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ABSTRACT
Oftentimes the characteristics of real-world engineering optimiza-
tion problems are not well understood. In this paper, we introduce
an approach for characterizing highly nonlinear and Finite Ele-
ment (FE) simulation-based engineering optimization problems,
focusing on ten representative problem instances from automo-
tive crashworthiness optimization. By computing characteristic
Exploratory Landscape Analysis (ELA) features, we show that these
ten crashworthiness problem instances exhibit landscape features
different from classical optimization benchmark test suites, such
as the widely-used Black-Box Optimization Benchmarking (BBOB)
problem set. Using clustering approaches, we demonstrate that
these ten problem instances are clearly distinct from the BBOB
test functions. Further analysis of the crashworthiness problem
instances reveal that, as far as ELA concerns, they are most similar
to a class of artificially generated functions. We identify such artifi-
cially generated functions and propose to use them as scalable and
fast-to-evaluate representatives of the real-world problems. Such
artificially generated functions could be used for the automated
design of an optimization algorithm for specific real-world problem
classes.

CCS CONCEPTS
• Computing methodologies→ Uncertainty quantification;
Continuous space search.

KEYWORDS
automotive crashworthiness, black-box optimization, exploratory
landscape analysis, artificially generated functions, hierarchical
clustering
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1 INTRODUCTION
When dealing with black-box optimization problems, identifying
and selecting the most time- and resource-efficient algorithm for a
specific problem is a key challenge. This task is also known as the
algorithm selection problem (ASP) [42]. In Evolutionary Computa-
tion, recent works focus on landscape-aware automated algorithm
selection based onMachine Learning approaches [1, 7, 17, 18, 24, 38].
In these approaches, the so-called landscape features, which quan-
tify different landscape characteristics of a given problem instance,
are used to predict the performance of an optimization algorithm
on the problem instance. In other words, the performance of an op-
timization algorithm on an unseen problem instance can be roughly
estimated, once the problem landscape characteristics have been
identified. This is beneficial, as landscape analysis can provide ad-
ditional insights for explaining the effectiveness of an algorithm
across different problem instances [44]. Complete reviews of this
topic can be found in [21, 31, 35].

To the best of our knowledge, previous works on ASP were
mainly based on academic benchmark functions, such as the Black-
Box Optimization Benchmarking (BBOB) test set in [1, 17, 21]. On
the other hand, little work has been attempted to investigate algo-
rithm selection in the field of real-world expensive black-box opti-
mization. An attractive application example is the crashworthiness
optimization in automotive industry. For instance, the structural
design of a car must provide sufficient protection to passengers in
the event of a crash, while fulfilling other requirements at the same
time, such as durability and weight [8]. As car design is getting
ever more sophisticated, crashworthiness optimization is notori-
ously challenging and tedious. Furthermore, a Finite Element (FE)
simulation of a highly nonlinear crash is usually computationally
expensive, which severely limits the function evaluation budget af-
fordable for optimization. While most work in the last years focused
on developing different surrogate-based optimization methods for
automotive crashworthiness problems [9–12, 19, 27–29, 43, 47], a
proper understanding of the problem characteristics is still lacking.

Our long-term vision is to develop an automated optimization
pipeline for automotive crashworthiness optimization problems, in-
cluding algorithm selection and configuration. We aim to construct
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a generic pipeline that can be easily transferred and applied on
other highly nonlinear expensive black-box optimization problems.
To achieve that, we argue that a proper understanding of the prob-
lem characteristics of automotive crashworthiness optimization
problem instances is essential in the first step. In this paper, we pro-
pose an approach for characterizing automotive crashworthiness
optimization problem instances based on landscape characteristics
with Exploratory Landscape Analysis (ELA). In this context, we are
addressing the following research questions.

(1) What are the typical landscape characteristics of automotive
crashworthiness optimization problems?

(2) Is there any similarity in landscape characteristics between
crashworthiness optimization problems and academic bench-
mark functions, e.g., the BBOB functions?

