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Abstract: In this paper, we obtain an integral formula for the rate distortion function (RDF) of any
Gaussian asymptotically wide sense stationary (AWSS) vector process. Applying this result, we also
obtain an integral formula for the RDF of Gaussian moving average (MA) vector processes and of
Gaussian autoregressive MA (ARMA) AWSS vector processes.

Keywords: rate distortion function; Gaussian vector processes; MA vector processes; ARMA vector
processes; AWSS vector processes

1. Introduction

The present paper focuses on the derivation of a closed-form expression for the rate distortion
function (RDF) of a wide class of vector processes. As stated in [1,2], there exist very few journal
papers in the literature that present closed-form expressions for the RDF of non-stationary processes,
and just one of them deals with non-stationary vector processes [3]. In the present paper, we obtain an
integral formula for the RDF of any real Gaussian asymptotically wide sense stationary (AWSS) vector
process. This new formula generalizes the one given in 1956 by Kolmogorov [4] for real Gaussian
stationary processes and the one given in 1971 by Toms and Berger [3] for real Gaussian autoregressive
(AR) AWSS vector processes of finite order. Applying this new formula, we also obtain an integral
formula for the RDF of real Gaussian moving average (MA) vector processes of infinite order and for
the RDF of real Gaussian ARMA AWSS vector processes of infinite order. AR, MA and ARMA vector
processes are frequently used to model multivariate time series (see, e.g., [5]).

The definition of the AWSS process was first given by Gray (see [6,7]), and it is based on his
concept of asymptotically equivalent sequences of matrices [8]. The integral formulas given in the
present paper are obtained by using some recent results on such sequences of matrices [9–12].

The paper is organized as follows. In Section 2, we set up notation, and we review the concepts of
AWSS, MA and ARMA vector processes and the Kolmogorov formula for the RDF of a real Gaussian
vector. In Section 3, we obtain an integral formula for the RDF of any Gaussian AWSS vector process.
In Section 4, we obtain an integral formula for the RDF of Gaussian MA vector processes and of
Gaussian ARMA AWSS vector processes. We finish the paper with a numerical example where the
RDF of a Gaussian AWSS vector process is computed.

2. Preliminaries

2.1. Notation

In this paper, N, Z, R and C denote the set of natural numbers (i.e., the set of positive integers),
the set of integer numbers, the set of (finite) real numbers and the set of (finite) complex numbers,
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respectively. If m, n ∈ N, then Cm×n, 0m×n and In are the set of all m× n complex matrices, the m× n
zero matrix and the n× n identity matrix, respectively. The symbols > and ∗ denote transpose and
conjugate transpose, respectively. E stands for expectation; i is the imaginary unit; tr denotes trace;
δ stands for the Kronecker delta; and λk(A), k ∈ {1, . . . , n}, are the eigenvalues of an n× n Hermitian
matrix A arranged in decreasing order.

Let An and Bn be nN × nN matrices for all n ∈ N. We write {An} ∼ {Bn} if the sequences {An}
and {Bn} are asymptotically equivalent (see ([9], p. 5673)), that is:

∃M ∈ [0, ∞) : ‖An‖2, ‖Bn‖2 ≤ M ∀n ∈ N

and:

lim
n→∞

‖An − Bn‖F√
n

= 0,

where ‖ · ‖2 and ‖ · ‖F denote the spectral norm and the Frobenius norm, respectively. The original
definition of asymptotically equivalent sequences of matrices, where N = 1, was given by Gray
(see ([6], Section 2.3) or [8]).

Let {xn : n ∈ N} be a random N-dimensional vector process, i.e., xn is a random (column) vector
of dimension N for all n ∈ N. We denote by xn:1 the random vector of dimension nN given by:

xn:1 :=


xn

xn−1

xn−2
...

x1

 , n ∈ N.

Consider a matrix-valued function of a real variable X : R → CN×N , which is continuous and
2π-periodic. For every n ∈ N, we denote by Tn(X) the n× n block Toeplitz matrix with N × N blocks
given by:

Tn(X) := (Xj−k)
n
j,k=1 =


X0 X−1 X−2 · · · X1−n
X1 X0 X−1 · · · X2−n
X2 X1 X0 · · · X3−n

...
...

...
. . .

