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Abstract: In this paper, we give upper bounds for the rate-distortion function (RDF) of any Gaussian
vector, and we propose coding strategies to achieve such bounds. We use these strategies to reduce
the computational complexity of coding Gaussian asymptotically wide sense stationary (AWSS)
autoregressive (AR) sources. Furthermore, we also give sufficient conditions for AR processes to
be AWSS.
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1. Introduction

In 1956, Kolmogorov [1] gave a formula for the rate-distortion function (RDF) of Gaussian vectors
and the RDF of Gaussian wide sense stationary (WSS) sources. Later, in 1970 Gray [2] obtained a
formula for the RDF of Gaussian autoregressive (AR) sources.

In 1973, Pearl [3] gave an upper bound for the RDF of finite-length data blocks of Gaussian WSS
sources, but he did not propose a coding strategy to achieve his bound for a given block length. In [4],
we presented two tighter upper bounds for the RDF of finite-length data blocks of Gaussian WSS
sources, and we proposed low-complexity coding strategies, based on the discrete Fourier transform
(DFT), to achieve such bounds. Moreover, we proved that those two upper bounds tend to the RDF of
the WSS source (computed by Kolmogorov in [1]) when the size of the data block grows.

In the present paper, we generalize the upper bounds and the two low-complexity coding
strategies presented in [4] to any Gaussian vector. Therefore, in contrast to [4], here no assumption
about the structure of the correlation matrix of the Gaussian vector has been made (observe that
since the sources in [4] were WSS the correlation matrix of the Gaussian vectors there considered was
Toeplitz). To obtain such generalization we start our analysis by first proving several new results on
the DFT of random vectors. Although in [4] (Theorem 1) another new result on the DFT was presented,
it cannot be used here, because such result and its proof rely on the power spectral density (PSD) of a
WSS process and its properties.

The two low-complexity strategies here presented are applied in coding finite-length data blocks
of Gaussian AR sources. Specifically, we prove that the rates (upper bounds) corresponding to these
two strategies tend to the RDF of the AR source (computed by Gray in [2]) when the size of the data
block grows and the AR source is asymptotically WSS (AWSS).

The definition of AWSS process was introduced by Gray in [5] (Chapter 6) and it is based on his
concept of asymptotically equivalent sequences of matrices [6]. Sufficient conditions for AR processes
to be AWSS can be found in [5] (Theorem 6.2) and [7] (Theorem 7). In this paper we present other
sufficient conditions which make easier to check in practice whether an AR process is AWSS.
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The paper is organized as follows. In Section 2 we obtain several new results on the DFT of
random vectors which are used in Section 3. In Section 3 we give upper bounds for the RDF of
Gaussian vectors, and we propose coding strategies to achieve such bounds. In Section 4 we apply the
strategies proposed in Section 3 to reduce the computational complexity of coding Gaussian AWSS AR
sources. In Section 5 we give sufficient conditions for AR processes to be AWSS. We finish the paper
with a numerical example and conclusions.

2. Several New Results on the DFT of Random Vectors

We begin by introducing some notation. C denotes the set of (finite) complex numbers, i is the
imaginary unit, Re and Im denote real and imaginary parts, respectively. ∗ stands for conjugate
transpose, > denotes transpose, and λk(A), k ∈ {1, . . . , n}, are the eigenvalues of an n× n Hermitian
matrix A arranged in decreasing order. E stands for expectation, and Vn is the n× n Fourier unitary
matrix, i.e.,

[Vn]j,k =
1√
n

e−
2π(j−1)(k−1)

n i, j, k ∈ {1, . . . , n}.

If z ∈ C then ẑ denotes the real (column) vector

ẑ =

(
Re(z)
Im(z)

)
.

If zk ∈ C for all k ∈ {1, . . . , n} then zn:1 is the n-dimensional vector given by

zn:1 =


zn

zn−1

zn−2
...

z1

 .

In this section, we give several new results on the DFT of random vectors in two theorems and
one lemma.

Theorem 1. Let yn:1 be the DFT of an n-dimensional random vector xn:1, that is, yn:1 = V∗n xn:1.

1. If k ∈ {1, . . . , n} then

λn(E (xn:1x∗n:1)) ≤ E
(
|xk|2

)
≤ λ1(E (xn:1x∗n:1)) (1)

and
λn(E (xn:1x∗n:1)) ≤ E

(
|yk|2

)
≤ λ1(E (xn:1x∗n:1)). (2)

2. If the random vector xn:1 is real and k ∈ {1, . . . , n− 1} \ { n
2 } then

λn(E
(

xn:1x>n:1
)
)

2
≤ E

(
(Re(yk))

2
)
≤

λ1(E
(
xn:1x>n:1

)
)

2
, (3)

and
λn(E

(
xn:1x>n:1

)
)

2
≤ E

(
(Im(yk))

2
)
≤

λ1(E
(
xn:1x>n:1

)
)

2
. (4)

Proof. (1) We first prove that if Wn is an n× n unitary matrix then

λn(E (xn:1x∗n:1)) ≤
[
Wndiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
W∗n
]

n−k+1,n−k+1
≤ λ1(E (xn:1x∗n:1)). (5)
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We have[
Wndiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
W∗n
]

k1,k2
=

n

∑
h=1

[Wn]k1,h

[
diag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
W∗n
]

h,k2

=
n

∑
h=1

[Wn]k1,h

n

∑
l=1

[
diag1≤j≤n

(
λj (E (xn:1x∗n:1))

)]
h,l

[W∗n ]l,k2

=
n

∑
h=1

[Wn]k1,hλh(E (xn:1x∗n:1))[Wn]k2,h (6)

for all k1, k2 ∈ {1, . . . , n}, and hence,

[
Wndiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
W∗n
]

n−k+1,n−k+1
=

n

∑
h=1

λh(E (xn:1x∗n:1))|[Wn]n−k+1,h|2.