(3) To which extent can the BBOB functions be used as represen-
tatives of the crashworthiness optimization problem class in
terms of similarity in landscape characteristics? If none of
the BBOB functions turn out to be sufficiently representing
them, are there other types of test function, which could
serve as a good approximation?

We argue that extensive insights into the objective function char-
acteristics is helpful for developing an efficient black-box optimizer
that is tuned for a particular problem class, in our case, automotive
crashworthiness optimization. In this study, we focus on automotive
side crash as a representative of this problem class, where the bat-
tery cells installed in an electric car must be additionally protected
from crash impact. Furthermore, we consider only unconstrained
single-objective optimization problems to minimize the problem
complexity.

The remainder of this paper is structured as follow: Section 2
briefly introduces the concepts of ELA. This is followed by the
description of our approach in Section 3 and an overview on the
experimental setup in Section 4. Our experimental results are pre-
sented and discussed in Section 5. Lastly, conclusions and outlook
are provided in Section 6.

2 EXPLORATORY LANDSCAPE ANALYSIS
One way of characterizing the complexity of continuous optimiza-
tion problems is through the so-called high-level features defined
by experts, including multi-modality, global structure, separability,
variable scaling, search space homogeneity, basin size homogeneity,
global to local optima contrast and plateaus [33]. To facilitate an
automated workflow, six classes of low-level features were intro-
duced in ELA to numerically quantify the landscape characteristics
of an unknown optimization problem, consisting of 𝑦-distribution,
level set, meta-model, local search, curvature and convexity [32].
Each feature class contains a set of features, which can be cheaply
computed. For the feature computation, a data set of some sample
points X and the corresponding function values 𝑓 : X −→ R are
required as inputs, with an assumption that the search space is
continuous, i.e., X ⊆ R𝑑 , where 𝑑 represents the number of design
variables.

Apart from handling ASP tasks, ELA has been applied to un-
derstand the optimization landscape of neural architecture search
tasks [51], to classify the BBOB problems [41], to analyze the prob-
lem space of different benchmark problem sets [52], to investigate

whether the BBOB test function set can represent hyper-parameter
tuning problems [5] and to study multi-objective optimization prob-
lems [23]. As far as we are aware, no previous work is related to the
application of ELA on automotive crashworthiness optimization
problems.

3 METHODOLOGY
The general concept of our automated optimization pipeline is visu-
alized in Figure 1(a) and the workflow proposed for characterizing
problem instances based on ELA is presented in Figure 1(b). Within
the framework of this paper, we refer mainly to the latter (Figure
1(b)). We feed different problem instances into our pipeline as input
data, for which Design of Experiments (DoE) have been previously
set up with numerous FE simulation runs executed in parallel to
exploit the power of parallel computing. This so-called one-shot
optimization approach [2, 3] is the classical strategy in automotive
crashworthiness optimization. In one-shot optimization, optimiza-
tion (e.g., with surrogate-based methods) is carried out based on an
initial set of fixed sample points in a DoE, without evaluating new
sample points in the process.

To characterize an automotive crashworthiness optimization
problem instance, we design our pipeline based on two crucial
aspects, including computation of ELA features on the problem
instance and problem characterization based on the corresponding
ELA features. That is, the ELA features computed on the crashwor-
thiness problem instance will be compared with those computed on
some established academic benchmark functions, namely, the BBOB
functions. Subsequently, we can characterize the crashworthiness
problem instance by identifying the BBOB function(s) with simi-
lar ELA features. In our study, we consider the noise-free BBOB
problem set from the BBOB 2009 workshop [15] (e.g., available
in the analysis tool IOHprofiler [6] and the benchmarking plat-
form COCO [14]), consisting of altogether 24 real-parameter single-
objective benchmark functions of different complexity, such as
multi-modality, separability, global structure, etc. In fact, the BBOB
functions have been commonly taken as test suites in benchmark-
ing experiments for continuous optimization [13]. The four central
sections of the pipeline (codes are available at https://github.com/fx-
long/CEOELA) are described in detail in the following.

