for each vertex in the direct herd-to-herd
network (red curve with circle marker), the indirect herd-to-herd via marts network (green curve with square
marker), the herd-to-mart network (blue curve with triangle marker), and the mart to herd network (yellow
curve with cross marker).

In this section we, look at a number of models, specifically, forms of the gravity
model [175] and the gravity model [174] and investigate which of these gives the
best fit to our data.

5.2.1 Gravity Model

In this section, we present a number of potential gravity models for modelling
cattle trades in the Republic of Ireland. The gravity model is a relatively simple
model and thus has seen much popularity over the years in modelling things such
as international trade flow [191] and human mobility [134]. Following this, we
believe that the gravity model would be a good starting point for modelling cattle
trades. The model is a heuristic model based on Newton’s classic formulation for
gravity (hence the name). As discussed in Sec. 2.4, the general form of the gravity
model is given as the following,

G(i, j) =
xαi y

β
j

f(dij)
. (5.6)
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The two parameters α and β do not always appear in the formulation, in fact,
using maximisation of entropy techniques finds that the parameters are both one
[200]. However, this often leads to a poor fit to data. This equation describes
the attraction between two vertices i and j where xi and yj are some quantity
of attractiveness, i.e., a quantity which makes interaction with a vertex more
likely. In human mobility, this is often population size [188] and in the context of
international trade can be Gross Domestic Product (GDP) [136]. The quantity
dij, is the distance between the vertices i and j, and f is a distance kernel. This
function f describes the rate at which the attractiveness between two locations
increases or decreases with the distance between them. The choices for the func-
tion f will be discussed below. The parameters α and β have no real significant
meaning other than to help with fitting the model.

In order to apply the cattle trade data to this model, we assume that the
attractiveness is proportional to the herd size. We determine the herd size as the
total number of cattle in a herd on the first date in our data, which is 01/01/2017.
Herd sizes will of course change over time, but we assume they stay approximately
the same over the course of a year. For the marts, which have no herd size, we
assume that their attractiveness is proportional to the historic in-degree and out-
degree of their static time-aggregated graph representations.

The particular form of the gravity model we will use is the production con-
strained gravity model [67, 84] (see Sec. 2.4). This is to ensure that we have a
number of trades out of a vertex that is proportional to its actual out degree,
thus ensuring the out-degree in the actual networks can be matched. According
to production constrained gravity model, the expected number of trades from
vertex i to j is given by

Tij =
uiN

β
j f(dij)∑

k∈V N
β
k f(dik)

, (5.7)

where ui is the out degree of vertex i and Ni is the herd size of vertex i.

Given the above formulation, we fit the parameters of the model by means of
maximum likelihood estimation [175]. It is quite common to fit gravity models by
means of multinomial regression, however, this can have serious problems in the
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presence of many zero trades [33] which is the case for our very sparse networks.
We have found much better fits to the data by means of maximum likelihood
estimation. To fit via maximum likelihood estimation, we define the probability
of a trade from vertex i to j, given i is selling as,

Pgrav(i, j) = Tij∑
x,y≤N Txy

. (5.8)

This probability now allows us to define our likelihood function to optimise.

For the choice of distance kernel, f , we investigate two possibilities. The two
most common kernels found in literature are the power-law [94] and exponential
functions [13]. The kernels we consider are given below as,

f(d; γ) =

eγd,dγ.
(5.9)

While these are the most common choices, there are sometimes others seen, such
as a combination of power-law and exponential [128] or even a log-normal distri-
bution [74].

5.2.2 Radiation Model

Next, we introduce the radiation model, first introduced in the seminal paper
[174], with many extensions since [6, 118, 127, 129, 160]. The radiation model
aims to predict the flow of people between physical locations based on first prin-
ciples, in a manner similar to that of the process of radiation, hence the name.
As the radiation model is based on first principles in that it produces a probabil-
ity distribution with expected value and variance, thus overcoming many of the
problems associated with the gravity model, which has no such derivation but is
heuristic in nature. A useful benefit of the radiation model is that it often does
not require any parameter fitting and thus needs no empirical mobility data in
order to use it. However, this is not always the case [6, 118] as we shall see with
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our data.

Traditionally, the radiation model is used in the context of human mobility,
however, our goal is to model cattle trades within the Republic of Ireland. While
similar in scope, we shall see that a slight generalisation is required. We now
describe the radiation modelling framework similarly to [174] in terms of cattle
trade.

A herd owner seeks a selling opportunity, i.e. the herd owner wishes to sell,
among all other herds or marts. The number of selling opportunities available
in a herd is proportional to some function of the herd size, which we assume to
take the form g(n) = nα. Thus, each herd has nα/cα selling opportunities, where
cα is some constant that represents the number of cattle per selling opportunity
in a herd. Similarly, the number of buying opportunities available in a herd
is proportional to some function of the herd size, h(n) = nβ, which has the
same functional form as the selling opportunities but has a different exponent.
Thus, each herd has nβ/cβ buying opportunities, where cβ is some constant that
represents the number of cattle per buying opportunity in a herd.

The benefit of a selling/buying opportunity, z, captures information such as
price, herd quality, herd health history etc. This quantity z is randomly chosen
from a probability distribution p(z), where the form of the distribution does not
matter as the final probability is not dependent on it. Each herd with a size of
n has nα/cα random selling benefits and nβ/cβ random buying benefits drawn
from p(z), associated with it. When a herd owner is looking to buy from another
herd, they compare their buying benefits with the selling benefits of all other
herds. They choose the closest selling opportunity which is higher than their own
maximum buying benefit.