Consequently,

λn(E (xn:1x∗n:1))
n

∑
h=1
|[Wn]n−k+1,h|2 ≤

[
Wndiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
W∗n
]

n−k+1,n−k+1

≤ λ1(E (xn:1x∗n:1))
n

∑
h=1
|[Wn]n−k+1,h|2,

and applying

n

∑
h=1
|[Wn]n−k+1,h|2 =

n

∑
h=1

[Wn]n−k+1,h[W∗n ]h,n−k+1 = [WnW∗n ]n−k+1,n−k+1 = [In]n−k+1,n−k+1 = 1,

where In denotes the n× n identity matrix, we obtain Equation (5).
Let E

(
xn:1x∗n:1

)
= Undiag1≤j≤n

(
λj
(
E
(

xn:1x∗n:1
)))

U−1
n be a diagonalization of E

(
xn:1x∗n:1

)
where

the eigenvector matrix Un is unitary. As

E
(
|xk|2

)
= [E (xn:1x∗n:1)]n−k+1,n−k+1 =

[
Undiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
U∗n
]

n−k+1,n−k+1
,

Equation (1) follows directly by taking Wn = Un in Equation (5).
Since

E
(
|yk|2

)
= [E (yn:1y∗n:1)]n−k+1,n−k+1

=
[
E
(
V∗n xn:1x∗n:1 (V

∗
n )
∗)]

n−k+1,n−k+1

=
[
V∗n E (xn:1x∗n:1) (V

∗
n )
∗]

n−k+1,n−k+1

=
[
V∗n Undiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
U∗n (V

∗
n )
∗
]

n−k+1,n−k+1

=
[
V∗n Undiag1≤j≤n

(
λj (E (xn:1x∗n:1))

)
(V∗n Un)

∗
]

n−k+1,n−k+1
, (7)

taking Wn = V∗n Un in Equation (5) we obtain Equation (2).
(2) Applying [4] (Equation (10)) and taking Wn = Un in Equation (6) yields

E
(
(Re(yk))

2
)

=
1
n

n

∑
k1,k2=1

cos
2π(1− k1)k

n
cos

2π(1− k2)k
n

E
(

xn−k1+1xn−k2+1
)

=
1
n

n

∑
k1,k2=1

cos
2π(1− k1)k

n
cos

2π(1− k2)k
n

[
E
(

xn:1x>n:1

)]
k1,k2
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=
1
n

n

∑
k1,k2=1

cos
2π(1− k1)k

n
cos

2π(1− k2)k
n

[
Undiag1≤j≤n

(
λj

(
E
(

xn:1x>n:1

)))
U∗n
]

k1,k2

=
1
n

n

∑
k1,k2=1

cos
2π(1− k1)k

n
cos

2π(1− k2)k
n

n

∑
h=1

[Un]k1,hλh

(
E
(

xn:1x>n:1

))
[Un]k2,h

=
1
n

n

∑
h=1

λh

(
E
(

xn:1x>n:1

))( n

∑
k1=1

cos
2π(1− k1)k

n
[Un]k1,h

)(
n

∑
k2=1

cos
2π(1− k2)k

n
[Un]k2,h

)

=
1
n

n

∑
h=1

λh

(
E
(

xn:1x>n:1

)) ∣∣∣∣∣ n

∑
l=1

cos
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

,

and therefore,

λn

(
E
(

xn:1x>n:1

)) 1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

cos
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

≤ E
(
(Re(yk))

2
)
≤ λ1

(
E
(

xn:1x>n:1

)) 1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

cos
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

.

Analogously, it can be proved that

λn

(
E
(

xn:1x>n:1

)) 1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

sin
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

≤ E
(
(Im(yk))

2
)
≤ λ1

(
E
(

xn:1x>n:1

)) 1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

sin
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

.

To finish the proof we only need to show that

1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

cos
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

=
1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

sin
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

=
1
2

. (8)

If b1, . . . , bn are n real numbers then

1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

bl [Un]l,h

∣∣∣∣∣
2

=
1
n

n

∑
h=1

(
n

∑
k1=1

bk1
[Un]k1,h

)(
n

∑
k2=1

bk2 [Un]k2,h

)
=

1
n

n

∑
k1,k2=1

bk1
bk2

n

∑
h=1

[Un]k1,h[U
∗
n ]h,k2

=
1
n

n

∑
k1,k2=1

bk1
bk2 [UnU∗n ]k1,k2

=
1
n

n

∑
k1,k2=1

bk1
bk2 [In]k1,k2

=
1
n

n

∑
l=1

b2
l , (9)

and thus,

1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

sin
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

=
1
n

n

∑
l=1

(
sin

2π(1− l)k
n

)2
=

1
n

n

∑
l=1

(
1−
(

cos
2π(1− l)k

n

)2
)

=1− 1
n

n

∑
l=1

(
cos

2π(1− l)k
n

)2
=1− 1

n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

cos
2π(1− l)k

n
[Un]l,h

∣∣∣∣∣
2

.

Equation (8) now follows directly from [4] (Equation (15)).

