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Abstract

Problem definition: We consider a resource allocation problem faced by health and humani-

tarian organizations deploying mobile outreach teams to serve marginalized communities. These

teams can provide a single service or an assortment of services during each visit. Combining

services is likely to increase operational efficiency but decrease the relative benefit per service

per visit, as operations are no longer tailored to a single service. The aim of this study is to

analyze this benefit-efficiency trade-off. Academic/practical relevance: Increased operational

efficiency will enable organizations to serve more people using fewer resources. This is impor-

tant given the increasing funding gap organizations are facing. Our work adds to the literature

on resource allocation problems and visit allocation problems specifically, where the focus has

been primarily on single services. Methodology: We analyze a general visit allocation problem

incorporating demand distribution (where to go) and return time (how frequently to go). We

derive analytical bounds for the benefit-efficiency trade-off, and propose visit allocation policies

with worst-case optimality guarantees. Results: Our results show the benefit-efficiency trade-off

can be assessed based on high level parameters. We show demand alignment is a key driver of

this trade-off. We apply our results to Praesens Care, a social enterprise start-up developing

mobile diagnostic laboratories, and verify our insights using real-world data. Managerial Im-

plications: Our research contributes to the discussion on innovation and increased efficiency in

health and humanitarian aid delivery by quantifying operational trade-offs in offering assortments

of services. Specifically, our results help assess the potential of integrated models for health and

humanitarian aid delivery and provide organizations with easy-to-implement methods to deter-

mine close-to-optimal visiting policies. Importantly, our methods remain applicable in case of

limited data, making them suitable for strategic decision-making.

Keywords: Resource Allocation, Health-Delivery Optimization, Visit Allocation, Mobile Lab

Deployment, Worst-Case Analysis
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1 Introduction

Visit allocation problems consider the deployment of mobile units to a set of locations to maximize

the benefit of a given service. They are a type of resource allocation problem frequently studied in

the context of outreach programs, where teams travel to rural areas to provide health and humani-

tarian services (see McCoy and Lee [2014], de Vries et al. [2021a], Alban et al. [2021], Breugem and

Van Wassenhove [2022], among others). The key decisions are which locations to visit and how often,

or with which frequency these locations should be visited. In particular, an optimal policy depends

on the demand distribution (where to go) and the sensitivity to waiting/return time (how frequently

to go) for a service.

Recent technological advancements increase the potential for integrating services, that is, a single

mobile unit offering multiple services during a single visit. This ideally allows services to be provided

more efficiently and hence enable organizations to serve more people using fewer resources. This is

especially important in light of the increasing funding gap that non-governmental organizations are

facing (Besiou and Van Wassenhove [2020]). However, different services have different characteristics.

For example, reproductive health services are likely less urgent than diagnostics for highly infectious

diseases or diseases with a short time until severe illness. These characteristics directly influence the

optimal visit allocation: low urgency allows for visiting many different locations routinely, whereas

high urgency necessitates focusing on a few locations with highest demand. Hence, different services

will have different optimal visit allocation policies. This highlights an important trade-off between

benefit and efficiency in multi-service settings: Combining services during a single visit is likely to

increase operational efficiency, because integration allows to decrease the total number of visits, but

decrease the relative benefit per service per visit, as operations are no longer tailored to a single

service. This benefit-efficiency trade-off is not well-understood, and, as a result, it is not clear what

the potential benefit of integration is nor what best visiting policies are given multiple services. In

this research, we aim to fill this gap and analyze the benefit-efficiency trade-off for visit allocation in

multi-service settings.

This research is motivated by Praesens Care, a social enterprise start-up producing mobile diagnostic

laboratories (mobile labs) used predominantly in low- and middle-income countries in Africa.1 Mobile

labs are a promising approach to improving access to diagnostics in low- and middle-income countries,

their potential recognized by large donors such as the European Union.2 The newest generation of

mobile labs have similar diagnostic capacities as stationary labs. Specifically, Praesens Care’s mobile

labs have a modular design which allow a single lab to provide state-of-the-art diagnostic services for

a large number of pathogens. Furthermore, the labs have the additional benefit of being agile and

quickly deployed in case of emergencies. In general, their mobility allows for pooling of resources and

equipment in situations that do not require permanent availability of testing facilities.

Praesens Care’s mobile labs have been successfully used in outbreak response for Ebola, and were an

integral part of the response during the 2017 and 2018 Dengue outbreaks in Senegal. Having deployed

1For more information, see: https://praesens.care/
2See: https://ec.europa.eu/international-partnerships/stories/eu-funded-mobile-labs-help-tackle-coro

navirus-africa en.
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their labs primarily in emergency settings, they face a number of strategic questions regarding non-

emergency deployment. Specifically, what are the best use cases for the mobile lab? How can the

mobile lab systematically (rather than ad-hoc) generate impact, and how much impact? And how

does this depend on the offered services and operational context? Using mobile labs for non-emergency

deployment is an important opportunity, since emergency deployment typically only happens a fraction

of the year. Fundamental to answering these questions is assessing the benefit generated from the

lab’s ability to offer multiple services during a single visit.

The contributions of this paper are twofold. Firstly, we derive analytical bounds for the benefit-

efficiency trade-off for visit allocation problems in multi-service settings. We model the visit alloca-

tion problem as a resource allocation problem with single resource constraint and assume the benefit

function at each location for each service is proportional to a general non-decreasing concave function

depending on the service characteristics. This set-up is general and can also be applied to other prac-

tical problems. Secondly, we use our analytical results to derive visit allocation policies maximizing

the worst-case relative benefit from offering an assortment of services. We show these policies can

be efficiently determined by solving a linear program. Our results show alignment in demand is the

key driver of the benefit-efficiency trade-off. Our methods remain applicable in case of limited data,

making them suitable for decision-making in cases where data is scarce. This makes them particularly

suitable for strategic decision-making, where impact estimation (e.g., to convince potential donors)

often precedes large-scale data collection. Furthermore, additional information can be incorporated

when available. We conclude with a computational study based on Praesens Care’s recent operations,

and show how our results help assess the benefit-efficiency trade-off and lead to near-optimal policies.

The remainder of this paper is organized as follows. In Section 2, we discuss related work and position

our analysis in the literature. In Section 3, we formalize the problem setting, and we provide our

main results in Section 4. In Section 5, we apply our results to a case study based on Praesens Care.

Section 6 summarizes our main results and conclusions.

2 Related Work

Our work contributes to three streams of literature: visit allocation problems in health and humanitar-

ian operations, robust optimization and related concepts simultaneous optimization and approximate

resource allocation, and the analysis of worst-case bounds in resource allocation, specifically in the

context of fairness.

Visit allocation problems have received considerable attention in recent years. McCoy and Lee [2014]

consider the impact of fairness requirements in outreach visit planning. The proposed model is ap-

plied to data from Riders for Health, a non-governmental organization operating throughout Africa.

de Vries et al. [2021a] and Alban et al. [2021] consider planning outreach visits at MSI Reproduc-

tive Choices (MSI), a major non-governmental organization operating in 37 countries. de Vries et al.

[2021a] determine optimal and heuristic visit policies for maximizing client volume, which are shown

to perform well via a case study at MSI. Alban et al. [2021] consider a similar problem but with

sigmodal, rather than concave, objective functions, to model service adoption. Finally, de Vries et al.
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[2021b] consider active case finding for Human African Trypanosomiasis (HAT). The authors propose

seven heuristics (three based on optimization, four on intuitive decision rules) and analyze their per-

formance. Our work relates closely to abovementioned papers. However, while their focus is primarily

on modeling benefit and optimizing visits for a single service, we focus on visit allocation when offering

multiple services and the benefit-efficiency trade-off this entails.

