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Abstract

We consider financial networks where agents are linked to each other via mutual

liabilities. In case of bankruptcy, there are potentially many bankruptcy rules, ways

to distribute the assets of a bankrupt agent over the other agents. One common ap-

proach is to first apply pairwise netting of agents that have mutual liabilities and next

use the proportional rule to determine the payments on the basis of the net liabilities.

We refer to this as the pairwise netting proportional rule. The pairwise netting pro-

portional rule satisfies the basic requirements of claims boundedness, limited liability,

priority of creditors, and continuity. It also satisfies the desirable properties of net

impartiality, an agent that has two creditors with the same net claims pays the same

amount to both creditors on top of pairwise netting, and invariance to mitosis, an

agent that splits into a number of identical agents is not affecting the payments of

the other agents. We demonstrate that if net impartiality and invariance to mitosis,

together with the basic requirements, are regarded as imperative properties, then

payments should be determined by the pairwise netting proportional rule.

Keywords: Financial networks, systemic risk, portfolio compression, clearing, pair-

wise netting.
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1 Introduction

Financial crises, again and again, draw attention to the importance of financial networks.

In a financial network, bankruptcy can also occur due to contagion, where agents default

due to not being able to collect all of their claims. We consider financial networks where

agents have fully liquid initial endowments and are linked to each other with liabilities.

Payments are determined endogenously and are given by bankruptcy rules. The most

often used bankruptcy rule in financial networks is the proportional rule, where payments

are proportional to liabilities, as in the seminal paper Eisenberg and Noe (2001) as well

as in extensions of the basic model as presented in Cifuentes, Ferrucci, and Shin (2005),

Shin (2008), Rogers and Veraart (2013), Csóka and Herings (2018), Demange (2018), and

Schuldenzucker, Seuken, and Battiston (2020). For excellent surveys of the literature, we

refer to Glasserman and Young (2016) and Jackson and Pernoud (2021).

An alternative to the proportional rule is to perform one round of pairwise netting

of mutual liabilities first and apply the proportional rule to the net liabilities next. We

call the corresponding bankruptcy rule the pairwise netting proportional rule. Pairwise

netting, also called bilateral netting or bilateral compression, is most often applied to

over-the-counter derivatives trades for contracts like forwards, options, swaps, and credit

derivatives, see Duffie and Zhu (2011), Zawadowski (2013), Cont and Kokholm (2014),

Amini, Filipović, and Minca (2016), Garratt and Zimmerman (2020), and D’Errico and

Roukny (2021).

A drawback of the proportional rule is that agents with strictly positive initial endow-

ments and strictly higher claims than liabilities towards all other agents may still end up

with zero equity and default under the proportional rule. We demonstrate that they will

always have positive equity and be solvent under the pairwise netting proportional rule.

These observations provide a strong argument in favor of the latter bankruptcy rule.

The main contribution of this paper is to provide an axiomatization of the pairwise

netting proportional rule. Our main substantive axioms are net impartiality and invariance

to mitosis. Net impartiality requires that if agent i has the same net liability to agent j

and agent k, then agent i should make the same net payment to agents j and k. Invariance

to mitosis requires that the split of an agent into multiple identical agents should not affect

the payments made to and received from agents not involved in the split. Additionally,

we impose the basic axioms of claims boundedness, limited liability, priority of creditors,

and continuity. Claims boundedness requires that all payments should be bounded from

above by the respective liabilities. Limited liability requires that all agents should end up

with non-negative equity. Priority of creditors requires that all defaulting agents should

end up with zero equity. Continuity requires the bankruptcy rule to be continuous. We

show these axioms to be independent.
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Csóka and Herings (2021) imposes impartiality rather than net impartiality. Impar-

tiality requires that if agent i has the same liability to both agents j and k, then agent i

should make the same payment to agents j and k. Csóka and Herings (2021) show that

impartiality together with the other axioms characterizes the proportional rule in financial

networks.

Contrary to net impartiality, impartiality does not take the liabilities of agents j and

k towards agent i into account, and may therefore be used in the characterization of

bankruptcy rules for network problems that are directly derived from division rules for

the simpler class of claims problems, the class of problems where agents have claims on

a single, fixed, estate. Almost all bankruptcy rules that are axiomatized in the setting

of financial networks are of this type, like the axiomatization of equity resulting from the

Aumann-Maschler rule in Groote Schaarsberg, Reijnierse, and Borm (2018) and the axiom-

atization of equity resulting from the constrained equal losses, constrained equal awards,

and proportional rule by Ketelaars and Borm (2021), which extends the axiomatization for

the related claims rules in Moulin (2000). An exception is Demange (2022), who defines

and axiomatizes the constrained-proportional bankruptcy rule, a bankruptcy rule that is

also not directly derived from division rules. The pairwise netting proportional bankruptcy

rule in this paper can also not be directly derived from division rules for claims problems

and the possibility of mutual claims in a financial network plays a substantive role in the

axiomatization.

The axiomatization of bankruptcy rules in the setting of claims problems has a long

tradition in the literature, starting from the seminal paper by O’Neill (1982). For ax-

iomatizations of the proportional rule in different models for claims problems, see Young

(1988), de Frutos (1999), Tasnádi (2002), Moreno-Ternero (2006), and Ju, Miyagawa, and

Sakai (2007), Moulin (2016), and Thomson (2016). For a comprehensive overview of this

literature, see Thomson (2019). The issue of whether impartiality should be imposed on

absolute liabilities or on net liabilities is genuine to the network setting. In the class of

claims problems, there is no difference between these two axioms, since netting has no

effect on the liabilities. As a consequence, all the well-known division rules that have

been suggested for the class of claims problems, like the proportional rule, the constrained

equal awards rule, or the Talmud rule to name a few, satisfy both impartiality and net

impartiality.

The paper is organized as follows. In Section 2, we define financial networks, the

proportional rule, and the pairwise netting proportional rule and illustrate them with

examples. Section 3 provides definitions and a discussion of the axioms. In Section 4, we

characterize the pairwise netting proportional rule as the solution to a system of equations

and inequalities. The axiomatization can be found in Section 5. In Section 6 we show that
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the axioms are independent. Section 7 contains the conclusion.

2 Financial Networks and Pairwise Netting

In this section, we present the standard framework of a financial network, which is based

on the seminal work by Eisenberg and Noe (2001).

We consider a countably infinite set of potential agents, without loss of generality

represented by the set of natural numbers N, and denote the collection of non-empty, finite

subsets of N by N .
A financial network F = (N, z, L) consists of a set of agents N ∈ N , a strictly positive

vector z ∈ RN
++ of initial endowments, and a non-negative liability matrix L ∈ RN×N

+ . The

set of all financial networks is denoted by F .
The initial endowments consist of all the assets of an agent, except the claims the agent

has on the other agents, which are part of the liability matrix L. Entry Lij of the liability

matrix represents the claim of agent j on agent i or, equivalently, the liability of agent i

towards agent j. As a notational convention, we assume that Lii = 0, so agents do not hold

claims on themselves. It is allowed that simultaneously Lij > 0 and Lji > 0, so agent i can

have a liability towards agent j and at the same time agent j can have a liability towards

agent i. In fact, the question of how such cases should be treated is at the heart of the

contribution of this paper.

The set of all matrices in RN×N
+ with a zero diagonal is denoted byM(N). Row i ∈ N

of a matrix P ∈M(N) is denoted by Pi and column i ∈ N of this matrix by P i. The union

over all sets in N of such matrices is denoted by M = ∪N∈NM(N).

In principle, agents are required to settle their liabilities by making mutual payments

equal to those liabilities. But this is only feasible if the financial network (N, z, L) is

such that, for every i ∈ N, zi +
∑

j∈N Lji ≥
∑

j∈N Lij, i.e., for every agent i, the initial

endowments zi plus the sum of the claims on the other agents
∑

j∈N Lji is sufficient to

settle the liabilities
∑

j∈N Lij with all the other agents. As soon as there is a single agent

i ∈ N such that zi +
∑

j∈N Lji <
∑

j∈N Lij, bankruptcy is bound to occur, at least one

agent cannot settle some of the liabilities with some of the other agents, and bankruptcy

law determines the payments to be made. These payments are collected in a payment

matrix P ∈M(N), where Pij is the monetary amount to be paid by agent i ∈ N to agent

j ∈ N .

Given a payment matrix P ∈M(N), the asset value ai(N, z, P ) of agent i ∈ N is given

by

ai(N, z, P ) = zi +
∑
j∈N

Pji.
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The equity ei(N, z, P ) of an agent i ∈ N is given by

ei(N, z, P ) = ai(N, z, P )−
∑
j∈N

Pij = zi +
∑
j∈N

(Pji − Pij),

so subtracting the payments as made by an agent from the asset value of the agent yields

the agent’s equity.

A function that assigns a payment matrix P ∈ M(N) to each financial network

(N, z, L) ∈ F is called a bankruptcy rule, more formally defined as follows.

Definition 2.1. A bankruptcy rule is a function b : F →M such that for every (N, z, L) ∈
F it holds that b(N, z, L) ∈M(N).

An important principle in bankruptcy law is proportionality. In case of insolvency of

an agent, the agent makes payments in proportion to the agent’s liabilities. To define this

more formally, it is helpful to introduce the non-negative relative liability matrix Π ∈ RN×N
+ ,

where for i, j ∈ N,

Πij =

{
0, if Lij = 0,

Lij∑
k∈N Lik

, otherwise.