Data pre-processing. Firstly, the FE simulation input data are
pre-processed, where incomplete data with missing result (e.g.,
due to interrupted FE simulation runs) are filtered out. Next, the
design spaces of the problem instances are re-scaled to the domain
[−5, 5] with Equation 1, corresponding to the domain of the BBOB
functions, where the global optimum of BBOB functions is located
[15].

𝑥𝑛𝑒𝑤 =
𝑥𝑜𝑟𝑖𝑔 − 𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
· (𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛) + 𝑏𝑚𝑖𝑛 , (1)

where 𝑥𝑜𝑟𝑖𝑔 and 𝑥𝑛𝑒𝑤 are the design variables before and after
scaling, 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 are the original minimum and maximum
scale range, and 𝑏𝑚𝑖𝑛 and 𝑏𝑚𝑎𝑥 are the minimum and maximum
scale range after re-scaling. Re-scaling is necessary to facilitate
the comparison of ELA features between crashworthiness problem
instances and the BBOB functions. Moreover, since ELA features are
highly sensitive to sample size and sampling strategy [39, 40], the
identical sample points (and thus the identical dimensions) of the
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(a) Preliminary concept of our automated optimization pipeline for real-world highly nonlinear black-box optimization problems. The general idea is to capture the landscape
characteristics of a problem instance and use this information for selecting and configuring an optimal optimization algorithm. The approach that we propose in this paper for
characterizing problem instances based on landscape characteristics is labelled as Step 2 in the pipeline (outlined).
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(b) Detailed visualization of the workflow of Step 2 in Figure 1(a), consisting of four central sections as marked with boxes. Generally, we characterize a black-box optimization
problem instance by comparing its ELA features with those of benchmark functions, e.g., the BBOB functions.

Figure 1: Overview of (a) optimization pipeline and (b) approach proposed for characterizing engineering black-box optimization
problems.

automotive crashworthiness problem instances are used to compute
the ELA features of the BBOB functions for a fair comparison.

Computation of ELA features. For the ELA feature computation,
we integrate the R-package flacco [26] into our pipeline. Other
than the six classical ELA feature classes mentioned in Section 2,
additional complementary feature classes were introduced and in-
cluded in this package, such as dispersion, nearest better clustering
(NBC), principal component analysis (PCA), linear model, Infor-
mation Content of Fitness Sequences (ICoFiS), etc. [22, 25, 30, 34].
Among the more than 300 ELA features available, we only consider
ELA features that can be computed

• without knowing the mathematical expression of the objec-
tive function 𝑓 , and

• without the need to discretize the design spaces into blocks.

Moreover, we neglect features concerning the computational costs
of each feature class, as they do not provide useful information
on the problem landscape. In total 68 ELA features (from eight
feature classes) are separately computed on the crashworthiness
problem instances and the BBOB functions, as provided in Table 1.
In cases where a feature computation fails (e.g., when the sample
size is too small for computing the level set features), it will be
skipped. Consequently, less ELA features will be computed for such
a problem instance.

Processing of ELA features. Due to the fact that many of the ELA
features are redundant [40, 52], we consider only subset of all ELA
features computed for clustering. For this purpose, we carry out
feature selection in the following two steps, which can be easily
implemented in our automated pipeline.

(1) We first remove ELA features with zero-variance, that is,
ELA features with a constant value across all functions.

(2) Next, we remove highly correlated ELA features based on
Pearson’s correlation coefficient. In our study, we consider a
Pearson’s correlation coefficient greater than 0.95 as highly
correlated. For each highly correlated feature pair, the feature
that has a higher mean correlation with other features is
removed.

Lastly, the remaining ELA features are standardized (by removing
mean and scaling to unit variance) with the intent to improve the
distance-based clustering results.