Relevant work in the health delivery domain more generally includes Deo et al. [2013], on optimizing

follow-up testing for patients that need treatment over a longer period, McCoy and Johnson [2014], on

the impact of adherence (continuing treatment) on budget allocation decisions over multiple periods,

Deo and Sohoni [2015], on the trade-off between centralized diagnostic networks and point-of-care

testing, Deo et al. [2015], on modeling HIV screening, testing, and care, and Jónasson et al. [2017], on

improving supply chains for Early Infant Diagnosis for HIV. Also in this research, the focus is typically

on improving operations for a single service. We refer to Jónasson et al. [2022] for a general overview

of Operations Management/Research literature focused on social impact, among which health delivery

optimization, in low- and middle-income country settings.

Robust optimization considers optimizing over uncertain parameters confined to a given uncertainty

set (see Ben-Tal et al. [2009] and Gorissen et al. [2015] for overviews). One key advantage of this

approach is that it requires limited data and/or assumptions on underlying distributions. The goal is

to find a solution that performs well (best) for all possible parameter combinations in the uncertainty

set. Our approach is similar in that we aim to find visit allocation policies that perform well for

multiple services, although these are assumed to be known rather than uncertain. One key difference

with most robust optimization literature is our focus on the shape of the objective function, rather than

uncertainty in (linear) constraints. In this light, the recent work of Chen et al. [2022] is particularly

relevant. The authors consider a two-stage resource allocation problem among multiple regions, similar

in structure to the model in this paper, where the cost function for each region is unknown, albeit

assumed to be monotonic. Given limited data on the shape of the cost functions, a new type of

uncertainty set based on statistic goodness-of-fit tests for monotonic functions is proposed to provide

a tractable robust formulation of the problem that converges to the ‘true’ problem when more data

becomes available. Our underlying problem is conceptually similar but our approach differs by focusing

on analytical insights, thereby imposing additional structural assumptions on the problem, rather than

data-driven methods to model the objective functions.

Our analytical approach relates closely to the work of Goel and Estrin [2005] and Goel and Meyerson

[2006] on simultaneous optimization and Breugem et al. [2022] on approximate resource allocation

problems. Simultaneous optimization considers selecting a single resource allocation that is guaranteed

to be within a certain factor of the optimum for a given set of utility functions. Goel and Meyerson

[2006] consider a general allocation problem and similar utility functions for all players, while Goel

and Estrin [2005] allow non-identical utility functions (assumed to be scalar multiples of a single

underlying function, similar to our approach) in the context of aggregation trees. The approximate

resource allocation problem introduced in Breugem et al. [2022] provides a framework for analyzing

decision making when one relies on approximations of the utility functions. The authors provide

worst-case bounds for the utility derived from resource allocations when arbitrarily differences in
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utility functions are allowed.

Finally, our approach bears resemblance to other work on worst-case bounds in resource allocation,

specifically work on the price of fairness (see, e.g., Bertsimas et al. [2011], Caragiannis et al. [2012],

Bertsimas et al. [2012], Gur et al. [2021], Breugem and Van Wassenhove [2022]). The latter considers

the worst-case loss resulting from imposing fairness constraints (e.g., max-min fairness, proportional

fairness, or outcome constraints). Besides the difference in context (that is, fairness instead of multi-

service settings), our analysis differs from this research by focusing on the relative benefit reduction for

a given resource allocation (visit allocation policy) rather than the reduction from imposing additional

constraints (fairness requirements).

Summarizing, there exists substantial literature on visit allocation problems in health delivery, and

optimization in health delivery more generally. However, the focus is typically on modeling benefit

and optimizing operations for a single service rather than multiple services simultaneously. In this

research, we aim to bridge this gap by analyzing the benefit-efficiency trade-off and worst-case optimal

policies for visit allocation problems in multi-service settings, thereby also extending the literature on

worst-case analysis in resource allocation.

3 Problem Formulation

In this section, we formalize the visit allocation problem and the assumptions on the benefit functions.

We formulate our terminology in terms of lab visit allocation, but note that the model and assumptions

generalize across contexts.

3.1 Preliminaries

We consider scheduling mobile lab visits across n locations during a given planning period. Without

loss of generality, we assume the length of the planning period is standardized to one. Hence, instead

of allocating visits, we allocate a fraction of the visit capacity over the period. For example, in case of

weekly visits over a 12 week planning period, allocating a fraction 0.5 of the visit capacity is equivalent

to scheduling 6 visits. Let m be the number of services offered by the lab.

Given location i, for i = 1, . . . , n, and service j, for j = 1 . . . ,m, we assume the benefit generated

from site visits can be expressed as follows:

Assumption 1. Consider a given location i, for i = 1, . . . , n, and service j, for j = 1 . . . ,m. The

benefit of allocating a fraction v ∈ [0, 1] of the visit capacity to location i can be written as:

λijfj(v), (1)

with λij a non-negative demand parameter and fj : [0, 1] → [0, 1] the average benefit per time period

per person as a function of v. The function fj is a non-decreasing concave and continuous function

satisfying fj(0) = 0 and fj(1) = 1.

Assumption 1 states fj is a non-decreasing concave and continuous function of the allocated visit
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capacity. Furthermore, Assumption 1 states the benefit can be decomposed into two parts: one non-

linear part specific to the service and the same for all locations (up to the allocated visits), and a

demand parameter unique to each location-service pair. Intuitively, this means that heterogeneity in

locations can be fully captured by differences in demand. The assumption of concavity and a fixed

non-linear underlying function are common in visit allocation problems within the outreach context

(e.g., McCoy and Lee [2014], de Vries et al. [2021a], Breugem and Van Wassenhove [2022]). The

assumption of concavity is common for resource allocation in general (see, for example, the discussion

in Bertsimas et al. [2011]). Cases where Assumption 1 does not necessarily hold include long term

visit allocation with adaptation dynamics [Alban et al., 2021].

We show in the appendix that Assumption 1 holds for a wide variety of services for which the benefit

depends solely on waiting time. That is, where the benefit a person derives can be written as b(w),

with w the waiting time until service for that person and b(w) a non-negative and non-increasing

function. In this case, the ‘concavity’ of the benefit function captures how sensitive the benefit of the

service is to waiting time: the more linear the benefit function, the more sensitive the service is to

waiting time. To illustrate this, consider the function:

bw1,w2
(w) =


1 if w ≤ w1

w2−w
w2−w1

if w1 ≤ w ≤ w2

0 if w ≥ w2.

(2)

This function indicates a person gets full benefit if the waiting time is below w1, and zero benefit

if the waiting time exceeds w2. In between, benefit decreases linearly. The smaller w1 and w2, the

more urgent the service. The benefit functions b1,2(w) and b4,6(w) are shown in Figure 1 (left). The

resulting benefit as function of the fraction of visit capacity is shown in Figure 1 (right). Note that a

fraction v of the visit capacity is equivalent to a return time, and hence waiting time, of 1/v weeks.

We observe the function for b4,6 is substantially more concave compared to b1,2. This is because the

former allows for longer waiting times, and hence more benefit in case of a small number of visits.
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Figure 1: Example of benefit function given waiting time (left) and the resulting total benefit as a
function of the fraction of visit capacity (right).
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3.2 Mathematical Model

Under Assumption 1, we can model the problem of allocating site visits to maximize overall benefit as

a resource allocation problem. Our model resembles the ones in McCoy and Lee [2014], Alban et al.

[2021], and de Vries et al. [2021a], extended to multiple services.

