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Abstract. Using a multi-term solution of the Boltzmann equation and Monte Carlo

simulation technique we study behaviour of the third-order transport coefficients for

electrons in model gases, including the ionisation model of Lucas and Saelee and

modified Ness-Robson model of electron attachment, and in real gases, including N2

and CF4. We observe negative values in the E/n0-profiles of the longitudinal and

transverse third-order transport coefficients for electrons in CF4 (where E is the electric

field and n0 is the gas number density). While negative values of the longitudinal

third-order transport coefficients are caused by the presence of rapidly increasing

cross sections for vibrational excitations of CF4, the transverse third-order transport

coefficient becomes negative over the E/n0-values after the occurrence of negative

differential conductivity. The discrepancy between the two-term approximation and

the full multi-term solution of the Boltzmann equation is investigated for electrons

in N2 and CF4. While the accuracy of the two-term approximation is sufficient to

investigate the behaviour of the third-order transport coefficients in N2, it produces

large errors and is not even qualitatively correct for electrons in CF4. The influence

of implicit and explicit effects of electron attachment and ionisation on the third-order

transport tensor is investigated. In particular, we discuss the effects of attachment

heating and attachment cooling on the third-order transport coefficients for electrons in

the modified Ness-Robson model, while the effects of ionisation are studied for electrons

in the ionisation model of Lucas and Saelee, N2 and CF4. The concurrence between

the third-order transport coefficients and the components of the diffusion tensor, and

the contribution of the longitudinal component of the third-order transport tensor to

the spatial profile of the swarm are also investigated. For electrons in CF4 and CH4,

we found that the contribution of the component of the third-order transport tensor

to the spatial profile of the swarm between approximately 50 Td and 700 Td, is almost

identical to the corresponding contribution for electrons in N2. This suggests that the
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recent measurements of third-order transport coefficients for electrons in N2 may be

extended and generalized to other gases, such as CF4 and CH4.

Keywords: Third-order transport coefficients, Boltzmann equation, Monte Carlo

simulation, electron transport, ionisation, electron attachment

Submitted to: Plasma Sources Sci. Technol.

1. Introduction

Non-equilibrium plasmas have a wide range of important applications including micro

and nano-electronic device fabrication [1–4], surface etching [5, 6], sputtering [7, 8],

chemical processing [9, 10], and plasma medicine [11–13]. The modeling of non-

equilibrium plasma is important for further development and optimization of these

applications [14–17]. However, this can be quite challenging due to a wide variety

of effects that determine the nature of non-equilibrium plasma. These effects include

collisions of electrons and ions with neutral particles of the background fluid [18–20],

kinetics of excited species [21–23], generation of fast neutrals [24], space charge effects

[25,26], and plasma-surface interaction [27,28]. Despite their simplicity, charged-particle

swarms are at the heart of non-equilibrium plasma modeling [2, 18, 29, 30]. Specifically,

transport coefficients that describe the dynamics of a swarm of charged particles are

used as input data into the fluid models of non-equilibrium plasma [31–38]. In addition,

transport coefficients are required in the swarm procedure for determining the complete

and consistent sets of cross-sections for collisions of charged particles with atoms and

molecules of the background fluid [39–42]. These sets of cross-sections are employed

as input data into the particle models of non-equilibrium plasma [43–49]. Due to the

sensitivity of plasma models to transport coefficients and cross-section sets in the case of

fluid and particle models, respectively, a great amount of attention has been dedicated

to the calculation and measurement of transport coefficients of electrons and ions in

numerous atomic and molecular gases. However, this attention has been limited to the

lower-order transport coefficients such as rate coefficients for non-conservative processes,

drift velocity, and diffusion tensor components [18, 19, 50].

Transport coefficients of third and higher order have been implemented to analyse

ion swarm experiments [51–54]. However, they have been almost systematically ignored

in the traditional analysis of electron swarm experiments, as they are difficult to measure

and difficult to study by employing theoretical methods [55–57]. However, Kawaguchi

and coworkers have recently measured third-order transport coefficients for electrons in

molecular nitrogen by employing the arrival time spectra experiment [58]. In addition,

they have shown that it is necessary to consider the longitudinal component of the third-

order transport tensor QL in order to correctly determine the longitudinal component of

the diffusion tensor DL from the arrival time spectra data. The difference between the

values of DL, which are estimated after neglecting QL, and the corresponding values,
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which are determined from the expression that includes QL, is greater than the sum

of their experimental errors at high electric fields. Moreover, it is known that the

third-order transport coefficients are required for the conversion of hydrodynamic flux

transport coefficients into transport parameters that are determined from the steady

state Townsend experiment [59]. Third-order transport coefficients are more sensitive

to energy dependence of the cross sections for the scattering of charged particles on

the constituents of the background medium than drift velocity and diffusion tensor

[55,60,61]. For this reason, third-order transport coefficients would be very useful in the

swarm procedure for determining the complete sets of cross sections, if these transport

coefficients were calculated and measured with a sufficient precision. Kawaguchi et al.

[58] have shown that the third-order transport coefficients are sensitive to the anisotropy

of electron scattering. Thus, inclusion of the third-order transport coefficients would

help in testing the implementation of anisotropic scattering in transport calculations,

if the values of these transport coefficients were known from experiments [62]. This

is important as the correct implementation of anisotropic scattering is required for

determining the values of the rate coefficient for electron impact ionisation at high

electric fields, with high precision [62, 63].

The structure of the third-order transport tensor in the electric field only

configuration was determined by Whealton and Mason [64], Vrhovac et al. [55] and

Koutselos [52]. Simonović and coworkers have determined the structure of this tensor in

all configurations of electric and magnetic field, and they have investigated the physical

interpretation of the individual components of this tensor [57]. Koutselos studied the

third-order transport coefficients for ions in atomic gases, by employing molecular

dynamics simulations and a three-temperature method for solving the Boltzmann

equation [52, 65–67]. Third-order transport coefficients for electrons in noble gases

were investigated by Penetrante and Bardsley [60], Vrhovac et al. [55] and Simonović

et al. [68]. Penetrante and Bardsley used the two-term approximation for solving

the Boltzmann equation and Monte Carlo simulations, Vrhovac et al. employed the

momentum transfer theory and generalized Einstein relations, while Simonović et al.

used a multi-term theory for solving the Boltzmann equation. Stokes and coworkers

investigated the effects of localized and delocalized electron states on the third-order

transport coefficients [69]. Recently, Kawaguchi et al. [70] have shown that the third-

order transport coefficients can be measured in the arrival time spectra experiment

by employing Monte Carlo simulations, and they have determined the values of these

transport coefficients for electrons in CH4 and SF6 by using the same method. They

have subsequently measured the longitudinal component of the third-order transport

tensor for electrons in N2 by employing the arrival time spectra experiment. Kawaguchi

et al. have further verified these results by using Monte Carlo simulations [58, 62].

Although the lower-order transport coefficients have been carefully investigated

in the literature, the third-order transport coefficients are still largely unexplored.

For this reason, a number of questions concerning the properties of these transport

coefficients and their dependence on elementary scattering processes are still open. How
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sensitive are these transport coefficients to effects of non-conservative collisions such

as ionisation and electron attachment? Are the differences between the flux and bulk

values of the third order transport coefficients higher or lower than the corresponding

differences in the lower order transport coefficients? Is there any concurrence between

these transport coefficients and those of lower-order? If such concurrence exists, how

can it be accounted for? Can third-order transport coefficients be negative, and what

would the negative values of these transport coefficients mean physically? Some of

these issues will be addressed in this work. Implicit and explicit effects of electron

attachment and ionisation on the third-order transport tensor are investigated, for

electrons in Ness-Robson model and Lucas-Saelee model, respectively, by employing

Monte Carlo simulations and a multi-term method for solving the Boltzmann equation.

In addition, explicit effects of ionisation on this transport tensor for electrons in N2 and

CF4 are studied. Negative values of the third-order transport coefficients for electrons

in CF4 are also investigated. The concurrence between these transport coefficients

and diffusion is analysed for electrons in N2 and CF4. The values of the longitudinal

component of the third-order transport tensor for electrons in N2, that are determined

in this work, are compared with results of Kawaguchi et al. The contribution of the

third-order transport coefficients to the spatial profile of the swarm is determined for

electrons in N2, CF4 and CH4 over a wide range of the reduced electric field. The third-

order transport coefficients are defined in section 2. The methods for calculating these

transport coefficients by employing a multi-term solution of the Boltzmann equation

and Monte Carlo simulations are discussed in sections 3.1 and 3.2, respectively. The

cross sections for model and real gases, that are used as input data in this work, are

discussed in section 4.1. The variation of the flux third-order transport tensor with

the reduced electric field for electrons in N2 and CF4 is analysed in section 4.2. The

impact of electron attachment on the third-order transport coefficients for electrons

in the modified Ness-Robson model is studied in section 4.3.1, while the influence of

electron impact ionisation on these transport coefficients for electrons in Lucas-Saelee

model, N2 and CF4 is investigated in Section 4.3.2. The longitudinal component of

the third-order transport tensor, that is determined in this study, is compared with the

measurements and calculations of Kawaguchi and coworkers in section 4.4. Concurrence

between the third-order transport coefficients and individual components of the diffusion

tensor for electrons in N2 and CF4 is analysed in this section as well. In the same

section the contribution of the third-order transport coefficients to the spatial profile of

the swarm is determined for electrons in N2, CF4 and CH4. The concluding remarks are

given in section 5.