Comparison of ELA features. To estimate the similarity between
automotive crashworthiness problem instances and the BBOB fuc-
ntions, we measure the differences in their ELA feature values. We
measure the pairwise distance between problems in terms of ELA
features and then cluster them into groups accordingly based on
the agglomerative hierarchical clustering approach [36]. With this
approach, problems are clustered together in a bottom up fashion,
starting with each problem as its own cluster and progressively
merging clusters together until one large cluster is left, consisting
of all problems. The Euclidean distance is chosen as the proximity
metric between problems, where problems with higher similar-
ity have a smaller Euclidean distance. Moreover, we consider the
Ward’smethod [20] as linkage criterion for the clustermerging strat-
egy, that is, by minimizing the within-cluster variance. Principally,
clusters are selected for merging based on the smallest possible
increase in the within-cluster sum of squared error (proportional
to Euclidean distance) after merging. By analyzing the clustering
results, the automotive crashworthiness problem instances can be
characterized based on their neighbouring BBOB functions within
the same cluster.

While the application of the distance-based hierarchical clus-
tering approach in high dimensional problems is limited, because
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Table 1: Brief descriptions of the eight ELA feature classes considered in this study (with the respective labels in flacco for
feature classes and ELA features) [25].

Feature class Description ELA feature

𝑦-distribution Distribution of function values. skewness
Feature class labelled as ela_distr.* kurtosis
3 features number_of_peaks

Level set Measure the performance of different classification mmce_lda_{10,25,50}
methods based on function value thresholds. mmce_qda_{10,25,50}
Feature class labelled as ela_level.* mmce_mda_{10,25,50}
18 features lda_qda_{10,25,50}

lda_mda_{10,25,50}
qda_mda_{10,25,50}

Meta-model Fitting quality of linear and quadratic models with and lin_simple.{adj_r2,intercept}
without interactions. lin_simple.coef.{min,max,max_by_min}
Feature class labelled as ela_meta.* lin_w_interact.adj_r2
9 features quad_simple.{adj_r2,cond}

quad_w_interact.adj_r2

Dispersion Comparison of dispersion between initial sample points and ratio_mean_{02,05,10,25}
subsets of points based on function value thresholds. ratio_median_{02,05,10,25}
Feature class labelled as disp.* diff_mean_{02,05,10,25}
16 features diff_median_{02,05,10,25}

NBC Comparison of distance between all sample points towards nn_nb.{sd_ratio,mean_ratio,cor}
nearest points and nearest points with better function value. dist_ratio.coeff_var
Feature class labelled as nbc.* nb._fitness.cor
5 features

PCA Information based on PCA on initial sample points. expl_var.{cov_x,cor_x,cov_init,cor_init}
Feature class labelled as pca.* expl_var_PC1.{cov_x,cor_x,cov_init,cor_init}
8 features

Linear model Measure the average coefficient vectors across multiple avg_length.{reg,norm}
linear models. length.mean
Feature class labelled as limo.* ratio.mean
4 features

ICoFiS Measure of smoothness, ruggedness and neutrality of the h.max
landscape through random walk. eps.{s,max,ratio}
Feature class labelled as ic.* m0
5 features

distances between clusters in high dimensional spaces become
relatively uniform and hence the notion of nearest neighbour is
meaningless [46], we argue that the approach is still applicable
for our middle-range dimensional problems (clustering based on a
maximum possible of 68 ELA features).

4 EXPERIMENTAL SETUP
In our study, we focus on crashworthiness optimization of a rocker
panel w.r.t. side crash against a pole, as shown in Figure 2. All the
FE simulation data that we analyze were generated during several
recent development projects by BMW, a German premium auto-
mobile manufacturer. The explicit FE simulations were solved with
the commercial code LS-DYNA [4]. As summarized in Table 2, four
rocker panels with similar design (D1-D4) and three different load

cases, where the side pole was positioned at different locations (P1-
P3) as shown in Figure 2(b), were investigated. The design variables
were the thicknesses of different components of the rocker panels.
In total, we consider ten representative problem instances, where
the DoE of each problem instance was generated with the sampling
method Modified Extensible Lattice Sequence (MELS) available in
the commercial tool HyperStudy [16]. Basically, MELS is a sequen-
tial lattice space-filling DoE approach developed based on Sobol’
sequences [45]. During the development projects, side crashes at
the pole positions P1 and P3 for the rocker panel design D1 were
considered by crash experts as non-critical and were therefore not
investigated.