We introduce decision variables xi ≥ 0, for i = 1, . . . , n, indicating the fraction of visiting capacity

allocated to location i. Let λij , for i = 1, . . . , n, and j = 1, . . . ,m, and fj , for j = 1, . . . ,m, denote

the demand parameters and the average benefit function, according to Assumption 1, for service

j = 1, . . . ,m. With slight abuse of notation, we define λj as the n-dimensional vector with demand

parameters λij , for each service j = 1 . . . ,m. For a given service j, the problem of allocating mobile

lab visits to maximize benefit can now be formulated as follows:

OPT(λj , fj) = max

n∑
i=1

λijfj(xi) (3a)

s.t.

n∑
i=1

xi ≤ 1 (3b)

xi ≤ 1 i = 1, . . . , n (3c)

xi ≥ 0 i = 1, . . . , n. (3d)

The Objective (3a) expresses we maximize total benefit. Constraint (3b) enforces the maximum

number of visits. Finally, Constraints (3c) and (3d) specify the domain of the decision variables. We

define OPT(λj , fj) as the optimal value to (3). For a given allocation x, define VALUE(x, λj , fj) as

the objective value attained by x for service j:

VALUE(x, λj , fj) =

n∑
i=1

λijfj(xi). (4)

We are interested in the relative benefit ratio:

RATIO(x, λj , fj) =
VALUE(x, λj , fj)

OPT(λj , fj)
, (5)

which captures the relative performance of x compared to the optimal solution for service j.

Using definition (5), we define the visit allocation problem given multiple services as the problem of

maximizing the minimum benefit ratio over all services. We consider a visiting capacity γ ≥ 1 for the

labs offering multiple services (i.e., the number of mobile labs offering multiple services). The problem
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can then be formulated as follows:

max z (6a)

s.t.

n∑
i=1

xi ≤ γ (6b)

z ≤ RATIO(x, λj , fj) j = 1, . . . ,m (6c)

xi ≤ 1 i = 1, . . . , n (6d)

xi ≥ 0 i = 1, . . . , n (6e)

z ≥ 0. (6f)

The Objective (6a) together with Constraints (6c) expresses we maximize the minimum relative ben-

efit. Constraint (6b) enforces the visit capacity. Finally, Constraints (6d)–(6f) specify the domain of

the decision variables.

Given (6), we define the benefit-efficiency trade-off as the optimal value to (6) as a function of γ,

i.e., the relative benefit from offering multiple services at γ capacity compared to the benefit from m

dedicated units of capacity (that is, one lab for each service). Note that when γ = 1, this relative

benefit is by definition at most one. One key question is the lowest γ (highest level of efficiency) for

which offering the m services simultaneously is guaranteed to provide the same benefit as operating

m dedicated labs, one for each service. Below this level, there is a necessary trade-off between the

efficiency from offering multiple services simultaneously and the relative benefit from dedicated labs

with optimal visit policies tailored to each service. We quantify this level, and the trade-off below this

level, in the next section.

4 Analysis

In this section, we present our main results. In Section 4.1, we consider the case of arbitrary demand,

and in Section 4.2, we consider the case of two demand types (high/low) to derive further analytical

insight. All proofs are omitted and presented in the appendix.

4.1 General Case

For a given n-dimensional demand vector v, define SUM(v, α) as the sum of the α largest elements of

vector v:

SUM(v, α) = max

n∑
i=1

viyi (7a)

s.t.

n∑
i=1

yi ≤ α (7b)

yi ∈ [0, 1] i = 1, . . . , n. (7c)

We are now able to prove the main result:
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Theorem 1. Consider service j with n-dimensional demand vector λj and benefit function fj, satisfy-

ing Assumption 1. Let non-negative scalars ℓj and uj be such that min{ℓjz, 1} ≤ f(z) ≤ min{ujz, 1}.
It holds that:

RATIO(x, λj , fj) ≥ BOUND(x, λj , ℓj , uj), (8)

where :

BOUND(x, λj , ℓj , uj) = min
α∈[ℓj ,uj ]

∑n
i=1 λij min{αxi, 1}
SUM(λj , α)

. (9)

Furthermore, this bound is tight for all x.

Theorem 1 shows computing a tight lower bound on the ratio boils down to maximizing over a family

of functions of remarkably simple structure, that is, of the form min{αz, 1}. The parameters ℓj and uj

in Theorem 1 provide a lower and upper bound on fj . In particular, they bound the ‘steepness’ of the

benefit function. High ℓj means it is likely not beneficial to visit a single location many times whereas

low uj implies the opposite. Note that ℓj = 1 trivially holds for any function satisfying Assumption

1. Furthermore, it is not difficult to show that α ≤ n always hold in the minimization problem in (8).

This implies one can always set the upper bound uj = n in case no information is available. As such,

imposing bounds ℓj and uj allows for incorporating additional information on the benefit function,

but does not restrict the generality of our results in any way. The following result states the case of

no information explicitly:

Corollary 1. Consider service j with n-dimensional demand vector λj and benefit function fj, sat-

isfying Assumption 1. It holds that:

RATIO(x, λj , fj) ≥ BOUND(x, λj), (10)

where:

BOUND(x, λj) = min
α∈[1,n]

∑n
i=1 λij min{αxi, 1}
SUM(λj , α)

. (11)

Furthermore, this bound is tight for all x.

One can show only the values ℓj and uj , and all integers in between, have to be considered for α in the

minimization problem in (9). Given bounds ℓj and uj for each service j = 1, . . . ,m, this means (6)

can be reformulated into a tractable linear program to compute a tight lower bound on the relative

benefit. Define pj as the number of possible values for α given ℓj and uj (that is, values ℓj and uj ,

and all integers in between), and let αjh, for h = 1, . . . , pj , denote these values. The linear program
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reads as follows:

max z (12a)

s.t.

n∑
i=1

xi ≤ γ (12b)

z ≤
∑n

i=1 λijyijh
SUM(λj , αjh)

j = 1, . . . ,m, h = 1, . . . , pj (12c)

yijh ≤ αjhxi i = 1, . . . , n, j = 1, . . . ,m, h = 1, . . . , pj (12d)

yijh ≤ 1 i = 1, . . . , n, j = 1, . . . ,m, h = 1, . . . , pj (12e)

yijh ≥ 0 i = 1, . . . , n, j = 1, . . . ,m, h = 1, . . . , pj (12f)

xi ≥ 0 i = 1, . . . , n (12g)

z ≥ 0. (12h)

Variables xi and z are similar to Problem (6). Variables yijh are used to linearize the expression

for the upper bound (9), via Equations (12d). Problem (12) has O
(
mn2

)
variables and constraints,

meaning it can be efficiently solved for practically-sized instances to compute the maximal worst-case

benefit and obtain an allocation achieving this.

4.2 Low/High Demand Case

To gain further insight, we consider the special case of two demand types: for a given service, each

location either has high demand, reflected by demand parameter µ ≥1, or low demand, reflected by

a demand parameter standardized to one. This resembles the case where one has to balance visits

between, e.g., large (urban) areas and small (rural) ones. We analyze the lowest γ for which offering

multiple services during each visit is guaranteed to provide the same benefit as m dedicated labs, that

is, when the increased number of visits one can provide by offering services simultaneously offsets the

benefit loss from being unable to tailor the visits to a single service. We refer to this as the dominating

capacity γ̂, as it leads to at least as much benefit for each service as compared to dedicating one lab

to each service separately.

For tractability reasons, we focus in this section on the case of no additional information on the benefit

functions (i.e., ℓj = 1 and uj = n for all j). Note this represents the worst-case, hence all bounds

remain valid in case of additional information. We first consider the case where services have similar

demand (up to scalar multiplication), after which we consider the case of limited (or no) alignment in

demand.

4.2.1 Aligned Demand

Consider m services, for j = 1, . . . ,m, with n-dimensional demand vector λj . Assume each λj is

proportional to the n-dimensional demand vector λ, i.e., are scalar multiples of this demand vector.

For example, λ represents the population density. We have the following result:

Theorem 2. Consider m services, for j = 1, . . . ,m, with n-dimensional demand vector λj propor-
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tional to λ, and benefit function fj, satisfying Assumption 1. Assume λ satisfies λi = µ for the first k

elements and λi = 1 for the remaining n−k elements. The dominating capacity, denoted by γ̂(n, k, µ),

is bounded by:

γ̂(n, k, µ) ≤ 1 +

(
1− k

n

)(
1− 1

µ

)
. (13)

Furthermore, this bound is tight.