2. Theory

Transport coefficients are defined for a swarm of charged particles in hydrodynamic

conditions. A swarm is an ensemble of charged particles that moves in a neutral

background fluid under the influence of an external electric and/or magnetic field. The
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density of charged particles is considered to be small, so that their mutual interactions,

as well as the effects induced by the space-charge, are neglected. The swarm gains

energy from the external electric field and it dissipates this energy input into collisions

with the particles of the background fluid. However, the probability of having collisions

with molecules perturbed/excited by the swarm itself is negligible due to a low swarm

particle density.

If the external fields are uniform in space, the swarm relaxes to a stationary state

in which the amount of energy that is gained per unit time, is equal to the amount of

energy that is dissipated in collisions during this time. The influence of the swarm on the

background fluid and fields is neglected, due to the low density of charged particles, and

it is considered that this fluid is in a state of thermodynamic equilibrium. Hydrodynamic

conditions are fulfilled for a swarm of charged particles if the background fluid and the

electric/magnetic fields are spatially homogeneous, and if the swarm is far from the

boundaries of the system and far from sources and sinks of charged particles. Under

these conditions the phase space distribution function can be expanded into a density

gradient series as [71]:

f(r, c, t) =
∞
∑

k=0

f (k)(c)⊙ (−∇)kn(r, t), (1)

where r, c and t are radius vector, velocity vector and time, respectively, f (k)(c) are

tensors of rank k, ⊙ is tensor contraction of order k, while n(r, t) is number density

of charged particles. Under hydrodynamic conditions the flux of velocity of charged

particles can be written as [55]:

Γ(r, t) = W(f)n(r, t)− D̂(f) · ∇n(r, t) + Q̂(f) ⊙ (∇⊗∇)n(r, t) + ..., (2)

where W(f), D̂(f) and Q̂(f) are flux drift velocity, flux diffusion tensor and flux third-

order transport tensor, respectively, and ⊗ is the tensor product. The equation (2) is

truncated at the third term, as this is sufficient for defining the flux third-order transport

tensor. Explicit expressions for the flux transport coefficients in terms of the phase space

distribution function are given in reference [57].

Bulk transport coefficients appear in the generalized diffusion equation [55], which

has been truncated at the third-order gradients for our needs:

∂n(r, t)

∂t
+W(b) · ∇n(r, t)− D̂(b) : (∇⊗∇)n(r, t)

+ Q̂(b) ... (∇⊗∇⊗∇)n(r, t) = Rin(r, t), (3)

where W(b), D̂(b), Q̂(b) and Ri are bulk drift velocity, bulk diffusion tensor, bulk

third-order transport tensor and effective rate coefficient for non-conservative processes,

respectively, while : and
... represent tensor contractions of second and third-order,

respectively. Bulk transport coefficients can be expressed in terms of flux transport

coefficients as [57]:

W(b) = W(f) + S(1), D̂(b) = D̂(f) + S(2), Q̂(b) = Q̂(f) + S(3) (4)
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where S(k) is the coefficient in the hydrodynamic expansion of the source term, that is

contracted with k-th derivative of the density gradient. For a swarm of electrons in the

presence of electron impact ionisation and/or electron attachment, the source term is

defined as:

S(r, t) =
∫

n0c
(

σi(ǫ)− σa(ǫ)
)

f(r, c, t)dc, (5)

where n0, ǫ, σi(ǫ) and σa(ǫ) are number density of the background molecules, electron

energy, and cross sections for ionisation and electron attachment, respectively.

Implicit effects of non-conservative collisions arise due to population and

depopulation of different parts of the distribution function in velocity space, that are

caused by the energy dependence of collision frequencies of non-conservative processes.

These effects refer to the influence of non-conservative collisions on tensors f (k)(c) in

equation (1). Explicit effects of non-conservative processes arise due to the spatial

dependence of collision frequencies for these processes. This spatial dependence is caused

by the energy dependence of the collision frequencies for non-conservative collisions and

spatial variation of energy of charged particles. Explicit effects of non-conservative

collisions are represented by tensors S(k) from the equation (4) and they determine the

difference between flux and bulk transport coefficients.

The influence of implicit and explicit effects of non-conservative collisions on low

order transport coefficients has been thoroughly studied in previous publications [72,74].

Implicit effects of ionisation on the third-order transport coefficients refer to the influence

of ionisation cooling on the asymmetric component of the diffusive flux, which is

represented by the flux third-order transport tensor. Due to explicit effects of ionisation

more electrons are created at the front of the swarm than at the back of the swarm,

which in turn elongate the spatial distribution of electrons along both longitudinal and

transverse directions at the leading edge of the swarm. Similarly, the implicit effects

of electron attachment relate to the influence of depopulation of low-energy part of the

distribution function, in case of attachment heating, and depopulation of high-energy

part of the distribution function, in case of attachment cooling, on the asymmetric

component of the diffusive flux. Explicit effects of electron attachment on the third-

order transport coefficients refer to the influence of the spatial variation of electron

losses to the compression of the spatial distribution of the swarm in those regions of

space where electron attachment is more frequent.

The studied system is a swarm of electrons which move in a homogeneous

background gas under the influence of a homogeneous and constant electric field that is

oriented along the z axis. In this field configuration the flux third-order transport tensor

has three independent components Qzzz, Qxxz and Qzxx. In this field configuration, the

following relations are imposed on the off-diagonal components of the flux third-order

transport tensor: Qxxz = Qxzx = Qyyz = Qyzy and Qzxx = Qzyy [52, 55, 57, 64]. The

structure of the third-order transport tensor and physical interpretation of its individual

components are extensively discussed in our recent work [57]. In particular, contribution

of the third-order transport coefficients to the spatial profile of the swarm is represented
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by the following approximate expression [57]:

n(1) (r, t) = n(0) (r, t)



1 +
tQ

(b)
L

σ3
z

χz

(

χ2
z − 3

)

+
3tQ

(b)
T

σ2
xσz

χz

(

χ2
x + χ2

y − 2
)



 ,(6)

where n(0)(r, t) is the solution of the diffusion equation in which third and higher

order transport coefficients are neglected, QL = Qzzz, QT = 1
3
(Qxxz + Qxzx + Qzxx),

σz =
√

2D
(b)
L t and σx = σy =

√

2D
(b)
T t, while χz, χx, χy are defined as:

χz =
z −W (b)t

σz

, χx =
x

σx

, χy =
y

σy

. (7)

The equation (6) can be derived from the Fourier transform of the generalized diffusion

equation in which third-order transport coefficients are included [57]. It can be seen from

equation (6) that contribution of the longitudinal component of the third-order transport

tensor to the spatial profile of the swarm is proportional to Q
(b)
L /(D

(b)
L )3/2. In statistics

the asymmetry of the probability distribution of a random variable about its expected

value is represented by skewness [73]. There are several ways to express skewness in

statistics including the third central moment and the third standardized moment of a

random variable [73]. It can be shown that the bulk third-order transport tensor is

proportional to the third central moment of the position vector, while Q
(b)
L /(D

(b)
L )3/2

is proportional to the longitudinal component of the third standardized moment of

the position vector. Likewise, the Q
(b)
T /(D

(b)
T (D

(b)
L )1/2) term is proportional to the off-

diagonal component of the same standardized moment with the combination of indices

πxxz, where πabc represents any permutation of a, b and c.

The flux third-order transport tensor is defined by the flux gradient relation. The

last two indices of this tensor are contracted with partial derivatives of the charged-

particle number density with respect to spatial coordinates. The third-order bulk

transport tensor is however defined by the generalised diffusion equation, in which the

three indices of this tensor are contracted with partial derivatives. For this reason,

all three indices of the bulk third-order transport tensor commute, as this transport

property is symmetrized in the equation in which it is defined. The same reasoning

applies to the bulk diffusion tensor and higher order bulk transport tensors. Using

these arguments, in the case of bulk third-order transport coefficients and when the

swarm of charged-particles is acted on solely by an electric field, we can identify only

two independent bulk components Q
(b)
L and Q

(b)
T . In a more general configuration of

electric and magnetic fields, we can identify those components of the bulk third-order

transport tensor that are symmetrized along all three indices. These are third-order

transport coefficients that can be distinguished in our Monte Carlo simulations, as we

calculate transport coefficients using expressions derived from the generalized diffusion

equation [57].
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3. Methodology

3.1. Multi-term solution of the Boltzmann equation

The Boltzmann equation describes the evolution of the phase space distribution function

f(r, c, t). For a swarm of electrons the Boltzmann equation can be written as:

∂f(r, c, t)

∂t
+ c · ∂f(r, c, t)

∂r
+

q

m
E · ∂f(r, c, t)

∂c
= −J(f, f0), (8)

where q and m are electron charge and electron mass respectively, E is electric field

and J is collision operator. This operator represents change of the electron distribution

function per unit time, due to collisions with particles of the background medium. These

particles are described by the distribution function f0.