Definition 2.2. The proportional rule is the function bp : F → M such that for every

(N, z, L) ∈ F it holds that bp(N, z, L) = P, where the matrix P ∈ M(N) solves the

following system of equations:

Pij = min

{
Πij(zi +

∑
k∈N

Pki), Lij

}
, i, j ∈ N. (2.1)

Under the proportional rule, a proportion Πij of the asset value ai(P ) = zi +
∑

k∈N Pki

of every agent i ∈ N is spent to settle the liability with agent j ∈ N, up to the maximum

of Lij. It follows from Theorem 2 in Eisenberg and Noe (2001) that the system of equations

(2.1) has a unique solution, so the function bp is well-defined.

We illustrate financial networks and the proportional rule in Example 2.3.

Example 2.3 (The proportional rule). Consider the financial network (N, z, L) ∈ F with

three agents N = {1, 2, 3} and initial endowments and liabilities as in the first two blocks

of Table 1. Table 1 also presents the payment matrix P resulting from the proportional

rule bp, the induced asset values a(N, z, P ), and equities e(N, z, P ).

Agents 1 and 2 default on their liabilities and end up with zero equity. As a result, all

initial endowments, with a total value of 51, are transferred to agent 3. Notice that even

if agent 1 fully received the claim on agent 2, the resulting asset value of 10 + 360 = 370

would not be sufficient to pay all liabilities, which are equal to 400 + 40 = 440. Agent 1 is
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z L P a(N, z, P ) e(N, z, P )

10 0 400 40 0 320 32 352 0

1 360 0 20 342 0 19 361 0

40 0 40 0 0 40 0 91 51

Table 1: The initial endowments, the liabilities, the payment matrix, the asset values, and

the equities resulting from the proportional rule bp in Example 2.3.

therefore in fundamental default. Agent 2 also defaults, but if agent 2 received the entire

claims on agents 1 and 3, the resulting asset value of 1+400+40 = 441 would be sufficient

to pay the total liabilities of 360 + 20 = 380. The default of agent 2 is therefore due to

contagion.

The insolvency of agent 2 is particularly disturbing. Agent 2 has a claim of 400 on

agent 1, which is more than the liability of 360 towards agent 1, and a claim of 40 on

agent 3, which exceeds the liability of 20 towards agent 3. Moreover, agent 2 has positive

initial endowments. Still, agent 2 goes bankrupt and ends up with zero equity when

payments are determined by the proportional rule.

Example 2.3 displays another unappealing feature of the proportional rule. One could

argue that the common part of the mutual liabilities of two agents i, j ∈ N, i.e., the

minimum of Lij and Lji, should be irrelevant, since agents i and j can decrease or increase

this amount at will without affecting their real financial situation. The net liabilities of

agent 1 towards agents 2 and 3 in Example 2.3 are the same and equal to an amount

of 40. One could therefore require that, after correcting for the common part of mutual

liabilities, agents 2 and 3 should be treated in the same way by agent 1. Nevertheless,

under the proportional rule, agent 1 pays 320 to agent 2, so less than the common part

of their mutual liabilities equal to 360, and 32 to agent 3, so significantly more than the

common part of their mutual liabilities, which is equal to 0. 4

The disturbing situation of Example 2.3 can be avoided by basing the payments on the

net liabilities. For i, j ∈ N, let Lij = min{Lij, Lji} be the common part of the liabilities

between agents i and j. Under pairwise netting, agents i and j cancel the common part of

their liabilities, which in technical terms is achieved by paying Lij = Lji to one another.

Next, the proportional rule is applied to the net liability matrix L̂, where, for i, j ∈ N,

L̂ij = Lij − Lij. Note that for the net liabilities, for every i, j ∈ N, L̂ij = 0 or L̂ji = 0. We

also remark that pairwise netting between agents i and j can be viewed as giving priority

to payments between one another, up to an amount of Lij. These considerations lead to

the following definition of the pairwise netting proportional rule.
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Definition 2.4. The pairwise netting proportional rule bpnp : F →M is defined by

bpnp(N, z, L) = L+ bp(N, z, L̂), (N, z, L) ∈ F .

Pairwise netting does not affect the initial endowments, but reduces the liabilities from

L to L̂, so after making mutual payments according to L, the resulting financial net-

work is given by (N, z, L̂) and applying the proportional rule leads to additional pay-

ments bp(N, z, L̂). The pairwise netting proportional rule is well-defined as the matrix L is

uniquely determined by the liability matrix L and the resulting financial network (N, z, L̂)

with the net liability matrix belongs to F , so bp(N, z, L̂) is well-defined as argued before.

Example 2.5 illustrates the pairwise netting proportional rule for the primitives of

Example 2.3.

Example 2.5 (The pairwise netting proportional rule). Consider the financial network

(N, z, L) ∈ F of Example 2.3. Table 2 shows the liability matrix L, the net liability matrix

L̂, the payment matrix P̂ = bp(N, z, L̂) resulting from the proportional rule using the net

liability matrix, the payment matrix P = bpnp(N, z, L), asset values a(N, z, P ), and equities

e(N, z, P ).

z L L̂ P̂ P a(N, z, P ) e(N, z, P )

10 0 400 40 0 40 40 0 5 5 0 365 5 370 0

1 360 0 20 0 0 0 0 0 0 360 0 20 406 26

40 0 40 0 0 20 0 0 20 0 0 40 0 65 25

Table 2: The initial endowments, liability matrix, net liability matrix, the payment ma-

trix based on the net liabilities, the full payment matrix, asset values, and equities in

Example 2.5.

Under the pairwise netting proportional rule, agent 2 is solvent and contagion default

is avoided. Agent 2 receives 360 + 20 = 380 as a result of pairwise netting all mutual

liabilities. Next, agent 2 receives 5 units from agent 1 and 20 units from agent 3 after

applying the proportional rule to the net liability matrix. Agent 2 therefore ends up with

an asset value of 406, which is sufficient to fully pay the liabilities of 380. In contrast,

under the proportional rule, agent 2 has an asset value of 361 only and is forced to default.

4

The following proposition generalizes the insights of Examples 2.3 and 2.5 and states

that an agent with higher claims than liabilities towards all other agents is always solvent

under the pairwise netting proportional rule.
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Proposition 2.6. Let F = (N, z, L) ∈ F be a financial network and let i ∈ N be such

that, for every j ∈ N, Lji ≥ Lij. Then it holds for P = bpnp(F ) that, for every j ∈ N,

Pij = Lij, and ei(N, z, P ) > 0.

Proof. Let j ∈ N. We have that Lji ≥ Lij, so Lij = Lij and L̂ij = Lij − Lij = 0. It

follows that P̂ij = bpij(N, z, L̂) = 0. From the definition of bpnp, we obtain that

Pij = bpnpij (F ) = Lij + P̂ij = Lij + 0 = Lij.

Finally, it holds that

ei(N, z, P ) = zi +
∑

j∈N(Pji − Pij)

= zi +
∑

j∈N(Lji + P̂ji − Lij − P̂ij)

= zi +
∑

j∈N P̂ji

≥ zi > 0.

2

The result of Proposition 2.6 does not depend on the application of the proportional rule

to the net liabilities. What is crucial is that first one round of pairwise netting is performed

and next payments are made based on the net liability matrix. Rules different from the

proportional one would also lead to positive equity and solvency under the assumptions of

the proposition.

As a final contribution of this section, we would like to point out that it is irrelevant

whether the actual payments made are equal to P = bpnp(N, z, L) or to P̂ = P − L =

bp(N, z, L̂) as both payment matrices lead to the same values for equity.

Proposition 2.7. Let F = (N, z, L) ∈ F be a financial network. Then it holds for

P = bpnp(N, z, L) and P̂ = bp(N, z, L̂) that

e(N, z, P ) = e(N, z, P̂ ).

Proof. Let i ∈ N. It holds that

ei(N, z, P ) = zi +
∑

j∈N(Pji − Pij)

= zi +
∑

j∈N(Pji − Lji + Lij − Pij)

= zi +
∑

j∈N(P̂ji − P̂ij)

= ei(N, z, P̂ ).

2

Similar to Proposition 2.6, the result of Proposition 2.7 does not depend on the appli-

cation of the proportional bankruptcy rule after pairwise netting, but would hold for other

bankruptcy rules as well.
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3 The Axioms

In this section, we introduce the new substantive axiom of net impartiality and we define

the existing substantive axiom of invariance to mitosis. We also present the basic axioms

of claims boundedness, limited liability, priority of creditors, and continuity.

In claims problems, there is a single estate and there are multiple claimants. A claims

problem can be thought of as a financial network where all rows of the liability matrix but

one are equal to zero. A common axiom in claims problem is impartiality, which requires

that if two agents have the same claim on the estate, then they should receive the same

amount. Common division rules like the proportional rule, the constrained equal awards

rule, the constrained equal losses rule, and the Talmud rule satisfy impartiality. There

are several natural ways in which impartiality for claims problems can be extended to an

axiom for financial networks. One such extension, introduced in Csóka and Herings (2021),

is presented next.

Axiom 3.1 (Impartiality). For every F = (N, z, L) ∈ F , for every i, j, k ∈ N such that

Lij = Lik, it holds that bij(F ) = bik(F ).