Theorem 2 provides an easy to compute expression for an upper bound on the dominating capacity.

Furthermore, this bound is tight, i.e., for any combination of parameters n, k, and µ there is an

instance achieving this bound. One key insight from Theorem 2 is that the bound never exceeds two.

That is, offering multiple services at capacity two (i.e., two labs) guarantees a benefit ratio of at least

one for any collection of services, provided demand is aligned. Figure 3 shows the dominating capacity

as a function of the demand parameter µ in the case of two demand types with a single high demand

location (k = 1) and n− 1 low demand locations.
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Figure 2: The dominating capacity γ̂ as a function of the demand parameter µ in the case of two
demand types with a single high demand location (k = 1) and n− 1 low demand locations.

The proof of Theorem 2 also provides an analytical bound on the benefit-efficiency trade-off, i.e., the

worst-case benefit ratio given γ, and the allocation maximizing this ratio:

Corollary 2. Consider m services, for j = 1, . . . ,m, with n-dimensional demand vector λj propor-

tional to λ, and benefit function fj, satisfying Assumption 1. Assume λ satisfies λi = µ for the first

k elements and λi = 1 for the remaining n − k elements. Let z(γ) denote the optimal value to (6)

given these m services. We have:

z(γ) ≥

1 if γ ≥ γ̂(n, k, µ)

µ(nγ+kµ−k)
k(µ−1)2+n(2−µ) otherwise.

(14)

Furthermore, this bound is tight. The solution guaranteeing this bound allocates r resources uniformly

to the k locations with demand µ and γ − r uniformly to the remaining n − k locations, where r is

11



given by:

r =

γ − 1 + k
n if γ ≥ γ̂(n, k, µ)

1− µ(2−γ)(n−k)
µk2+(2µ−1)(n−k) otherwise.

(15)

In general, the optimal allocation strikes a balance between a stationary solution (r = γ) and a

completely mobile solution (r/k = γ/n). We remark that in case of no information on the benefit

functions (i.e., ℓj = 1 and uj = n for all j), the benefit ratio is at most one, because the benefit

is naturally bounded by
∑n

i=1 λi, which is equal to the optimal benefit that can be achieved when

setting α = n in Theorem 1. In Section 5, we also observe cases where the ratio can exceed one when

additional information on the benefit functions is incorporated.

Figure 1 shows the bound on the benefit ratio (left) as a function of the demand parameter µ in the

case of two demand types with a single high demand location and n − 1 low demand locations and

unit capacity for the mobile lab (γ = 1) for varying n, together with the bound on the benefit ratio for

varying capacity levels γ for n = 5 (right). Figure 1 shows a single mobile lab can already achieve a

high performance (well above 70% for all depicted n) over all benefit functions. It also shows the ratio

improves substantially in the capacity. For γ = 1.5, the ratio is guaranteed to be one for µ ≤ 8/3, in

line with Theorem 2.
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Figure 3: The bound on the benefit ratio (left) as a function of demand parameter µ in case of two
demand types with a single high demand location (k = 1) and n− 1 low demand locations for varying
n, together with the bound on the benefit ratio (right) for different levels of capacity γ for n = 5.

4.2.2 Non-Aligned Demand

Next, we consider the impact of the alignment of demand. In particular, we assume again m services

all with demand parameter µ at k locations. However, we assume limited overlap between demand,

modeled via parameter h, indicating the number of locations with high demand µ for at least one

service. Note that, by definition, we have k ≤ h ≤ min{mk, n}. This parameter allows us to

analyze the benefit from completely aligned demand (h = k) to completely non-aligned demand

12



(h = min{mk, n}), and all cases in between.

We have the following result:

Theorem 3. Consider m services, for j = 1, . . . ,m, with n-dimensional demand vectors λj such that

λij = µ for k elements and λij = 1 for the remaining n−k elements, and benefit function fj, satisfying

Assumption 1. Let h indicate the number of locations with demand µ for at least one service. The

dominating capacity, denoted by γ̂(n, k, h, µ), is bounded by:

γ̂(n, k, h, µ) ≤ 1 +
h

n

(n− k)(µ− 1)

k(µ− 1) + h
. (16)

This bound is tight when h = k or h = min{mk, n}.

Theorem 3 incorporates misalingment of demand (via h) into an expression for the upper bound on

the dominating capacity. Similar to Theorem 3, this expression is easy to compute. Figure 4 shows

The dominating capacity as a function of the demand parameter µ in the case of two demand types

with a single high demand location (k = 1) for n = 3, respectively n = 5, and a varying number of

locations with high demand for at least one service (h).
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Figure 4: The dominating capacity γ̂ as a function of the demand parameter µ in the case of two
demand types with a single high demand location (k = 1) and n = 3 low demand locations (left),
respectively n = 5 low demand locations (right), for a varying number of locations with high demand
for at least one service (h). The dashed lines indicate the bound obtained using the simplified expres-
sion (17) for the bound on the dominating capacity.

Similar to Corollary 2, the proof of Theorem 3 provides an analytical expression for the allocation

corresponding to the bound. These expressions are presented in the proofs in appendix. Theorem

3 shows the dominating capacity increases less than linear in h. For h/k relatively close to one, a

conservative, yet reasonable ballpark estimate in line with Theorem 2 is given by:

γ̂(n, k, h, µ) ≤ 1 +
h

k

(
1− k

n

)(
1− 1

µ

)
. (17)
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The dashed lines in Figure 4 shows the bounds obtained using this expression. Note that for h = k,

that is, h = 1 in Figure 4, the expression coincides with the bound of Theorem 2. Theorem 3 and

expression (17) highlight demand alignment is an import driver of the benefit ratio. This is illustrated

in Figure 4, where the dominating capacity increases substantially in h.

5 An Application in Mobile Laboratory Deployment

We apply our methods to a case study in Senegal based on Praesens Care. In Section 5.1 we describe

the data and modeling assumptions. The computational results are presented in Section 5.2.

5.1 Data and Modeling Assumptions

We consider scheduling lab visits for the seven locations part of Praesens Care’s pilot study over a

period of 52 weeks. We consider a single lab and assume the lab stays at least one week at a location

if visiting (to account for set-up time, among other things). This means we schedule 52 visits in total.

The locations represent diverse areas of the country, see Figure 5. We consider two demand distri-

butions. The ‘Urban’ demand distribution, based on population density3 (Figure 5a) representative

for e.g., Tuberculosis and COVID-19 demand distributions, and the ‘Tropical’ demand distribution,

taking Malaria incidence rates4 (Figure 5b) as a representative sample. Urban demand is highest in

the West of the country, especially around Touba. In contrast, Tropical demand is highest in the

South East, especially around Kedougou.

Figure 5c shows the demand distribution for the seven locations. The tropical demand distribution

is highest in Kedougou and Kolda, two locations in the South with low population density and hence

(relatively) low urban demand. Koalack and Touba are densely populated areas and have the highest

urban demand. They also have substantial tropical demand. In light of our analysis in Section 4,

this implies that there is some alignment in the tropical and urban demand patterns. However, there

is also misalignment for some locations. Ziguinchor, for example, is a clear example of high urban

demand, but very low tropical demand.

Next to demand distribution, we consider the acuteness of the service. Acute services are for diseases

that require immediate diagnosis and treatment. This includes Malaria, COVID-19, Influenza, and

most arboviruses. Routine services are for (regular) treatment that is less time sensitive. Routine

services are diagnostics and treatment for HIV/AIDS, Tuberculosis, diabetes, Hepatitis, among others.

An essential difference between acute and routine services is the time a patient can wait for diagnosis.