In the multi-term method for solving Boltzmann’s equation the phase space

distribution function is expanded in terms of spherical harmonics and Sonine

polynomials in angular and radial parts of the velocity space, respectively. Thus, under

hydrodynamic conditions f(r, c, t) is expanded as follows [74–78]:

f(r, c, t) = ω(α, c)
∞
∑

s=0

s
∑

λ=0

λ
∑

µ=−λ

∞
∑

ν,l=0

l
∑

m=−l

F (νlm|sλµ;α)Rνl(α, c)Y
[l]
m (ĉ)G(sλ)

µ n(r, t)(9)

where F (νlm|sλµ;α) are moments of the distribution function, ĉ is unit vector in

velocity space, Y [l]
m (ĉ) are spherical harmonics, G(sλ)

µ is the spherical form of the gradient

tensor operator, while α, ω(α, c) and Rνl(α, c) are given by:

α2 =
m

kTb

, (10)

ω(α, c) =
(

α2

2π

)3/2

e−α2c2/2, (11)

Rνl(αc) = Nνl

(

αc√
2

)2

S
(ν)
l+1/2(α

2c2/2), (12)

where k is the Boltzmann constant, Tb is the basis temperature, which is a parameter

for optimizing convergence, S
(ν)
l+1/2 is Sonine polynomial, while Nνl is given by:

N2
νl =

2π3/2ν!

Γ(ν + l + 3/2)
, (13)

where Γ(ν + l + 3/2) is gamma function.

The Boltzmann equation is decomposed into a hierarchy of kinetic equations by

applying the relations of orthogonality for spherical harmonics and Sonnine polynomials

[75]. The moments of the distribution function F (νlm|sλµ;α) can be obtained by solving

this system of kinetic equations [74, 79]. The resulting hierarchy of kinetic equations is

truncated at finite values of l = lmax and ν = νmax. Unlike the two-term approximation,

in which small anisotropy in velocity space is assumed and lmax is set to 1, in the multi-

term method lmax is increased until full convergence of transport coefficients is obtained,

after which the obtained hierarchy is solved numerically.
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Spherical form of the velocity vector is defined as [75]:

c[1]m =

√

4π

3
cY [1]

m (ĉ). (14)

Cartesian components of a vector can be expressed via spherical form as:

cx =
i√
2

(

c
[1]
1 − c

[1]
−1

)

, (15)

cy =
1√
2

(

c
[1]
1 + c

[1]
−1

)

, (16)

cz = −ic
[1]
0 . (17)

Spherical form of the flux of velocity of electrons can be written as [79]:

Γ(1)
m (r, t) =

1

α

∞
∑

s=0

s
∑

λ=0

λ
∑

µ=−λ

F (01m|sλµ)G(sλ)
µ n (r, t) . (18)

Explicit expressions for the individual components of the flux third-order transport

tensor can be determined from the Cartesian components of the flux of velocity from

equation (18) after identifying terms that are contracted with the corresponding partial

derivatives [57].

Expressions for three independent components of the flux third-order transport

tensor in the electric field only configuration defined to be in the z direction, are given

by:

Q(f)
xxz =

1√
2α

[Im(F (011|221;α))− Im(F (01− 1|221;α))] , (19)

Q(f)
zxx = − 1

α

[

1√
3
Im(F (010|200;α)) + 1√

6
Im(F (010|220;α))

]

+
1

α
Im [F (010|222;α)] , (20)

Q(f)
zzz =

1

α





√

2

3
Im(F (010|220;α))− 1√

3
Im(F (010|200;α))



 , (21)

where Im denotes imaginary parts of the moments of the phase space distribution

function.

3.2. Monte Carlo simulations

In Monte Carlo simulations, we track the space and time evolution of a swarm of

electrons. The extensive use of random numbers is required in order to determine the

exact moment and the type of the individual collisions of electrons with the background

molecules, as well as the direction of the post collisional electron velocity. The transport

coefficients are computed from the corresponding polynomials of the electron coordinates

and velocity components, which are averaged over the entire swarm. The details of our
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Monte Carlo code are discussed in our previous publications [74,80–82]. Bulk third-order

transport coefficients are calculated as:

Q(b) =
1

3!

d

dt
〈r⋆r⋆r⋆〉, (22)

while the flux third-order transport coefficients are determined from:

Q(f) =
1

3!

〈

d

dt

(

r⋆r⋆r⋆
)

〉

, (23)

where r⋆ = r − 〈r〉, and the brackets 〈〉 represent ensamble averages. Expressions

for transport coefficients, that are used in our Monte Carlo method, are derived from

the generalized diffusion equation, in which all tensor indices are contracted with

partial derivatives. Thus, in the generalized diffusion equation symmetrization of the

third-order transport tensor with respect to all indices is performed. For this reason,

we cannot determine individual off-diagonal components of the third-order transport

tensor or individual off-diagonal components of the diffusion tensor in our Monte

Carlo simulations [74]. Instead, we can determine individual diagonal components

such as QL = Qzzz and averages of those off-diagonal components that have the same

combination of indices like QT = (Qxxz +Qxzx +Qzxx)/3. It should be noted that Qxxz

and Qxzx are equal due to the commutativity of the last two indices of the third-order

transport tensor [52,55,57,64]. Explicit expressions for Q
(b)
L and Q

(b)
T in the electric field

only configuration are given by:

Q
(b)
L =

1

6

d

dt

(

〈z3〉 − 3〈z〉〈z2〉+ 2〈z〉3
)

, (24)

Q
(b)
T =

1

6

d

dt

(

〈zx2〉 − 〈z〉〈x2〉
)

, (25)

while the corresponding flux components Q
(f)
L and Q

(f)
T are given in [57].

It is important to note that numerical differentiation in time is not used for the

calculation of Q
(b)
L and Q

(b)
T , because of the statistical fluctuations of the corresponding

expressions in brackets. Direct numerical differentiation of these expressions would

create fluctuations that are much more intense than the fluctuations of the initial

expressions. Instead, the expression in brackets is fitted to a linear function. The

corresponding time derivative is determined as the slope of this linear function. This is

justified because Q
(b)
L and Q

(b)
T are independent of time after relaxation of the swarm,

and the corresponding expressions in brackets in equations (24) and (25) are linear

functions in time. This method for calculating Q
(b)
L and Q

(b)
T has been further verified

by comparing values of the bulk third-order transport coefficients, that are obtained by

this method, with the corresponding values that are determined by employing numerical

differentiation in time. An additional check was obtained by comparing Q
(b)
L and Q

(b)
T

with Q
(f)
L and Q

(f)
T , respectively, under conditions where non-conservative processes are

absent.
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4. Results and discussion

4.1. Preliminaries

In this paper, we consider the transport of electrons in the Lucas-Saelee model, modified

Ness-Robson model, N2 and CF4. The Ness-Robson model was developed for testing

the multi-term method for solving the Boltzmann equation in the presence of electron

attachment [79]. Nolan and coworkers presented a new gas model that is based on

the Ness-Robson model and the Lucas-Saelee model [72]. In this model the collision

frequency of elastic collisions is independent of energy while the cross section for inelastic

collisions is the same as in the Lucas-Saeele model. In modifying the Ness-Robson

model, which is introduced by Nolan et al. [72], both inelastic collisions and ionisation

are present. The ratio of the cross section for inelastic collisions to the cross section for

ionisation is determined by the F parameter, as in the Lucas-Saelee model. Two different

versions of the modified Ness-Robson model [72] with different functional dependences of

the cross section for electron attachment are considered in this work. In both considered

versions of the modified Ness-Robson model the parameter F is set to zero, implying the

absence of ionisation. The details of the modified Ness-Robson model, in the absence

of ionisation, are given by the following equations:

σel(ǫ) = 4ǫ−1/2Å
2
(elastic collision)

σex(ǫ) =















0.1(ǫ− 15.6) Å
2
, ǫ ≥ 15.6 eV

(inelastic collision)

0, ǫ < 15.6eV

σa(ǫ) = aǫp (electron attachment)

m/m0 = 10−3,

T0 = 0 K , (26)

where σel(ǫ), σex(ǫ), σa(ǫ) are cross sections for elastic collisions, inelastic collisions

and electron attachment, respectively, given as functions of electron energy ǫ, T0 is the

temperature of the background gas, while m and m0 are masses of electrons and of

the molecules of the background gas, respectively. In the above equations, the values

of the electron energy are given in eV. Parameters a and p determine the magnitude

and the functional dependence of the cross section for electron attachment, respectively.