The probability of herd i with size Ni selling to herd j with size Nj is given
by,

Prad(i, j) =
∫ ∞

0
PNβ

i
(z)Psij(< z)PNα

j
(> z)dz, (5.10)

where sij =
∑

k∈r(i,j) N
α
k is the sum of all herd sizes, to the power of α, for each
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herd in k in r(i, j). The set r(i, j) = {k : d(i, k) < d(i, j), k /∈ {i, j}} is the set of
all herds within (Euclidean) distance d(i, j) of herd i, not including herd i or j.
Finally, Px(z) is the probability of having a maximum value of z after x samples
from p(z) (Px(< z) and Px(> z) are the probabilities of attaining a max value
less than or greater than z respectively, after x samples from p(z)). Therefore,
from Ref. [174], we find,

Prad(i, j) =
Nβ
i N

α
j

(Nβ
i + sij)(Nβ

i +Nα
j + sij)

. (5.11)

This quantity describes the exact same probability as Eq. (5.8), the probability
of a trade from vertex i to vertex j given that herd i is selling. Note that the
parameters α and β in this model represent different quantities to those in the
gravity model.

We now have a description of a generalised radiation model with which we
can model cattle trade. There are a few such radiation models that already go by
the name generalised radiation model [6, 134], though they are both different in
scope, ours would fall under the description of Ref. [6]. With our two potential
models for cattle trade, we now move onto fitting and testing how well these
models recreate the properties of the cattle trade networks.

5.3 Results

In this section, we present our results on how well both the gravity model and
generalised radiation model are able fit the cattle trade data. In terms of the
networks we test the models against, we only use the direct herd-to-herd, herd-
to-mart, and mart-to-herd trade networks. The reason we do not include the
indirect herd-to-herd via mart trade network is that it is a compound process of
trading to a mart and then trading to a herd. This adds a complication when
attempting to model this process. So instead, we simply model to two separate
processes using the herd-to-mart and mart-to-herd trade networks.
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Figure 5.5: Distance distributions generated by 105 random samples from the exponential gravity model (GM
(exp)), power-law gravity model (GM (power law)), and the radiation model (RM). The models were run with
their best fit parameters as given in Tabs. 5.1, 5.2, and 5.3. Panel (a) shows the direct herd-to-herd cattle
trades network, panel (b) shows the herd-to-mart cattle trade network, and panel (c) shows the mart-to-herd
cattle trade network. In all cases the red curve with cross markers refers to the radiation model, the green
curve with square markers refers to the exponential gravity model, the blue curve with triangle markers refers
to the power-law gravity model, and the yellow curve with circle markers refers to the distance distribution of
the actual network.

We fit the models given by Eqs. (5.8) and (5.11) to three cattle trade networks
as described above by means of maximum likelihood estimation. The parameters
fit to the direct herd-to-herd trades are given in Tab. 5.1, to the herd-to-mart
trades in Tab. 5.2, and to the mart-to-herd trades in Tab. 5.3.

In order to investigate how well these models reproduce the original data sets,
the first thing we compare them to is the distribution of trade distances from
the trade networks. We simulated a large number (105) of trades from each of
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Direct herd-to-herd trades
Exponential Gravity Power-Law Gravity Radiation

α – – 1.48
β 0.31 0.25 0.0326
γ 5.95 ×10−5 0.53 –

Table 5.1: The parameters found after fitting the exponential gravity model, the power-law gravity model and
the radiation model to the direct herd-to-herd cattle trade data.

the models on each network in order to produce robust distributions to compare
against. In Fig. 5.5 we plot the distance distributions for generated by each
model for the direct herd-to-herd cattle trades in panel (a), for the herd-to-mart
cattle trades in panel (b) and the mart-to-herd cattle trades in panel (c). In each
panel, the radiation model is plotted as the red curve with cross markers, the
gravity model with exponential distance kernel is plotted as the green curve with
square markers, the gravity model with power-law distance kernel is plotted as
the blue curve with triangle markers, and the distance distribution of the cattle
trade network is plotted as the yellow curve with circle markers.

In Fig. 5.5 we see remarkable agreement between the distance distribution of
the cattle trade networks and the radiation model in every case. In panel (a) both
of the gravity models completely fail to capture the true distance distribution in
the direct herd-to-herd cattle trade network, whereas the radiation model appears
to almost completely agree. Interestingly, in panel (b) both the radiation model
and the exponential gravity model perform very well on the herd-to-mart cattle
trade network, capturing the distance distribution across all scales. On the other
hand, the power-law gravity model again fails to capture the true distribution.
Finally, in panel (c) this is the worst performing for the radiation model with it
slightly overestimating trades at shorter distances. That being said, it still fits
the bulk of the data very well and again outperforms both gravity models.

From these plots, it reveals that the radiation model very accurately recreates
the distribution of trade distances in every case. The exponential gravity model
appears to produce a good fit to the herd-to-mart cattle trades, and a moderate
fit in the mart-to-herd cattle trades, but fails in the direct herd-to-herd trades.
The power-law gravity model is the worst performing in each case and does not
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Herd-to-mart trades
Exponential Gravity Power-Law Gravity Radiation

α – – 0.46
β 2.46 2.204 0.24
γ 1.13×10−4 1.0 –

Table 5.2: The parameters found after fitting the exponential gravity model, the power-law gravity model and
the radiation model to the herd-to-mart cattle trade data.