Impartiality requires that if agent i has the same liability to agent j and agent k, then

agent i should pay the same to agent j and agent k.

As argued before, two agents can decrease or increase the common part of the mutual

liabilities at will. It is then natural to require that the common part of mutual liabilities

is ignored when judging whether two agents are in the same position vis-à-vis a debtor.

Net impartiality therefore compares the net liabilities Lij−Lij and Lik−Lik. In case those

are equal, then net impartiality imposes that agent i makes the same payments to agents

j and k, when ignoring the payment that corresponds to the cancelation of the common

part of the mutual liabilities.

Axiom 3.2 (Net impartiality). For every F = (N, z, L) ∈ F , for every i, j, k ∈ N such

that Lij − Lij = Lik − Lik, it holds that bij(F )− Lij = bik(F )− Lik.

Net impartiality requires that if agent i has the same net liability to agent j and agent

k, then agent i should pay the same amounts to agents j and k after a correction for the

common part of their mutual liabilities. Both impartiality and net impartiality extend the

axiom of impartiality for claims problems to the setting of financial networks. This paper

argues that net impartiality is a more compelling axiom in the set-up of financial networks

and studies its implications.

Principles of impartiality are common in various legal systems. For instance, the EC

Council Regulation on insolvency proceedings requires that creditors with the same stand-

ing should obtain the same proportion of their claims and American bankruptcy law im-

poses that claimants of equal status should receive payments proportional to the value of
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their liabilities. This principle is both applied with and without netting mutual liabili-

ties. An example of the former situation concerns over-the-counter derivates trades, where

claims are revised by one round of pairwise netting before the proportional rule is applied,

see Duffie and Zhu (2011).

Net impartiality is satisfied by the pairwise netting proportional rule in Example 2.5,

since agent 1 makes the same payments to agents 2 and 3 in P̂ . However, net impartiality is

not satisfied by the proportional rule in Example 2.3, since after subtracting the common

part of their mutual liabilities from the respective elements of the payment matrix P ,

agent 1 makes a payment of -40 to agent 2 and a payment of 32 to agent 3.

Our second substantial axiom, invariance to mitosis, was introduced in Csóka and

Herings (2021).

Axiom 3.3 (Invariance to mitosis). For every F = (N, z, L) ∈ F , for every j ∈ N, for

every K ⊂ N \N, the payments in the financial network F ′ = (N ′, z′, L′) ∈ F , where

N ′ = N ∪K,
z′k = zj/(|K|+ 1), k ∈ {j} ∪K,
z′i = zi, i ∈ N \ {j},
L′ki = Lji/(|K|+ 1), k ∈ {j} ∪K, i ∈ N \ {j},
L′ik = Lij/(|K|+ 1), k ∈ {j} ∪K, i ∈ N \ {j},
L′k` = 0, k, ` ∈ {j} ∪K,
L′hi = Lhi, h, i ∈ N \ {j},

satisfy∑
k∈{j}∪K bki(F

′) = bji(F ), i ∈ N \ {j},∑
k∈{j}∪K bik(F ′) = bij(F ), i ∈ N \ {j},

bhi(F
′) = bhi(F ), h, i ∈ N \ {j}.

The term mitosis refers to splitting an agent into multiple identical agents with the

same initial endowments, claims, and liabilities. In the definition, the split of agent j

into multiple identical agents is achieved by taking a set of agents K outside the financial

network F and distributing all endowments, claims, and liabilities of agent j equally over

the agents in {j}∪K. Invariance to mitosis requires that such a split should not affect the

payments made to and received from agents not involved in the split.

Invariance to mitosis is related to the axiom of strategy-proofness by O’Neill (1982)

for the class of simple claims problems, which are claims problems where no agent has

a claim exceeding the value of the estate. This axiom was used under the name non-

manipulability by de Frutos (1999), Moreno-Ternero (2006), and Ju, Miyagawa, and Sakai

(2007) to axiomatize the proportional rule in claims problems. Non-manipulability requires
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that no group of agents can increase their total awards by merging their claims and that no

single agent can be better off by splitting the claim on the estate among the agent and an

arbitrary number of dummy agents. Strong non-manipulability requires that such merging

and splitting changes nothing for the other agents involved in the problem. This axiom

was introduced by Curiel, Maschler, and Tijs (1987) as the additivity of claims property.

Invariance to mitosis only applies to cases where an agent splits into identical agents

or where a group of identical agents merges into a single agent and is therefore much

weaker than straightforward extensions of non-manipulability to financial networks. In-

deed, as shown in Csóka and Herings (2021), there is no bankruptcy rule satisfying non-

manipulability together with the basic axioms of claims boundedness, limited liability, and

priority of creditors. The intuition for this result is relatively straightforward. If a bankrupt

agent is allowed to create a spin-off which receives all the liabilities of the bankrupt agent,

then the agent that was bankrupt before will now end up with positive equity. Such manip-

ulations are indeed deemed illegal by actual bankruptcy law. On the contrary, the split of

an agent into two identical agents occurs frequently, in particular in the form of a divorce

when married in community of property.

We finally present a number of basic axioms and provide a brief interpretation of them.

Axiom 3.4 (Claims boundedness). For every F ∈ F , it holds that b(F ) ≤ L.

Claims boundedness requires that all payments should be bounded from above by the

respective liabilities. It is a very natural axiom that is satisfied by almost all bankruptcy

rules studied in the literature. The only exception we are aware of is the constrained-

proportional rule of Demange (2022), where sometimes agents are required to pay more

than their liabilities in order to rescue other agents.

Axiom 3.5 (Limited liability). For every F ∈ F , for every i ∈ N, it holds that ei(N, z, b(F )) ≥
0.

Limited liability requires that all agents should end up with non-negative equity.

Axiom 3.6 (Priority of creditors). For every F ∈ F , for every i ∈ N, if bi(F ) < Li, then

it holds that ei(N, z, b(F )) = 0.

Priority of creditors requires that an agent is only allowed to default when the agent’s

equity is equal to zero.

The final basic axiom is continuity. To define it, we endow F with the standard topology,

based on the discrete topology forN and the Euclidean topology for initial endowments and

liabilities. Let (F n)n∈N = (Nn, zn, Ln)n∈N be a sequence of financial networks of F . This

sequence converges to the financial network F = (N, z, L) of F if and only if there is n′ ∈ N
such that for every n ≥ n′ it holds that Nn = N, limn→∞ z

n = z, and limn→∞ L
n = L.
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Axiom 3.7 (Continuity). It holds that b is continuous.

When a bankruptcy rule satisfies continuity, small changes in a financial network do

not lead to large changes in payments.

4 A Characterization of the Pairwise Netting Propor-

tional Rule

Before turning to the axiomatization of the pairwise netting proportional rule, it is helpful

to characterize it in this section as the unique solution to a particular system of equations.

Let F = (N, z, L) ∈ F be a financial network. Let Π̂ ∈ RN×N
+ denote the relative net

liability matrix, where for i, j ∈ N,

Π̂ij =

{
0, if L̂ij = 0,

L̂ij∑
k∈N L̂ik

, otherwise.

It follows from Definition 2.4 that bpnp(F )−L = bp(N, z, L̂), so we can use Equation (2.1)

and Theorem 2 of Eisenberg and Noe (2001) to characterize bpnp(F ) − L as the unique

solution to the system of equations and inequalities

P̂ij = min
{

Π̂ij(zi +
∑

k∈N P̂ki), L̂ij

}
, i, j ∈ N,

P̂ij ≥ 0, i, j ∈ N.
(4.2)

The matrix P̂ corresponds to the payments in excess of the common part of the liabilities

L. For a general payment matrix there is no reason that the payments in excess of the

liabilities are non-negative. Such non-negativity is also not directly implied by the axioms

that we have made. We therefore relax, for every i, j ∈ N, the inequality constraint P̂ij ≥ 0

to P̂ij ≥ −Lij, and obtain the system of equations and inequalities

P̂ij = min
{

Π̂ij(zi +
∑

k∈N P̂ki), L̂ij

}
, i, j ∈ N,

P̂ij ≥ −Lij, i, j ∈ N,
(4.3)

The crucial point of this section is to show that the relaxed system of equations and

inequalities (4.3) remains to have a unique solution, which must therefore be equal to

bpnp(F )− L.
There is an extensive literature on the uniqueness of clearing payment matrices in

financial networks, see Eisenberg and Noe (2001), Glasserman and Young (2015), Groote

Schaarsberg, Reijnierse, and Borm (2018), and Koster (2019). Csóka and Herings (2023)

provides sufficient conditions for uniqueness that weaken all previous conditions provided
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in the literature. However, all these papers rely on non-negativity constraints as in (4.2),

so do not imply uniqueness of the solution to (4.3).

To show the uniqueness of the solution to (4.3), we need some preliminary lemmas.

Our first lemma states that the set of solutions to the system of equations and inequalities

in (4.3) is a complete lattice with bpnp(F )− L as the greatest solution. It also establishes

that every solution leads to the same values for equity.