The values of p that are considered in this work include −1.0 and 0.5. These values

correspond to attachment heating and attachment cooling, respectively. The percentage

differences between the third-order transport coefficients determined for each of these

two models and the corresponding values in the model where p = −0.5 are considered

in this work. In the third model the collision frequency for electron attachment is

independent of energy. The values of parameter a, that are used in this work, include

8 · 10−3Å
2
and 5 · 10−4Å

2
. The first value is used for the attachment heating model,

while the second value is used for the attachment cooling model. In the model with

constant collision frequency for electron attachment, this non-conservative process is
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equally frequent at all values of the electron energy, and it does not affect transport

coefficients of any order (excluding the rate coefficient for electron attachment). In this

model the values of the third-order transport tensor are the same as in the conservative

Lucas-Saelee model, where F = 0.

The Lucas-Saelee ionisation model was introduced in order to investigate the

influence of electron-impact ionisation on the electron transport by using Monte Carlo

simulations [83]. Ness and Robson investigated the electron transport in this model, in

order to test the validity of the theory and associated computer code for solving the

Boltzmann equation, in the presence of non-conservative processes [79]. The details of

the Lucas-Saelee model are given by the following equations:

σel(ǫ) = 4ǫ−1/2Å
2
(elastic collision)

σex(ǫ) =















0.1(1− F )(ǫ− 15.6) Å
2
, ǫ ≥ 15.6 eV

(inelastic collision)

0, ǫ < 15.6eV

σI(ǫ) =















0.1F (ǫ− 15.6) Å
2
, ǫ ≥ 15.6 eV

(ionisation)

0, ǫ < 15.6eV

P (q, ǫ′) = 1, m/m0 = 10−3,

T0 = 0 K , (27)

where σI(ǫ) is the cross section for ionisation, P (q, ǫ) is the ionisation partition function,

and F is the parameter that determines the magnitudes of cross sections for inelastic

collisions and ionisation. As the scattering is isotropic in this model σel(ǫ), σex(ǫ),

and σI(ǫ) represent total cross sections. Arguments of the ionisation partition function

P (q, ǫ′), q and ǫ′, are the ratio of total postcollisional energy, that is given to the ejected

electron, and the energy of the initial electron before ionisation, respectively. In this

model, ionisation partition function is set to unity, indicating that all values 0 ≤ q ≤ 1

are equally probable.

The set of cross sections for electron scattering in N2, which is used in this work, is

detailed in [63]. It includes elastic momentum transfer cross section, as well as the total

cross section for rotational excitations, and cross sections for vibrational excitations,

electronic excitations and electron-impact ionisation. The set of cross sections for

electron scattering in CF4, which is employed in this work, was developed and discussed

by Kurihara and coworkers [84]. It includes elastic momentum transfer cross section,

cross sections for vibrational excitations, electronic excitations, electron attachment,

and ionisation. For some aspects of this work, it was necessary to consider the electron

transport in CH4. These results are obtained by using the cross sections developed by

Šašić et al. [85].

The results for the model and the real gases were obtained from the Monte Carlo

simulations and numerical multi-term solution of the Boltzmann equation. In particular,

it was necessary to follow a large number of electrons (at least 107) in our Monte Carlo
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simulations in order to calculate third-order transport coefficients accurately, due to high

statistical fluctuations of individual terms appearing in expressions (24) and (25). It was

also necessary to determine the phase space distribution function with a high degree of

precision in order to calculate the third-order transport coefficients from the multi-term

method. While the number of spherical harmonics indicates the degree of anisotropy

of the phase space distribution function in velocity space, the number of Sonine

polynomials is indicative of the deviation of the energy dependence of the distribution

function from a Maxwellian at a particular temperature Tb not necessarily equal to

the gas temperature T0. Third-order transport coefficients are more sensitive to the

shape of the phase space distribution function than transport coefficients of lower order.

For this reason it was necessary to include a large number of spherical harmonics and

Sonine polynomials to achieve the convergence of the third-order transport coefficients,

in the presence of strong inelastic and/or non-conservative collisions. For example, the

required numbers of lmax and νmax were 8 and 90, respectively, for electrons in CF4. This

was especially pronounced in the energy region where the cross sections for vibrational

excitations are rapidly rising functions of electron energy, while the cross section for

elastic collisions is being reduced with increasing electron energy. The solutions of the

Boltzmann equation are not determined for E/n0 > 300 Td, as the convergence of

the transport coefficients was poor in this field region. For this reason, we have only

displayed the Monte Carlo results in the field range above 300 Td.

4.2. Variation of the flux third-order transport coefficients with E/n0 for electrons in

N2 and CF4

In figure 1 (a) and 1 (b) we show the mean energy for an electron swarm in N2, and

CF4, respectively, as a function of the reduced electric field, E/n0. At the lowest fields

the mean energy is thermal in both gases, while it is rising with increasing E/n0 at

higher fields. The slope of the mean energy is determined by collisions of electrons with

atoms/molecules of the background gas [84]. The profiles of the mean energy are useful

for analysing the field dependence of the third-order transport coefficients. From these

profiles one can determine which collisional processes dominate electron transport in a

given field range.

In this section, we study the behaviour of the components of the flux third-order

transport tensor for electrons in N2 and CF4 in the presence of an electric field. It

has been previously shown that the rise of E/n0 under constant collision frequency

conditions leads to an increase of the components of the third-order transport coefficient

tensor [57]. It has also been shown that the increase of the collision frequency with

increasing energy may lead to a decrease of the components of this tensor, as well

as to negative values of these components, if the rise of the collision frequency is steep

enough [57,68]. For this reason, the E/n0-profile of the third-order transport coefficients

is determined by the complex interplay between the electric field, which accelerates

electrons and acts to direct their movement along the field lines, and collisions between
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Figure 1. Mean energy of electron swarm in (a) N2 and (b) CF4, as a function of

the reduced electric field. These results are obtained by using multi term theory for

solving the Boltzmann equation up to about 300 Td and by employing Monte Carlo

simulations at higher fields.

electrons and atoms/molecules of the background gas, which dissipate electron energy

and momentum. Although it is possible to analyse E/n0 profiles of the third-order

transport coefficients directly from the mean energy of electrons and collision frequencies

for individual collisional processes, such analysis is often quite complicated and tedious.

Therefore, in this section we briefly discuss the general E/n0-profiles of the third-order

transport coefficients for electrons in N2 and CF4, while a more detailed analysis is

reserved only for the unusual and unexpected aspects of the behaviour of these transport

properties. A more detailed study of the behaviour of Q(f)
zzz and Q

(f)
T for electrons in N2

and CF4 is presented in section 4.4.

In figure 2 we show the independent components of the third-order flux transport

tensor for electrons in N2 as functions of E/n0. In addition, we also show the variation

of n2
0Q

(f)
T with E/n0. The Q(f)

zxx component is negative, while the remaining quantities

are positive over the entire E/n0 range considered. Negative values of Q(f)
zxx can be

attributed to the rise of the collision frequency for elastic and inelastic collisions with

increasing electron energy. This phenomenon has been observed for electrons in both

model and real gases [57, 61, 68]. It can be seen from figure 2 that the absolute values

of quantities have a similar qualitative dependance on E/n0. Specifically, the absolute

values of these transport coefficients have two local maximums at about 1.3 Td and 150

Td, and a local minimum at around 46 Td.

In figure 3 we show the three independent components of the flux third-order

transport tensor for electrons in CF4 as functions of E/n0. In the same figure we

show the variation of n2
0Q

(f)
T with E/n0. At the lowest fields, all quantities are positive,

and increasing functions E/n0 up to about 0.14 Td in the case of Q(f)
zzz, and up to about

0.18 Td in the case of the remaining quantities. At higher fields these quantities are

being reduced and they become negative. The Q(f)
zxx component becomes negative at

about 2 Td. The remaining transport coefficients become negative at about 0.9 Td,

and they reach a local minimum at around 1.6 Td. These quantities become positive
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Figure 2. Independent components of the flux third-order transport tensor and n2
0Q

(f)
T

as functions of E/n0 for electrons in N2. The results are obtained from numerical

multi-term solutions of the Boltzmann equation.

again at about 7.5 Td. The Q(f)
xxz and Q(f)

zzz components remain positive until the end of

the considered range of E/n0, while the Q(f)
zxx component remains negative. The Q(f)

zzz

component has two local maximums at about 20 Td and 170 Td and a local minimum

at around 27 Td. The Q(f)
xxz component and Q

(f)
T have a local maximum at about 31 Td

and 25 Td, and a local minimum at around 120 Td and 100 Td, respectively. The Q(f)
zxx

component has a local minimum at about 33 Td. At the lowest E/n0, all quantities

that are displayed in figure 3 are rising functions of E/n0. This can be attributed to a

negligible rise of the mean energy with increasing field in this E/n0 region, which leads

to a small change of the mean collision frequency for elastic and inelastic collisions. At

higher fields, the rise of the mean energy and mean collision frequency for vibrational

excitations with increasing E/n0, become more significant, which in turn induces a

decrease of the third-order transport coefficients.