Lemma 1. Let yn:1 be the DFT of an n-dimensional random vector xn:1. If k ∈ {1, . . . , n} then

1. E
(
|yk|2

)
=
[
V∗n E

(
xn:1x∗n:1

)
Vn
]

n−k+1,n−k+1.

2. E
(
y2

k
)
=
[
V∗n E

(
xn:1x>n:1

)
Vn
]

n−k+1,n−k+1.
3. E (Re (yk) Im (yk)) =

1
2 Im

(
E
(
y2

k
))

.
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4. E
(
(Re(yk))

2
)
=

E(|yk |2)+Re(E(y2
k))

2 .

5. E
(
(Im(yk))

2
)
=

E(|yk |2)−Re(E(y2
k))

2 .

Proof. (1) It is a direct consequence of Equation (7).
(2) We have

E
(

y2
k

)
=
[

E
(

yn:1y>n:1

)]
n−k+1,n−k+1

=
[

E
(

V∗n xn:1x>n:1 (V
∗
n )
>
)]

n−k+1,n−k+1

=
[

E
(

V∗n xn:1x>n:1Vn

)]
n−k+1,n−k+1

=
[
V∗n E

(
xn:1x>n:1

)
Vn

]
n−k+1,n−k+1

.

(3) Observe that

E
(

y2
k

)
= E

(
(Re(yk))

2 − (Im(yk))
2 + 2Re(yk)Im(yk)i

)
= E

(
(Re(yk))

2
)
− E

(
(Im(yk))

2
)
+ 2E (Re(yk)Im(yk)) i, (10)

and hence,
Im
(

E
(

y2
k

))
= 2E (Re(yk)Im(yk)) .

(4) and (5) From Equation (10) we obtain

Re
(

E
(

y2
k

))
= E

(
(Re(yk))

2
)
− E

(
(Im(yk))

2
)

. (11)

Furthermore,

E
(
|yk|2

)
= E

(
(Re(yk))

2 + (Im(yk))
2
)
= E

(
(Re(yk))

2
)
+ E

(
(Im(yk))

2
)

. (12)

(4) and (5) follow directly from Equations (11) and (12).

Theorem 2. Let yn:1 be the DFT of a real n-dimensional random vector xn:1. If k ∈ {1, . . . , n− 1} \ { n
2 } then

λn(E
(

xn:1x>n:1
)
)

2
≤ λ2

(
E
(

ŷk (ŷk)
>
))
≤ λ1

(
E
(

ŷk (ŷk)
>
))
≤

λ1(E
(
xn:1x>n:1

)
)

2
.

Proof. Fix r ∈ {1, 2} and consider a real unit eigenvector v = (v1, v2)
> corresponding to

λr

(
E
(

ŷk (ŷk)
>
))

. We have

λr

(
E
(

ŷk (ŷk)
>
))

= λr

(
E
(

ŷk (ŷk)
>
))

v>v = v>
(

λr

(
E
(

ŷk (ŷk)
>
))

v
)
= v>E

(
ŷk (ŷk)

>
)

v.

From [4] (Equation (10)) we obtain

E
(

ŷk (ŷk)
>
)

=
1
n

n

∑
k1,k2=1

cos 2π(1−k1)k
n cos 2π(1−k2)k

n E
(
xn−k1+1xn−k2+1

)
cos 2π(1−k1)k

n sin 2π(1−k2)k
n E

(
xn−k1+1xn−k2+1

)
sin 2π(1−k1)k

n cos 2π(1−k2)k
n E

(
xn−k1+1xn−k2+1

)
sin 2π(1−k1)k

n sin 2π(1−k2)k
n E

(
xn−k1+1xn−k2+1

)


=
1
n

n

∑
k1,k2=1

[
E
(

xn:1x>n:1

)]
k1,k2

wk1 w>k2

with

wl =

(
cos 2π(1−l)k

n
sin 2π(1−l)k

n

)
, l ∈ {1, . . . , n},
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and consequently,

λr

(
E
(

ŷk (ŷk)
>
))

=
1
n

n

∑
k1,k2=1

[
E
(

xn:1x>n:1

)]
k1,k2

v>wk1 w>k2
v

=
1
n

n

∑
k1,k2=1

n

∑
h=1

[Un]k1,hλh

(
E
(

xn:1x>n:1

))
[Un]k2,hv>wk1 w>k2

v

=
1
n

n

∑
k1,k2=1

(
w>k1

v
)> n

∑
h=1

[Un]k1,hλh

(
E
(

xn:1x>n:1

))
[Un]k2,hw>k2

v

=
1
n

n

∑
h=1

λh

(
E
(

xn:1x>n:1

))( n

∑
k1=1

w>k1
v[Un]k1,h

)(
n

∑
k2=1

w>k2
v[Un]k2,h

)

=
1
n

n

∑
h=1

λh

(
E
(

xn:1x>n:1

)) ∣∣∣∣∣ n

∑
l=1

w>l v[Un]l,h

∣∣∣∣∣
2

with E
(

xn:1x>n:1
)
= Undiag1≤j≤n

(
λj
(
E
(

xn:1x>n:1
)))

U−1
n being a diagonalization of E

(
xn:1x>n:1

)
where

the eigenvector matrix Un is unitary. Therefore,

λn

(
E
(

xn:1x>n:1

)) 1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

w>l v[Un]l,h

∣∣∣∣∣
2

≤λr

(
E
(

ŷk (ŷk)
>
))
≤λ1

(
E
(

xn:1x>n:1

)) 1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

w>l v[Un]l,h

∣∣∣∣∣
2

.