Mart-to-herd trades
Exponential Gravity Power-Law Gravity Radiation

α – – 0.99
β 0.29 0.31 0.30
γ 4.032 ×10−5 1.0 –

Table 5.3: The parameters found after fitting the exponential gravity model, the power-law gravity model and
the radiation model to the mart-to-herd cattle trade data.

produce any convincing fits.

We have shown that our generalised radiation model provides an excellent fit
to our data by recreating the distance distributions across all of the considered
cattle trade networks. This new model provides opportunities in the context of
epidemiological modelling which were not possible before. It allows us to create
epidemiological network models in which the trading patterns are reactive to
infective state other herds. We discuss such possibilities in the next section.
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5.4 Application to the Spread of Disease

A major use of these models for cattle trade is the ability to use them in the
context of epidemiological models. In Chps. 3 and 4 we saw that much of our epi-
demiological network models were run on graphs informed by empirical networks
[15], i.e., data-driven models. The use of such data is clearly beneficial in the
context of understanding how a disease spreads in the given context. However,
we often want to be able to model a disease under the assumption of some change
in the network structure. The use of empirical data does not allow us to do this,
but with an accurate and flexible model such as the radiation model, we would
be able make changes to the network structure, such as by removing vertices or
changing herd sizes, and we would expect the radiation model to handle such
changes and respond by producing likely trading patterns under the new altered
network.

As discussed in the introduction of this chapter, the cattle industry is incred-
ibly important to Ireland. As such, the evolution of disease that affect cattle
are monitored very closely and there is active effort to try and eradicate many
of them, such diseases include Johne’s disease [72, 80] Bovine Viral Diarrhoea
(BVD) [20, 72, 76] and BTB [142]. BTB has been a problem in Ireland for many
years, whereas the previously mentioned diseases have seen significant reductions
in prevalence thanks to testing and control measures [137, 185]. The disease ap-
pears to be difficult to eradicate in part because it is endemic in the surrounding
wild life and is carried by both badgers and dear [32]. As a result, more serious
measures must be taken if it is to be eradicated as current control measure do
not appear to be enough [142].

In Ref. [72], we introduced a stochastic model for the spread of BVD among
cattle. This paper looks specifically at the effects of stochastic components on
the spread of the disease. However, the model does not take into account network
effects, and assumes a well mixed population. A benefit of our radiation model is
its probabilistic nature. This means it would fit into the stochastic analysis of an
extension to this paper, and we could analyse the effects of a stochastic network
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on the spread of BVD by considering the probability of trade between herds.

In Australia an effective risk based trading strategy was implemented [141]
which saw the country totally eradicate the disease. This strategy saw herds
unable trade with others depending on their level of risk. As a result, there has
been some research into whether or not this would be possible in Ireland or the
UK [2, 126].

By modelling the effectiveness of risk based trading in Ireland from the view-
point of networks, it could lead to some very interesting results. The problem
with developing such a model is that it would be difficult to use empirical data
in the form of our cattle trade networks. This is because the effect of prevent-
ing particular herds from trading would require a model for building the trade
network under the particular restrictions, very similar to how we built different
commuting patterns under various lock-down effects in Chp. 4.

5.5 Summary

In this chapter we have analysed cattle trade in Ireland from the viewpoint of
a number of networks, which split the cattle trades into their various trade pro-
cesses. They are the direct herd-to-herd, indirect herd-to-herd via mart, herd-to-
mart, and mart-to-herd cattle trade networks. We have studied the networks in
both their temporal and time-aggregated forms computing a number of centrality
measures in order to determine the importance of herds in the trading process.

We looked at a production constrained gravity model and developed a new
radiation model which described the trading patterns among herds in a prob-
abilistic way. After fitting the models to the cattle trade data, we have found
that the new radiation model provides an exceptional fit to the distance distri-
butions of cattle trades in Ireland for each of the networks we considered. We
then discussed the potential for the use of models for cattle trade in the context
of epidemiology and risk-based trading.
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Chapter 6

Conclusion and Outlook

This thesis contributes to the theory of mathematical epidemiology and network
science by combining the two areas of study. In recent years, with the outbreak of
SARS-CoV-2 we are reminded of the importance of accurate mathematical mod-
els in the context of epidemiology, especially in the absence of pharmaceutical
intervention when public health measures and policy is the only tool available
to prevent the spread of disease. Human life is often not the only cost of epi-
demics, quite often animals are affected, as in the case of the 2001 foot and mouth
outbreak, and with that comes great economic cost as well.

Thanks to the explosion in the amount of data available, we are now able to
study the interplay between contact patterns and the spread of disease, allowing
for far more accurate models of disease spread, which are also spatially resolved.
There are many such models which are used to describe the evolution of diseases
on networks such as the individual and pair based models. In order to aid the
development of mitigation strategies, it is necessary to extend these models to a
temporal setting in order to take advantage of much of the temporally resolved
data available.

An integral part of accurately modelling the spread of disease on networks is
understanding the contact patterns which define the network and how they are
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generated. Models for generating contact patterns that can accurately recreate
patterns in the true system can be very useful when there is a lack of data available
or for testing how certain scenarios would change current contact patterns.