We now focus on the negative values of the third-order transport coefficients

for electrons in CF4. As discussed elsewhere [57, 69], the bulk third-order transport

tensor represents asymmetric deviation of the spatial distribution of the swarm from

an ideal Gaussian. This deviation is caused by different rates of spread of electrons

at the swarm front and at the back of the swarm. Due to this difference, different

parts of the normalized spatial distribution of electrons may seem elongated or

compressed when compared to an ideal Gaussian. Specifically, Q(b)
zzz component describes

elongation/contraction of the spatial distribution of electrons at the leading edge of the

swarm, and the opposite deformation at its trailing edge. A negative value of the Q(b)
zzz

component implies that the normalized spatial distribution of electrons is compressed

(when compared to an ideal Gaussian) along the longitudinal direction at the front of

the swarm and expanded along the same direction at the back of the swarm. Similarly,

a negative value of Q
(b)
T implies that the normalized spatial distribution of electrons is
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Figure 3. Independent components of the third-order transport tensor and n2
0Q

(f)
T

as functions of E/n0 for electrons in CF4. The results are obtained from numerical

multi-term solutions of the Boltzmann equation.

compressed (relative to an ideal Gaussian) along the transverse direction at the swarm

front and expanded along the same direction at the back of the swarm. It is important

to emphasize that the spatial distribution of electrons is not being actually compressed

in time. Instead, in some regions of space the effective rate of spread of electrons, that

is represented by both third-order transport coefficients and diffusion, is smaller than

the corresponding rate of spread that would be represented by diffusion alone. In these

regions of space, the normalized spatial distribution of electrons seems compressed when

compared to an ideal Gaussian. For E/n0 less than approximately 10 Td, the impact

of non-conservative collisions is minimal, and thereby the bulk values of the third-order

transport coefficients are equal to the corresponding flux values (see figure 13). In the

field region around 0.9 Td, where Q(f)
zzz, Q

(f)
xxz and Q

(f)
T become negative, electrons with

energies that are 3 times higher than the mean energy are in the energy region around

0.2 eV, where the cross sections for two vibrational excitations of the CF4 molecule

reach their global maximums [84]. These cross sections are denoted as Qv1 and Qv3 in

Table 1 or reference [84] and their thresholds are 0.108 eV and 0.168 eV, respectively.

Moreover, Qv1 overestimates the elastic momentum transfer cross section in the energy

range between approximately 0.12 eV and 0.58 eV. The same holds for Qv3 in the

energy range between approximately 0.17 eV and 2.6 eV. Thus, in the field region

around 0.9 Td where Q(f)
xxz, Q

(f)
zzz and Q

(f)
T become negative, the high energy tail of the

distribution function is in the energy range where the electron transport is dominated

by vibrational excitations. As the mean energy of electrons is increasing in the positive

direction (direction of the force acting upon electrons), the intense energy losses due

to the vibration excitations create a strong resistance to the spreading of the swarm

at its front in the longitudinal and transverse directions. This resistance leads to the
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Figure 4. Transverse flux third-order transport coefficients n2
0Q

(f)
T and the flux drift

velocity W (f) as functions of E/n0 for electrons in (a) CF4 and (b) CH4. The results

are obtained by employing the multi-term theory for solving the Boltzmann equation

up to about 300 Td for electrons in CF4, and up to 600 Td for electrons in CH4, and

by using Monte Carlo simulations at higher fields.

compression of the spatial distribution of electrons at the front of the swarm along both

longitudinal and transverse directions, while this spatial distribution is more expanded

along both these directions at the back of the swarm. Such deviation of the spatial

profile of electrons from an ideal Gaussian is manifested through negative values of Qzzz

and QT (in both flux and bulk case).

In figures 4 (a) and (b), we show the variation of n2
0Q

(f)
T and W (f) with E/n0 for

electrons in CF4 and CH4, respectively. It should be noted that some general aspects of

the behaviour of third-order transport coefficients for electrons in CH4 were discussed in

our previous publication [61]. CH4 was introduced here in order to observe relationship

of negative values of the higher order transport coefficients with the negative differential

conductivity (NDC) for drift velocity. We observe from figures 4 (a) and (b) that the drift

velocity of electrons in both CF4 and CH4 exhibits NDC. NDC refers to the decrease in

drift velocity with an increase in the reduced electric field E/n0. To understand NDC,

it is necessary to consider the rates of momentum and energy transfer in elastic and

inelastic collisions [86]. Interestingly, QT has negative values between approximately 70

Td and 140 Td in CF4. This approximately corresponds to the field region beyond the

end of the NDC where drift velocity begins to rise rapidly (almost reaching its maxmum

value before the NDC). A similar relationship exists in the E/n0-profile of the electron

drift velocity in CH4. However, in CH4, QT becomes negative at the beginning of the

NDC much earlier than in CF4.

The qualitative behaviour of the individual off-diagonal components of the third-

order transport tensor over the range of E/n0, where NDC occurs, is different for

electrons in CF4 and CH4. For electrons in CF4 theQ
(f)
xxz component is positive, while the

Q(f)
zxx component is negative, over the entire range of E/n0, corresponding to the NDC.

For the electrons in CH4, however, the Q(f)
xxz component becomes negative shortly after

the start of the NDC, while Q(f)
zxx becomes positive at a slightly larger field. The Q(f)

xxz

component becomes positive again for electrons in CH4, for the value of E/n0 where Q
(f)
T

becomes positive. Thus, it is difficult to find out more about the behaviour of individual
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off-diagonal components of the third-order transport tensor, from the presence of NDC

in the E/n0-profile of drift velocity in a given field region, due to the complexity of

various factors that determine the behaviour of the third-order transport coefficients.

However, it is evident that negative values of Q
(f)
T can arise in the vicinity of the field

region where NDC occurs. Negative values of Q
(f)
T imply the compression of the spatial

profile of the swarm along the transverse direction at the front of the swarm, and the

expansion of this profile along the same direction at the back of the swarm [57]. This

implies that the rapid increase of collision frequency for elastic collisions, which leads to

a greater randomization of velocity vectors of the individual electrons and the occurrence

of NDC, can also hinder transverse spreading of electrons at the swarm front, where the

mean energy of electrons is higher than that at the back of the swarm. This is manifested

through negative values of Q
(f)
T . However, this does not lead to negative values of Q

(f)
L , as

they occur only when the spatial profile of the swarm is skewed in the direction opposite

to the direction of drift velocity. This kind of deformation requires a strong resistance

to the motion of electrons in the direction of drift velocity, which is more easily achieved

with inelastic and non-conservative collisions, when the corresponding cross sections

are large enough. It can be seen that Q
(f)
T is negative in the majority of region where

Q
(f)
L is negative for electrons in CF4, as it is easier to achieve negative values of Q

(f)
T

than negative values of Q
(f)
L . Thus, one may conclude that the concurrence between

drift velocity and Q
(f)
T can be attributed to the corresponding collisions which lead to

the occurrence of NDC and to the compression of the spatial distribution of the swarm

along the transverse direction at the front of the swarm. However, we observe that for

the electrons in CF4 negative values of Q
(f)
T occur only in a small field range after the

NDC. Therefore, the presence of NDC at a certain value of E/n0 does not necessarily

result in a negative value of Q
(f)
T for these electric fields, but again the conditions in the

momentum and energy balances that lead to NDC also favour negative values of QT

depending on the balance of different competing processes. The concurrence between

the transport coefficients of the third-order and the drift velocity is therefore much less

pronounced than the concurrence between the transport coefficients of the third-order

and diffusion. It would be interesting to investigate the behaviour of Q
(f)
T and Q

(b)
T

in strongly attaching gases under conditions in which NDC occurs only for bulk drift

velocity, due to electron attachment [87,88]. This will be considered in the near future.

It is striking that although similar in the shape of the cross sections the two gases

exhibit very different dependences of the NDC. For CF4 the NDC minimum is much

shallower and occurs at higher E/n0. The depth of the NDC is normally promoted

by the separate control of the mean energy and momentum transfer by cross sections

that control the energy exchange and momentum transfer. Positioning of vibrational

excitation cross sections and overlap of their influences will at the same time affect the

magnitude of the peak in drift velocity induced by the inelastic processes and also the

onset and overall effect of the NDC.

In figures 5 and 6, we show comparison between the two-term and converged multi-

term solutions of the Boltzmann equation for electrons in N2 and CF4, respectively. The
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Figure 5. Comparison between the flux third-order transport coefficients obtained by

the two-term approximation and multi-term theory for solving the Boltzmann equation.

Calculations are performed for electrons in N2.
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Figure 6. Comparison between the flux third-order transport coefficients obtained by

the two-term approximation and multi-term theory for solving the Boltzmann equation.