To finish the proof we only need to show that

1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

w>l v[Un]l,h

∣∣∣∣∣
2

=
1
2

.

Applying Equation (9) and [4] (Equations (14) and (15)) yields

1
n

n

∑
h=1

∣∣∣∣∣ n

∑
l=1

w>l v[Un]l,h

∣∣∣∣∣
2

=
1
n

n

∑
l=1

(
w>l v

)2
=

1
n

n

∑
l=1

(
cos

2π(1− l)k
n

v1 + sin
2π(1− l)k

n
v2

)2

= v2
1

1
n

n

∑
l=1

(
cos

2π(1− l)k
n

)2
+v2

2
1
n

n

∑
l=1

(
sin

2π(1− l)k
n

)2
+2v1v2

1
n

n

∑
l=1

cos
2π(1− l)k

n
sin

2π(1− l)k
n

= v2
1

1
n

n

∑
l=1

(
cos

2π(1− l)k
n

)2
+

v2
2

2
+ v1v2

1
n

n

∑
l=1

sin
4π(1− l)k

n

= v2
1

1
n

n

∑
l=1

(
1−

(
sin

2π(1− l)k
n

)2
)
+

v2
2

2
− v1v2

1
n

n

∑
l=1

sin
4π(l − 1)k

n

= v2
1

(
1− 1

n

n

∑
l=1

(
sin

2π(1− l)k
n

)2
)
+

v2
2

2
− v1v2

1
n

n

∑
l=1

Im
(

e
4π(l−1)k

n i
)

=
v2

1
2

+
v2

2
2
− v1v2

1
n

Im

(
n

∑
l=1

e
4π(l−1)k

n i

)
=

1
2

v>v =
1
2

.

3. RDF Upper Bounds for Real Gaussian Vectors

We first review the formula for the RDF of a real Gaussian vector given by Kolmogorov in [1].
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Theorem 3. If xn:1 is a real zero-mean Gaussian n-dimensional vector with positive definite correlation matrix,
its RDF is given by

Rxn:1(D) =
1
n

n

∑
k=1

max

{
0,

1
2

ln
λk
(
E
(
xn:1x>n:1

))
θ

}
∀D ∈

(
0,

tr
(
E
(
xn:1x>n:1

))
n

]
,

where tr denotes trace and θ is a real number satisfying

D =
1
n

n

∑
k=1

min
{

θ, λk

(
E
(

xn:1x>n:1

))}
.

We recall that Rxn:1(D) can be thought of as the minimum rate (measured in nats) at which one
must encode (compress) xn:1 in order to be able to recover it with a mean square error (MSE) per
dimension not larger than D, that is:

E
(
‖xn:1 − x̃n:1‖2

2

)
n

≤ D,

where x̃n:1 denotes the estimation of xn:1 and ‖ · ‖2 is the spectral norm.
The following result provides an optimal coding strategy for xn:1 in order to achieve Rxn:1(D)

whenever D ≤ λn
(
E
(

xn:1x>n:1
))

. Observe that if D ≤ λn
(
E
(
xn:1x>n:1

))
then

Rxn:1(D) =
1

2n

n

∑
k=1

ln
λk
(
E
(
xn:1x>n:1

))
D

=
1

2n
ln

det
(
E
(

xn:1x>n:1
))

Dn . (13)

Corollary 1. Suppose that xn:1 is as in Theorem 3. Let E
(
xn:1x>n:1

)
= Undiag1≤k≤n

(
λk
(
E
(
xn:1x>n:1

)))
U−1

n
be a diagonalization of E

(
xn:1x>n:1

)
where the eigenvector matrix Un is real and orthogonal.

If D ∈
(
0, λn

(
E
(

xn:1x>n:1
))]

then

Rxn:1(D) =
1
n

n

∑
k=1

Rzk (D) =
1

2n

n

∑
k=1

ln
E
(
z2

k
)

D
(14)

with zn:1 = U>n xn:1.

Proof. We encode z1, . . . , zn separately with E
(
‖zk − z̃k‖2

2

)
≤ D for all k ∈ {1, . . . , n}. Let

x̃n:1 := Un z̃n:1, where

z̃n:1 :=

z̃n
...

z̃1

 .

As U>n is unitary (in fact, it is a real orthogonal matrix) and the spectral norm is unitarily invariant,
we have

E
(
‖xn:1 − x̃n:1‖2

2

)
n

=
E
(∥∥U>n xn:1 −U>n x̃n:1

∥∥2
2

)
n

=
E
(
‖zn:1 − z̃n:1‖2

2

)
n

=
E
(

∑n
k=1 (zk − z̃k)

2
)

n
=

∑n
k=1 E

(
(zk − z̃k)

2
)

n
=

∑n
k=1 E

(
‖zk − z̃k‖2

2

)
n

≤ D,

and thus,

Rxn:1(D) ≤ 1
n

n

∑
k=1

Rzk (D).
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To finish the proof we show Equation (14). Since

E
(

zn:1z>n:1

)
= E

(
U>n xn:1x>n:1Un

)
= U>n E

(
xn:1x>n:1

)
Un = diag1≤k≤n

(
λk

(
E
(

xn:1x>n:1

)))
,

we obtain

E
(

z2
k

)
=
[

E
(

zn:1z>n:1

)]
n−k+1,n−k+1

= λn−k+1

(
E
(

xn:1x>n:1

))
≥ λn

(
E
(

xn:1x>n:1

))
≥ D > 0.