1230

https://orcid.org/0000-0003-4550-5777
https://orcid.org/0000-0002-0013-7969
https://orcid.org/0000-0002-4025-8773
https://orcid.org/0000-0001-8302-0100
https://orcid.org/0000-0001-8760-1682
https://orcid.org/0000-0001-6768-1478


Learning the Characteristics of Engineering Optimization Problems GECCO ’22, July 9–13, 2022, Boston, MA, USA

Table 2: Summary of ten automotive crashworthiness opti-
mization problem instances, consisting of four rocker panel
designs and three side pole positions.

Problem Rocker panel Pole Design Sample
instance design position variables size

1 D1 P2 18 530

2 D2 P1 22 59

3 D2 P2 22 309

4 D2 P3 22 309

5 D3 P1 16 150

6 D3 P2 16 102

7 D3 P3 16 132

8 D4 P1 20 329

9 D4 P2 20 330

10 D4 P3 20 333

During these development projects, the quality of a particular
rocker panel design was evaluated by quantifying its structural
crashworthiness through the following four objectives.

(1) Maximum force (Fmax): Maximum impact force during side
crash.

(2) Intrusion (Intr): Magnitude of inward structural deformation
of the rocker panel into the battery cell compartment.

(3) Energy absorption (EA): The amount of kinetic energy ab-
sorbed during side crash.

(4) Rotation (Rot): Rotational deformation of rocker panel dur-
ing side crash. This metric is introduced by crash experts
internally to measure the average vertical deformation of FE
nodes between inner and outer side of rocker panel.

All four objectives were measured and quantified as scalar FE out-
puts. Nonetheless, depending on the purposes of each development
project, not all four objectives were always considered and there-
fore not all of them are available for our study. In our research, we
separately analyze each of the objectives available and end up with
a total of 30 (out of the maximum of 40 potentially available ones)
single-objective optimization problem instances.

In our experiments, we feed the data sets of the ten automotive
crashworthiness optimization problem instances into our pipeline
and independently compute the aforementioned 68 ELA features.
For each crashworthiness problem instance, we consider the mean
ELA feature values computed based on a bootstrapping strategy to
minimize the effects of random sampling in ELA, using a bootstrap
size of 80% of the initial sample size and 30 repetitions. For the
same reason, we consider the ELA feature values averaged across
the first 20 instances (the global optimum is randomly shifted by
rotating and translating the original problem [15]) for each of the
24 BBOB functions. Precisely, for all BBOB functions, we compute
the ELA features on the first 20 instances based on the full sample
points of each crashworthiness problem instance.

(a) Cross-section of the deformed FE model during a side crash. To protect
passengers and battery cells, the crash impact energy must be sufficiently
absorbed through plastic deformation of different components, such as rocker
panel.

(b) Depending on the investigation purposes, the side pole can be positioned at different
locations, that is, alongside the car body with slight offsets.

Figure 2: An example of FEmodel developed for investigating
automotive side crash against a pole.

5 RESULTS
In this paper, we focus on analyzing results of the crashworthiness
problem instance with design D4 and pole position P2 (in short
D4_P2) as reference, because it has middle-range dimensions and
sample size among all problem instances. Due to the limited space,
the remaining results not included in this paper are made available
in the repository https://zenodo.org/record/6424633.

