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Abstract: Preterm pregnancies are one of the leading causes of morbidity and mortality amongst
children under the age of five. This is a global issue and has been identified as an area requiring
active research. The emphasis now is to identify and develop methods of predicting the likelihood of
preterm birth. This paper uses physiological data from a group of patients in active labor. The dataset
contains information about fetal heart rate (FHR) and maternal heart rate (MHR) for all patients
and electrohysterogram (EHG) recordings for the measurement of uterine contractions. For the
physiological data analysis and associated signal processing, we utilize deep wavelet scattering (DWS).
This is an unsupervised decomposition and feature extraction method combining characteristics from
deep learning convolutions, as well as the classical wavelet transform, to observe and investigate
the extent to which active preterm labor can be accurately identified from an acquired physiological
signal, the results of which were compared with the metaheuristic linear series decomposition learner
(LSDL). Additional machine learning algorithms are tested on the acquired physiological data to
allow for the identification of optimal model architecture for this specific physiological data.

Keywords: pregnancy; preterm; signal processing; LSDL; signal decomposition; obstetric medicine;
artificial intelligence; WHO; epidemic

1. Introduction

Preterm is an identified widescale epidemic that has been pointed out by the World
Health Organization (WHO) as one of the leading causes of death globally in children under
the age of five. As a result, active work is ongoing towards effective means of diagnosis and
care for mothers and fetuses who are subject to premature births and delivery, even though
the underlying cause and physiological manifestation remains unknown [1–4]. A variety
of means are currently employed towards the assessment of a potential preterm delivery,
which have been widely reported to be associated with a high degree of uncertainty
stemming from the subjectivity of their data acquisition or the nature of data itself [1]. The
use of physiological signals—particularly uterine contractions alongside machine learning-
based pattern recognition—has seen a sharp increase in the literature reported in this area.
Nsugbe et al. notably built on the work performed in this area by proposing a cybernetic
system that fosters a form of cyber–human collaboration in order to enhance proactive care
strategies for preterm patients with active collaboration between clinicians and a prediction
machine [3,5,6].
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Work conducted by López-Justo et al. [7] on a group of patients showcases that other
physiological signals, in addition to uterine contractions, can be utilized towards active
inference and predictions of preterm births in pregnant patients. This work utilizes data
from the published study by López-Justo et al. that span uterine contractions and fetus
and maternal heart cardiac signals towards the prediction of a potential preterm birth in
women in active labor using the deep wavelet scattering unsupervised feature extraction
method [7,8]. This also builds on prior work where the linear series decomposition learner
(LSDL) was investigated towards the prediction exercises [9–12].

Explicitly speaking, the contributions of this paper are as follows: the application
of the DWS as a means of unsupervised feature extraction for the EHG, FHR, and MHR
physiological signals; the combination of the use of the LSDL followed by unsupervised
feature extraction with the DWS; and investigation of the prediction accuracies of the
various machine learning models.

2. Materials and Methods
2.1. Dataset

The data used as part of this study are comprised of physiological recordings from a
number of patients and are from the published work of López-Justo et al. [7]. The data were
collected from the “Mónica Pretelini Sáenz” Maternal-Perinatal Hospital, Toluca, State of
Mexico, Mexico, where they also received ethical approval [7]. A preterm labor is defined as
patient who delivered during the 32–36 weeks stage of gestation, while term labor refers to
patients who delivered within 38–40 weeks of gestation [7]. As part of the assembly and call
for patient volunteers, patients with twin pregnancies, gestational diabetes, hypertensive
disorders, epidural blocking, and degenerative diseases were not included in the study.

Heartbeat signals were recorded using the Monica AN24 system, designed by Monica
healthcare, while the EHG data were recorded using a set of bipolar electrodes, where all
of the data were acquired using a sampling rate of 900 Hz [7]. All acquired signals were
postprocessed with the MonicaSDK software. For the final analysis, data of 48 patients for
the maternal heartbeat (22 preterm and 26 term), and 45 patients (17 preterm and 28 term)
for the fetus heartbeat were used.

The uterine contraction signal worked with an optimal single channel with the Moni-
caSDK software, where an envelope of the data was produced and subsequently down-
sampled with a 2 s epoch averaging scheme. The downselected files were chosen to ensure
that a minimum of 4 s of uterine contraction was available for all files for the subsequent
analysis, which resulted in 47 patients’ data for the final signal processing exercise, of which
27 patients’ data were term and 20 were preterm.

The SMOTE algorithm was employed for class-balancing purposes, and a windowing
scheme of 10 disjointed windows was used on the data, which divides each candidate
signal into 10 equally sized windowed slices [13].

2.2. Signal Processing and Decompositions
2.2.1. DWS

This method enables a form of unsupervised feature extraction, where the features can
be said to be robust to factors such as translations, whilst being continuous
altogether [14–19]. Parameters such as the wavelets and filters are preset, which reduces
the overall computational load but breeds ground for uncertainties [14–18]. The method
presents a merge of knowledge from convolutional neural networks (CNNs) alongside wavelet
scatterings, where trade-offs are made whilst retaining their key properties [14–18]. A further
strength of the method is its ability to work with a constrained amount of samples, due to
its ability to extract features across all scales of decompositions that it conducts [14–18].