Hence, applying Equation (13) yields

1
n

n

∑
k=1

Rzk (D) =
1
n

n

∑
k=1

1
2

ln
E
(
z2

k
)

D
=

1
2n

n

∑
k=1

ln
λn−k+1

(
E
(
xn:1x>n:1

))
D

=
1

2n

n

∑
k=1

ln
λk
(
E
(

xn:1x>n:1
))

D
= Rxn:1(D).

Corollary 1 shows that an optimal coding strategy for xn:1 is to encode z1, . . . , zn separately.
We now give two coding strategies for xn:1 based on the DFT whose computational complexity is

lower than the computational complexity of the optimal coding strategy provided in Corollary 1.

Theorem 4. Let xn:1 be as in Theorem 3. Suppose that yn:1 is the DFT of xn:1 and D ∈
(
0, λn

(
E
(
xn:1x>n:1

))]
. Then

Rxn:1(D) ≤ R̃xn:1(D) ≤ R̆xn:1(D) ≤ 1
2n

n

∑
k=1

ln
E(|yk|2)

D
(15)

≤ Rxn:1(D) +
1
2

ln

1 +

∥∥∥E
(

xn:1x>n:1
)
−Vndiag1≤k≤n

([
V∗n E

(
xn:1x>n:1

)
Vn
]

k,k

)
V∗n
∥∥∥

F√
n λn

(
E
(
xn:1x>n:1

))
 , (16)

where ‖ · ‖F is the Frobenius norm,

R̃xn:1(D) :=


Ry n

2
(D)+2 ∑n−1

k= n
2 +1

Rŷk (
D
2 )+Ryn (D)

n if n is even,

2 ∑n−1
k= n+1

2
Rŷk (

D
2 )+Ryn (D)

n if n is odd,

and

R̆xn:1(D) :=


Ry n

2
(D)+∑n−1

k= n
2 +1

(
RRe(yk)

( D
2 )+RIm(yk)

( D
2 )
)
+Ryn (D)

n if n is even,

∑n−1
k= n+1

2

(
RRe(yk)

( D
2 )+RIm(yk)

( D
2 )
)
+Ryn (D)

n if n is odd.

Proof. Equations (15) and (16) were presented in [4] (Equations (16) and (20)) for the case where the
correlation matrix E

(
xn:1x>n:1

)
is Toeplitz. They were proved by using a result on the DFT of random

vectors with Toeplitz correlation matrix, namely, ref. [4] (Theorem 1). The proof of Theorem 4 is similar
to the proof of [4] (Equations (16) and (20)) but using Theorem 1 instead of [4] (Theorem 1). Observe
that in Theorems 1 and 4 no assumption about the structure of E

(
xn:1x>n:1

)
has been made.

Theorem 4 shows that a coding strategy for xn:1 is to encode yd n
2 e, . . . , yn separately, where d n

2 e
denotes the smallest integer higher than or equal to n

2 . Theorem 4 also shows that another coding
strategy for xn:1 is to encode separately the real part and the imaginary part of yk instead of encoding yk
when k ∈ {d n

2 e, . . . , n− 1} \ { n
2 }. The computational complexity of these two coding strategies based

on the DFT is lower than the computational complexity of the optimal coding strategy provided in
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Corollary 1. Specifically, the complexity of computing the DFT (yn:1 = V∗n xn:1) is O(n log n) whenever
the fast Fourier transform (FFT) algorithm is used, while the complexity of computing zn:1 = U>n xn:1 is
O(n2). Moreover, when the coding strategies based on the DFT are used, we do not need to compute
a real orthogonal eigenvector matrix Un of E

(
xn:1x>n:1

)
. It should also be mentioned that for these

coding strategies based on the DFT the knowledge of E
(
xn:1x>n:1

)
is not even required, in fact, for them

we only need to know E
(

ŷk (ŷk)
>
)

with k ∈ {d n
2 e, . . . , n}.

The rates corresponding to the two coding strategies given in Theorem 4, R̃xn:1(D) and R̆xn:1(D),
can be written in terms of E

(
xn:1x>n:1

)
and Vn by using Lemma 1 and the following lemma.

Lemma 2. Let yn:1 and D be as in Theorem 4. Then

1. Ryk (D) = 1
2 ln

E(y2
k)

D for all k ∈ {1, . . . , n} ∩ { n
2 , n}.

2. Rŷk

(
D
2

)
= 1

4 ln
E((Re(yk))

2)E((Im(yk))
2)−(E(Re(yk)Im(yk)))

2

( D
2 )

2 for all k ∈ {1, . . . , n− 1} \ { n
2 }.

3. RRe(yk)

(
D
2

)
= 1

2 ln
E((Re(yk))

2)
D
2

for all k ∈ {1, . . . , n− 1} \ { n
2 }.

4. RIm(yk)

(
D
2

)
= 1

2 ln
E((Im(yk))

2)
D
2

for all k ∈ {1, . . . , n− 1} \ { n
2 }.

Proof. (1) Applying Equation (2) and [4] (Lemma 1) yields

0 < D ≤ λn

(
E
(

xn:1x>n:1

))
≤ E

(
|yk|2

)
= E

(
y2

k

)
.

Assertion (1) now follows directly from Equation (13).
(2) Applying Theorem 2 we have

0 <
D
2
≤

λn(E
(
xn:1x>n:1

)
)

2
≤ λ2

(
E
(

ŷk (ŷk)
>
))

.