...
Xn−1 Xn−2 Xn−3 · · · X0

 ,

where {Xk}k∈Z is the sequence of Fourier coefficients of X:

Xk =
1

2π

∫ 2π

0
e−kωiX(ω)dω ∀k ∈ Z.

2.2. AWSS Vector Processes

We first review the well-known concept of the WSS vector process.

Definition 1. Let X : R → CN×N , and suppose that it is continuous and 2π-periodic. A random
N-dimensional vector process {xn : n ∈ N} is said to be WSS (or weakly stationary) with power spectral density
(PSD) X if it has constant mean (i.e., E(xn1) = E(xn2) for all n1, n2 ∈ N) and {E

(
xn:1x∗n:1

)
} = {Tn(X)}.

We now review the definition of the AWSS vector process given in ([11], Definition 7.1).

Definition 2. Let X : R → CN×N , and suppose that it is continuous and 2π-periodic. A random
N-dimensional vector process {xn : n ∈ N} is said to be AWSS with asymptotic PSD (APSD) X if it
has constant mean and {E

(
xn:1x∗n:1

)
} ∼ {Tn(X)}.
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Definition 2 was first introduced by Gray for the case N = 1 (see, e.g., ([6], p. 225)).

2.3. MA and ARMA Vector Processes

We first review the concept of real zero-mean MA vector process (of infinite order).

Definition 3. A real zero-mean random N-dimensional vector process {xn : n ∈ N} is said to be MA if:

xn = wn +
n−1

∑
j=1

G−jwn−j ∀n ∈ N, (1)

where G−j, j ∈ N, are real N × N matrices, {wn : n ∈ N} is a real zero-mean random N-dimensional vector
process and E

(
wn1 w>n2

)
= δn1,n2 Λ for all n1, n2 ∈ N with Λ being an N × N positive definite matrix.

The MA vector process {xn : n ∈ N} in Equation (1) is of finite order if there exists q ∈ N
such that G−j = 0N×N for all j > q. In this case, {xn : n ∈ N} is called an MA(q) vector process
(see, e.g., ([5], Section 2.1)).

Secondly, we review the concept of a real zero-mean ARMA vector process (of infinite order).

Definition 4. A real zero-mean random N-dimensional vector process {xn : n ∈ N} is said to be ARMA if:

xn = wn +
n−1

∑
j=1

G−jwn−j −
n−1

∑
j=1

F−jxn−j ∀n ∈ N, (2)

where G−j and F−j, j ∈ N, are real N × N matrices, {wn : n ∈ N} is a real zero-mean random N-dimensional
vector process and E

(
wn1 w>n2

)
= δn1,n2 Λ for all n1, n2 ∈ N with Λ being an N × N positive definite matrix.

The ARMA vector process {xn : n ∈ N} in Equation (2) is of finite order if there exist p, q ∈ N
such that F−j = 0N×N for all j > p and G−j = 0N×N for all j > q. In this case, {xn : n ∈ N} is called an
ARMA(p, q) vector process (see, e.g., ([5], Section 1.2.2)).

2.4. RDF of Gaussian Vectors

Let {xn : n ∈ N} be a real zero-mean Gaussian N-dimensional vector process satisfying that
E
(
xn:1x>n:1

)
is positive definite for all n ∈ N. If n ∈ N from [4], we know that the RDF of the real

zero-mean Gaussian vector xn:1 is given by:

Rn(D) =
1

nN

nN

∑
k=1

max

{
0,

1
2

ln
λk
(
E
(
xn:1x>n:1

))
θn

}
(3)

with D ∈
(

0,
tr(E(xn:1x>n:1))

nN

)
and where θn is the real number satisfying:

D =
1

nN

nN

∑
k=1

min
{

θn, λk

(
E
(

xn:1x>n:1

))}
.

The RDF of the real zero-mean Gaussian vector process {xn : n ∈ N} is given by:

R(D) := lim
n→∞

Rn(D)

whenever this limit exists.
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3. Integral Formula for the RDF of Gaussian AWSS Vector Processes

Theorem 1. Let {xn : n ∈ N} be a real zero-mean Gaussian AWSS N-dimensional vector process with APSD
X. Suppose that X(ω) is positive definite for all ω ∈ R and that E

(
xn:1x>n:1

)
is positive definite for all n ∈ N.