Lemma 4.1. Let F = (N, z, L) ∈ F be a financial network. The set of solutions to

the system of equations and inequalities (4.3) is a complete lattice. The greatest solution

P̂+ is equal to bpnp(F ) − L. For every solution P̂ ∗ to (4.3), it holds that e(N, z, P̂ ∗) =

e(N, z, P̂+) ≥ 0. Moreover, for every i ∈ N, if ei(N, z, P̂
∗) = 0 then P̂ ∗i = Π̂i(zi+

∑
j∈N P̂

∗
ji)

and if ei(N, z, P̂
∗) > 0 then P̂ ∗i = L̂i.

Proof. The proof proceeds in four steps. Step 1 introduces a function ϕ such that any

solution to (4.3) is a fixed point of ϕ. Step 2 derives that the set of fixed points of ϕ is a

complete lattice. In Step 3 it is shown that every fixed point results in the same equity

for all agents and that a solution with positive equity for some agent implies that the

corresponding row of the payment matrix is equal to the net liability of that agent. Step 4

derives that every fixed point of ϕ is a solution to (4.3) and that the solution satisfies the

further properties as stated in the lemma.

Step 1. Construction of the function ϕ.

The set of feasible net payment matrices is defined by

P̂ = {P̂ ∈ RN×N | −L ≤ P̂ ≤ L̂}.

Let ϕ : P̂ → P̂ be defined by

ϕij(P̂ ) = max
{
−Lij,min

{
Π̂ij(zi +

∑
k∈N P̂ki), L̂ij

}}
, P̂ ∈ P̂ , i, j ∈ N.

Let P̂ ∗ be a solution to the system of equations and inequalities (4.3). For every i, j ∈ N,
it holds that

ϕij(P̂
∗) = max

{
−Lij,min

{
Π̂ij(zi +

∑
k∈N P̂

∗
ki), L̂ij

}}
= max

{
−Lij, P̂

∗
ij

}
= P̂ ∗ij,

where the second equality follows from the first line in (4.3) and the third equality from

the second line in (4.3). We have shown that P̂ ∗ is a fixed point of ϕ.

Step 2. The set of fixed points of ϕ is a complete lattice. The greatest fixed point of ϕ is

equal to bpnp(F )− L.
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The set P̂ is partially ordered by ≤ . All subsets of P̂ have both a supremum and an

infimum in P̂ , so P̂ is a complete lattice.

The function ϕ is monotonic, since Π̂ij(zi +
∑

k∈N P̂ki) is monotonic and the operators

min and max preserve monotonicity. By Tarski’s fixed point theorem (Tarski, 1955), the

set of fixed points of ϕ is a complete lattice with respect to ≤ . It follows that the set of

fixed points of ϕ has a least and a greatest element. Let P̂− and P̂+ denote the least and

the greatest fixed point of ϕ, respectively. As argued before, bpnp(F )−L is the unique non-

negative solution to (4.3). By Step 1, bpnp(F )−L is a fixed point of ϕ. Then we have that

P̂+ ≥ bpnp(F )−L ≥ 0. Since P̂+ ≥ 0, we have, for every i, j ∈ N, Π̂ij(zi +
∑

k∈N P̂
+
ki) ≥ 0,

so

P̂+
ij = ϕij(P̂

+) = max
{
−Lij,min

{
Π̂ij(zi +

∑
k∈N P̂

+
ki), L̂ij

}}
= min

{
Π̂ij(zi +

∑
k∈N P̂

+
ki), L̂ij

}
,

so P̂+ is a non-negative solution to (4.3). Since bpnp(F ) − L is the unique non-negative

solution to (4.3), it follows that P̂+ = bpnp(F )− L.

Step 3. For every fixed point P̂ ∗ of ϕ, we have that e(N, z, P̂ ∗) = e(N, z, P̂+) ≥ 0.

Moreover, for every i ∈ N, if ei(N, z, P̂
∗) > 0 then P̂ ∗i = L̂i.

Let P̂ ∗ be a fixed point of ϕ. We show that e(N, z, P̂ ∗) ≤ e(N, x, P̂+), which, to-

gether with
∑

i∈N e(N, z, P̂
∗) =

∑
i∈N e(N, z, P̂

+) =
∑

i∈N zi implies that e(N, z, P̂ ∗) =

e(N, z, P̂+). By Step 2, P̂+ = bpnp(F ) − L = bp(N, z, L̂), so e(N, z, P̂+) ≥ 0 follows from

the fact that the proportional rule satisfies limited liability. Therefore, if for some i ∈ N
it holds that ei(N, z, P̂

∗) ≤ 0, then ei(N, z, P̂
∗) ≤ ei(N, z, P̂

+).

Let i ∈ N be such that ei(N, z, P̂
∗) > 0. We show that, for every j ∈ N, P̂ ∗ij = L̂ij. If,

for some j ∈ N, L̂ij = 0, then we have Π̂ij = 0, so

P̂ ∗ij = ϕij(P̂
∗)

= max{−Lij,min{Π̂ij(zi +
∑

k∈N P̂
∗
ki), 0}}

= 0.

It follows that L̂i = 0 implies P̂ ∗i = 0.

Consider the case L̂i > 0. Since

ei(N, z, P̂
∗) = zi +

∑
k∈N P̂

∗
ki −

∑
j∈N P̂

∗
ij

=
∑

j∈N Π̂ij(zi +
∑

k∈N P̂
∗
ki)−

∑
j∈N P̂

∗
ij > 0,

it follows that there is j′ ∈ N such that

P̂ ∗ij′ < Π̂ij′(zi +
∑

k∈N P̂
∗
ki). (4.4)
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It also holds that Lij′ > 0 since otherwise both sides of inequality (4.4) are equal to zero.

From (4.4) and P̂ ∗ij′ = ϕij′(P̂
∗) it follows that

P̂ ∗ij′ = L̂ij′ < Π̂ij′(zi +
∑

k∈N P̂
∗
ki), (4.5)

so zi +
∑

k∈N P̂
∗
ki > 0.

For every j ∈ N , multiplying (4.5) by L̂ij/L̂ij′ , we get that

min
{

Π̂ij(zi +
∑

k∈N P̂
∗
ki), L̂ij

}
= L̂ij ≥ −Lij,

implying that P̂ ∗ij = L̂ij.

Having established that P̂ ∗i = L̂i, we find that

ei(N, z, P̂
∗) = zi +

∑
j∈N P̂

∗
ji −

∑
j∈N L̂ij

≤ zi +
∑

j∈N P̂
+
ji −

∑
j∈N L̂ij

= ei(N, z, P̂
+),

where the last equality uses that L̂ij ≥ P̂+
ij ≥ P ∗ij = L̂ij.

Step 4. Every fixed point P̂ ∗ of ϕ is a solution to (4.3). Moreover, for every i ∈ N, if

ei(N, z, P̂
∗) = 0 then P̂ ∗i = Π̂i(zi +

∑
j∈N P̂

∗
ji).

Let P̂ ∗ be a fixed point of ϕ. Suppose, by contradiction, that there is i, j′ such that

P̂ ∗ij′ = −Lij′ > Π̂ij′(zi +
∑

k∈N P̂
∗
ki). (4.6)

Then it should hold that, for every j ∈ N ,

P̂ ∗ij ≥ Π̂ij(zi +
∑

k∈N P̂
∗
ki) (4.7)

since otherwise there is a k′ ∈ N such that P̂ ∗ik′ = L̂ik′ < Π̂ik′(zi +
∑

k∈N P̂
∗
ki), implying that

zi +
∑

k∈N P̂
∗
ki > 0, contradicting (4.6). Equations (4.6) and (4.7) imply that ei(N, z, P̂

∗) <

0, a contradiction to Step 3. Consequently, every fixed point P̂ ∗ of ϕ is a solution to (4.3).

Let P̂ ∗ be a solution to (4.3) such that, for some i ∈ N, ei(N, z, P̂ ∗) = 0. Since L̂i = 0

implies P̂+
i = 0, so ei(N, z, P̂

∗) = ei(N, z, P̂
+) > 0, we have that L̂i > 0. It holds that∑

j∈N min{Π̂ij(zi +
∑

k∈N P̂
∗
ki), L̂ij} =

∑
j∈N P̂

∗
ij

= zi +
∑

k∈N P̂
∗
ki

=
∑

j∈N Π̂ij(zi +
∑

k∈N P̂
∗
ki),

where the first equality follows from (4.3), the second from ei(N, z, P̂
∗) = 0, and the third

since
∑

j∈N Π̂ij = 1. It follows that, for every j ∈ N, P̂ ∗ij = Π̂ij(zi +
∑

k∈N P̂
∗
ki). 2
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The proof of Lemma 4.1 is based on the construction of a function that satisfies the

assumptions of Tarski’s fixed point theorem and which is such that any solution to (4.3)

yields a fixed point of the function. It follows that the set of fixed points is a complete

lattice. It is easy to show that bpnp(F )−L must be the greatest fixed point. After deriving

a number of useful properties of the fixed points, the proof of the lemma is completed by

showing that every fixed point yields a solution to (4.3).

We now need to have a closer look at the properties of a solution to (4.3). We use the

following definitions from Csóka and Herings (2023). A sequence of k′ ≥ 2 distinct agents

(i1, . . . , ik′) is a directed path in a matrix M ∈ M(N) if, for every k ∈ {1, . . . , k′ − 1},
Mikik+1

> 0. Agent j ∈ N is connected to agent i ∈ N in M if there is a directed path

(i1, . . . , ik′) in M such that i1 = i and ik′ = j.