Consequently, from Equation (13) we obtain

Rŷk

(
D
2

)
=

1
4

ln
det

(
E
(

ŷk (ŷk)
>
))

(
D
2

)2 =
1
4

ln

det

 E
(
(Re (yk))

2
)

E (Re (yk) Im (yk))

E (Im (yk)Re (yk)) E
(
(Im (yk))

2
) 

(
D
2

)2 .

Assertions (3) and (4) Applying Equations (3) and (4) yields

0 <
D
2
≤

λn
(
E
(

xn:1x>n:1
))

2
≤ E

(
(Re (yk))

2
)

.

and

0 <
D
2
≤

λn
(
E
(
xn:1x>n:1

))
2

≤ E
(
(Im (yk))

2
)

.

Assertions (3) and (4) now follow directly from Equation (13).

We end this section with a result that is a direct consequence of Lemma 2. This result shows
when the rates corresponding to the two coding strategies given in Theorem 4, R̃xn:1(D) and R̆xn:1(D),
are equal.

Lemma 3. Let xn:1, yn:1, and D be as in Theorem 4. Then the two following assertions are equivalent:

1. R̃xn:1(D) = R̆xn:1(D).
2. E (Re (yk) Im (yk)) = 0 for all k ∈ {d n

2 e, . . . , n− 1} \ { n
2 }.
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Proof. Fix k ∈ {d n
2 e, . . . , n− 1} \ { n

2 }. From Lemma 2 we have

2Rŷk

(
D
2

)
=

1
2

ln
E
(
(Re (yk))

2
)

E
(
(Im (yk))

2
)
− (E (Re (yk) Im (yk)))

2(
D
2

)2

≤ 1
2

ln
E
(
(Re (yk))

2
)

E
(
(Im (yk))

2
)

(
D
2

)2

=
1
2

ln
E
(
(Re (yk))

2
)

D
2

+
1
2

ln
E
(
(Im (yk))

2
)

D
2

= RRe(yk)

(
D
2

)
+ RIm(yk)

(
D
2

)
.

4. Low-Complexity Coding Strategies for Gaussian AWSS AR Sources

We begin by introducing some notation. The symbols N, Z, and R denote the set of positive
integers, integers, and (finite) real numbers, respectively. If f : R→ C is continuous and 2π-periodic,
we denote by Tn( f ) the n× n Toeplitz matrix given by

[Tn( f )]j,k = tj−k,

where {tk}k∈Z is the sequence of Fourier coefficients of f , i.e.,

tk =
1

2π

∫ 2π

0
f (ω)e−kωidω ∀k ∈ Z.

If An and Bn are n × n matrices for all n ∈ N, we write {An} ∼ {Bn} if the sequences
{An} and {Bn} are asymptotically equivalent, that is, {‖An‖2} and {‖Bn‖2} are bounded and
limn→∞

‖An−Bn‖F√
n = 0 (see [5] (Section 2.3) and [6]).

We now review the definitions of AWSS processes and AR processes.

Definition 1. A random process {xn} is said to be AWSS if it has constant mean (i.e., E(xj) = E(xk) for all
j, k ∈ N) and there exists a continuous 2π-periodic function f : R→ C such that {E

(
xn:1x∗n:1

)
} ∼ {Tn( f )}.

The function f is called (asymptotic) PSD of {xn}.

Definition 2. A real zero-mean random process {xn} is said to be AR if

xn = wn −
n−1

∑
k=1

a−kxn−k ∀n ∈ N,

or equivalently,
n−1

∑
k=0

a−kxn−k = wn ∀n ∈ N, (17)

where a0 = 1, a−k ∈ R for all k ∈ N, and {wn} is a real zero-mean random process satisfying that E
(
wjwk

)
=

δj,kσ2 for all j, k ∈ N with σ2 > 0 and δj,k being the Kronecker delta (i.e., δj,k = 1 if j = k, and it is
zero otherwise).

The AR process {xn} in Equation (17) is of finite order if there exists p ∈ N such that a−k = 0 for all
k > p. In this case, {xn} is called an AR(p) process.
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The following theorem shows that if xn:1 is a large enough data block of a Gaussian AWSS AR
source, the rate does not increase whenever we encode it using the two coding strategies based
on the DFT presented in Section 3, instead of encoding xn:1 using an eigenvector matrix of its
correlation matrix.

Theorem 5. Let {xn} be as in Definition 2. Suppose that {ak}k∈Z, with ak = 0 for all k ∈ N, is the sequence
of Fourier coefficients of a function a : R→ C which is continuous and 2π-periodic. Then

1. infn∈N λn
(
E
(

xn:1x>n:1
))
≥ σ2

maxω∈[0,2π] |a(ω)|2 > 0.

2. Consider D ∈
(
0, infn∈N λn

(
E
(

xn:1x>n:1
))]

.

(a) If {xn} is Gaussian,

1
2

ln
σ2

D
=Rxn:1(D)≤ R̃xn:1(D)≤ R̆xn:1(D)≤K1(n, D)≤K2(n, D)≤K3(n, D) ∀n ∈ N, (18)

where K1(n, D) is given by Equation (16), and K2(n, D) and K3(n, D) are obtained by replacing
λn
(
E
(

xn:1x>n:1
))

in Equation (16) by infn∈N λn
(
E
(
xn:1x>n:1

))
and σ2

maxω∈[0,2π] |a(ω)|2 , respectively.
(b) If {xn} is Gaussian and AWSS,

lim
n→∞

Rxn:1(D) = lim
n→∞

R̃xn:1(D) = lim
n→∞

R̆xn:1(D) = lim
n→∞

K3(n, D). (19)

Proof. (1) Equation (17) can be rewritten as

Tn(a)xn:1 = wn:1 ∀n ∈ N.