If D ∈
(

0, tr(X0)
N

)
, then:

R(D) =
1

4πN

∫ 2π

0

N

∑
k=1

max
{

0, ln
λk (X(ω))

θ

}
dω (4)

is the operational RDF of {xn : n ∈ N}, where θ is the real number satisfying:

D =
1

2πN

∫ 2π

0

N

∑
k=1

min {θ, λk (X(ω))} dω. (5)

Proof. See Appendix A.

Corollary 1. Let {xn : n ∈ N} be a real zero-mean Gaussian WSS N-dimensional vector process with PSD X.
Suppose that X(ω) is positive definite for all ω ∈ R. If D ∈

(
0, tr(X0)

N

)
, then:

R(D) =
1

4πN

∫ 2π

0

N

∑
k=1

max
{

0, ln
λk (X(ω))

θ

}
dω, (6)

where θ is the real number satisfying:

D =
1

2πN

∫ 2π

0

N

∑
k=1

min {θ, λk (X(ω))} dω.

Proof. See Appendix B.

The integral formula given in Equation (6) was presented by Kafedziski in ([13], Equation (20)).
However, the proof that he proposed was not complete, because although Kafedziski pointed out
that ([13], Equation (20)) can be directly proven by applying the Szegö theorem for block Toeplitz
matrices ([14], Theorem 3), the Szegö theorem cannot be applied since the parameter θ that appears in
the expression of Rn(D) in ([13], Equation (7)), depends on n, as it does in Equation (3). It should be
also mentioned that the set of WSS vector processes that he considered was smaller, namely, he only
considered WSS vector processes with PSD in the Wiener class. A function X : R→ CN×N is said to
be in the Wiener class if it is continuous and 2π-periodic, and it satisfies ∑∞

k=−∞ |[Xk]r,s| < ∞ for all
r, s ∈ {1, . . . , N} (see, e.g., ([11], Appendix B)).

4. Applications

4.1. Integral Formula for the RDF of Gaussian MA Vector Processes

Theorem 2. Let {xn : n ∈ N} be as in Definition 3. Assume that {Gk}∞
k=−∞, with G0 = IN and Gk = 0N×N

for all k > 0, is the sequence of Fourier coefficients of a function G : R → CN×N , which is continuous and
2π-periodic. Then:

1. {xn : n ∈ N} is AWSS with APSD X(ω) = G(ω)Λ(G(ω))∗ for all ω ∈ R.
2. If {xn : n ∈ N} is Gaussian, det(G(ω)) 6= 0 for all ω ∈ R, and D ∈

(
0, tr(X0)

N

)
yields

R(D) =
1

4πN

∫ 2π

0

N

∑
k=1

max
{

0, ln
λk (G(ω)Λ(G(ω))∗)

θ

}
dω,
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where θ is the real number satisfying:

D =
1

2πN

∫ 2π

0

N

∑
k=1

min {θ, λk (G(ω)Λ(G(ω))∗)} dω.

Proof. See Appendix C.

4.2. Integral Formula for the RDF of Gaussian ARMA AWSS Vector Processes

Theorem 3. Let {xn : n ∈ N} be as in Definition 4. Assume that {Gk}∞
k=−∞, with G0 = IN and Gk = 0N×N

for all k > 0, is the sequence of Fourier coefficients of a function G : R → CN×N , which is continuous and
2π-periodic. Suppose that {Fk}∞

k=−∞, with F0 = IN and Fk = 0N×N for all k > 0, is the sequence of Fourier
coefficients of a function F : R→ CN×N , which is continuous and 2π-periodic. Assume that {‖(Tn(F))−1‖2}
is bounded and det(F(ω)) 6= 0 for all ω ∈ R. Then:

1. {xn : n ∈ N} is AWSS with APSD X(ω) = (F(ω))−1G(ω)Λ((F(ω))−1G(ω))∗ for all ω ∈ R.
2. If {xn : n ∈ N} is Gaussian, det(G(ω)) 6= 0 for all ω ∈ R, and D ∈

(
0, tr(X0)

N

)
yields:

R(D) =
1

4πN

∫ 2π

0

N

∑
k=1

max

{
0, ln

λk
(
(F(ω))−1G(ω)Λ((F(ω))−1G(ω))∗

)
θ

}
dω,

where θ is the real number satisfying:

D =
1

2πN

∫ 2π

0

N

∑
k=1

min
{

θ, λk

(
(F(ω))−1G(ω)Λ((F(ω))−1G(ω))∗

)}
dω.