Chapter 2 In Chp. 2, we introduced the theoretical background required for
the rest of the chapters in the thesis. We introduced the basic concepts of net-
works science, including definitions of various graphs, as well as their extension
to the temporal domain. We also discussed the concept of centrality, which is
an important concept in many areas of network science, including epidemiol-
ogy, which classifies importance of vertices based on a number of metrics like
number of neighbours or average distance to all other vertices. Moving on from
basic network theory, we introduced the original generalised Susceptible-Infected-
Recovered (SIR) model for well mixed populations as given by Kermack and McK-
endrick and showed how the modern SIR is derived from it with the assumption
of constant parameters.

After the basics of networks and epidemiological models are introduced, we
then presented the current state of epidemiological network models by discussing
two common frameworks by which to model epidemics, they are the Individual-
Based (IB) model and the meta-population model. In both cases the models
are realised as the SIR model. An important concept in epidemiology is that of
the basic reproduction number, which is the expected number of new infection
generated by a single infected individual. For both the models, we analytically
derived this quantity and show they are equivalent to the well mixed SIR model
in the absence of any contacts/travel.

The final concept discussed in Chp. 2 are models for mobility. We introduced
the two most common models with which to generate the movement of individuals
in a network. They are the gravity model and the radiation model. We saw the
radiation model used in Chp. 4 for generating rates of travel of individuals which
changes depending on current movement restriction, and in Chp. 5 we discussed
the use of the gravity and radiation models and show how they can be extended
in order to model cattle trade.
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Chapter 3 In Chp. 3 we introduced a general framework for modelling the
spread of epidemics on temporal networks. We showed that this framework unifies
many of the already existing network models by deriving the individual-based,
pair-based, and contact-based models from it. We also derived a new formulation
of the pair-based model which is exact as it does not depend on the linearisation
of terms. In the derivation of these models, we do so with temporal networks so
that we end up with Temporal Individual-Based (TIB) and Temporal Pair-Based
(TPB) models.

By means similar to in Chp. 2, we derived the conditions necessary for an
epidemic according to the TPB SIR model by analytically deriving the basic
reproduction number, and showing that it is the same condition as in a previously
derived TIB SIR model.

A defining feature of the pair-based model is that it is derived under the
assumption of a particular network structure, which is there is no more than
one Non-Backtracking (NBT) path between any two vertices. For an undirected
graph this implies a tree structure. We showed that the proportion of vertex pairs
in a graph which have more than one NBT path between them is a useful metric
to indicate the accuracy of the TPB model when compared to the ground truth
which is the average of a large number of Monte-Carlo (MC) realisations.

An opportunity for future work in this area is to derive a triple-based model
from our framework. Though the derivation would be more complicated it would
lead epidemiological network models which would be able to account for triangles
(cycles of length 3) and prevent the formation of echo chambers even further than
that of the TPB model.

Another further area of study would be designing a decision based algorithm
which can use the proportion of pairs of vertices which have more than one NBT
path between them. It may be possible to determine the actual error of the TPB
model from this proportion, or to at least approximate it. At times which see
a large increase in this proportion, we could instead switch to a MC algorithm
which could move the evolution of a disease forward in time more accurately (for
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some graph structures), but at the cost of longer running time. When the c(t)
settles, we could then switch back to the TPB model and expect decent accuracy.

Chapter 4 In Chp. 4 we presented a new meta-population model for the spread
of SARS-CoV-2 on the island of Ireland. We started by introducing a Susceptible-
Infected-Quarantined-Recovered-Dead (SIQRD) model for small well mixed com-
munities in the as the origin Kermack and McKendrick SIR model. For this well
mixed model we derived the basic reproduction number by means similar to
Chps. 2 and 3. We also derived the condition necessary for herd immunity in
this model, that is, the required number of individuals that need have left the
susceptible state. We defined this quantity the herd immunity threshold.

Next we extended this SIQRD model using the meta-population framework,
in order to model the spread of SARS-CoV-2 in Ireland. The network on which
the model wad defined is such that each vertex in the network corresponds to an
electoral division/super output area, which are the smallest administrative units
in Ireland and Northern Ireland respectively, and the edges correspond to travel
rates between areas/vertices. For the network case, we again derived the basic
reproduction number and herd immunity threshold.

The travel rates in the network were generated using a radiation model which
is informed by data from the 2016 Irish census. We made a small extension
to the radiation model which leads to a far better fit to the actual distance
distribution of trips reported by the census. We then made the rates depend on
time by multiplying them by a sine function in order to simulate the process of
commuting where individuals leave and return. This also had the effect of keeping
populations of vertices periodic.

We then applied our model in order to simulate the spread of the disease in
Ireland. We justified the use of our parameters from various sources except for
the rate of contact times probability of infection, β. We fit this parameter from
historic data, with the parameter taking on a different value for each phase in
the early stages of Ireland’s lock-down and reopening phases. When compared to
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the actual deaths and infections, our model provides a convincing fit.

We presented two different lock-down scenarios, one at the level of island
and one at the level of county. If the island/county surpassed some threshold of
infected, we put the island/county back into lock-down and it must go through
the reopening phases of the first historic lock-down. This is a simple model of
the lock-down-reopen strategies employed by many countries. We wished to test
if it was possible to reach herd immunity in a controlled way, such that deaths
were minimised. However, we found that for the parameters used in our lock-down
model, which was informed by actual public health measures, that herd immunity
would take at least 28 years. This implied that such a strategy for reaching herd
immunity is not feasible. We also found that county level lock-down, without
100% compliance of lock-down restrictions, the largest county Dublin, was at
times unable to reduce its level of infected individuals due to interaction with
bordering counties.