Let F = (N, z, L) ∈ F be a financial network. A set of agents S ⊂ N is said to be a

strongly connected component in L if any two distinct agents in S are connected to each

other in L and the set S is maximal with regard to this property.

For every i ∈ N, let O(i) denote the strongly connected component in L to which i

belongs. The collection O = {O(i) | i ∈ N} is a partition of N. The directed graph (O, D)

is defined by

D = {(O,O′) ∈ O ×O | ∃i ∈ O, ∃j ∈ O′, Lij > 0},

so, for two distinct elements O,O′ ∈ O, there is an arc from O to O′ if there is i ∈ O and

j ∈ O′ such that Lij > 0. The successors of O ∈ O in the directed graph (O, D) are given by

the strongly connected components that are connected to O in (O, D). The directed graph

(O, D) has no cycles. We can therefore order the sets in O and write O = {O1, . . . , OR},
where (Or, Or′) ∈ D implies r < r′. In general, this order is not uniquely determined, for

instance when O has at least two elements and at least one strongly connected component

O ∈ O has neither predecessors nor successors.

An agent i ∈ N is said to be a cyclical agent and the set O(i) is said to be a cycle if

O(i) consists of at least two elements. Agent i is cyclical if and only if there is a directed

path of agents in L starting at agent i such that the last agent on the path has a positive

liability towards agent i.

We denote the least solution to (4.3) by P̂−. Let Â−, Â+ ∈ RN be the vectors of asset

values defined by

Â−i = zi +
∑

k∈N P̂
−
ki , i ∈ N,

Â+
i = zi +

∑
k∈N P̂

+
ki , i ∈ N.

The next two lemmas are used to show that, for every i ∈ N, Â−i = Â+
i .

The first lemma considers the case when all agents in a cycle end up with zero equity
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at a solution to (4.3). If there is an agent i in the cycle such that Â−i < Â+
i , then this holds

for all agents in the cycle.

Lemma 4.2. Let F = (N, z, L) ∈ F be a financial network. Let O ∈ O be a cycle such

that
∑

i∈O ei(N, z, P̂
+) = 0. If there is an agent i1 ∈ O such that Â−i1 < Â+

i1 , then, for every

i ∈ O, Â−i < Â+
i .

Proof. Let i ∈ O. It holds that ei(P̂
−) = ei(P̂

+) = 0. It follows from Lemma 4.1 that

P̂−i = Π̂iÂ
−
i and P̂+

i = Π̂iÂ
+
i .

Let i1 ∈ O be such that Â−i1 < Â+
i1 . Let i2 ∈ O \ {i1}. Let j1, . . . , jm ∈ O be such that

j1 = i1, jm = i2, and for ` = 1, . . . ,m− 1, we have that L̂j`j`+1 > 0.

By assumption it holds that Â−j1 < Â+
j1 . Let us assume, for some ` = 1, . . . ,m− 1, that

Â−
j`
< Â+

j`
. We show that Â−

j`+1 < Â+
j`+1 . We have that

Â−
j`+1 = zj`+1 +

∑
i∈N

P̂−
ij`+1 < zj`+1 +

∑
i∈N

P̂+
ij`+1 = Â+

j`+1 , (4.8)

since, for every i ∈ N, P̂−
ij`+1 ≤ P̂+

ij`+1 and P̂−
j`j`+1 = Π̂j`j`+1Â−

j`
< Π̂j`j`+1Â+

j`
= P̂+

j`j`+1 ,

because Π̂j`j`+1 > 0 and Â−
j`
< Â+

j`
. 2

The next lemma considers the case when there is at least one agent with positive equity

in a cycle. In that case, all agents in the cycle have the same asset value at all solutions.

Lemma 4.3. Let F = (N, z, L) ∈ F be a financial network. Let O ∈ O be a cycle such

that
∑

i∈O ei(N, z, P̂
+) > 0. Then we have that, for every i ∈ O, Â−i = Â+

i .

Proof. Clearly, there is an agent i0 ∈ O such that ei0(N, z, P̂
+) > 0.

Suppose i1 ∈ O is such that Â−i1 < Â+
i1 .

Let j1, . . . , jm
′ ∈ O be such that j1 = i1, jm

′
= i0, and for ` = 1, . . . ,m′ − 1, we have

that L̂j`j`+1 > 0. Let m ∈ {1, . . . ,m′} be such that ejm(P̂+) > 0 and for ` < m we have

that ej`(P̂
+) = 0. Notice that m can be equal to 1.

We show by induction that, for every ` = 1 . . . ,m, Â−
j`
< Â+

j`
.

For ` = 1, it holds that Â−j1 = Â−i1 < Â+
i1 = Â+

j1 .

For some ` < m, assume that Â−
j`
< Â+

j`
. Since ej`(N, z, P̂

−) = ej`(N, z, P̂
+) = 0, it

holds by Lemma 4.1 that P̂−
j`

= Π̂j`Â
−
j`

and P̂+
j`

= Π̂j`Â
+
j`
. Then we have that

Â−
j`+1 = zj`+1 +

∑
i∈N

P̂−
ij`+1 < zj`+1 +

∑
i∈N

P̂+
ij`+1 = Â+

j`+1 . (4.9)

Now for the solvent agent jm, using the inequality in (4.9) and P̂jm = L̂jm as shown in

Lemma 4.1, we get

ejm(N, z, P̂−) = A−jm −
∑
i∈N

L̂jmi < A+
jm −

∑
i∈N

L̂jmi = ejm(P̂+), (4.10)
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contradicting the statement of Lemma 4.1. Consequently, for every i1 ∈ O it holds that

Â−i1 = Â+
i1 . 2

The following proposition states the main result of this section. For every F ∈ F ,
the payment matrix bpnp(F ) resulting from the pairwise netting proportional rule can be

characterized as the unique solution of the system of equations and inequalities (4.3).

Proposition 4.4. Let F = (N, z, L) ∈ F be a financial network. The system of equations

and inequalities (4.3) has bpnp(F )− L as its unique solution.

Proof. Let O = {O1, . . . , OR} be the partition of strongly connected components of

agents determined by L, where (Or, Or′) ∈ D implies r < r′. First, we show that, for every

i ∈ O1, Â
−
i = Â+

i . We distinguish two cases.

Case 1. O1 is a singleton.

Let i ∈ N be such that O1 = {i}. It clearly holds that Â−i = Â+
i = zi.

Case 2. O1 is a cycle.

Subcase 2a.
∑

i∈O1
ei(N, z, P̂

+) > 0.

By Lemma 4.3 we have that, for every i ∈ O1, Â
−
i = Â+

i .

Subcase 2b.
∑

i∈O1
ei(N, z, P̂

+) = 0.

Since, for every i ∈ O1, zi > 0, there is i′ ∈ O1 such that Â+
i′ > 0 and there is j /∈ O1

such that P̂+
i′j > 0.

Suppose that Â−i′ < Â+
i′ . Then, using that at P̂+ equity is zero for all agents, it follows

that P̂−i′j < P̂+
i′j, and we have that∑

i∈O1

ei(N, z, P̂
−) =

∑
i∈O1

(zi−
∑

k∈N\O1

P̂−ik ) >
∑
i∈O1

(zi−
∑

k∈N\O1

P̂+
ik ) =

∑
i∈O1

ei(N, z, P̂
+), (4.11)

contradicting Lemma 4.1. Consequently, we have that Â−i′ = Â+
i′ , so by Lemma 4.2, for

every i ∈ O1, Â
−
i = Â+

i .

Now we continue by induction. Let us assume that for some q′ < R, for every q ≤ q′,

for every i ∈ Oq, we have that Â−i = Â+
i . We show that for every i ∈ Oq′+1, Â

−
i = Â+

i .

We distinguish two cases.

Case 1. Oq′+1 is a singleton.

Let j ∈ N be such that Oq′+1 = {j}. We have that

Â−j = zj +

q′∑
q=1

∑
i∈Oq

P̂−ij = zj +

q′∑
q=1

∑
i∈Oq

P̂+
ij = Â+

j . (4.12)

Case 2. Oq′+1 is a cycle.

Subcase 2a.
∑

i∈Oq′+1
ei(N, z, P̂

+) > 0.
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By Lemma 4.3 we have that, for every i ∈ Oq′+1, Â
−
i = Â+

i .

Subcase 2b.
∑

i∈Oq′+1
ei(N, z, P̂

+) = 0.

Since for the total asset value in Oq′+1 we have that

∑
i∈Oq′+1

q′∑
q=1

∑
j∈Oq

P̂+
ji +

∑
i∈Oq′+1

zi > 0,

there is i′ ∈ Oq′+1 such that Â+
i′ > 0 and j /∈ Oq′+1 such that P̂+

i′j > 0.