Proof. See Appendix D.

5. Numerical Example

We finish the paper with a numerical example where the RDF of a Gaussian AWSS vector
process is computed. Specifically, we compute the RDF of the MA(1) vector process considered
in ([5], Example 2.1), by assuming that it is Gaussian.

Let {xn : n ∈ N} be as in Definition 3 with N = 2,

G−1 =

(
−0.8 −0.7
0.4 −0.6

)
,

G−j = 02×2 for all j > 1, and:

Λ =

(
4 1
1 2

)
.

Assume that {xn : n ∈ N} is Gaussian. Figure 1 shows R(D) with D ∈ (0, 5.77) that we have computed
using Theorem 2.
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Figure 1. Rate Distortion Function (RDF) of the Gaussian MA vector process considered.
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Appendix A. Proof of Theorem 1

Proof. We divide the proof into six steps.
Step 1: We show that there exists n0 ∈ N such that θn in Equation (3) exists for all n ≥ n0,

or equivalently, such that D ∈
(

0,
tr(E(xn:1x>n:1))

nN

)
for all n ≥ n0.

Since
{

E
(
xn:1x>n:1

)}
=
{

E
(
xn:1x∗n:1

)}
∼ {Tn(X)}, applying ([11], Theorem 6.6) yields:

lim
n→∞

1
nN

nN

∑
k=1

λk

(
E
(

xn:1x>n:1

))
=

1
2πN

∫ 2π

0

N

∑
k=1

λk (X(ω)) dω =
1

2πN

∫ 2π

0
tr (X(ω)) dω

=
1

2πN

∫ 2π

0

N

∑
k=1

[X(ω)]k,kdω =
1

2πN

N

∑
k=1

∫ 2π

0
[X(ω)]k,kdω

=
1

2πN

N

∑
k=1

[∫ 2π

0
X(ω)dω

]
k,k

=
1

2πN
tr
(∫ 2π

0
X(ω)dω

)
=

1
N

tr
(

1
2π

∫ 2π

0
X(ω)dω

)
=

tr(X0)

N
. (A1)

Consequently, as D ∈
(

0, tr(X0)
N

)
, there exists n0 ∈ N such that:

∣∣∣∣∣ 1
nN

nN

∑
k=1

λk

(
E
(

xn:1x>n:1

))
− tr(X0)

N

∣∣∣∣∣ < tr(X0)

N
− D ∀n ≥ n0.

Therefore, since:

tr(X0)

N
− 1

nN

nN

∑
k=1

λk

(
E
(

xn:1x>n:1

))
≤
∣∣∣∣∣ 1
nN

nN

∑
k=1

λk

(
E
(

xn:1x>n:1

))
− tr(X0)

N

∣∣∣∣∣ ∀n ≥ n0,
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we obtain:

D <
1

nN

nN

∑
k=1

λk

(
E
(

xn:1x>n:1

))
=

tr
(
E
(
xn:1x>n:1

))
nN

∀n ≥ n0. (A2)

Step 2: We prove that the sequence of real numbers {θn}n≥n0 is bounded.
From Equation (A2), we have θn < λ1

(
E
(
xn:1x>n:1

))
for all n ≥ n0. As {E

(
xn:1x>n:1

)
} ∼ {Tn(X)},

there exists M ∈ [0, ∞) such that ‖E
(
xn:1x>n:1

)
‖2, ‖Tn(X)‖2 ≤ M for all n ∈ N. Thus,

0<D =
1

nN

nN

∑
k=1

min
{

θn, λk

(
E
(

xn:1x>n:1

))}
≤ 1

nN

nN

∑
k=1

θn

= θn < λ1

(
E
(

xn:1x>n:1

))
=‖E

(
xn:1x>n:1

)
‖2 ≤ M ∀n ≥ n0.