For example, visiting once every month might be sufficient for patients requiring routine Tuberculosis

testing, but would imply diagnosis comes too late for many patients suffering from Malaria of COVID-

19 diagnosis. Hence, the benefit generated from site visits depends on the time sensitivity (acute or

routine) of the service.

3Obtained from: https://www.ansd.sn/index.php?option=com regions&view=regions&Itemid=213, published by
Agence Nationale de la Statistique et de la Démographie.

4Obtained from the U.S. President’s malaria initiative Senegal operational plan, retrieved from https://www.pmi.

gov/resources/malaria-operational-plans-mops/.
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Figure 5: Map of Senegal with the seven pilot locations.

To analyze the impact of acuteness, we consider three services with different levels of acuteness. We

model each service via a waiting time function of the form (2). The three levels are High (w1 = 1, w2 =

1), Medium (w1 = 1, w2 = 2) , and Low (w1 = 4, w2 = 8) acuteness. That is, high acuteness implies

benefit is generated only when a person is diagnosed within the same week of falling ill, medium

urgency means there is still benefit when this person needs to wait for an additional week, while low

urgency would still lead to benefit for waiting times up to two months.

5.2 Computational Results

We first focus on the case γ = 1 to assess the benefit of introducing a single mobile lab offering

multiple services. Table 1 shows the maximum benefit ratio for all combinations of demand types and

acuteness levels. That is, row ‘Medium Tropical’ and column ‘High Urban’ means we consider the

joint visit allocation problem for a service with tropical demand pattern and medium acuteness and

a service with urban demand pattern and high acuteness. Table 1 also shows the lower bound on the

benefit ratio with and without information on the lower and upper bounds on the benefit functions

(denoted Bound* and Bound, respectively), obtained from (12). For a given function with pair w1

and w2, one can readily show lower and upper bound parameters ℓ and u are given by ℓ = w1 and

u = (w1 + w2)/2. In case of no information on w1 and w2, we simply set ℓ = 1 and u = n.
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High Urban Medium Urban Low Urban

Benefit Bound* Bound Benefit Bound* Bound Benefit Bound* Bound

High
Tropical 78.0 78.0 67.3 74.4 74.4 67.3 74.2 67.9 67.3
Urban 100.0 100.0 82.5 93.0 91.8 82.5 86.6 84.1 82.5

Medium
Tropical 88.5 87.8 67.3 78.5 75.4 67.3 82.3 67.9 67.3
Urban 93.0 91.8 82.5 100.0 91.8 82.5 92.8 84.1 82.5

Low
Tropical 78.4 75.7 67.3 79.7 75.7 67.3 94.9 85.9 67.3
Urban 86.6 84.1 82.5 92.8 84.1 82.5 100.0 97.0 82.5

Table 1: The maximum relative benefit ratio for all combinations of demand types and acuteness
levels, and the lower bound on the benefit with and without information on the lower and upper
bounds on the benefit functions (denoted Bound* and Bound, respectively).

The results in Table 1 confirm demand alignment is a key driver of the benefit that can be achieved.

In all cases, there is a substantial difference in benefit when considering two urban services versus one

urban and one tropical service. The difference depends on the acuteness of the services. In case both

services are low acuteness, the benefit is high (94.9%). In all other cases, it is substantially lower

(almost always below 80%). When demand is aligned, the benefit is substantially higher. This is

also reflected in the bounds: in case of no information (i.e., for all combinations of services), aligned

demand has a benefit of at least 82.5%, whereas non-aligned can be as low as 67.3%. We also observe

the bound with information provides a good estimate in most cases. The difference is largest in

combinations with less acute services.

Next, we analyze the increase in benefit for γ ≥ 1. Figure 6 shows maximum achievable benefit, and

the lower bound with and without information, as function of the capacity γ for demand patterns

Tropical/Urban (left) and Urban/Urban (right) For the sake of exposition, the curves represent the

average computed over all possible service combinations.
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Figure 6: The maximum achievable benefit, and lower bounds with and without information, as
function of the capacity γ for demand patterns Tropical/Urban (left) and Urban/Urban (right).
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Figure 6 is in line with the analysis in Section 4. We observe substantially less than two units (1.4,

respectively 1.1) of capacity are necessary to achieve the same performance as two dedicated labs.

Furthermore, the benefit ratio quickly exceeds one. There is a substantial difference between the two

demand patterns, in line with Theorem 3. Note that the bound without information stays below one,

in line with Theorem 2. In general, the bound with information provides a very close estimate of the

optimal benefit for a given capacity. The bound without information is more conservative, but still

provides useful insight. For example, it shows that even without further information on the benefit

functions, a capacity of 1.5, 25% lower compared to dedicated operations, will lead to a maximum

benefit reduction of as little as 3%. This conservative estimate provides valuable information for

decision-making. The realized benefit will be as least as good: a capacity of 1.5 will lead to an

increase in benefit of 14%, as Figure 6 shows.

Finally, we consider the performance of the allocation obtained from solving (12). Table 2 also shows

the bound with and without information for the found visit allocation. Again, we show the averages for

each combination of demand type over all possible service combinations. As benchmarks, we consider

three intuitive policies: a stationary policy, in which the lab stays put in the location with most

demand, a completely mobile policy, in which the lab visits all locations equally, and a proportional

allocation, which allocates visits proportional to the demand parameters.

Tropical/Urban Urban/Urban

Loss Bound* Bound Loss Bound* Bound

Optimal 79.9 68.5 47.7 94.0 84.8 65.0
Best Bound* 75.8 75.5 51.6 91.3 89.9 67.3
Best Bound 69.5 67.6 67.3 85.6 82.5 82.5
Proportional 62.4 57.0 51.9 76.7 71.6 69.1
Stationary 44.0 43.4 22.2 61.7 59.5 40.9
Mobile 45.7 40.2 34.9 43.2 37.9 35.0

Table 2: The benefit and worst-case bounds (without and without information) for different allocation
policies. The results shows the averages for each combination of demand type over all possible service
combinations.

The results in Table 2 shows the best bound allocation policy easily outperforms all other policies

and is close to optimal (on average) in case of information. Without information, the performance

worsens, but the solution remains of high quality compared to the benchmark policies, where we

see only the proportional policy achieves a reasonable performance. Table 2 also shows there is a

certain limit to the value the worst-case bound can provide in determining a good allocation. The

optimal allocation performs substantially worse in terms of the bound with information compared to

the worst-case bound minimizing policy Best Bound*, and, similarly, both the optimal allocation and

Best Bound* perform substantially worse in terms of the bound without information compared to the

policy Best Bound.
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6 Conclusion

In this paper, we considered a resource allocation problem faced by health and humanitarian orga-

nizations deploying mobile outreach teams to serve marginalized communities. In such programs,

combining services is likely to increase operational efficiency but decrease the relative benefit per

service per visit, as operations are no longer tailored to a single service. We analyzed a general visit

allocation problem incorporating demand distribution (where to go) and return time (how frequently

to go) to analyze this benefit-efficiency trade-off. In doing so, we derived analytical bounds and pro-

posed visit allocation policies with worst-case optimality guarantees. We focused specifically on the

dominating capacity, defined as the lowest capacity (i.e., highest efficiency) for which offering services

simultaneously is guaranteed to provide the same benefit as operating dedicated labs. The set-up of

our analysis is general and can also be applied to other practical problems.

Our results showed the benefit-efficiency trade-off and dominating capacity can be assessed based

on high level parameters. In particular, we showed demand alignment is a key driver of both. We

considered both general demand distributions and the special case of two types of demand, where

locations either have high demand (e.g., urban) or low demand (e.g., rural). Among other results, we

showed that for the case of two demand types, two units of mobile capacity guarantee a benefit ratio

of at least one for any collection of services in case of aligned demand. We also provided expressions

to compute how the dominating capacity increases in case of non-aligned demand.