The work in this chapter was completed under the assumption of no effective
vaccine, which we know is not the case. It would be beneficial to include the
effects of vaccination in an extension to this study, and model the possible sce-
narios in which herd immunity could be reached. As we tried to keep the model
simple while retaining the key characteristics of the disease, there are a number of
possible extensions to the model itself. For example, we do not take into account
incubation time of the disease or the fact that a significant proportion of infected
individuals are asymptomatic. It has also been reported that the mortality rates
of disease are very age dependent, and so it may be useful to split the population
into different age strata in order to better model deaths within the population.

Chapter 5 In Chp. 5 we presented an analysis of the properties of a temporal
cattle trade network in Ireland. The network is the same as the cattle trade
network presented in Chp. 3 on which our TPB and TIB models were tested.
We split the cattle trade network up into four unique networks, each of which
represented a different trading process in network. These were the direct herd-
to-herd trades, herd-to-mart trades, mart-to-herd trades, and finally the indirect
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CHAPTER 6. CONCLUSION AND OUTLOOK

herd-to-herd trades which combine the herd-to-mart and mart-to-herd trades such
that the mart is bypassed and only the selling and buying herds are considered.

On these networks we computed a number of centrality measures on their
static time aggregated representations. This gave us an insight into the relative
importance of herds in the network. We then analysed the networks in their full
temporal realisation by looking the causal fidelity which gives us a sense of how
applicable the analysis on the static network representations is.

We then developed 3 separate models for cattle trade, two of which are versions
of the gravity model and the third is a generalised radiation model developed
specifically for cattle trade. We found that the radiation model provides an
excellent fit to the data. When compared to the actual distance distributions
of cattle trades for each of the temporal networks, the distance distributions
generated by our radiation model are incredibly close. Thus, we show that our
radiation model provides an excellent description of the trading process among
herds in Ireland.

This model is particularly applicable in the context of network epidemiologi-
cal models. An area in which we would like to see this model developed further
is in the context of risk based trading among cattle herds in Ireland, similar to
a strategy implemented in Australia which saw the eradication of Bovine Tuber-
culosis (BTB). The availability of an accurate and flexible model for cattle trade
would let us model how different trading strategies would potentially affect the
spread of disease, particularly BTB.

To sum up, this thesis contributed new results to the field of mathematical
epidemiology and network science. We discuss a number of new results as well
as their implications.
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Appendix A

Vertex Pair Transition Rates for
the PB Model
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APPENDIX A. VERTEX PAIR TRANSITION RATES FOR THE PB
MODEL
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systematic framework of modelling epidemics on temporal networks. Appl
Netw Sci 6, 23 (2021).
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93. Holme, P. & Saramäki, J. Temporal Networks. Physics Reports. Temporal
Networks 519, 97–125. issn: 0370-1573 (Oct. 1, 2012).

177



BIBLIOGRAPHY

94. Hong, I., Jung, W.-S. & Jo, H.-H. Gravity Model Explained by the Radi-
ation Model on a Population Landscape. PLOS ONE 14 (ed Gallotti, R.)
e0218028. issn: 1932-6203 (June 6, 2019).

95. House, T. & Keeling, M. J. Deterministic Epidemic Models with Explicit
Household Structure. Mathematical biosciences 213, 29–39. issn: 0025-
5564 (2008).
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for Epidemic Spreading on Temporal Networks. Phys. Rev. X 9, 031017.
issn: 2160-3308 (Aug. 2019).

118. Kotsubo, M. & Nakaya, T. Kernel-Based Formulation of Intervening Op-
portunities for Spatial Interaction Modelling. Scientific Reports 11, 950.
issn: 2045-2322 (Dec. 2021).

119. Kyrychko, Y. N., Blyuss, K. B. & Brovchenko, I. Mathematical Modelling
of the Dynamics and Containment of COVID-19 in Ukraine. Sci. Rep. 10,
19662 (2020).

120. Lax, P. D. Functional Analysis 580 pp. isbn: 978-0-471-55604-6 (Wiley,
New York, 2002).

121. Lee, J., Choi, B. Y. & Jung, E. Metapopulation Model Using Commuting
Flow for National Spread of the 2009 H1N1 Influenza Virus in the Republic
of Korea. Journal of Theoretical Biology 454, 320–329. issn: 0022-5193
(Oct. 7, 2018).

122. Lentz, H. H. K., Selhorst, T. & Sokolov, I. M. Unfolding Accessibility Pro-
vides a Macroscopic Approach to Temporal Networks. Physical Review Let-
ters 110, 118701. issn: 0031-9007, 1079-7114 (Mar. 2013).

123. Lentz, H. H. K. et al. Disease Spread through Animal Movements: A Static
and Temporal Network Analysis of Pig Trade in Germany. PLOS ONE 11,
e0155196. issn: 1932-6203 (May 6, 2016).

180



BIBLIOGRAPHY

124. Li, M. Y. & Muldowney, J. S. Global Stability for the SEIR Model in Epi-
demiology. Mathematical Biosciences 125, 155–164. issn: 00255564 (Feb.
1995).

125. Li, S. et al. A Map of the Interactome Network of the Metazoan C . Elegans.
Science 303, 540–543. issn: 0036-8075, 1095-9203 (Jan. 23, 2004).