Step 3: We show that if {θσ(n)} is a convergent subsequence of {θn}n≥n0 , then limn→∞ θσ(n) = θ.
We denote by θ̂ the limit of {θσ(n)}. We need to prove that θ̂ = θ.
Since 0 < D ≤ θn for all n ≥ n0, we have 0 < D ≤ θ̂. Let {θ̂n} be the sequence of real numbers

such that {θ̂σ(n)} = {θσ(n)} and θ̂n = θ̂ for all n ∈ N\σ(N). Obviously, limn→∞ θ̂n = θ̂ and 0 < θ̂n for

all n ∈ N. As limn→∞
1
θ̂n

= 1
θ̂

and
rank(E(xn:1x>n:1))

n = N for all n ∈ N, applying ([12], Lemma 1) yields{
1
θ̂n

E
(
xn:1x>n:1

)}
∼
{

1
θ̂

Tn(X)
}

. From ([11], Lemma 4.2) we obtain
{

1
θ̂n

E
(
xn:1x>n:1

)}
∼
{

1
θ̂

Tn(X)
}
={

Tn

(
1
θ̂

X
)}

. Hence, applying ([11], Theorem 6.6) yields:

D = lim
n→∞

1
σ(n)N

σ(n)N

∑
k=1

min
{

θσ(n), λk

(
E
(

xσ(n):1x>σ(n):1
))}

= lim
n→∞

θσ(n)
1

σ(n)N

σ(n)N

∑
k=1

min

1,
λk

(
E
(

xσ(n):1x>
σ(n):1

))
θσ(n)


= θ̂ lim

n→∞

1
σ(n)N

σ(n)N

∑
k=1

min

1,
λk

(
E
(

xσ(n):1x>
σ(n):1

))
θ̂σ(n)


= θ̂ lim

n→∞

1
nN

nN

∑
k=1

min

{
1,

λk
(
E
(
xn:1x>n:1

))
θ̂n

}

= θ̂ lim
n→∞

1
nN

nN

∑
k=1

min
{

1, λk

(
1
θ̂n

E
(

xn:1x>n:1

))}

= θ̂
1

2πN

∫ 2π

0

N

∑
k=1

min
{

1, λk

(
1
θ̂

X(ω)

)}
dω

= θ̂
1

2πN

∫ 2π

0

N

∑
k=1

min
{

1,
λk (X(ω))

θ̂

}
dω

=
1

2πN

∫ 2π

0

N

∑
k=1

min
{

θ̂, λk (X(ω))
}

dω.

Thus, θ̂ is a real number satisfying Equation (5). Since D < tr(X0)
N = 1

2πN
∫ 2π

0 ∑N
k=1 λk (X(ω)) dω, there

exists a unique real number θ satisfying Equation (5), and consequently, θ̂ = θ.
Step 4: We prove that limn→∞ θn = θ. From Steps 2 and 3, we have lim infn→∞ θn =

lim supn→∞ θn = θ. Consequently, the sequence of real numbers {θn}n≥n0 is convergent, and its
limit is θ (see, e.g., ([15], p. 57)).

Step 5: We show that Equation (4) holds.
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Let {θ̂n} be the sequence of positive numbers defined in Step 3 for the case in which {σ(n)} =
{n + n0 − 1}, that is, θ̂n = θn if n ≥ n0 and θ̂n = θ if n < n0. From ([11], Theorem 6.6), we obtain:

R(D) = lim
n→∞

Rn(D) = lim
n→∞

1
nN

nN

∑
k=1

max

{
0,

1
2

ln
λk
(
E
(
xn:1x>n:1

))
θn

}

= lim
n→∞

1
nN

nN

∑
k=1

1
2

ln max

{
1,

λk
(
E
(
xn:1x>n:1

))
θn

}
=

1
2

lim
n→∞

1
nN

nN

∑
k=1

ln max

{
1,

λk
(
E
(
xn:1x>n:1

))
θ̂n

}

=
1
2

lim
n→∞

1
nN

nN

∑
k=1

ln max
{

1, λk

(
1
θ̂n

E
(

xn:1x>n:1

))}
=

1
4πN

∫ 2π

0

N

∑
k=1

ln max
{

1, λk

(
1
θ

X(ω)

)}
dω

=
1

4πN

∫ 2π

0

N

∑
k=1

ln max
{

1,
λk (X(ω))

θ

}
dω =

1
4πN

∫ 2π

0

N

∑
k=1

max
{

0, ln
λk (X(ω))

θ

}
dω.