We applied our results to a case study based on Praesens Care, a social enterprise start-up devel-

oping mobile diagnostic laboratories, and verified our insights using real-world data. In line with

our analytical results, our experiments showed demand alignment is a key driver of benefit. We also

observed that the derived bounds provided good estimates of the benefit and dominating capacity,

especially when information on the benefit functions was incorporated. This also shows the potential

of incorporating expert judgements or ‘guestimates’, into the bounds to estimate potential benefit.

Finally, our results showed that the allocation policy derived from the analytical results performed

well and easily outperformed all benchmark policies. Hence, our results can also help in operational

decision-making, providing close-to-optimal policies with guaranteed minimum benefit.

We propose different avenues for further research. Firstly, our analysis did not incorporate the testing

capacity of the lab. In case capacity is insufficient to cover demand for all services, prioritization

is necessary in service delivery. This will likely change the benefit-efficiency trade-off. Secondly,

interesting work remains to be done in modeling the benefit of services. This includes varying benefit

functions for locations (beyond scalar multiplication) and benefit functions explicitly accounting for a

patient’s long term treatment (e.g., by means of follow-up visits). Since this would make the problem

highly complex, new types of analysis are likely necessary. it would be interesting to determine which

of our results remain true in these contexts. Finally, our analysis considers a stylized allocation

problem to derive general insights. It would be interesting to apply our methods to different cases in

health and humanitarian service delivery in practice.
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A Generality Assumption 1

Assumption 1 holds for a wide variety of services for which the benefit depends solely on waiting time.

That is, where the benefit a person derives can be written as b(w), with w the waiting time until

service for that person and b(w) a non-negative and non-increasing function.

Given a benefit function b(w), consider a given location and assume an exogenous (i.e., independent

of lab visits) and steady demand rate λ per time period. Suppose the lab visits k times during time

period T , with inter-arrival times δi, for i = 1, . . . , k. Within the above framework, the problem of

timing visits to maximize overall benefit can be written as:

max

k∑
i=1

∫ δi

0

λb(w)dw (18a)

s.t.

k∑
i=1

δi = T (18b)

δi ≥ 0 i = 1, . . . , k. (18c)

Here, the Objective (18a) represents the benefit over time period T given interarrival times δi, and

Constraint (18b) ensure the interarrival times sum to T . We have the following result:

Theorem 4. Let b : R+ → R+ be non-increasing. Define v = k/T as the fraction of visit capacity

allocated. The optimal solution to (18) is given by δi = 1/v = T/k, for i = 1, . . . , v. The resulting

objective value is λf(v), with:

f(v) = v

∫ 1
v

0

b(w)dw, (19)

is concave and non-decreasing in v. The function f : [0, 1] 7→ [0, 1] represents the average benefit per

time period per patient.

Proof. Without loss of generality, we assume λ = 1. The optimality of setting δi = T/k follows

directly from the fact that
∫ δi
0

b(w)dw is concave in δi (because b(w) is non-increasing in w). The

resulting objective value is given by:

k

T

∫ T
k

0

b(w)dw = v

∫ 1
v

0

b(w)dw (20)

We now show this function is concave in k, and hence in v = k/T . Consider k1, k2, and the convex

combination θk1 + (1− θ)k2, for some θ ∈ [0, 1]. To prove concavity we need:

θk1 + (1− θ)k2
T

∫ T
θk1+(1−θ)k2

0

b(w)dw ≥ θk1
T

∫ T
k1

0

b(w)dw +
(1− θ)k2

T

∫ T
k2

0

b(w)dw. (21)
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Note the above is equivalent to:

θk1 + (1− θ)k2
T

∫ T
θk1+(1−θ)k2

T
k2

b(w)dw ≥ θk1
T

∫ T
k1

T
k2

b(w)dw. (22)

Observe that:

θk1 + (1− θ)k2
θk1

[
T

θk1 + (1− θ)k2
− T

k2

]
=

T

θk1

[
k2 − θk1 − (1− θ)k2

k2

]
=

T

k1
− T

k2
. (23)

As such, we can write (22) in the form:

M

∫ T
k2

+α

T
k2

b(w)dw ≥
∫ T

k2
+Mα

T
k2

b(w)dw, (24)

with M = θk1+(1−θ)v2
θk1

and α = T
θk1+(1−θ)k2

− T
k2
. This inequality clearly holds (because b is non-

increasing), hence the result follows.

B Proofs Section 4

B.1 Proof Theorem 1

To prove Theorem 1, we first prove the following lemma:

Lemma 1. Consider service j with n-dimensional demand vector λj and benefit function fj, satisfying

Assumption 1. Let non-negative scalars ℓj and uj be such that min{ℓjz, 1} ≤ f(z) ≤ min{ujz, 1}.
There exists a benefit function g of the form:

g(z) = min{ujz, β + ϕz, 1}, (25)

satisfying g(z) ≥ min{ℓjz, 1}, such that:

RATIO(x, λj , fj) ≥ RATIO(x, λj , g) (26)

Proof. For notational convenience, we drop the subscript j throughout the proof. Let function g

minimize RATIO(x, λj , ·), and satisfy Assumption 1 and min{ℓz, 1} ≤ g(z) ≤ min{uz, 1}. Throughout
we will refer to such a function as a minimizing function. Let y be a solution achieving OPT(λ, g).

Without loss of generality, assume the values λi values are descending in i. By the structure of the

objective (3a), it is then clear that also the values yi can also assumed to be descending.

For notational convenience, define y0 = 1/ℓ and yn+1 = 0. Note no benefit maximizing solution will

have values exceeding 1/ℓ, hence the ordering of yi values is preserved. First, we claim g can be

assumed to be piece-wise linear with potential break points only at values yi for i = 0, . . . , n. To

see this, suppose g does not satisfy this condition. We define the piece-wise linear function h by
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h(yi) = g(yi) for i = 0, . . . , n+ 1,

h(z) = h(yi+1) +
h(yi)− h(yi+1)

yi − yi+1
(z − yi+1), (27)

for z ∈ [yi+1, yi] and i = 0, . . . , n, and finally h(z) = 1 for z ≥ y0. Note h is concave, and satisfies

Assumption (1) and min{ℓz, 1} ≤ h(z) ≤ min{uz, 1}. Since g is concave and h(yi) = g(yi) we have

h ≤ g and
∑n

i=1 λih(yi) =
∑n

i=1 λig(yi). It follows RATIO(x, λ, h) ≤ RATIO(x, λ, g), hence the

assumption of piece-wise linearity is without loss of generality.

Next we show g(z) can assumed to be of the form:

g(z) = min{uz, β + ϕz, 1}. (28)

for some non-negative scalars ϕ and β such that g(z) ≥ min{ℓz, 1}. Note that because g is piece-wise

linear, it can be fully defined as the minimum of affine functions. To prove (28), it is sufficient to

show that for any break point of g, i.e., any point yi for which:

g(yi) > g(yi+1) +
g(yi−1)− g(yi+1)

yi−1 − yi+1
(yi − yi+1), (29)

it must hold that g(z) = min{uz, 1}. We can assume there is at least one break point, otherwise

(28) clearly holds by setting ϕ = 0 and β = ℓ. Without loss of generality, assume g has the minimal

number of break points out of all minimizing functions.

Let yk, with 1 ≤ k ≤ n, be a break point for which g(yk) < min{uyk, 1} (note y0 and yn+1 will

by definition satisfy g(yi) = min{ujyi, 1}). Furthermore, let indices 1 ≤ e, f ≤ n be the largest,

respectively, smallest, indices such that ye and yf are break points and e < k < f . If no such index

e, respectively f , exists, we set e = 0, respectively f = n+ 1. Consider the function ḡδ:

ḡδ(z) =


g(yf ) +

[
g(yk)+δ−g(yf )

yk−yf

]
(z − yf ) if z ∈ [yf , yk],

g(yk) + δ +
[
g(ye)−g(yk)−δ

ye−yk

]
(z − yk) if z ∈ (yk, ye],

g(z) otherwise.