Suppose that Â−i′ < Â+
i′ . By Lemma 4.1, P̂−i = Π̂iÂ

−
i and P̂+

i = Π̂iÂ
+
i , so it follows that

P̂−i′j < P̂+
i′j. We have that∑
i∈Oq′+1

ei(P̂
−) =

∑
i∈Oq′+1

(zi +
∑q′

q=1

∑
j∈Oq

P̂−ji )−
∑

i∈Oq′+1

∑
k∈N\Oq′+1

P̂−ik

>
∑

i∈Oq′+1
(zi +

∑q′

q=1

∑
j∈Oq

P̂+
ji )−

∑
i∈Oq′+1

∑
k∈N\Oq′+1

P̂+
ik

=
∑

i∈Oq′+1
ei(P̂

+),

contradicting Lemma 4.1. Consequently, we have that Â−i′ = Â+
i′ and, by Lemma 4.2, for

every i ∈ Oq′+1, Â
−
i = Â+

i . 2

5 The Axiomatization of the Pairwise Netting Pro-

portional Rule

This section contains the main result of the paper, stated as Theorem 5.2. The pairwise

netting proportional rule satisfies the two substantive axioms of net impartiality and in-

variance to mitosis, as well as the basic axioms of claims boundedness, limited liability,

priority of creditors, and continuity, and it is the only bankruptcy rule to do so.

The first step towards the axiomatization of the pairwise netting proportional rule is

provided by the following lemma, where one net liability of an agent is a positive rational

multiple of another net liability, and net impartiality and invariance to mitosis imply that

payments, when corrected for the common part of mutual liabilities, are in accordance with

the same positive multiple.

Lemma 5.1. Let F = (N, z, L) ∈ F be a financial network and let i, j, k ∈ N and q, r ∈ N
be such that L̂ij = (q/r)L̂ik. Let b be a bankruptcy rule satisfying net impartiality and

invariance to mitosis. Then we have bij(F )− Lij = (q/r)(bik(F )− Lik).

Proof. We first consider the case r = 1. Let F ′ = (N ′, z′, L′) ∈ F be the financial

network where agent j is split into q identical agents j and `1, . . . , `q−1 ∈ N \ N, more
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precisely

N ′ = N ∪ {`1, . . . , `q−1},
z′j = z′`1 = · · · = z′`q−1

= zj/q,

z′h = zh, h ∈ N \ {j},
L′jh = L′`1h = · · · = L′`q−1h

= Ljh/q, h ∈ N \ {j},
L′hj = L′h`1 = · · · = L′h`q−1

= Lhj/q, h ∈ N \ {j},
L′hh′ = 0, h, h′ ∈ {j, `1, . . . , `q−1},
L′hh′ = Lhh′ , h, h′ ∈ N \ {j}.

(5.13)

Then, for the common part of the mutual liabilities, we have that

Lij = L′ij + L′i`1 + · · ·+ L′i`q−1
, (5.14)

since for h ∈ {j, `1, . . . , `q−1} it holds that

L′ih = min{L′ih, L′hi} = min{Lij

q
,
Lji

q
} = 1

q
min{Lij, Lji} = 1

q
Lij, (5.15)

where the second equality follows from lines 4 and 5 in (5.13).

By invariance to mitosis, we have that

bij(F ) = bij(F
′) + bi`1(F

′) + · · ·+ bi`q−1(F
′),

which, together with (5.14), implies that

bij(F )− Lij = bij(F
′)− L′ij + bi`1(F

′)− L′i`1 + · · ·+ bi`q−1(F
′)− L′i`q−1

. (5.16)

For h ∈ {j, `1, . . . , `q−1}, we have that

L̂′ih = L̂′ik, (5.17)

since

L̂′ih = L′ih − L′ih = 1
q
Lij − 1

q
Lij = 1

q
L̂ij = L̂ik = L̂′ik,

where the second equality follows from (5.15), the fourth equality by the assumption of

the lemma, and the last equality by the last line of (5.13). Now net impartiality together

with (5.17) implies that bih(F ′)− L′ih = bik(F ′)− L′ik, so (5.16) becomes

bij(F )− Lij = q(bik(F ′)− L′ik) = q(bik(F )− Lik),

where the second equality follows by invariance to mitosis and the last line of (5.13).
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We next consider the general case. Without loss of generality, we assume q < r. Let

F ′ = (N ′, z′, L′) ∈ F be the financial network where agent k is split into r identical agents

k and `1, . . . , `r−1 ∈ N \N, more precisely

N ′ = N ∪ {`1, . . . , `r−1},
z′k = z′`1 = · · · = z′`r−1

= zk/r,

z′h = zh, h ∈ N \ {k},
L′kh = L′`1h = · · · = L′`r−1h

= Lkh/r, h ∈ N \ {k},
L′hk = L′h`1 = · · · = L′h`r−1

= Lhk/r, h ∈ N \ {k},
L′hh′ = 0, h, h′ ∈ {k, `1, . . . , `r−1},
L′hh′ = Lhh′ , h, h′ ∈ N \ {k}.

(5.18)

By invariance to mitosis, we have that

bik(F ) = bik(F ′) + bi`1(F
′) + · · ·+ bi`r−1(F

′). (5.19)

Since Lik = L′ik + L′i`1 + · · ·+ L′i`r−1
, (5.19) becomes

bik(F )− Lik = bik(F ′)− L′ik + bi`1(F
′)− L′i`1 + · · ·+ bi`r−1(F

′)− L′i`r−1

= r(bik(F ′)− L′ik)

= r
q
(bij(F

′)− L′ij)
= r

q
(bij(F )− Lij),

(5.20)

where the second equality of (5.20) follows by net impartiality, the third equality by the

first step in the proof since L′ij = qL′ik, and the fourth equality by invariance to mitosis.

2

Our main theorem is the following.

Theorem 5.2. The pairwise netting proportional rule bpnp is the only bankruptcy rule

satisfying the axioms of net impartiality, invariance to mitosis, claims boundedness, limited

liability, priority of creditors, and continuity.

Proof.

(⇒) We show that bpnp satisfies net impartiality. Let F = (N, z, L) ∈ F , let i, j, k ∈ N
be such that Lij − Lij = Lik − Lik, and let P̂ = bp(N, z, L̂). It holds that

bpnpij (F )− Lij = Lij + bpij(N, z, L̂)− Lij

= Π̂ij(zi +
∑

h∈N P̂hi, L̂ij)

= Π̂ik(zi +
∑

h∈N P̂hi, L̂ik)

= Lik + bpik(N, z, L̂)− Lik

= bpnpik (F )− Lik.
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Csóka and Herings (2021) showed that bpnp satisfies invariance to mitosis, claims bound-

edness, limited liability, priority of creditors, and continuity. For the sake of completeness,

these proofs are replicated in Appendix A.

(⇐)

Let F = (N, z, L) ∈ F be a financial network and let b be a bankruptcy rule satisfying

net impartiality, invariance to mitosis, claims boundedness, limited liability, priority of

creditors, and continuity. We show that b(F )− L is a solution to the system of equations

and inequalities (4.3). Since (4.3) has bpnp(F )−L as its unique solution by Proposition 4.4,

it follows that b = bpnp.

Since b(F ) ≥ 0, it follows that b(F ) − L ≥ −L, so the inequalities in (4.3) are all

satisfied, and we can restrict attention to the equalities in (4.3).

We first assume all the liabilities to be rational numbers.

We consider two main cases.

Case 1: i, j ∈ N, L̂ij = 0.

If j = i, then we have that Lii = 0 = bii(F ), where the second equality follows by claims

boundedness.

If j 6= i, then L̂ij = L̂ii = 0, so by net impartiality we have that bij(F )−Lij = bii(F )−Lii =

0, where the last equality follows from the case j = i.

Case 2: i, j ∈ N, L̂ij > 0.

Case 2a: zi +
∑

k∈N bki(F ) ≥
∑

k∈N Lik.

It follows that

zi +
∑

k∈N(bki(F )− Lki) = zi +
∑

k∈N bki(F )−
∑

k∈N Lki

≥
∑

k∈N Lik −
∑

k∈N Lki

=
∑

k∈N Lik −
∑

k∈N Lik

=
∑

k∈N L̂ik,

so Π̂ij(zi +
∑

k∈N(bki(F )− Lki)) ≥ L̂ij.

We therefore have to show that bij(F ) − Lij = L̂ij. Suppose, on the contrary, that

bij(F )− Lij 6= L̂ij. Then, by claims boundedness, we have that

bij(F )− Lij < L̂ij. (5.21)

By priority of creditors, the assumption of Case 2a, claims boundedness, and (5.21) we get

that

0 = ei(N, z, b(F )) = ai(N, z, b(F ))−
∑

k∈Nbik(F ) >
∑

k∈NLik −
∑

k∈NLik = 0, (5.22)

a contradiction. Consequently, it holds that bij(F )− Lij = L̂ij.
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Case 2b: zi +
∑

k∈N bki(F ) <
∑

k∈N Lik.

It follows that

zi +
∑

k∈N(bki(F )− Lki) = zi +
∑

k∈N bki(F )−
∑

k∈N Lki

<
∑

k∈N Lik −
∑

k∈N Lki

=
∑

k∈N Lik −
∑

k∈N Lik

=
∑

k∈N L̂ik,

so Π̂ij(zi +
∑

k∈N(bki(F )− Lki)) < L̂ij.

We therefore have to show that bij(F )− Lij = Π̂ij(zi +
∑

k∈N(bki(F )− Lki)).

Since the liabilities are rational numbers, the net liabilities are all rational multiples of

one another. We argue that we can use Lemma 5.1 to conclude that there exists a real

number ri ≥ 0 such that

bik(F )− Lik = riL̂ik, k ∈ N. (5.23)

By the assumption of Case 2, there is a k′ ∈ N such that L̂ik′ > 0. Let us define

ri =
bik′(F )− Lik′

L̂ik′
. (5.24)

If k ∈ N is such that L̂ik = 0, then (5.23) follows from Case 1. Thus let k ∈ N be such

that L̂ik > 0. By Lemma 5.1, we get that

bik(F )− Lik =
L̂ik

L̂ik′
(bik′(F )− Lik′) = riL̂ik,

so equation (5.23) is satisfied.