Step 6: We prove that Equation (4) is the operational RDF of {xn : n ∈ N}. Following the same
arguments that Gray used in [16] for Gaussian AR AWSS one-dimensional vector processes, to prove
the negative (converse) coding theorem and the positive (achievability) coding theorem, we only
need to show that the sequence {d∗max(n)} defined in ([17], p. 490), is bounded. Hence, Equation (A1)
finishes the proof.

Appendix B. Proof of Corollary 1

Proof. Since X(ω) is positive definite for all ω ∈ R, from ([11], Theorem 4.4) and ([18], Corollary
VI.1.6), we have:

0< min
ω∈[0,2π]

λN (X(ω))= inf
ω∈[0,2π]

λN (X(ω))≤λnN (Tn(X))=λnN (E (xn:1x∗n:1))=λnN

(
E
(

xn:1x>n:1

))
for all n ∈ N, and consequently, E

(
xn:1x>n:1

)
is positive definite for all n ∈ N. Combining ([11],

Lemma 3.3) and ([11], Theorem 4.3) yields {E
(
xn:1x∗n:1

)
} = {Tn(X)} ∼ {Tn(X)}. The proof finishes

by applying Theorem 1.

Appendix C. Proof of Theorem 2

Proof. (1) From Equation (1), we have:
xn

xn−1

xn−2
...

x1

 =


IN G−1 G−2 · · · G1−n

0N×N IN G−1 · · · G2−n
0N×N 0N×N IN · · · G3−n

...
...

...
. . .

...
0N×N 0N×N 0N×N · · · IN




wn

wn−1

wn−2
...

w1

 ,

or more compactly,
xn:1 = Tn(G)wn:1

for all n ∈ N. Consequently,

xn:1x>n:1 = Tn(G)wn:1w>n:1(Tn(G))> ∀n ∈ N,

and applying ([11], Lemma 4.2), yields:{
E
(

xn:1x>n:1

)}
=
{

Tn(G)E
(

wn:1w>n:1

)
(Tn(G))>

}
= {Tn(G)Tn(Λ)(Tn(G))∗} = {Tn(G)Tn(Λ)Tn(G∗)} , (A3)
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where G∗(ω) = (G(ω))∗, ω ∈ R. Combining ([11], Lemma 3.3) and ([11], Theorem 4.3), we obtain
{Tn(G)} ∼ {Tn(G)}. Moreover, applying ([10], Theorem 3) yields {Tn(Λ)Tn(G∗)} ∼ {Tn(ΛG∗)}.
Hence, from ([10], Lemma 2) and ([10], Theorem 3), we have:

{E (xn:1x∗n:1)} =
{

E
(

xn:1x>n:1

)}
= {Tn(G)Tn(Λ)Tn(G∗)}

∼ {Tn(G)Tn(ΛG∗)} ∼ {Tn(GΛG∗)} = {Tn(X)}. (A4)

Thus, as the relation ∼ is transitive (see ([11], Lemma 3.1)), {xn : n ∈ N} is AWSS with APSD X.
(2) First, we prove that X(ω) is positive definite for all ω ∈ R. Fix ω ∈ R, and consider y ∈ CN×1.
Since Λ is positive definite, we have:

y∗X(ω)y = y∗G(ω)Λ(G(ω))∗y = ((G(ω))∗y)∗ Λ(G(ω))∗y > 0

whenever (G(ω))∗y 6= 0N×1. As det(G(ω)) 6= 0, (G(ω))∗y = 0N×1 if and only if y =(
(G(ω))−1)∗ 0N×1 = 0N×1, and consequently, X(ω) is positive definite.

Secondly, we prove that E
(
xn:1x>n:1

)
is positive definite for all n ∈ N. To do that, we only need

to show that det
(
E
(
xn:1x>n:1

))
6= 0 for all n ∈ N, because as E

(
xn:1x>n:1

)
is a correlation matrix, it is

positive semidefinite. We have:

det
(

E
(

xn:1x>n:1

))
=det (Tn(G)Tn(Λ)Tn(G∗))=det (Tn(G))det (Tn(Λ))det ((Tn(G))∗)

= |det (Tn(G)) |2 (det(Λ))n = | (det(IN))
n |2 (det(Λ))n =(det(Λ))n 6= 0 (A5)

for all n ∈ N.
The result now follows from Theorem 1.