126. Little, R., Wheeler, K. & Edge, S. Developing a Risk-Based Trading Scheme
for Cattle in England: Farmer Perspectives on Managing Trading Risk
for Bovine Tuberculosis. Veterinary Record 180, 148–148. issn: 00424900
(Feb. 2017).

127. Liu, E. & Yan, X. New Parameter-Free Mobility Model: Opportunity Prior-
ity Selection Model. Physica A: Statistical Mechanics and its Applications
526, 121023. issn: 0378-4371 (July 15, 2019).

128. Liu, H., Chen, Y.-H. & Lih, J.-S. Crossover from Exponential to Power-
Law Scaling for Human Mobility Pattern in Urban, Suburban and Rural
Areas. The European Physical Journal B 88, 117. issn: 1434-6028, 1434-
6036 (May 2015).

129. Liu, E.-J. & Yan, X.-Y. A Universal Opportunity Model for Human Mo-
bility. Scientific Reports 10, 4657. issn: 2045-2322 (1 Mar. 13, 2020).

130. Liu, Z., Magal, P., Seydi, O. & Webb, G. A COVID-19 Epidemic Model
with Latency Period. Infectious Disease Modelling 5, 323–337 (2020).

131. Luce, R. D. A Note on Boolean Matrix Theory. Proceedings of the American
Mathematical Society 3, 382–388. issn: 0002-9939 (1952).

132. Maier, B. F. & Brockmann, D. Effective Containment Explains Subexpo-
nential Growth in Recent Confirmed COVID-19 Cases in China. Science
368, 742–746 (2020).

133. Marschner, I. C. Estimating Age-Specific COVID-19 Fatality Risk and
Time to Death by Comparing Population Diagnosis and Death Patterns:
Australian Data. BMC Medical Research Methodology 21, 126. issn: 1471-
2288 (Dec. 2021).

181



BIBLIOGRAPHY

134. Masucci, A. P., Serras, J., Johansson, A. & Batty, M. Gravity versus Radia-
tion Models: On the Importance of Scale and Heterogeneity in Commuting
Flows. Physical Review E 88, 022812. issn: 1539-3755, 1550-2376 (Aug. 22,
2013).

135. Masuda, N. & Holme, P. Temporal Network Epidemiology (Springer, 2017).

136. Matyas, L. Proper Econometric Specification of the Gravity Model. The
World Economy 20, 363–368. issn: 0378-5920, 1467-9701 (May 1997).

137. McAloon, C. G. et al. Individual and Herd-Level Milk ELISA Test Status
for Johne’s Disease in Ireland after Correcting for Non-Disease-Associated
Variables. Journal of Dairy Science 103, 9345–9354. issn: 0022-0302 (Oct. 1,
2020).

138. McGrath, G., Tratalos, J. A. & More, S. J. A Visual Representation of
Cattle Movement in Ireland during 2016. Irish Veterinary Journal 71, 18.
issn: 2046-0481 (Dec. 2018).

139. Mollison, D. Spatial Contact Models for Ecological and Epidemic Spread.
Journal of the Royal Statistical Society: Series B (Methodological) 39, 283–
313. issn: 2517-6161 (1977).

140. Moore, C. & Newman, M. E. J. Epidemics and Percolation in Small-World
Networks. Physical Review E 61, 5678–5682 (May 1, 2000).

141. More, S. J., Radunz, B. & Glanville, R. J. Lessons Learned during the
Successful Eradication of Bovine Tuberculosis from Australia. Veterinary
Record 177, 224–232. issn: 2042-7670 (2015).

142. More, S. J. Can Bovine TB Be Eradicated from the Republic of Ireland?
Could This Be Achieved by 2030? Irish Veterinary Journal 72, 3. issn:
2046-0481 (Dec. 2019).

143. Motta, P. et al. Implications of the Cattle Trade Network in Cameroon
for Regional Disease Prevention and Control. Scientific Reports 7, 43932.
issn: 2045-2322 (1 Mar. 7, 2017).

144. Newman, M. E. J. Spread of Epidemic Disease on Networks. Physical Re-
view E 66, 016128. issn: 1063-651X, 1095-3787 (July 26, 2002).

182



BIBLIOGRAPHY

145. Newman, M. E. J. Networks Second edition. 780 pp. isbn: 978-0-19-880509-
0 (Oxford University Press, Oxford, United Kingdom ; New York, NY,
United States of America, 2018).

146. Nguyen, G. H. et al. Continuous-Time Dynamic Network Embeddings in
Companion of the The Web Conference 2018 on The Web Conference 2018
- WWW ’18 Companion of the The Web Conference 2018 (ACM Press,
Lyon, France, 2018), 969–976. isbn: 978-1-4503-5640-4.

147. Northern Ireland Local Government Districts Northern Ireland Statistics
and Research Agency. https : / / www . nisra . gov . uk / statistics /
regional-analysis-and-trends/local-government-district (2022).

148. Novel Coronavirus(2019-nCoV) Situation Report - 10 10 (World Health
Organisation, Jan. 30, 2020). https://www.who.int/docs/default-
source / coronaviruse / situation - reports / 20200130 - sitrep - 10 -
ncov.pdf.

149. NPHET Policy Unit. Timeline and Detail of Public Health Restrictive Mea-
sures Advised by NPHET in Response to the COVID-19 Pandemic (Depart-
ment of Health, Government of Ireland, Jan. 13, 21). https://assets.
gov.ie/126580/471f8ed0-1ef3-4e0a-a498-5d0dc027fc2d.pdf (2022).