For b(F )− L to be a solution to the system of equations (4.3), it remains to be shown

that

ri =
zi +

∑
k∈N(bki(F )− Lki)∑

k∈N L̂ik

. (5.25)

By the assumption of Case 2b and limited liability, there is an agent k ∈ N such that

bik(F ) < Lik, so priority of creditors gives∑
k∈N

(bik(F )− Lik) = zi +
∑
k∈N

(bki(F )− Lki). (5.26)

By (5.23) and (5.26), we have that∑
k∈N

riL̂ik = zi +
∑
k∈N

(bki(F )− Lki), (5.27)

implying (5.25).
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We have shown that b = bpnp when all liabilities in F are rational numbers.

We now consider the case where the liabilities in F are real-valued. Let (F n)n∈N be a

sequence of financial networks where all liabilities are rational numbers, converging to F .

We have that

b(F ) = lim
n→∞

b(F n) = lim
n→∞

bpnp(F n) = bpnp(F ),

where the first equality follows from the axiom of continuity, the second follows since the

liabilities in F n are all rational numbers, and the third since bpnp satisfies continuity. 2

6 Independence of the Axioms

In this section, we show the independence of the axioms of net impartiality, invariance

to mitosis, claims boundedness, limited liability, priority of creditors, and continuity by

providing six examples of bankruptcy rules satisfying all the axioms except one.

We have seen that net impartiality is not satisfied by the proportional rule bp in Ex-

ample 2.3. It has been shown in Csóka and Herings (2021) that bp satisfies the other

axioms.

To present a bankruptcy rule that satisfies all axioms except invariance to mitosis,

it is convenient to consider division rules for claims problems first. A claims problem

C = (N,E, c) consists of a set of agents N ∈ N , a strictly positive estate E > 0, and a

non-negative claims vector c ∈ RN
+ . The set of all claims problems is denoted by C. We

define the set of vectors V = ∪N∈NRN
+ . A division rule is a function d : C → V such that for

every (N,E, c) ∈ C it holds that d(N,E, c) ∈ RN
+ and

∑
i∈N di(N,E, c) = min{E,

∑
i∈N ci}.

Moreover, a division rule is required to be monotonic. If (N,E, c), (N,E ′, c) ∈ C are such

that E ≤ E ′, then d(N,E, c) ≤ d(N,E ′, c). A division rule d specifies how a given estate E

should be allocated among a set of claimants and allocations are required to be increasing

in the estate.

We can base a bankruptcy rule on division rules by treating the asset value of an agent

as the estate and the vector of liabilities as the claims vector. More precisely, a division

rule d : C → V induces the bankruptcy rule b : F →M by defining

b(N, z, L) = max{P ∈M(N) | for every i, j ∈ N, Pij = dj(ai(P ), Li)}, (N, z, L) ∈ F .
(6.1)

The proportional division rule dp is obtained by defining, for every (N,E, c) ∈ C, for every
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i ∈ N,

dpi (N,E, c) =

{
0, if ci = 0,

min{ ci∑
j∈N cj

E, ci}, otherwise.

The system of equations in (6.1), for every i, j ∈ N, Pij = dpj (ai(P ), Li) can be shown to

have a unique solution which is equal to the solution of (2.1). The proportional division

rule therefore induces the bankruptcy rule bp. For other division rules d, the system of

equations in (6.1), for every i, j ∈ N, Pij = dj(ai(P ), Li) can have multiple solutions, but

the set of solutions can be shown to have a lattice structure, and the maximum operator

in (6.1) therefore singles out a unique payment matrix. For details, we refer to Csóka and

Herings (2023).

The constrained equal losses division rule imposes that all claimants face the same loss

up to the value of their claim. For (N,E, c) ∈ C, if E >
∑

i∈N ci, then define µ = 0.

Otherwise, define µ ∈ [0,maxi∈N ci] as the unique solution to∑
i∈N

max{ci − µ, 0} = E.

The constrained equal losses division rule dcel : C → V is obtained by defining, for every

(N,E, c) ∈ C, for every i ∈ N,

dceli (N,E, c) = ci − µ.

The system of equations in (6.1), for every i, j ∈ N, Pij = dcelj (ai(P ), Li) can be shown to

have a unique solution, which generates the constrained equal losses bankruptcy rule bcel.

The pairwise netting constrained equal losses bankruptcy rule is defined as follows.

Definition 6.1. The pairwise netting constrained equal losses rule bpncel : F → M is

defined by

bpncel(N, z, L) = L+ bcel(N, z, L̂), (N, z, L) ∈ F .

The following example shows that the pairwise netting constrained equal losses rule

violates invariance to mitosis.

Example 6.2 (The pairwise netting constrained equal losses rule). Consider a financial

network (N, z, L) ∈ F with three agents N = {1, 2, 3}. Table 3 presents the initial en-

dowments z, the liabilities L, the net liabilities L̂, the payment matrix P̂ = bcel(N, z, L̂)

resulting from the constrained equal losses rule using the net liabilities, the payment matrix

P = bpncel(N, z, L) resulting from the pairwise netting constrained equal losses rule, asset

values a(N, z, P ), and equities e(N, z, P ). Note that agent 1 applies a haircut of 3 units to

all its liabilities, i.e., µ1 = 3.
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z L L̂ P̂ P a(N, z, P ) e(N, z, P )

18 0 8 18 0 8 16 0 5 13 0 5 15 20 0

2 0 0 0 0 0 0 0 0 0 0 0 0 7 7

2 2 0 0 0 0 0 0 0 0 2 0 0 17 15

Table 3: The initial endowments z, the liabilities L, the net liabilities L̂, the payment

matrix P̂ = bcel(N, z, L̂), the payment matrix P = bpncel(N, z, L), asset values a(N, z, P ),

and equities e(N, z, P ).

Now consider the financial network F ′ = (N ′, z′, L′) = (N ∪ {4}, z′, L′) obtained by

splitting agent 3 into identical agents 3 and 4. Table 4 presents the resulting initial endow-

ments z′, the liabilities L′, the net liabilities L̂′, the payment matrix P̂ ′ = bcel(N ′, z′, L̂′)

resulting from the constrained equal losses rule using the net liabilities, the payment ma-

trix P ′ = bpncel(N ′, z′, L′) resulting from the pairwise netting constrained equal losses rule,

asset values a(N ′, z′, P ′), and equities e(N ′, z′, P ′).

z′ L′ L̂′ P̂ ′ P ′ a(N ′, z′, P ′) e(N ′, z′, P ′)

18 0 8 9 9 0 8 8 8 0 6 6 6 0 6 7 7 20 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8 7

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8 7

Table 4: The initial endowments z′, the liabilities L′, the net liabilities L̂′, the pay-

ment matrix P̂ ′ = bcel(N ′, z′, L̂′), the payment matrix P ′ = bpncel(N ′, z′, L′), asset values

a(N ′, z′, P ′), and equities e(N ′, z′, P ′).

Then P13 = 15 > 14 = P ′13 + P ′14, so bpncel does not satisfy invariance to mitosis. 4

It has been shown in Csóka and Herings (2023) that bcel is continuous. The continuity

of bpncel then follows. It is easy to verify that bcel satisfies the axioms of impartiality,

claims boundedness, limited liability, and priority of creditors. It then follows that bpncel

satisfies the axioms of net impartiality, claims boundedness, limited liability, and priority

of creditors.

Definition 6.3. The pairwise netting proportional with double liabilities rule bpnpd : F →
M is defined by

bpnpd(N, z, L) = L+ bp(N, z, 2L̂), (N, z, L) ∈ F .

The pairwise netting proportional with double liabilities rule bpnpd performs one round

of pairwise netting followed by an application of the proportional rule, but pretends that
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the net liabilities are twice the actual net liabilities. It is obvious that bpnpd does not satisfy

the axiom of claims boundedness.

Let F = (N, z, L) ∈ F and i, j, k ∈ N be such that Lij − Lij = Lik − Lik. Since

2L̂ij = 2Lij − 2Lij = 2Lik − 2Lik = 2L̂ik and bp satisfies impartiality, we have that

bpnpdij (N, z, L)− Lij = Lij + bpij(N, z, 2L̂)− Lij

= Lij + bpik(N, z, 2L̂)− Lij

= Lik + bpik(N, z, 2L̂)− Lik

= bpnpdik (N, z, L)− Lik,

so bpnpd satisfies net impartiality.

Let F = (N, z, L) ∈ F and i ∈ N be such that bpnpdi (F ) < Li, so Li + bpi (N, z, 2L̂) <

Li or, equivalently, bpi (N, z, 2L̂) < L̂i. This implies bpi (N, z, 2L̂) < 2L̂i. Since bp satisfies

priority of creditors, we have that ei(N, z, b
p(N, z, 2L̂)) = 0. It follows that

ei(N, z, b
pnpd(F )) = ei(N, z, L+ bp(N, z, 2L̂))

= zi +
∑

j∈N(Lji + bpji(N, z, 2L̂)− Lij − b
p
ij(N, z, 2L̂))

= zi +
∑

j∈N(bpji(N, z, 2L̂)− bpij(N, z, 2L̂))

= ei(N, z, b
p(N, z, 2L̂)) = 0,

so bpnpd satisfies priority of creditors.