Appendix D. Proof of Theorem 3

Proof. (1) From Equation (2), we have:

n−1

∑
j=0

F−jxn−j =
n−1

∑
j=0

G−jwn−j,

or more compactly,
Tn(F)xn:1 = Tn(G)wn:1

for all n ∈ N. Consequently,

Tn(F)xn:1x>n:1(Tn(F))> = Tn(F)xn:1 (Tn(F)xn:1)
> = Tn(G)wn:1w>n:1(Tn(G))> ∀n ∈ N,

and applying Equation (A3) yields:

{Tn(F)E (xn:1x∗n:1) (Tn(F))∗} =
{

Tn(F)E
(

xn:1x>n:1

)
(Tn(F))>

}
=
{

Tn(G)E
(

wn:1w>n:1

)
(Tn(G))>

}
= {Tn(G)Tn(Λ)Tn(G∗)} .

Since det(Tn(F)) = (det(IN))
n = 1 6= 0 for all n ∈ N, we obtain:

{E (xn:1x∗n:1)} =
{
(Tn(F))−1Tn(G)Tn(Λ)Tn(G∗)((Tn(F))∗)−1

}
=
{
((Tn(F))∗Tn(F))−1 (Tn(F))∗Tn(G)Tn(Λ)Tn(G∗)Tn(F) ((Tn(F))∗Tn(F))−1

}
.
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From Equation (A4) and the fact that the relation ∼ is transitive (see ([11], Lemma 3.1)), we have
{Tn(G)Tn(Λ)Tn(G∗)} ∼ {Tn(GΛG∗)}. Combining ([11], Lemma 3.3) and ([11], Theorem 4.3) yields
{Tn(F)} ∼ {Tn(F)}. Therefore, applying ([10], Lemma 2) and ([10], Theorem 3), we obtain:

{Tn(G)Tn(Λ)Tn(G∗)Tn(F)} ∼ {Tn(GΛG∗)Tn(F)} ∼ {Tn(GΛG∗F)} .

Using ([11], Lemma 3.1) yields {(Tn(F))∗} ∼ {(Tn(F))∗}, and applying ([10], Lemma 2), ([11],
Lemma 4.2), and ([10], Theorem 3), we have:

{(Tn(F))∗Tn(G)Tn(Λ)Tn(G∗)Tn(F)} ∼ {(Tn(F))∗Tn(GΛG∗F)}
= {Tn(F∗)Tn(GΛG∗F)} ∼ {Tn(F∗GΛG∗F)} . (A6)

If ω ∈ R and y ∈ CN×1, then,

y∗(F(ω))∗F(ω)y = (F(ω)y)∗ F(ω)y = ‖F(ω)y‖2 > 0

whenever F(ω)y 6= 0N×1. As det(F(ω)) 6= 0, F(ω)y = 0N×1 if and only if y = (F(ω))−10N×1 = 0N×1,
hence (F(ω))∗F(ω) is positive definite for all ω ∈ R, and applying ([11], Theorem 4.4) and ([18],
Corollary VI.1.6), yields:

0 < min
ω∈[0,2π]

λN ((F(ω))∗F(ω)) = inf
ω∈[0,2π]

λN ((F(ω))∗F(ω)) ≤ λnN (Tn(F∗F)) ∀n ∈ N.

Thus,

‖(Tn(F∗F))−1‖2 = max
k∈{1,...,nN}

|λk((Tn(F∗F))−1)| = max
k∈{1,...,nN}

∣∣∣∣ 1
λk(Tn(F∗F))

∣∣∣∣
= max

k∈{1,...,nN}

1
λk(Tn(F∗F))

=
1

λnN(Tn(F∗F))
≤ 1

minω∈[0,2π] λN ((F(ω))∗F(ω))

for all n ∈ N. Observe that
{
‖ ((Tn(F))∗Tn(F))−1 ‖2

}
is also bounded, because:

‖ ((Tn(F))∗Tn(F))−1 ‖2 = ‖ (Tn(F))−1 ((Tn(F))∗)−1 ‖2 = ‖ (Tn(F))−1
(
(Tn(F))−1

)∗
‖2

≤ ‖ (Tn(F))−1 ‖2‖
(
(Tn(F))−1

)∗
‖2 = ‖ (Tn(F))−1 ‖2

2 ∀n ∈ N.