In terms of mathematical formulation, given a signal f (t) being filtered with a low
pass Ø with a wavelet Ψ, which spans a range of frequencies identical to that of the signal,
a low pass filter J(t) is assumed, which induces a localized translation invariance of the
signal at a specific scale T, while the associated family of wavelets indices, which possess
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an octave frequency distribution Qk, is represented as ∧k, and the multiscale high pass filter
banks

{
Ψjk

}
jk∈∧k

are formed via a dilation of the wavelet [14–18]. The implementation of

the DWS involves a combination of a deep CNN, which iterates and convolves through
the wavelets and nonlinear modules, as well as an averaging scaling function [14–18]. The
Gabor wavelet was set as the mother wavelet utilized for signal decomposition, and as per
related work, the invariance scale was set to 1 s, while the filter banks were set to 8 wavelets
per octave in the first filter bank and 1 wavelet per octave in the second filter bank.

2.2.2. LSDL

The LSDL is a signal decomposition method that systematically separates a signal
into component parts in order to minimize redundant components of the signal whilst
maximizing the overall signal quality [9–11]. The LSDL is framed upon metaheuristic
reasoning from the area of artificial intelligence and iterative signal decomposition using a
select basis function from the area of signal processing. The founding study for the LSDL
was based upon source separations of mixtures from acquired acoustic emissions signals
which were nonlinear and stochastic, where the LSDL showed better results than that
of the classical wavelet decomposition [9–11]. The method has been applied in external
case studies within the area of clinical medicine in areas spanning preterm pregnancies,
early prostate cancer predictions, anesthesia depth prediction, rehabilitation medicine, and
psychiatry, where the use of the LSDL for preprocessing of the signal was noted to enhance
the prediction accuracies within the various highlighted areas [3,20–23].

The decomposition act is performed in the time domain where a series of heuristics,
alongside a linear basis function, is utilized towards the iterative separation of the signal.
The identified optimal region in the signal, with respect to an embedded cost function, rep-
resents an area that contains optimal signal information with minimal redundancies within
the signal. The embedded cost function used as part of the algorithm is the normalized
Euclidean distance metric. For this paper, the optimal decomposition region for all signals
alongside decomposition parameters are adopted from a prior related study, as can be seen
in Nsugbe et al. [12].

2.2.3. LSDL-DWS

This case represents the merger of the two methods and involves the passing of the
LSDL decomposed signal through the DWS algorithm for unsupervised feature extraction.

Machine Learning

The following machine learning models were adopted for use in this study: decision
tree (DT); linear discriminant analysis (LDA); logistic regression (LR); support vector
machines, i.e., linear SVM (LSVM), quadratic SVM (QSVM), cubic SVM (CSVM), fine
Gaussian SVM (FGSVM); k-nearest neighbor (KNN), with k selected as 1 [20]. All models,
as well as hyperparameters, were tuned and iterated using the MATLAB classification
learner application, where the models were validated using a k-fold validation scheme
with k chosen as 10.

3. Results

The classification accuracy was used to quantify the predictive performance of the
models utilized for the various signals, as applied in previous studies.

3.1. EHG

The results for the EHG signals can be seen in Table 1, where first the DWS on its own
was seen to exhibit a range of prediction accuracies, with the maximum seen to be the KNN
model, therein showing the feasibility and applicability of the DWS towards being used
for these kinds of exercises. In the second case, the LSDL preprocessed signal was passed
through the DWS for unsupervised feature extraction, where the KNN model was seen to
also be the optimal one, albeit with a slightly lower classification accuracy.



Eng. Proc. 2022, 27, 20 4 of 6

Table 1. Results of the EHG signals.

Model DWS LSDL-DWS

DT 78 74

LDA 75 73

LR 76 73

QDA 80 67

LSVM 79 73

QSVM 92 86

CSVM 86 91

FGSVM 95 87

KNN 97 92

3.2. FHR

In the case of the FHR, the DWS once again yielded a high figure of 94 % for the
KNN, but this time the LSDL-DWS produced a higher accuracy, as seen in Table 2. This
implies that the preprocessing of the FHR signal with the LSDL has shown signs towards
maximizing the prediction prowess of the signal.

Table 2. Results of the FHR signals.

Model DWS LSDL-DWS

DT 68 99

LDA 64 99

LR 64 99

QDA 70 99

LSVM 65 99

QSVM 83 99

CSVM 92 99

FGSVM 92 99

KNN 94 99

3.3. MHR

For the case of the MHR, although a high accuracy was obtained once again for the
KNN model, the combination of the LSDL-DWS result was seen to surpass that of the
DWS only, as seen in Table 3. This result goes to show the compatibility of the LSDL-DWS
towards predicting and differentiating between preterm births using either the FHR or
MHR signals, ahead of the EHG signals, as indicated by the results in the various tables.

Table 3. Results of the MHR signals.

Model DWS LSDL-DWS

DT 75 98

LDA 64 98

LR 64 97

QDA 75 n/a

LSVM 64 98
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Table 3. Cont.

Model DWS LSDL-DWS

QSVM 86 98

CSVM 93 98

FGSVM 93 92

KNN 98 96

4. Conclusions and Future Work

Preterm births are a global-scale epidemic that have been seen to carry lifelong health
and financial implications to society at large. This work has focused on the predictions
of preterm births in patients in active labor using a range of physiological signals. As
part of this, this work primarily investigated the use of the DWS method, which has been
seen to allow for unsupervised feature extraction towards the differentiation of preterm
and term pregnancies while using physiological signals. The method was seen to provide
high prediction accuracies depending on the machine learning models used, where the
heartbeat-based signals provided the higher prediction accuracies. The DWS was also used
in tandem with the LSDL, which offered a further boost in the prediction accuracies of
the various models, with particular emphasis on the heartbeat-based signals once again.
However, the potential downside of this is a more intense computational load if the model
is to be deployed for online use.

Further work in this area would subsequently involve the use of the unsupervised
learning algorithms alongside the unsupervised feature extraction prowess of the DWS
towards potentially forming a fully automated pipeline for the prediction of preterm births
from acquired physiological signals.
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