Consequently,

Tn(a)E
(

xn:1x>n:1

)
(Tn(a))> = E

(
Tn(a)xn:1 (Tn(a)xn:1)

>
)
= E

(
wn:1w>n:1

)
= σ2 In ∀n ∈ N.

As det(Tn(a)) = 1, Tn(a) is invertible, and therefore,

E
(

xn:1x>n:1

)
= σ2 (Tn(a))−1

(
(Tn(a))>

)−1
= σ2

(
(Tn(a))> Tn(a)

)−1
= σ2 ((Tn(a))∗ Tn(a)

)−1

= σ2
(

Nndiag1≤k≤n

(
(σk (Tn(a)))2

)
N∗n
)−1

= Nndiag1≤k≤n

(
σ2

(σk (Tn(a)))2

)
N∗n (20)

for all n ∈ N, where Tn(a) = Mndiag1≤k≤n (σk (Tn(a))) N∗n is a singular value decomposition of Tn(a).
Thus, applying [8] (Theorem 4.3) yields

λn

(
E
(

xn:1x>n:1

))
=

σ2

(σ1 (Tn(a)))2 ≥
σ2

maxω∈[0,2π] |a(ω)|2 > 0 ∀n ∈ N.

(2a) From Equation (13) we have

Rxn:1(D) =
1

2n
ln

det
(
E
(

xn:1x>n:1
))

Dn =
1

2n
ln

det
(

σ2 (Tn(a))−1
(
(Tn(a))>

)−1
)

Dn

=
1

2n
ln

(
σ2)n

Dn det (Tn(a))det
(
(Tn(a))>

) =
1

2n
ln

(
σ2)n

Dn =
1
2

ln
σ2

D
∀n ∈ N.

Assertion (2a) now follows from Theorem 4 and Assertion (1).
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(2b) From Assertion (2a) we only need to show that

lim
n→∞

∥∥∥E
(

xn:1x>n:1
)
−Vndiag1≤k≤n

([
V∗n E

(
xn:1x>n:1

)
Vn
]

k,k

)
V∗n
∥∥∥

F√
n

= 0. (21)

As the Frobenius norm is unitarily invariant we obtain

0≤

∥∥∥∥E
(

xn:1x>n:1

)
−Vndiag1≤k≤n

([
V∗n E

(
xn:1x>n:1

)
Vn

]
k,k

)
V∗n

∥∥∥∥
F√

n

≤

∥∥∥E
(

xn:1x>n:1

)
−Tn( f )

∥∥∥
F√

n
+

∥∥∥Tn( f )−Ĉn( f )
∥∥∥

F√
n

+

∥∥∥∥Vndiag1≤k≤n

([
V∗n E

(
xn:1x>n:1

)
Vn

]
k,k

)
V∗n−Ĉn( f )

∥∥∥∥
F√

n

=

∥∥∥E
(

xn:1x>n:1

)
−Tn( f )

∥∥∥
F√

n
+

∥∥∥Tn( f )−Ĉn( f )
∥∥∥

F√
n

+

∥∥∥∥Vndiag1≤k≤n

([
V∗n
(

E
(

xn:1x>n:1

)
−Tn( f )

)
Vn

]
k,k

)
V∗n

∥∥∥∥
F√

n

=

∥∥∥E
(

xn:1x>n:1

)
−Tn( f )

∥∥∥
F√

n
+

∥∥∥Tn( f )−Ĉn( f )
∥∥∥

F√
n

+

∥∥∥∥diag1≤k≤n

([
V∗n
(

E
(

xn:1x>n:1

)
− Tn( f )

)
Vn

]
k,k

)∥∥∥∥
F√

n

≤

∥∥∥E
(

xn:1x>n:1

)
−Tn( f )

∥∥∥
F√

n
+

∥∥∥Tn( f )−Ĉn( f )
∥∥∥

F√
n

+

∥∥∥V∗n
(

E
(

xn:1x>n:1

)
− Tn( f )

)
Vn

∥∥∥
F√

n

=2

∥∥∥E
(

xn:1x>n:1

)
−Tn( f )

∥∥∥
F√

n
+

∥∥∥Tn( f )−Ĉn( f )
∥∥∥

F√
n

,

where f is (asymptotic) PSD of {xn} and Ĉn( f ) = Vndiag1≤k≤n ([V
∗
n Tn( f )Vn]k,k)V∗n . Assertion (2b)

now follows from {E
(

xn:1x>n:1
)
} ∼ {Tn( f )} and [9] (Lemma 4.2).

If ∑0
k=−∞ |ak| < ∞, there always exists such function a and it is given by a(ω) = ∑0

k=−∞ akekωi for
all ω ∈ R (see, e.g., [8] (Appendix B)). In particular, if {xn} is an AR(p) process, a(ω) = ∑0

k=−p akekωi

for all ω ∈ R.

5. Sufficient Conditions for AR Processes to be AWSS

In the following two results we give sufficient conditions for AR processes to be AWSS.

Theorem 6. Let {xn} be as in Definition 2. Suppose that {ak}k∈Z, with ak = 0 for all k ∈ N, is the sequence of
Fourier coefficients of a function a : R→ C which is continuous and 2π-periodic. Then the following assertions
are equivalent:

1. {xn} is AWSS.
2. {

∥∥E
(

xn:1x>n:1
)∥∥

2} is bounded.
3. {Tn(a)} is stable (that is, {‖(Tn(a))−1‖2} is bounded).
4. a(ω) 6= 0 for all ω ∈ R and {xn} is AWSS with (asymptotic) PSD σ2

|a|2 .