Moreover, from ([10], Theorem 3), we obtain {(Tn(F))∗Tn(F)} = {Tn(F∗)Tn(F)} ∼ {Tn(F∗F)}.
Consequently, applying Lemma A1 (see Appendix E) and ([11], Theorem 6.4), yields:{

((Tn(F))∗Tn(F))−1
}
∼
{
(Tn(F∗F))−1

}
∼
{

Tn((F∗F)−1)
}
=
{

Tn(F−1(F∗)−1)
}

. (A7)

Therefore, from Equation (A6), ([10], Lemma 2), and ([10], Theorem 3), we have:{
((Tn(F))∗Tn(F))−1(Tn(F))∗Tn(G)Tn(Λ)Tn(G∗)Tn(F)

}
∼
{

Tn(F−1(F∗)−1)Tn(F∗GΛG∗F))
}

∼
{

Tn(F−1GΛG∗F))
}

.

Hence, applying Equation (A7), ([10], Lemma 2), and ([10], Theorem 3), we deduce that:

{E (xn:1x∗n:1)} ∼
{

Tn(F−1GΛG∗F))Tn(F−1(F∗)−1)
}

∼
{

Tn(F−1GΛG∗(F∗)−1)
}
=
{

Tn(F−1GΛG∗(F−1)∗)
}
= {Tn(X)}.
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(2) First, we prove that X(ω) is positive definite for all ω ∈ R. Fix ω ∈ R, and consider y ∈ CN×1.
Since G(ω)Λ(G(ω))∗ is positive definite (see the proof of Theorem 2), we have:

y∗X(ω)y = y∗(F(ω))−1G(ω)Λ(G(ω))∗((F(ω))−1)∗y

= (((F(ω))−1)∗y)∗G(ω)Λ(G(ω))∗((F(ω))−1)∗y > 0

whenever ((F(ω))∗)−1y = ((F(ω))−1)∗y 6= 0N×1. As ((F(ω))∗)−1y = 0N×1 if and only if y =

(F(ω))∗0N×1 = 0N×1, X(ω) is positive definite.
Secondly, we prove that E

(
xn:1x>n:1

)
is positive definite for all n ∈ N, or equivalently,

det
(
E
(
xn:1x>n:1

))
6= 0 for all n ∈ N. Applying Equation (A5) yields:

det
(

E
(

xn:1x>n:1

))
= det((Tn(F))−1Tn(G)Tn(Λ)Tn(G∗)((Tn(F))∗)−1)

=
det(Tn(G)Tn(Λ)Tn(G∗))
det(Tn(F))det((Tn(F))∗)

=
(det(Λ))n

|det(Tn(F))|2 = (det(Λ))n 6= 0 ∀n ∈ N.

The result now follows from Theorem 1.

Appendix E. A Property of Asymptotically Equivalent Sequences of Invertible Matrices

Lemma A1. Let An and Bn be nN × nN invertible matrices for all n ∈ N. Suppose that {An} ∼ {Bn} and
{‖A−1

n ‖2} and {‖B−1
n ‖2} are bounded. Then, {A−1

n } ∼ {B−1
n }.

Proof. If M ∈ [0, ∞) such that ‖A−1
n ‖2, ‖B−1

n ‖2 ≤ M for all n ∈ N, then:

0 ≤
∥∥A−1

n − B−1
n
∥∥

F√
n

=

∥∥B−1
n − A−1

n
∥∥

F√
n

=

∥∥B−1
n An A−1

n − B−1
n Bn A−1

n
∥∥

F√
n

=

∥∥B−1
n (An − Bn) A−1

n
∥∥

F√
n

≤
∥∥∥B−1

n

∥∥∥
2

∥∥(An − Bn) A−1
n
∥∥

F√
n

≤
∥∥∥B−1

n

∥∥∥
2

‖An − Bn‖F√
n

∥∥∥A−1
n

∥∥∥
2
≤ M2 ‖An − Bn‖F√

n
→ 0.

This result was presented in ([6], Theorem 1) for the case N = 1.
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