150. Ortiz-Pelaez, A., Pfeiffer, D. U., Soares-Magalhães, R. J. & Guitian, F. J.
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174. Simini, F., González, M. C., Maritan, A. & Barabási, A. .-. A Universal
Model for Mobility and Migration Patterns. Nature 484, 96–100 (2012).

175. Simini, F., Barlacchi, G., Luca, M. & Pappalardo, L. A Deep Gravity Model
for Mobility Flows Generation. Nature Communications 12, 6576. issn:
2041-1723 (Dec. 2021).

176. Song, C., Koren, T., Wang, P. & Barabási, A. .-. Modelling the Scaling
Properties of Human Mobility. Nat. Phys. 6, 818–823 (2010).

177. Song, C., Qu, Z., Blumm, N. & Barabási, A. .-. Limits of Predictability in
Human Mobility. Science 327, 1018–1021 (2010).

178. Statement from the National Public Health Emergency Team - Tuesday 29
December https://www.gov.ie/en/press-release/86f64-statement-
from-the-national-public-health-emergency-team-tuesday-29-
december/ (2022).

179. Tang, Y., Huang, D., Ruan, S. & Zhang, W. Coexistence of Limit Cycles
and Homoclinic Loops in a SIRS Model with a Nonlinear Incidence Rate.
SIAM Journal on Applied Mathematics 69, 621–639. issn: 0036-1399, 1095-
712X (Jan. 2008).

180. Temporal Network Theory https://link.springer.com/book/10.1007/
978-3-030-23495-9 (2022) ().

186

https://www.gov.ie/en/press-release/86f64-statement-from-the-national-public-health-emergency-team-tuesday-29-december/
https://www.gov.ie/en/press-release/86f64-statement-from-the-national-public-health-emergency-team-tuesday-29-december/
https://www.gov.ie/en/press-release/86f64-statement-from-the-national-public-health-emergency-team-tuesday-29-december/
https://link.springer.com/book/10.1007/978-3-030-23495-9
https://link.springer.com/book/10.1007/978-3-030-23495-9


BIBLIOGRAPHY

181. Tenenbaum, M. & Pollard, H. Ordinary Differential Equations: An Elemen-
tary Textbook for Students of Mathematics, Engineering, and the Sciences
808 pp. isbn: 978-0-486-64940-5 (Dover Publications, New York, 1985).

182. Thanh Le, T. et al. The COVID-19 Vaccine Development Landscape. Na-
ture Reviews Drug Discovery 19, 305–306. issn: 1474-1776, 1474-1784 (May
2020).

183. The 2001 Outbreak of Foot and Mouth Disease - National Audit Office
(NAO) Press Release National Audit Office. https://www.nao.org.uk/
press-release/the-2001-outbreak-of-foot-and-mouth-disease-2/
(2022).

184. The Fundamental Advantages of Temporal Networks https://www.science.
org/doi/full/10.1126/science.aai7488?casa_token=J3k9dRRlvJ4AAAAA:
vACKiRmrsWMD9GODlZZLbq4pZGbQ03JMp9EoHg-NFYIgXvvemZbaxl8MznltLgb9bY00NrU7iHNjwA
(2022).

185. Thulke, H. .-. et al. Eradicating BVD, Reviewing Irish Programme Data
and Model Predictions to Support Prospective Decision Making. Preventive
Veterinary Medicine 150, 151–161. issn: 0167-5877 (Feb. 1, 2018).

186. Tratalos, J. A., Graham, D. A. & More, S. J. Patterns of Calving and
Young Stock Movement in Ireland and Their Implications for BVD Sero-
surveillance. Preventive Veterinary Medicine 142, 30–38. issn: 01675877
(July 2017).

187. Tratalos, J. A. et al. Spatial and Network Characteristics of Irish Cattle
Movements. Preventive Veterinary Medicine 183, 105095. issn: 01675877
(Oct. 2020).

188. Truscott, J. & Ferguson, N. M. Evaluating the Adequacy of Gravity Mod-
els as a Description of Human Mobility for Epidemic Modelling. PLOS
Computational Biology 8, e1002699. issn: 1553-7358 (Oct. 18, 2012).

189. Valdano, E., Ferreri, L., Poletto, C. & Colizza, V. Analytical Computation
of the Epidemic Threshold on Temporal Networks. Physical Review X 5,
021005. issn: 2160-3308 (Apr. 2015).

187

https://www.nao.org.uk/press-release/the-2001-outbreak-of-foot-and-mouth-disease-2/
https://www.nao.org.uk/press-release/the-2001-outbreak-of-foot-and-mouth-disease-2/
https://www.science.org/doi/full/10.1126/science.aai7488?casa_token=J3k9dRRlvJ4AAAAA:vACKiRmrsWMD9GODlZZLbq4pZGbQ03JMp9EoHg-NFYIgXvvemZbaxl8MznltLgb9bY00NrU7iHNjwA
https://www.science.org/doi/full/10.1126/science.aai7488?casa_token=J3k9dRRlvJ4AAAAA:vACKiRmrsWMD9GODlZZLbq4pZGbQ03JMp9EoHg-NFYIgXvvemZbaxl8MznltLgb9bY00NrU7iHNjwA
https://www.science.org/doi/full/10.1126/science.aai7488?casa_token=J3k9dRRlvJ4AAAAA:vACKiRmrsWMD9GODlZZLbq4pZGbQ03JMp9EoHg-NFYIgXvvemZbaxl8MznltLgb9bY00NrU7iHNjwA


BIBLIOGRAPHY

190. Van den Driessche, P. & Watmough, J. Reproduction Numbers and Sub-
Threshold Endemic Equilibria for Compartmental Models of Disease Trans-
mission. Mathematical Biosciences 180, 29–48. issn: 0025-5564 (2002).