Calculations are performed for electrons in CF4.
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E/n0 profiles of the independent components of the flux third-order transport tensor,

including n2
0Q

(f)
xxz, n

2
0Q

(f)
zxx and n2

0Q
(f)
zzz are shown. In addition, the variation of n2

0Q
(f)
T

with E/n0 is also shown. Comparing two-term and multi-term results for electrons

in N2, it is evident that for the low values of E/n0 the agreement is good while the

maximum error in the two-term approximation occurs at the highest fields. For electrons

in CF4, however, there is a significant difference between the two-term and multi-term

solutions of the Boltzmann equation over the entire range of E/n0 considered in this

work, except in the limit of the lowest E/n0. In contrast to N2, the two-term and

multi-term results are qualitatively different in CF4, indicating that sometimes the two-

term theory predicts physics that is not entirely correct. The maximum errors of the

two-term approximation occur over the range of E/n0 values where n2
0Q

(f)
zzz is negative.

This happens at electron energies where elastic momentum transfer is approximately

at a minimum while inelastic collisions which lead to the vibrational excitations of CF4

molecule became significant and are approximately at their maximum. This induces a

large asymmetry of the distribution function in velocity space which makes the two-term

approximation inadequate for studying the third-order transport coefficients. Thus, it is

important to note that neglecting higher terms in the spherical harmonic expansion of

the phase space distribution function has a much more pronounced effect for third order

transport coefficients than for lower order transport coefficients. For electrons in CF4

the third-order transport coefficients determined by using the two-term approximation

are not even qualitatively correct.

4.3. The influence of non-conservative processes on the third-order transport

coefficients

4.3.1. The influence of electron attachment on the third-order transport coefficients

for electrons in the modified Ness-Robson model The bulk and flux values of the

longitudinal and transverse components of the third-order transport tensor for electrons

in the Ness-Robson attachment heating model, are shown in figures 7 (a) and (b),

respectively. In this model the slower electrons at the back of the swarm are

preferentially attached. As a consequence, the bulk values of QL and QT exceed the

corresponding flux values for lower values of E/n0, e.g., up to about 3.8 Td for QL and

5 Td for QT .

For higher values of E/n0, up to about 8 Td for QL and 17 Td for QT , the flux

values are greater than the corresponding bulk values, although this effect is in the limit

of statistical error of Monte Carlo simulations in the case of QT . This can be attributed

to a combination of two factors. The first factor is the decreased number of low-energy

electrons at the back of the swarm, due to the rise of the mean energy with increasing

field. The second factor is the increased number of low-energy electrons at the front

of the swarm, due to the influence of inelastic collisions, which are more frequent at

the front of the swarm. In the limit of the highest fields, higher than 8 Td for QL and

17 Td for QT , the difference between flux and bulk values of the third-order transport
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Figure 7. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for

electrons in the modified Ness-Robson attachment heating model. The results are

obtained from numerical multi-term solutions of the Boltzmann equation (MT) and

Monte Carlo simulations (MC).
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Figure 8. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for

electrons in the modified Ness-Robson attachment cooling model. The results are

obtained from numerical multi-term solutions of the Boltzmann equation (MT) and

Monte Carlo simulations (MC).

coefficients is negligible for electrons in this model gas.

The bulk and flux values of the longitudinal and transverse components of the third-

order transport tensor for electrons in the Ness-Robson attachment cooling model, are

shown in figures 8 (a) and (b), respectively. In this model the faster electrons at the

front of the swarm, where the mean energy is higher, are preferentially attached. As a

consequence, for lower values of E/n0 bulk values are lower than the corresponding flux

values. We observe that this effect is within the statistical uncertainty of Monte Carlo

simulations for QT . However, for higher values of E/n0 (from approximately 5 Td)

bulk values are larger than the corresponding flux values in case of QL, although this

difference is lower than the statistical error of Monte Carlo simulations. For E/n0 ≥ 10

Td Q
(f)
L and Q

(b)
L are practically equal. Similar behaviour is observed for QT , because

for E/n0 ≥ 7 Td Q
(f)
T and Q

(b)
T coincide. Between 5 Td and 10 Td, Q

(b)
L exceeds Q

(f)
L

due to the interplay of inelastic collisions and the increase of the mean electron energy
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Figure 9. Percentage differences between the values of (a) Q
(f)
L and (b) Q

(b)
L for

electrons in two different versions of the modified Ness-Robson model. Calculations

are performed by the Monte Carlo method in the modified Ness-Robson attachment

heating model and in the modified Ness-Robson model with a constant collision

frequency for electron attachment.

with increasing E/n0, as in the case of the attachment heating model.

In figure 9 the percentage difference in the longitudinal component of the third-order

transport tensor calculated using the modified Ness-Robson models with the attachment

heating and with a constant collision frequency for electron attachment, are shown.

Panel (a) shows the difference between the flux values, while the panel (b) displays the

difference between the bulk values. The percentage differences are calculated using the

expression: Qheating
L /Qconstant

L − 1. The difference between flux values of QL in these

two models is caused by the implicit effects of electron attachment, while the difference

between the corresponding bulk values is induced by a combined effect of implicit and

explicit effects of electron attachment. Comparing panels (a) and (b) in the limit of

the lowest E/n0, we observe that QL is much higher in the attachment heating model

than in the model with a constant collision frequency for electron attachment, for both

bulk and flux values. It is also evident that these differences are much more pronounced

in the case of bulk third-order transport coefficients. These differences decrease with

increasing E/n0 and become even negative over a limited range of E/n0. As E/n0

further increases, the differences tend to zero. It should be noted that negative values of

these quantities can be attributed to the influence of inelastic collisions, although these

values are within the statistical uncertainty of Monte Carlo simulations.

Similarly, figure 10 shows the difference in QL calculated using the modified Ness-

Robson models with the attachment cooling and with a constant collision frequency for

electron attachment. Results for Q
(f)
L and Q

(b)
L are shown in panel (a) and panel (b),

respectively. In this case, the following expression is used for calculating the percentage

difference: Qcooling
L /Qconstant

L − 1. The values of this expression for the longitudinal

components of both flux and bulk third-order transport tensor are decreasing functions

of E/n0 up to about 4 Td where they reach a local minimum, which is equal to around

-20% and about -50% for Q
(f)
L and Q

(b)
L , respectively. For higher values of E/n0 these

differences are being increased and they reach a local maximum at around 10 Td in
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Figure 10. Percentage differences between the values of (a) Q
(f)
L and (b) Q

(b)
L for

electrons in two different versions of the modified Ness-Robson model. Calculations are

performed by the Monte Carlo method in the modified Ness-Robson attachment cooling

model and in the modified Ness-Robson model with a constant collision frequency for

electron attachment.
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Figure 11. Comparison of the bulk and flux values of (a) n2
0Qzzz and (b) n2

0QT for

electrons in the ionisation model of Lucas and Saelee. The results are obtained from

numerical multi-term solutions of the Boltzmann equation (MT) and Monte Carlo

simulations (MC).

the case of Q
(f)
L and at about 8 Td in the case of Q

(b)
L . This local maximum has a

positive value, although this value is within the statistical uncertainty of Monte Carlo

simulations. As E/n0 further increases, these differences converge to zero.

4.3.2. The influence of ionisation on the third-order transport coefficients for electrons

in Lucas-Saelee model, N2 and CF4 The variation of the flux and bulk QL with E/n0

of electrons in the Lucas-Saelee model for three values of the parameter F is displayed

in figure 11 (a). Likewise, figure 11 (b) shows the flux and bulk QT as a function of

E/n0. We observe that bulk values are larger than the corresponding flux values for

F = 0.5 and F = 1, due to explicit effects of ionisation on the third-order transport

coefficients. Comparing QL and QT , we see that the difference between bulk and flux

values in this model is much higher forQT . This can be attributed to strong inelastic and

non-conservative collisions that provide strong resistance to the spread of the swarm in

the direction of the drift velocity. This significantly inhibits the elongation of the spatial
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Figure 12. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for

electrons in N2. The results are obtained from numerical multi-term solutions of the

Boltzmann equation (MT) and Monte Carlo simulations (MC).

distribution of the swarm in the longitudinal direction under the influence of ionisation.

We observe from figure 11 that the flux values of QL and QT are reduced with

increasing parameter F due to ionisation cooling of the swarm. This illustrates the

implicit effects of ionisation on the third-order transport coefficients. We also note that

bulk values of QL and QT are being reduced with increasing F . This indicates that

the influence of the implicit effects of ionisation on the third-order transport tensor is

stronger than the corresponding influence of the explicit effects.

Figures 12 (a) and (b) display the differences between flux and bulk values ofQL and

QT respectively, for electrons in N2. The differences between the flux and bulk values

of QL and QT for electrons in CF4 are shown in figures 13 (a) and (b), respectively. We

observe that bulk values of QL and QT are larger than the corresponding flux values in

both gasses at high electric fields, where electrons undergo many ionisation collisions.