Proof. (1)⇒(2) This is a direct consequence of the definition of AWSS process, i.e., of Definition 1.
(2)⇔(3) From Equation (20) we have

∥∥∥E
(

xn:1x>n:1

)∥∥∥
2
=

σ2

(σn (Tn(a)))2 = σ2
∥∥∥∥Nndiag1≤k≤n

(
1

σk (Tn(a))

)
M∗n

∥∥∥∥2

2
= σ2

∥∥∥(Tn(a))−1
∥∥∥2

2

for all n ∈ N.
(3)⇒(4) It is well known that if f : R→ C is continuous and 2π-periodic, and {Tn( f )} is stable

then f (ω) 6= 0 for all ω ∈ R. Hence, a(ω) 6= 0 for all ω ∈ R.
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Applying [8] (Lemma 4.2.1) yields
{
(Tn(a))>

}
=
{
(Tn(a))∗

}
= {Tn(a)}. Consequently, from [7]

(Theorem 3) we obtain{
(Tn(a))> Tn(a)

}
= {Tn(a)Tn(a)} ∼ {Tn(aa)} =

{
Tn

(
|a|2
)}

.

Observe that the sequence{∥∥∥∥((Tn(a))> Tn(a)
)−1

∥∥∥∥
2

}
=

{∥∥∥∥ 1
σ2 E

(
xn:1x>n:1

)∥∥∥∥
2

}
=

{
1
σ2

∥∥∥E
(

xn:1x>n:1

)∥∥∥
2

}
is bounded. As the function |a|2 is real, applying [8] (Theorem 4.4) we have that Tn

(
|a|2
)

is Hermitian
and 0 < minω∈[0,2π] |a(ω)|2 ≤ λn(Tn

(
|a|2
)
) for all n ∈ N, and therefore,∥∥∥∥(Tn

(
|a|2
))−1

∥∥∥∥
2
=

1
λn (Tn (|a|2))

≤ 1
minω∈[0,2π] |a(ω)|2 ∀n ∈ N.

Thus, from [5] (Theorem 1.4) we obtain{
1
σ2 E

(
xn:1x>n:1

)}
=

{(
(Tn(a))> Tn(a)

)−1
}
∼
{(

Tn

(
|a|2
))−1

}
.

Hence, applying [10] (Theorem 4.2) and [5] (Theorem 1.2) yields{
1
σ2 E

(
xn:1x>n:1

)}
∼
{

Tn

(
1
|a|2

)}
.

Consequently, from [8] (Lemma 3.1.3) and [8] (Lemma 4.2.3) we have

{
E
(

xn:1x>n:1

)}
∼
{

σ2Tn

(
1
|a|2

)}
=

{
Tn

(
σ2

|a|2

)}
.

(4)⇒(1) It is obvious.

Corollary 2. Let {xn} be as in Definition 2 with ∑0
k=−∞ |ak| < ∞. If ∑∞

k=0 a−kzk 6= 0 for all |z| ≤ 1 then
{xn} is AWSS.

Proof. It is well known that if a sequence of complex numbers {tk}k∈Z satisfies that ∑∞
k=−∞ |tk| < ∞

and that ∑∞
k=−∞ tkzk 6= 0 for all |z| ≤ 1 then {Tn( f )} is stable with f (ω) = ∑∞

k=−∞ tkekωi for all ω ∈ R.
Therefore, {Tn(b)} is stable with b(ω) = ∑∞

k=0 a−kekωi for all ω ∈ R. Thus,

{∥∥∥(Tn(a))−1
∥∥∥

2

}
=

{∥∥∥∥((Tn(a))−1
)>∥∥∥∥

2

}
=

{∥∥∥∥((Tn(a))>
)−1

∥∥∥∥
2

}
=
{∥∥∥(Tn(b))−1

∥∥∥
2

}
is bounded with a(ω) = ∑0

k=−∞ akekωi for all ω ∈ R. As {Tn(a)} is stable, from Theorem 6 we
conclude that {xn} is AWSS.

6. Numerical Example and Conclusions

6.1. Example

Let {xn} be as in Definition 2 with a−k = 0 for all k > 1. Observe that σ2

maxω∈[0,2π] |a(ω)|2 = σ2

(1+|a−1|)2 .

If |a−1| < 1 from Corollary 2 we obtain that the AR(1) process {xn} is AWSS. Figure 1 shows Rxn:1(D),
R̃xn:1(D), and R̆xn:1(D) by assuming that {xn} is Gaussian, a−1 = − 1

2 , σ2 = 1, D = σ2

(1+|a−1|)2 = 4
9 ,

and n ≤ 100. Figure 1 also shows the highest upper bound of Rxn:1(D) presented in Theorem 5,
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namely, K3(n, D). Observe that the figure bears evidence of the equalities and inequalities given in
Equations (18) and (19).
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(D)

K3(n,D)

Figure 1. Considered rates for a Gaussian AWSS AR(1) source.

6.2. Conclusions

The computational complexity of coding finite-length data blocks of Gaussian sources can be
reduced by using any of the two low-complexity coding strategies here presented instead of the
optimal coding strategy. Moreover, the rate does not increase if we use those strategies instead of
the optimal one whenever the Gaussian source is AWSS and AR, and the considered data block is
large enough.
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