191. Van Bergeijk, P. A. G. & Brakman, S. The Gravity Model in International
Trade: Advances and Applications 373 pp. isbn: 978-1-139-48828-0. Google
Books: vQSwRPuMoZMC (Cambridge University Press, June 10, 2010).

192. Wang, D., Pedreschi, D., Song, C., Giannotti, F. & Barabasi, A.-L. Human
Mobility, Social Ties, and Link Prediction in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing - KDD ’11 The 17th ACM SIGKDD International Conference (ACM
Press, San Diego, California, USA, 2011), 1100. isbn: 978-1-4503-0813-7.

193. Wang, J., Wang, X. & Wu, J. Inferring Metapopulation Propagation Net-
work for Intra-city Epidemic Control and Prevention in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining KDD ’18: The 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (ACM, London United King-
dom, July 19, 2018), 830–838. isbn: 978-1-4503-5552-0.

194. Wang, Y., Chakrabarti, D., Wang, C. & Faloutsos, C. Epidemic Spreading
in Real Networks: An Eigenvalue Viewpoint in 22nd International Sym-
posium on Reliable Distributed Systems, 2003. Proceedings. 22nd Inter-
national Symposium on Reliable Distributed Systems, 2003. Proceedings.
(Oct. 2003), 25–34.

195. Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applica-
tions 1st ed. isbn: 978-0-521-38707-1 978-0-521-38269-4 978-0-511-81547-8
(Cambridge University Press, Nov. 25, 1994).

196. Watts, D. J. & Strogatz, S. H. Collective Dynamics of ‘Small-World’ Net-
works. 393, 3 (1998).

197. White, D. R. & Borgatti, S. P. Betweenness Centrality Measures for Di-
rected Graphs. Social Networks 16, 335–346. issn: 03788733 (Oct. 1994).

188

http://books.google.com/books?id=vQSwRPuMoZMC


BIBLIOGRAPHY

198. WHO Recommends Groundbreaking Malaria Vaccine for Children at Risk
https://www.who.int/news/item/06- 10- 2021- who- recommends-
groundbreaking-malaria-vaccine-for-children-at-risk (2022).

199. Widgren, S. et al. Data-Driven Network Modelling of Disease Transmission
Using Complete Population Movement Data: Spread of VTEC O157 in
Swedish Cattle. Veterinary Research 47, 81. issn: 1297-9716 (Aug. 11,
2016).

200. Wilson, A. G. The Use of Entropy Maximising Models, in the Theory
of Trip Distribution, Mode Split and Route Split. Journal of Transport
Economics and Policy 3, 108–126. issn: 00225258. http://www.jstor.
org/stable/20052128 (2022) (1969).

201. World Health Organization. Global Measles and Rubella Strategic Plan:
2012, 42. issn: 9789241503396. https://apps.who.int/iris/handle/
10665/44855 (2022) (2012).

202. Yang, L. et al. COVID-19: Immunopathogenesis and Immunotherapeu-
tics. Signal Transduction and Targeted Therapy 5, 1–8. issn: 2059-3635
(1 July 25, 2020).

203. Zhan, X.-X., Li, Z., Masuda, N., Holme, P. & Wang, H. Susceptible-Infected-
Spreading-Based Network Embedding in Static and Temporal Networks.
EPJ Data Science 9, 30 (2020).

189

https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk
https://www.who.int/news/item/06-10-2021-who-recommends-groundbreaking-malaria-vaccine-for-children-at-risk
http://www.jstor.org/stable/20052128
http://www.jstor.org/stable/20052128
https://apps.who.int/iris/handle/10665/44855
https://apps.who.int/iris/handle/10665/44855

	Title Page
	Contents
	Glossary
	Introduction
	Theoretical Background
	Network Theory
	Graphs
	Matrix Representations of Graphs
	Network Properties and Measures

	Compartmental Epidemiological Models
	Ordinary Differential Equation Models
	Stability Analysis

	Network Epidemiological Models
	Individual-Based Model
	Meta-Population Models

	Network Mobility Models
	Gravity Model
	Radiation Model

	Summary

	A Systematic Framework For the Modelling of Epidemics on Temporal Networks
	Overview
	Reduced Master Equations
	SIR Network Model
	Temporal Individual-based Model
	Temporal Pair-based Model

	Epidemic Threshold
	Results
	Synthetic Networks
	Empirical Networks

	Summary

	A Meta-Population Model for the Spread of SARS-CoV-2
	Overview
	Local Dynamics
	Network Contagion Model
	Reproduction Number
	Network Data
	Mobility Model
	Case study: Ireland
	First Wave of COVID-19
	Dynamic Interventions

	Summary

	Models for Cattle Trade
	Analysis of Trade Networks
	Cattle Trade Data
	Cattle Trade Network Representation
	Static Network Analysis
	Temporal Network Analysis

	Models for Cattle Trade
	Gravity Model
	Radiation Model

	Results
	Application to the Spread of Disease
	Summary

	Conclusion and Outlook
	Vertex Pair Transition Rates for the PB Model
	Acknowledgements
	List of Publications
	Bibliography