Comparing N2 and CF4 on one side, and the Lucas-Saelee ionisation model on the other

side, we observe that the impact of the explicit effects on the longitudinal component

of the third-order transport tensor is much stronger for real gases. This follows from

the fact that the minimal impact of the explicit effects of ionisation on QL for electrons

in the ionisation model of Lucas and Saelee can be attributed to the specific energy

dependence of cross sections for inelastic collisions and ionisation. Generally speaking,

the qualitative behaviour of the third-order transport coefficients with increasing E/n0

is the same in the case of flux and bulk values. However, for electrons in N2, we observe

that the bulk values of QL and QT reach their last local minimum at the lower E/n0 than

the corresponding flux values. Specifically, Q
(b)
L and Q

(b)
T reach their last local minimum

at about 220 Td, while Q
(f)
L and Q

(f)
T reach their last local minimum at around 370 Td.

We also observe from figures 12 and 13 that the results evaluated by multi term solution

to the Boltzmann equation and those obtained in Monte Carlo simulations agree very

well.
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Figure 13. Comparison of the bulk and flux values of (a) n2
0QL and (b) n2

0QT for

electrons in CF4. The results are obtained from numerical multi-term solutions of the

Boltzmann equation (MT) and Monte Carlo simulations (MC).
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Figure 14. Concurrence of the third-order transport coefficients and diffusion

coefficients for electrons in (a) N2 and (b) CF4. For E/n0 ≤ 300 Td, the results

are calculated from numerical multi-term solutions of the Boltzmann equation, while

for E/n0 > 300 Td the results are obtained from Monte Carlo simulations.

4.4. Concurrence of the third-order transport coefficients and diffusion, the

contribution of Q
(b)
L to the spatial profile of the swarm and the comparison of Q

(b)
L

values obtained in this work with results of previous authors

The concurrence between third-order transport coefficients and diffusion coefficients for

electrons in N2 and CF4 is illustrated by figures 14 (a) and (b). Preliminary results in
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the study of this concurrence for electrons in CH4 and noble gases have already been

discussed [61, 68].

Specifically, for higher values of E/n0 we observe that Q
(f)
L is a rising function of

E/n0 when D
(f)
L increases as a convex (or linear) function of E/n0 in the log-log scale.

One may also observe that Q
(f)
L is reduced when D

(f)
L decreases, or when D

(f)
L rises as a

concave function of the field in the log-log scale. This concurrence is absent in the limit

of the lowest E/n0 because the third-order transport coefficients vanish in this range of

fields unlike diffusion coefficients which have non-zero thermal values.

As can be seen in figure 14 (a) the concurrence between Q
(f)
L and D

(f)
L for electrons

in N2 is present in the entire field region above 0.21 Td. For electrons in CF4, we observe

that the concurrence between Q
(f)
L and D

(f)
L is present in the subset of the field range

above 0.02 Td, where Q
(f)
L is positive (see figure 14 (b)). However, this concurrence

is absent in the field range between 1.6 Td and 8.5 Td, as Q
(f)
L rises with increasing

E/n0 although D
(f)
L is being reduced in this field range. It is important to note that

Q
(f)
L has negative values over the range of E/n0 in this field region. Further increase

of the absolute value of Q
(f)
L , while this component is negative, would imply a further

skewing of the spatial profile of the swarm in the negative direction (opposite to the

drift velocity) along the longitudinal axis. Although the rise of the collision frequency

for vibrational excitations with increasing E/n0 is strong enough to cause a decrease

of D
(f)
L , it is not strong enough to induce further skewing of the spatial profile of the

swarm in the negative direction. It is interesting to note that the concurrence between

Q
(f)
L and D

(f)
L is again present at about 8.5 Td, which is slightly above the field where

Q
(f)
L becomes positive again (at around 7 Td).

For electrons in N2, the qualitative trends of D
(f)
L and D

(f)
T are the same in the

field range above 0.21 Td, where the concurrence between Q
(f)
L and D

(f)
L is clearly

evident. Thus, it is difficult to determine if the E/n0 profile of Q
(f)
T is more related to

the corresponding profile of D
(f)
L or D

(f)
T in the case of N2. For electrons in CF4, E/n0

profile of Q
(f)
T is related to the corresponding profile of D

(f)
T in most of the field range

where Q
(f)
T is positive. The concurrence between these two transport coefficients in CF4

is equivalent to the concurrence between Q
(f)
L and D

(f)
L , which is already discussed in

this paper. This concurrence is absent in the field region between approximately 100 Td

and 170 Td. However, Q
(f)
T is negative up to around 140 Td. Thus, the field dependence

of Q
(f)
T is not related to the field dependence of diffusion in the field range where it is

negative, and in the vicinity of the field where it becomes positive, similarly to Q
(f)
L .

The physical reasons for the observed concurrence between the third-order transport

coefficients and diffusion coefficients have been discussed in our previous paper [68]

for the example of atomic gases with considerably simpler sets of cross sections. The

third-order transport coefficients represent a small asymmetric correction to diffusive

motion, that is represented by the components of the diffusion tensor. As discussed

previously [57], the rise of the reduced electric field leads to an increase of the directional

component of electron velocity (in the absence of NDC) and to an increase of the electron

energy. These two effects favor the increase of the third-order transport coefficients if
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Figure 15. The values of the ratio |Q(b)
L |/(D(b)

L )3/2 for electrons in N2, CF4 and CH4

as functions of E/n0. For E/n0 ≤ 100 Td, where the differences between the bulk and

flux values are negligible, the results are obtained from numerical multi-term solutions

of the Boltzmann equation, while for higher values of E/n0 the results are obtained in

Monte Carlo simulations.

the frequency of electron collisions with atoms/molecules of the background gas is not

rising with increasing energy. However, if the collision frequency is rising steeply enough

with increasing electron energy, this leads to a reduction of the third-order transport

coefficients. The same holds for the components of the diffusion tensor, which are also

quenched by elastic and inelastic collisions. Comparing these two sets of transport

coefficients, third-order transport coefficients represent a form of motion that ’carries’

a smaller amount of energy and momentum, and as such they are much more sensitive

to collisions with the background gas, than the components of the diffusion tensor.

This suggests that for a sufficiently high E/n0, the third-order transport coefficients

are reduced with increasing E/n0, if the diffusion is being reduced, and even if the

slope of diffusion in the log-log scale decreases with increasing E/n0. However, this

concurrence is absent at the lowest fields and under conditions in which third-order

transport coefficients are negative, due to reasons that are already discussed in this

manuscript.

In figure 15 we show the values of the ratio |Q(b)
L |/(D(b)

L )3/2 for electrons in N2, CF4

and CH4, as functions of E/n0. Calculations are performed assuming the concentration

of background molecules n0 = 3.54 · 1022 m−3. This ratio determines the contribution

of the longitudinal component of the third-order transport tensor to the spatial profile

of the swarm, as can be seen from equation (6). From this figure, we observe that the

contribution of Q
(b)
L to the spatial profile of the swarm is larger in CH4 than in the

remaining two gases for E/n0 lower than 0.1 Td and for E/n0 between 21 Td and 46

Td. For E/n0 between 0.13 Td and 17 Td the quantity |Q(b)
L |/(D(b)

L )3/2 is larger in N2
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Figure 16. Comparison of the values of n2
0Q

(b)
L , that are determined in this work, with

the results of Kawaguchi et al. [58]. In this figure n2
0D3L represents simulation results

from the reference [58] that are determined from equation (24) by employing Monte

Carlo simulations, while n2
0D

α3

3L represents n2
0Q

(b)
L that are determined in reference [58]

form alpha parameters, after neglecting alpha paramethers of fourth and higher order.

Experimental results of Kawaguchi et al. are represented by black circles, while results

that are obtained from Monte Carlo simulations are represented by a combination of

symbols and continuous lines.

than in CH4 and CF4. For E/n0 between 70 Td and 300 Td this ratio is slightly lower in

CH4 than in the remaining two gases. For E/n0 between 400 Td and 1000 Td this ratio

is lower in CF4 than in N2 and CH4. It is interesting to note that differences between

the values of |Q(b)
L |/(D(b)

L )3/2 in N2, CH4 and CF4 do not exceed the factor of three in the

field range between 50 Td and 700 Td. In most of this region, these differences do not

exceed the factor of two. Moreover, the values of this ratio are very close to each other

for electrons in these three gases in the field range between 200 Td and 450 Td. This

indicates that n2
0Q

(b)
L can be measured in CH4 and CF4, in the field range between 50 Td

and 700 Td, under similar experimental conditions that were applied for measurements

in N2. Recently Kawaguchi and coworkers using a Monte Carlo simulation technique

have shown that n2
0Q

(b)
L can be measured in CH4 and SF6 in the arrival time spectra

experiment [70].

In figure 16 we show the comparison of the longitudinal component of the third-

order transport tensor n2
0Q

(b)
L for electrons in N2 with the corresponding values that

are determined by Kawaguchi et al. [58]. In this figure, n2
0D3L is determined from

Monte Carlo simulations by using equation (24), while n2
0D

α3

3L is evaluated from the

alpha parameters based on equation (25) from reference [58] by neglecting the alpha

parameters of fourth and higher order. Kawaguchi and coworkers determined alpha

parameters from the arrival time spectra experiment and the Monte Carlo simulations.