We have already argued that the proportional rule satisfies the axioms of invariance

to mitosis, limited liability, and continuity. It then follows easily that bpnpd satisfies these

axioms as well.

Definition 6.4. The all liabilities are paid rule ball : F →M is defined by

ball(N, z, L) = L, (N, z, L) ∈ F .

The payment matrix resulting from ball equals the liability matrix. It is obvious that

ball does not satisfy the axiom of limited liability. It is easy to show that ball satisfies the

axioms of net impartiality, invariance to mitosis, claims boundedness, priority of creditors,

and continuity.

Definition 6.5. The common liabilities are paid rule bcl : F →M is defined by

bcl(N, z, L) = L, (N, z, L) ∈ F .

The payment matrix of the common liabilities are paid rule bcl equals the matrix L. It

is obvious that bcl does not satisfy priority of creditors.

Let F = (N, z, L) ∈ F and i, j, k ∈ N be such that Lij −Lij = Lik −Lik. We have that

bclij(N, z, L)− Lij = Lij − Lij = Lik − Lik = bclik(N, z, L)− Lik,

27



so bcl satisfies net impartiality.

It is easy to show that bcl satisfies the axioms of invariance to mitosis, claims bound-

edness, limited liability, and continuity.

We finally define the proportional with priority to irrational claims division rule dpi :

C → V . Let (N,E, c) ∈ C. We denote the players with rational claims by N ra = {i ∈ N |
ci ∈ Q} and those with irrational claims by N ir = {i ∈ N | ci ∈ R \ Q}. We divide the

players in two priority classes, N ra and N ir, where players in N ir have priority over those

in N ra, and apply the proportional rule within each priority class. More precisely, we have

that

dpi(N,E, c) =


0, if ci = 0,

min{ ci∑
j∈N ir cj

E, ci}, if i ∈ N ir and ci > 0,

min{ ci∑
k∈Nra ck

max{E −
∑

j∈N ir cj, 0}, ci}, if i ∈ N ra and ci > 0.

The system of equations in (6.1), for every i, j ∈ N, Pij = dpij (ai(P ), Li) has a set of

solutions with a lattice structure. Taking the maximal solution leads to the proportional

with priority to irrational claims bankruptcy rule bpi.

Definition 6.6. The pairwise netting proportional with priority to irrational claims rule

bpnpi : F →M is defined by

bpnpi(N, z, L) = L+ bpi(N, z, L̂), (N, z, L) ∈ F .

The pairwise netting proportional with priority to irrational claims rule does not satisfy

continuity. For instance, let (N, z, L) ∈ F be such that N = {1, 2, 3}, 0 < L12 ∈ Q, and

0 < L13 ∈ R \ Q. For n ∈ N, let (F n)n∈N = (Nn, zn, Ln)n∈N be a sequence of financial

networks of F such that, for every n ∈ N, Nn = N, zn = z, Ln
2 = L2, L

n
3 = L3, L

n
1 has

only entries in Q, and Ln
1 → L1. At the limit L, agent 1 gives priority to creditor 3, but

at every Ln both creditors 2 and 3 are given equal priority. It now follows easily that bpnpi

violates continuity. As a concrete numerical example, take z1 = z2 = z3 = 1, L12 = 1,

L13 =
√

2, L2 = 0, and L3 = 0. Let P n = bpnpi(N, z, Ln) and P = bpnpi(N, z, L). It holds

that limn→∞ P
n
12 = 1/(1 +

√
2), whereas P12 = 0.

Since bpi satisfies impartiality, it follows that bpnpi satisfies net impartiality. Since

dividing a rational number by a natural number results in a rational number and dividing

an irrational number by a natural number leads to an irrational number, the splitting

of an agent in multiple identical agents results in multiple identical agents in the same

priority class as the original agent. Invariance to mitosis of bpnpi now follows from similar

arguments as invariance to mitosis of bpnp. Also the proof that bpnpi satisfies the axioms of

claims boundedness, limited liability, and priority to creditors follows along the same lines

as the proof that bpnp satisfies those axioms.
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Table 5 summarizes the bankruptcy rules and the axioms that they satisfy. The symbol
√

means that the bankruptcy rule satisfies the given axiom of the column and ¬ that it

does not.

N I B L P C

Pairwise netting proportional
√ √ √ √ √ √

Proportional ¬
√ √ √ √ √

Pairwise netting constrained equal losses
√
¬
√ √ √ √

Pairwise netting proportional with double liabilities
√ √

¬
√ √ √

All liabilities are paid
√ √ √

¬
√ √

Common liabilities are paid
√ √ √ √

¬
√

Pairwise netting proportional with priority to irrational claims
√ √ √ √ √

¬

Table 5: Bankruptcy rules and the axioms of net impartiality (N), invariance to mitosis

(I), claims boundedness (B), limited liability (L), priority of creditors (P), and continuity

(C).

7 Conclusion

Financial networks consider situations where agents are linked to each other via mutual

liabilities. A commonly applied rule to clear financial networks in case of bankruptcy is

the proportional rule. This rule has rather unappealing features. In particular, it may

happen that an agent with a strictly positive endowment and strictly positive net claims

on any other agent, still becomes insolvent when the proportional rule is applied. Such an

undesirable feature is avoided when clearing starts out with one round of pairwise netting

of mutual liabilities and the proportional rule is applied next to the net liabilities. The

resulting bankruptcy rule is called the pairwise netting proportional rule.

The pairwise netting proportional rule satisfies a number of attractive axioms. Net

impartiality requires that two creditors with the same net claims on a third agent, receive

the same payment from that agent. Invariance to mitosis imposes that splitting an agent

into a number of identical agents, where splitting affects initial endowments, claims, and

liabilities, does not affect the payments between any two agents not involved in the split

and does not affect the sum of payments received from and made to the agents involved

in the split by any other agent. Three more axioms reflect standard accounting principles.

Claims boundedness expresses that no agent receives more than its claim on another agent.

Limited liability states that agents end up with non-negative equity. Priority to creditors

means that default is only allowed when no equity is left. Finally, there is the axiom
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of continuity, which states the desirable property that small perturbations to a financial

network result to small changes in payments.

This paper shows that the pairwise netting proportional rule satisfies net impartial-

ity, invariance to mitosis, claims boundedness, limited liability, priority to creditors, and

continuity and is in fact the only bankruptcy rule to do so.

A Proof that bpnp satisfies invariance to mitosis, claims

boundedness, limited liability, priority of creditors,

and continuity.

To show that bpnp satisfies invariance to mitosis, we define the bankruptcy rules b : F →M
and bp̂ : F → M by setting, for F = (N, z, L) ∈ F , b(F ) = L and bp̂(F ) = bp(N, z, L̂).

It holds that bpnp(F ) = b(F ) + bp̂(F ). We show that both b and bp̂ satisfy invariance to

mitosis, from which it follows that bpnp satisfies invariance to mitosis.

Let F = (N, z, L) ∈ F and F ′ = (N ′, z′, L′) ∈ F be financial networks as defined in

Axiom 3.3, so endowments and liabilities of agent j ∈ N are divided equally over the agents

in {j} ∪K. For every h, i ∈ N \ {j} it holds that∑
k∈{j}∪K bki(F

′) =
∑

k∈{j}∪K L
′
ki =

∑
k∈{j}∪K

1
|K|+1

Lji = Lji = bji(F ),∑
k∈{j}∪K bik(F ′) =

∑
k∈{j}∪K L

′
ik =

∑
k∈{j}∪K

1
|K|+1

Lij = Lij = bij(F ),

bhi(F
′) = L′hi = Lhi = bhi(F ),

so b satisfies invariance to mitosis.

As also the net liabilities L̂ are divided equally over the agents in {j}∪K and bp satisfies

invariance to mitosis, it follows that bp̂ satisfies invariance to mitosis.

Claims boundedness and continuity is obviously satisfied by bpnp.

To check that bpnp satisfies limited liability, consider a financial network F = (N, z, L) ∈
F and any agent i ∈ N . Then

ei(N, z, b
pnp(F )) = zi +

∑
j∈N b

pnp
ji (F )−

∑
j∈N b

pnp
ij (F )

= zi +
∑

j∈N Lji +
∑

j∈N b
p
ji(N, z, L̂)

−
∑

j∈N Lij −
∑

j∈N b
p
ij(N, z, L̂)

= ei(N, z, b
p(N, z, L̂)) ≥ 0,

(A.1)

since Lij = Lji for all i, j ∈ N , and the proportional rule bp satisfies limited liability. Thus

bpnp satisfies limited liability.

To verify that bpnp satisfies priority of creditors, consider a financial network F =

(N, z, L) ∈ F and any agent i ∈ N such that bpnpi (F ) < Li, implying that

bpi (N, z, L̂) < L̂i. (A.2)
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Since bp satisfies priority of creditors, (A.2) implies that

ei(N, z, b
p(N, z, L̂)) = 0.

Using the same argument as in (A.1), it follows that ei(N, z, b
pnp(F )) = 0, thus bpnp satisfies

priority of creditors. 2
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