5.1 BBOB functions
For the crashworthiness problem instance D4_P2, a final set of
35 ELA features are used for the hierarchical clustering, as visu-
alized in Figure 3(a). In general, we observe that the crashwor-
thiness objectives are separated from the BBOB functions, espe-
cially the intrusion objective. The fact that the maximum force and
rotation objective are clustered in the same group as the BBOB
functions f16 (Weierstrass function) and f23 (Katsuura function)
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Figure 3: Clustering results based on ELA features between
the BBOB functions and the crashworthiness problem in-
stance D4_P2.

suggest that these objectives could have similar landscape prop-
erties, e.g., highly rugged and repetitive landscape. Additionally,
we use the t-SNE approach [50] to visualize the high-dimensional
ELA feature spaces on a two-dimensional space for an easier in-
terpretation, as shown in Figure 3(b). For this purpose, we employ
the sklearn.manifold.TSNE package [37], using 5,000 maximum
number of iterations to allow convergence and lowering perplexity
(metric for effective number of nearest neighbours) to 10 due to
low data density (24 BBOB functions + 3 objectives = 27 functions).
We recognize that the crashworthiness objectives are generally far
away from the BBOB functions in the ELA feature spaces, indicating
that the ELA features between them could be different.

To have a better understanding on the clustering results, we
delve into examining the ELA feature values, which are presented
in Figure 4. Based on visual inspection, we notice that several
ELA features show clear differences in feature values between
the BBOB functions and crashworthiness objectives, particularly
pca.expl_var_PC1.cor_x, pca.expl_var_PC1.cor_init as well

as ela_meta.lin_w_interact.adj_r2, which might explain the
separation observed in the clustering pattern.

Since similar clustering patterns can be observed from the re-
maining crashworthiness problem instances, we suspect that the
BBOB functions are different from our nonlinear automotive crash-
worthiness problem instances in terms of landscape characteristics.
Consequently, the BBOB functions might be not sufficiently rep-
resentative for our crashworthiness problem instances. In other
words, the BBOB problem set seems to be inadequate in character-
izing our crashworthiness problem classes.

5.2 Artificially generated functions
We further our research by shifting our focus towards test function
generators that can create artificial test functions with similar land-
scape characteristics as to our automotive crashworthiness problem
instances. Inspired by [53], our experimental testings show that
the function generator in [49] has great potential in creating test
functions similar to our crashworthiness problems. Following this
argument, we re-implement the function generator [48] in Python,
which was originally developed in Matlab, and integrate it into our
pipeline in Figure 1(b) as benchmark functions with the following
minor modifications:

• Discard a generated function as invalid, if any of the follow-
ing conditions is fulfilled.

(1) Invalid value in 𝑓 , e.g., missing or infinity.
(2) Extremely large value |𝑓 | > 108.
(3) Extremely small value |𝑓 | < 10−8.
(4) Variance of 𝑓 < 1.0, to avoid (on rare occasion) a constant

function due to rounding, e.g., values 𝑓 are rounded off to
a single integer.

Generally, the function generator works in a tree-based fashion,
that is, by constructing and extending a tree (function expression)
with leaf nodes (mathematical operands and operators randomly
selected from a predefined pool) [49].

We perform another investigation in a similar fashion by apply-
ing the pipeline on the previously introduced ten automotive crash-
worthiness problem instances and clustering with 1,000 artificial
functions. Here, we use the same sample points of crashworthiness
problem instances (bootstrap size of 80% of the initial sample size
and 30 repetitions) to compute the ELA features of both artificial
functions and crashworthiness problem instances. Unlike our pre-
vious investigation, we use the design spaces of crashworthiness
problem instances for the generation of artificial functions and
hence re-scaling to domain [-5,5] before ELA features computation
is not required. Similarly, we consider the crashworthiness problem
instance D4_P2 as our reference.

As visualized in Figure 5, we can observe that several artificial
functions are clustered in the same groups as the crashworthiness
objectives and with a smaller Euclidean distance as compared to
the BBOB functions. In fact, these artificial functions are close to
the crashworthiness objectives in the ELA feature spaces, as shown
in Figure 6, indicating that they both have similar ELA feature
values. As we can observe similar clustering patterns in most of
the remaining crashworthiness problem instances, we believe that
we can find artificial functions, which are sufficiently representa-
tive for our crashworthiness problem instances. In cases, where no
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Figure 4: Distribution of the 35 ELA features for the 24 BBOB functions and three crashworthiness objectives of the problem
instance D4_P2. Moreover, ELA features with clear differences between them are manually highlighted in green color based on
observation.