(30)

Essentially, ḡδ changes g(yk) to g(yk) + δ, while preserving concavity. The latter can be ensured by

enforcing lower and upper bounds
¯
δ and δ̄. It is clear the lower bound follows directly from (29):

¯
δ = g(yf )−

g(ye)− g(yf )

ye − yf
(yk − yf )− g(yk). (31)

The existence of an upper bound δ̄ > 0 follows from the fact that g(yk) < min{ujyk, 1}, by assumption,

and the way e and f are selected.
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The difference between ḡδ and g is given by:

∆δ(z) = ḡδ(z)− g(z) =


[

δ
yk−yf

]
(z − yf ) if z ∈ [yf , yk][

δ
ye−yk

]
(ye − z) if z ∈ (yk, ye]

0 otherwise.

(32)

We get:

min
δ∈[

¯
δ,δ̄]

RATIOj(x, λj , ḡδ) = min
δ∈[

¯
δ,δ̄]

VALUE(x, λ, ḡδ)

OPT(λ, ḡδ)
(33)

≤ min
δ∈[

¯
δ,δ̄]

∑n
i=1 λiḡδ(xi)∑n
i=1 λiḡδ(yi)

(34)

= min
δ∈[

¯
δ,δ̄]

∑n
i=1 λig(xi) +

∑n
i=1 λi∆δ(xi)∑n

i=1 λig(yi) +
∑n

i=1 λi∆δ(yi)
(35)

≤
∑n

i=1 λig(xi)∑n
i=1 λijg(yi)

(36)

=
VALUE(x, λ, g)

OPT(λ, g)
(37)

= RATIO(x, λ, g). (38)

Here, we use OPT(λ, ḡδ) ≥
∑n

i=1 λiḡδ(yi), by definition for inequality (34). For inequality (36), we

note that ∆δ is linear in δ and hence the function in (35) is strictly non-increasing or strictly non-

decreasing in δ. Hence, inequality (36) follows by picking δ equal to
¯
δ (< 0) or δ̄ (> 0), accordingly.

If the inequality is strict, it follows g is not a minimizing function. If (36) holds with equality,

we set δ equal to
¯
δ to obtain the function ḡ

¯
δ with one less break point (by definition of

¯
δ) and

RATIO(x, λ, ḡ
¯
δ) ≤ RATIO(x, λ, g), contradicting g is a minimizing function with minimal number of

break points. As such, it must hold that g(yk) = min{uyk, 1}, and hence g of the form (28).

Following Lemma 1, we prove the following result:

Lemma 2. Consider a service with with n-dimensional demand vector λ and benefit function g of the

form:

g(z) = min{uz, β + ϕz, 1}. (39)

Let scalars ℓ and u be such that min{ℓz, 1} ≤ g(z) ≤ min{uz, 1}. We have:

RATIO(x, λ, g) ≥ min
α∈[ℓ,u]

RATIO(x, λ,min{αz, 1}). (40)

Proof. The result is equivalent to claiming one can assume β = 0 in (39) for a minimizing function.

Assume β ∈ (0, 1), clearly β = 1 can be excluded since ϕ ≥ 0. Without loss of generality, assume g is

the minimizing function of the form (28) with the largest β.
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Consider adjusting β by an additive factor δ, giving the function:

ḡδ(z) = min{uz, β + δ + ϕz, 1}, (41)

with |δ| ≤ ε sufficiently small.

First, consider VALUE(x, λ, g). Let J be all indices i for which g(xi) = β + ϕxi. If δ < 0, we have:

VALUE(x, λ, g)−VALUE(x, λ, ḡδ) =
∑
i∈J

λiδ. (42)

If δ > 0, we have:

VALUE(x, λ, ḡδ)−VALUE(x, λ, g) ≤
∑
i∈J

λiδ. (43)

Next, consider OPT(λ, g). We partition the indices i three sets. Let K1 be all i such that g(yi) = ujyi,

K3 all remaining for which g(yi) = 1, and K2 all indices not in K1 nor K2.

Suppose δ > 0. Note for any i ∈ K3 we can decrease yi by δ/ϕ while ensuring f(yi) = 1 remains true.

We can transfer this amount uniformly to the values in K1. This means we get:

OPT(λ, ḡδ)−OPT(λ, g) ≥ VALUE(y, λ, ḡδ)−VALUE(y, λ, g) (44)

=
∑
i∈K2

λiδ +
|K3|
|K1|

∑
i∈K1

λiu(δ/ϕ). (45)

Next, suppose δ < 0. Note for any i ∈ K3 we can increase yi by δ/ϕ to ensure f(yi) = 1 remains true.

We can compensate for this by uniformly decreasing the values in K1. Note there is always one index

in K1, otherwise there should be no break point. Note the slope we have when decreasing is at most

u. This means we get:

OPT(λ, g)−OPT(λ, ḡδ) ≤ VALUE(y, λ, g)−VALUE(y, λ, ḡδ) (46)

≤
∑
i∈K2

λiδ +
|K3|
|K1|

∑
i∈K1

λiu(δ/ϕ). (47)

It follows we have

min
δ∈[−ε,ε]

RATIO(x, λ, ḡδ) = min
δ∈[−ε,ε]

VALUE(x, λ, ḡδ)

OPT(λ, ḡδ)
(48)

= min
δ∈[−ε,ε]

VALUE(x, λ, g) + VALUE(x, λ, ḡδ)−VALUEj(x, λ, g)

OPT(λ, g) + OPT(λ, ḡδ)−OPT(λ, g)
(49)

≤ min
δ∈[−ε,ε]

VALUE(x, λ, g) +
∑

i∈J λiδ

OPT(λ, g) +
∑

i∈K2
λiδ +

|K3|
|K1|

∑
i∈K1

λiu(δ/ϕ)
(50)

≤ VALUE(x, λ, g)

OPT(λ, g)
. (51)
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The expression in (50) is monotonic in δ. If (50) is increasing (decreasing) in δ we set δ = −ε (δ = ε)

to obtain a function with lower benefit ratio, contradicting g is minimizing. In case inequality (51) is

not tight, i.e., expression (50) is constant in δ, we can increase β while keeping the ratio the same,

contradicting g is the minimizing function with largest β. It follows any worst-case function can be

assumed to have β = 0.

The main result now follows:

Theorem 1. Consider service j with n-dimensional demand vector λj and benefit function fj, satisfy-

ing Assumption 1. Let non-negative scalars ℓj and uj be such that min{ℓjz, 1} ≤ f(z) ≤ min{ujz, 1}.
It holds that:

RATIO(x, λj , fj) ≥ BOUND(x, λj , ℓj , uj), (8)

where :

BOUND(x, λj , ℓj , uj) = min
α∈[ℓj ,uj ]

∑n
i=1 λij min{αxi, 1}
SUM(λj , α)

. (9)

Furthermore, this bound is tight for all x.

Proof. From Lemma 2 it follows the family of worst-case functions is given by g(z) = min{αz, 1} for

α ∈ [ℓ, u]. For these functions, it is readily seen that:

OPT(λ, g) = SUM(λ, α). (52)

Taking into account the different bounds for the services j = 1, . . . ,m, the final result follows.

Tightness follows from noting that the lower bound equals the ratio for any function of the form

min{αz, 1}.

Corollary 1 directly follows from Theorem 1 by setting ℓ = 1 and u = n.