All results are in an excellent agreement up to about 130 Td, while differences between
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these sets of results become noticeable at higher values of E/n0. Our calculated

values of n2
0Q

(b)
L are somewhat lower than the theoretical results of Kawaguchi et al.

for E/n0 between 130 Td and 460 Td. For higher values of E/n0 our results are

significantly lower than n2
0D3L and somewhat below n2

0D
α3

3L until approximately 770

Td. At around 1000 Td the value of n2
0Q

(b)
L in the present calculations, is somewhat

above the theoretical values of n2
0D

α3

3L that are determined by Kawaguchi et al. The

difference between our calculations of n2
0Q

(b)
L and those of Kawaguchi and co-workers

for n2
0D3L is a clear indication of different sets of cross sections used as input data in

Monte Carlo simulations. The sensitivity of the third-order transport coefficients to the

cross sections used in the transport calculations was demonstrated by Kawaguchi and

coworkers [62]. The deviation of n2
0D

α3

3L from n2
0D3L for higher values of E/n0 can be

attributed to neglecting alpha parameters of fourth and higher order in equation from

which the values of n2
0D

α3

3L are determined, as discussed by Kawaguchi et al. [58]. Our

calculations of n2
0Q

(b)
L and experimental values of n2

0D
α3

3L agree very well up to about

600 Td. If we take a careful look, we observe that our calculations are somewhat

below experimental values up to about 100 Td and somewhat above experimental

results until approximately 500 Td. For higher values of E/n0, however, our results

are significantly below experimental points. For E/n0 = 600 Td our calculations of

n2
0Q

(b)
L are within the experimental error, while at 700 Td they are significantly below

the lower boundary of experimental results at 700 Td. Strictly speaking, n2
0Q

(b)
L and

n2
0D

α3

3L cannot be directly equated, because n2
0D

α3

3L represents an approximation of n2
0Q

(b)
L

when the fourth and higher order alpha parameters are negligible. Strict comparison

with experimental results obtained by Kawaguchi and coworkers [58] would be possible

if n2
0D

α3

3L was determined using measured or calculated alpha parameters.

5. Conclusion

In this paper, we have investigated the behaviour of the third-order transport coefficients

for electrons in N2 and CF4. Calculations have been performed using a multi-term theory

for solving the Boltzmann equation and Monte Carlo simulation technique. The initial

Monte Carlo code has been extended to allow the calculations of third-order transport

coefficients in the presence of non-conservative collisions. We found that the moment

method for solving the Boltzmann equation works very well for the third-order transport

coefficients, and is particularly fast and accurate for model gases.

One of the most striking phenomena observed in the present work is the occurrence

of negative values in the E/n0-profiles of n
2
0Q

(f)
xxz and n2

0Q
(f)
zzz for electrons in CF4. After

the relaxation of the swarm to the steady-state, transport coefficients of the third-order

attain negative values over the range of electron energies where the most energetic

electrons may undergo many collisions leading to the vibrational excitation of CF4

molecule. We have also noticed that the occurrence of negative values in the E/n0-

profiles of n2
0Q

(f)
xxz and n2

0Q
(f)
zzz in CF4 takes place in the energy region where the cross

sections for vibrational excitations exceed the cross section for momentum transfer in
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elastic collisions. Likewise, we have also observed that n2
0Q

(f)
T has negative values in

the field region between the end of the occurrence of NDC and the field where the drift

velocity reaches 90% of its initial value before the onset of NDC. Based on the results

presented in this work, it may be assumed that there is a slight concurrence between

n2
0Q

(f)
T and drift velocity. This concurrence refers to the occurrence of negative values

of n2
0Q

(f)
T that are essentially controlled by the collision processes, which promote the

development of NDC.

As the two-term approximation has become a commonplace in the calculation

of electron transport properties in gases and as it forms the foundations of many

publicly available codes for solving the Boltzmann equations, we have been motivated to

investigate its limitations in the context of the present research. Comparisons between

the two-term and multi-term calculations were performed for E/n0 less than 300 Td. For

electrons in N2, the accuracy of the two-term approximation is sufficient to investigate

the behaviour of the third-order transport coefficients in the presence of the electric field.

In contrast, for electrons in CF4 the two-term approximation produces large errors and it

is not even qualitatively correct, particularly over the range of electron energies where

the cross section for transfer of momentum in elastic collisions is at minimum, while

the cross sections of vibrational excitations become significant. This favours a large

asymmetry in the distribution function in the velocity space which in turn renders the

two-term approximation quite inappropriate for the analysis of third-order transport

coefficients.

In the present work, we have studied the implicit and explicit effects of non-

conservative collisions on the third-order transport coefficients. While implicit effects

of non-conservative collisions are induced by direct population and depopulation of the

distribution function in velocity space, the explicit effects are caused by the combined

effects of the energy dependence of non-conservative collisions and spatial variation of

the average energy along the swarm. Using the modified Ness-Robson model with the

attachment heating, we have observed that the bulk values of n2
0QL and n2

0QT are larger

than the corresponding flux values at low electric fields. At intermediate fields the

opposite situation holds: the flux values are larger than the corresponding bulk values.

This behaviour and relationship between the bulk and flux values of both n2
0QL and

n2
0QT , are inverted for the attachment cooling model.

The effects of electron-impact ionisation on the third-order transport coefficients

are analysed for electrons in the ionisation model of Lucas and Saelee, N2 and CF4. For

all gases we considered, bulk values of n2
0QL and n2

0QT are larger than the corresponding

flux values for the higher electric fields. In particular, comparing the explicit influence

of ionisation on n2
0Q

(b)
L and n2

0Q
(b)
T in the ionisation model of Lucas and Saelee, effects

are more pronounced for n2
0Q

(b)
T .

In this work the concurrence between n2
0Q

(f)
L and n0D

(f)
L is analysed. For electrons

in N2 the concurrence is effective over the entire range of the considered E/n0. This

concurrence is also present for electrons in CF4 over the range of E/n0 where n2
0Q

(f)
L is

positive. However, in the field region where n2
0Q

(f)
L is negative, there is a range of E/n0
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values, where n2
0Q

(f)
L is rising although n0D

(f)
L is being reduced. This effect is analysed

using the physical interpretation of the negative values of n2
0Q

(f)
L . The concurrence

between n2
0Q

(f)
T and the components of the diffusion tensor is also investigated. In

particular, for electrons in CF4 we found that the E/n0 profile of n
2
0Q

(f)
T is more related

to the corresponding profile of n0D
(f)
T than to the corresponding profile of n0D

(f)
L .

Contribution of the longitudinal component of the third-order transport tensor to

the spatial profile of the swarm was studied for electrons in N2, CF4 and CH4. This

contribution is proportional to the ratio |Q(b)
L |/(D(b)

L )3/2. Between 50 Td to 700 Td

differences between the values of this ratio for electrons in N2, CF4 and CH4 do not

exceed the factor of 3. More precisely, we have observed that these differences do

not differ from each other by a factor of 2 over the majority of E/n0 values in the

above-mentioned field region. Even though this result of the study seems modest, it

is very important because it shows that the existing experimental infrastructure used

to measure third-order transport coefficients in N2 can be used equally successfully for

measurements of these quantities in other gases.

The present calculations of n2
0Q

(b)
L for electrons in N2 are compared with the

arrival time spectra measurements and Monte Carlo simulations of Kawaguchi and

coworkers [58]. The present calculations and results of Kawaguchi and coworkers agree

very well up to approximately 500 Td. For higher values of E/n0, the discrepancy

between our calculations and those obtained by Kawaguchi and coworkers in Monte

Carlo simulations, may be directly attributed to the details of the cross sections for

electron scattering in N2 used as input data in numerical codes.

It is hoped that the present study will provide an incentive for further theoretical

and experimental studies of the third-order transport coefficients for electrons in gases.

Particular attention has recently been focused on extracting cross-sections from swarm

data [89, 90]. The inclusion of these sensitive higher order transport coefficients, may

result in improved cross-section sets, particularly given the new machine learning

algorithms implemented [91–93]. Our plans for future research include the study of

third-order transport coefficients in the presence of pressure dependent effects and third-

order transport coefficients for positrons in gases of interest for further development and

optimization of positron traps.
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[68] Simonović I, Bošnjaković D, Petrović Z Lj, White R D and Dujko S 2020 Eur. Phys. J. D 74 63
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[74] Dujko S, White R D, Petrović Z Lj and Robson R E 2010 Phys. Rev. E 81 046403



Third-order transport coefficients for electrons in N2 and CF4 34

[75] Robson R E and Ness K F 1986 Phys. Rev. A 33 2068

[76] White R D, Robson R E, Ness K F and Li B 1999 Phys. Rev. E 60 2231

[77] White R D, Robson R E, Dujko S, Nicoletopoulos P and Li B 2009 J. Phys. D: Appl. Phys. 42

194001
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[87] Vrhovac S B and Petrović 1996 Phys. Rev. E, 53 4012
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