(close) neighbouring artificial functions can be identified (e.g., rota-
tion objective in D4_P1), we suspect that either (a) such a similar
function is not included, which can be easily solved by increasing
the test function set with more artificial functions, or (b) creating
such a similar artificial function is simply not possible with the
current function generator, which is a limitation of our approach
and further improvements are necessary.

6 CONCLUSIONS AND OUTLOOK
In this paper, we propose an approach for characterizing the prob-
lem class of highly nonlinear engineering optimization problems.
For this purpose, we develop an automated pipeline based on ten
real-world representative automotive crashworthiness optimiza-
tion problem instances, which can be conveniently transferred and
applied on other similar problems. We focus on crashworthiness
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... ... ... ...

Figure 5: Clustering pattern for 1,000 artificial functions (labelled from AF_1 to AF_1000) and crashworthiness objectives
of D4_P2. Only relevant sections of the clustering are shown due to the limited space. The crashworthiness objectives are
highlighted in blue color, while the closely clustered artificial functions in orange color. The Euclidean distance of 5 is marked
as reference.
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Figure 6: Projection of the high-dimensional ELA feature
spaces onto a two-dimensional space through t-SNE visu-
alization for 1,000 artificial functions and crashworthiness
objectives of D4_P2. Here, we use the default value 30 for per-
plexity. (AF: Artificial function; AF_close: Artificial function
clustered closely to crashworthiness objectives as in Figure
5).

optimization of rocker panel designs (between 16 and 22 design
variables) for automotive side crash based on FE simulations. In our
approach, we characterize the crashworthiness problem instances
by comparing their landscape properties or ELA features with those
of some well-established academic benchmark functions, such as
the BBOB problem set, through hierarchical clustering.

By analyzing the ELA features, we can have a better understand-
ing on the characteristics of our crashworthiness problem instances.
Our results show that all the crashworthiness problem instances are
separated from the BBOB test functions. Following this argument,
the BBOB problem set is inappropriate for characterizing our crash-
worthiness problem instances, which belong to a distinguishable
problem category. Consequently, we continue our investigation
with an artificial function generator, which is capable in creating
test functions with similar landscape properties as our crashwor-
thiness problem instances. We suspect that, an artificial function

with similar landscape characteristics can always be identified for
all real-world problem instances, provided that (1) the function set
is sufficiently large and (2) the problem complexity is well covered
by the function generator.

In our future work, we intend to develop an automated design
of optimization algorithms (Figure 1(a)) for real-world engineering
optimization problems by exploiting the artificial functions with
similar landscape characteristics. We propose to consider such arti-
ficial functions as scalable and fast-to-evaluate representatives of
real-world problem instances. With this approach, we can improve
the overall optimization efficiency by specifically designing and
fine-tuning optimization algorithms for real-world problem classes.
Ideally, we would like to extend our approach for multi-objective
and constrained optimization problems.

Currently, the complexity of artificial functions is mostly limited
by the predefined pool of mathematical operands and operators. An
interesting idea for future work could be extending the diversity of
artificial functions that can be generated, e.g., jump functions, to
characterize a broader spectrum of optimization problems.

Furthermore, we would like to raise our concerns regarding the
effectiveness of ELA features in quantifying the similarities be-
tween function landscapes, since ELA features are manually engi-
neered by experts and thus might be biased in feature computation.
Accordingly, another research outlook could be exploring other
alternatives for feature computation in an unbiased way.

Moreover, we believe that there is still room for improvement
in our feature selection approach. For future work, we plan to
investigate other methods, which can potentially select optimal
feature set, to accurately characterize optimization problems of
different complexity.
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