B.2 Proof Theorem 2

Theorem 2. Consider m services, for j = 1, . . . ,m, with n-dimensional demand vector λj propor-

tional to λ, and benefit function fj, satisfying Assumption 1. Assume λ satisfies λi = µ for the first k

elements and λi = 1 for the remaining n−k elements. The dominating capacity, denoted by γ̂(n, k, µ),

is bounded by:

γ̂(n, k, µ) ≤ 1 +

(
1− k

n

)(
1− 1

µ

)
. (13)

Furthermore, this bound is tight.
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Proof. From Corollary 1, we have:

RATIO(x, λj , fj) ≥ BOUND(x, λj) = min
α∈[1,n]

∑n
i=1 λi min{αxi, 1}

SUM(λ, α)
, (53)

where in the last equality we use that λj is proportional to λ. We can therefore focus on the mini-

mization problem in (53).

Clearly, any worst-case optimal allocation will give the same amount of resources to the first k and

remaining n− k locations. Let r denote the amount of resources allocated to the first k locations and

q to the second, with r + q ≤ γ. For given α, the expression for the right-hand side is given by:

kλmin
{

αr
k , 1

}
+ (n− k)min

{
αq
n−k , 1

}
αλ

, (54)

when α < k, and:

kλmin
{

αr
k , 1

}
+ (n− k)min

{
αq
n−k , 1

}
kλ+ α− k

, (55)

when α ≥ k.

First, consider (54). Clearly, this expression is non-decreasing in α. Hence, we get:

kλmin
{

αr
k , 1

}
+ (n− k)min

{
αq
n−k , 1

}
αλ

≥
kλmin {r, 1}+ (n− k)min

{
kq

n−k , 1
}

kλ
, (56)

for all α ≤ k.

Next, consider (55). Clearly r/k ≥ q/(n−k) for any worst-case optimal allocation. Consider α ≤ k/r.

If r ≥ 1, we get expression (56). Otherwise, consider α > k and α ≤ k/r. We get:

kλmin
{

αr
k , 1

}
+ (n− k)min

{
αq
n−k , 1

}
kλ+ α− k

=
αλr + αq

kλ+ α− k
. (57)

This expression is readily seen to be non-decreasing in α, hence the lowest is achieved for α = k,

giving again expression (56).

Finally, consider the case α > max{k, k/r}. We get the expression:

kλmin
{

αr
k , 1

}
+ (n− k)min

{
αq
n−k , 1

}
kλ+ α− k

=
kλ+ (n− k)min

{
αq
n−k , 1

}
kλ+ α− k

(58)

This expression is readily shown to be non-increasing for α ≥ (n− k)/q, and monotonic for α < (n−
k)/q. It follows the expression attains it minimum over α ≥ max{k, k/r} at either α = max{k, k/r}
or α = n. Combining all results, we obtain that the minimization problem in (53) is equivalent to a
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minimization problem over two affine functions:

min

kλmin {r, 1}+ (n− k)min
{

kq
n−k , 1

}
kλ

,
kλ+ (n− k)min

{
nq
n−k , 1

}
kλ+ n− k

 . (59)

It remains to determine the r value maximizing this bound. Clearly, it is without loss of optimality

to set r ≤ 1 and q ≤ (n− k)/k. This simplifies the expression to:

min

λr + q

λ
,
kλ+ (n− k)min

{
nq
n−k , 1

}
kλ+ n− k

 . (60)

Suppose:

λ− γ

λ− 1
≤ γ − 1 +

k

n
. (61)

In this case, we can set r = min{γ − 1 + k
n , 1} and q = (n − k)/n to obtain a fraction of one while

satisfying r + q ≤ γ. Otherwise, we have q ≤ (n− k)/n and q = γ − r and can solve:

min

{
λr + γ − r

λ
,
kλ+ n(γ − r)

kλ+ n− k

}
. (62)

for r to obtain:

r =
kλ2 + γ(λ− 1)(n− k)

kλ2 + (2λ− 1)(n− k)
, (63)

which gives the expression for the ratio:

µ(nγ + kµ− k)

k(µ− 1)2 + n(2− µ)
. (64)

The result now follows by noting that expression (61) is equivalent to:

γ ≥ 1 +

(
1− k

n

)(
1− 1

λ

)
. (65)

B.3 Proof Theorem 3

Theorem 3. Consider m services, for j = 1, . . . ,m, with n-dimensional demand vectors λj such that

λij = µ for k elements and λij = 1 for the remaining n−k elements, and benefit function fj, satisfying

Assumption 1. Let h indicate the number of locations with demand µ for at least one service. The

dominating capacity, denoted by γ̂(n, k, h, µ), is bounded by:

γ̂(n, k, h, µ) ≤ 1 +
h

n

(n− k)(µ− 1)

k(µ− 1) + h
. (16)
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This bound is tight when h = k or h = min{mk, n}.

Proof. We proceed similar to the proof of Theorem 2, now taking limited overlap into account.

We consider an allocation that allocates r resources to all the h allocations that have high demand

for some j. Let q denote the amount allocated to the remaining n− h locations, with r + q ≤ γ. For

given α and j, the expression for the minimization problem on the right-hand side in (53) is given by:

kλmin
{

αr
h , 1

}
+ (h− k)min

{
αr
h , 1

}
+ (n− h)min

{
αq
n−h , 1

}
αλ

, (66)

when α < k, and:

kλmin
{

αr
h , 1

}
+ (h− k)min

{
αr
h , 1

}
+ (n− h)min

{
αq
n−h , 1

}
kλ+ α− k

, (67)

when α ≥ k.

First, consider (66). Clearly, this expression is non-decreasing in α. Hence, we get it is bounded by:

kλmin
{

kr
h , 1

}
+ (h− k)min

{
kr
h , 1

}
+ (n− h)min

{
kq

n−h , 1
}

kλ
, (68)

for all α ≤ k.

Next, consider (67). Clearly r/h ≥ q/(n− h) for any ratio-maximizing allocation. Consider α ≤ h/r.

If r ≥ h/k, we get expression (68). Otherwise, consider α > k and α ≤ h/r. We get that the

expression is equal to:

αλr(k/h) + αr(f − h)/f + αq

kλ+ α− k
. (69)

This expression is readily seen to be non-decreasing in α, hence the lowest is achieved for α = k,

giving again expression (68).

Finally, consider the case α > max{k, h/r}. We get the expression:

kλ+ h− k + (n− k)min
{

αq
n−h , 1

}
kλ+ α− k

(70)

This expression is readily shown to be non-increasing for α ≥ (n− h)/q, and monotonic for α < (n−
h)/q. It follows the expression attains it minimum over α ≥ max{k, h/r} at either α = max{k, h/r}
or α = n. Combining all results, we obtain that minimization problem in (53) is equivalent to:

min

kλmin
{

kr
h , 1

}
+ (h− k)min

{
kr
h , 1

}
+ (n− h)min

{
kq

n−h , 1
}

kλ
,
kλ+ h− k + (n− k)min

{
nq

n−h , 1
}

kλ+ n− k

 .

(71)
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It remains to determine the r value maximizing this bound. Clearly, it is without loss of optimality

to set r ≤ h/k and q ≤ (n− h)/k. This simplifies the expression to:

min

λr(k/h) + r(h− k)/h+ q

λ
,
kλ+ h− k + (n− h)min

{
nq

n−h , 1
}

kλ+ n− k

 . (72)

Suppose:

h

k

λ− γ

λ− 1
≤ γ − 1 +

h

n
. (73)

In this case, we can set r = min{γ − 1 + h
n , 1} and q = (n − h)/n to obtain a fraction of one while

satisfying r+ q ≤ γ. Otherwise, we can solve for r, similar to the proof of Theorem 2. The result now

follows by noting that expression (73) is equivalent to:

γ ≥ 1 +
h

n

(n− k)(λ− 1)

k(λ− 1) + h
(74)

Note that if h = k, this reduced to the bound of Theorem 2. Tightness follows by noting that the

assumption of allocation resources uniformly over the h locations is clearly optimal for the worst-case

allocation when h = k or h = min{mk, n}.
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