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Abstract: We report on the fabrication of single-electron devices based on horse-spleen ferritin parti-
cles. At low temperatures the current vs. voltage characteristics are stable, enabling the acquisition of
reproducible data that establishes the Coulomb blockade as the main transport mechanism through
them. Excellent agreement between the experimental data and the Coulomb blockade theory is
demonstrated. Single-electron charge transport in ferritin, thus, establishes a route for further char-
acterization of their, e.g., magnetic, properties down to the single-particle level, with prospects for
electronic and medical applications.
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1. Introduction

Ferritin, the iron storage protein, has drawn the attention of the scientific community
in recent decades. Its unique structure consists of a spherical shell composed of 24 peptide
subunits [1]. In mammals, two types of subunits are present: a heavy (21 kDa) and a light
(19 kDa) chain [2]. The heavy chain is responsible for the oxidation of Fe(II) to Fe(III). The
light chain fosters nucleation and the storage of Fe(III) as a mineral mixture consisting
mainly of ferrihydrite, storing iron in a nontoxic form [1]. Dysfunctional ferritin has been
related to neurodegenerative diseases for different reasons. First, it allows unwanted egress
of iron from the ferritin, which increases the available amount of free iron that is toxic to
cells, causing oxidative stress injury [1,3]. Second, the ferritin core’s composition in the brain
of patients affected by these diseases has been found to be altered [4,5]. The mechanism
leading to dysfunctional ferritin remains unclear; therefore, a better understanding of the
physical properties of individual ferritin particles is vital.

Published studies on the electrical characterization of ferritin have mostly been per-
formed on ferritin networks and monolayers [6–23]. Almost 20 years ago, Xu et al. [7]
reported that holoferritin networks, i.e., ferritin with iron core, are 5–15 times more con-
ductive than the networks of the iron-depleted version, apoferritin [7]. Although Xu et al.
reported S-shaped current vs. voltage (IV) characteristics, other phenomena have been
observed, such as switching [10] and negative differential resistance [17]. The charge
transport through ferritin monolayers has been studied by Kumar et al. [6], who reported
different transport mechanisms including direct tunneling, sequential tunneling, and hop-
ping, depending on the ferritin iron content. Ferritin multilayers have been studied as
well [20], finding highly correlated electron transport, consistent with electron transport
in a quantum dot. Bera et al. [14] reported similar IVs for six layers of holo- and apofer-
ritin. Targeted applications range from multilayered gate dielectrics [8], to metal-insulator
nanocomposites [13], high-efficiency solar energy conversion [11], bio-nanobatteries [12],
to p-n junctions [15], among others. From a medical perspective, Holovchenko et al. [21]
showed that the average conductance of Alzheimer’s ferritin networks is about two orders

Biomolecules 2022, 12, 705. https://doi.org/10.3390/biom12050705 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12050705
https://doi.org/10.3390/biom12050705
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-8458-0994
https://orcid.org/0000-0001-7632-1968
https://orcid.org/0000-0002-5385-0282
https://doi.org/10.3390/biom12050705
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12050705?type=check_update&version=2


Biomolecules 2022, 12, 705 2 of 9

of magnitude lower than that of control ferritin, suggesting the use of ferritin resistance
measurements as a diagnostic tool.

Studies focused on the electrical characterization of single ferritin are scarce. These
studies are based on either scanning tunneling microscopy (STM) [18,22,24] or atomic force
microscopy (AFM) [7,25,26] and are performed at room- or higher temperatures. Single
holoferritin was found to be more conductive than apoferritin by AFM [25], as found
in networks. In contrast, Rakshit et al. [24] obtained similar IV characteristics for apo-
and holoferritin by STM. In this work, single horse-spleen ferritin particles are studied by
trapping them in self-aligned nanogaps and measuring their electronic properties at low
temperatures. We find that the devices are unstable at room temperature, but below 100 K
they allow for the acquisition of reproducible data that establishes the Coulomb blockade
as the main transport mechanism through them.

2. Results

We used commercial horse-spleen ferritin purchased from Sigma Aldrich. Figure 1a
shows a schematic representation of ferritin. It consists of a mineral core surrounded by an
organic shell with an outer diameter of 12 nm, and a shell thickness of 2 nm, approximately.
From the same batch used in the conductance measurements, we determined the size
distribution of ferritin cores through transmission electron microscopy (TEM); see Figure S2
for details. The analysis of 1502 particles showed that the cores’ size varied from 4 to 8.6 nm,
as shown in Figure S2b.

Self-aligned nanogaps were fabricated as reported in the Methods section, following
published fabrication routes [27,28]. Figure 1d shows a scanning electron microscopy (SEM)
image of a self-aligned nanogap before ferritin deposition. The distance between the source
and drain electrodes (gap length) varied between 8 and 25 nm, while the gap width was
10 µm.
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Figure 1. (a) Schematic representation of ferritin, based on the protein data base (PDB) of horse-
spleen apoferritin (PDB ID: 2W0O [29]). The organic shell is in green; the mineral core occupying the
internal cavity is in red. (b) Schematic circuit of a device containing one ferritin particle. (c) Electrical
characterization of device A1 before (grey curve) and after (green curve) ferritin deposition, measured
at room temperature, in vacuum. The grey curve indicates an open circuit, reflecting an empty
device. The increase in current shown in the green curve indicates the capture of ferritin. In both
cases, the current is measured by sweeping the voltage from negative to positive values, followed
by sweeping from positive to negative values. (d) Scanning electron microscopy image of an empty
device showing the gap of 9–19 nm size between source and drain electrodes.
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Prior to ferritin deposition, we recorded at room temperature and in a vacuum
(10−4 mbar) the current vs. voltage (IV) characteristics of each electrode pair; some sam-
ples were also checked at helium temperature. Devices were disregarded that exhibited a
current greater than the noise floor (2 pA) over the bias voltage range probed (±1 V and
±400 mV, for larger (11–25 nm) and smaller gaps (8–13 nm), respectively). Thus, we only
selected open gaps for further studies with ferritin particles (see Figure 1c, grey curve).

Deposition was performed by drop-casting 2–4 µL of ferritin solution diluted 200 times
(∼270 µg/mL) onto the electrodes, followed by immediate vacuum pumping. Figure 1b
shows a schematic representation of a gap after ferritin deposition. We identified the
presence of ferritin trapped within the gap by comparing the IV characteristics of the
gap before and after deposition, measured in a vacuum. Figure 1c shows representative
examples of IV curves, measured before (gray curve) and after (green curve) deposition
at room temperature for device A1. After deposition, a clear increase in current was
seen, but the IV was unstable with switches between higher and lower conductive states.
Furthermore, hysteretic behavior was also often observed while sweeping the bias voltage
up and down. This behavior was generally observed for other samples as well.

The ferritin-deposited devices were cooled down to temperatures close to T = 4.2 K.
At these temperatures, the IV characteristics were stable, and the hysteresis was no longer
present. Figure S3 summarizes the four behaviors detected after ferritin deposition, at
temperatures close to 4.2 K. The behaviors were: highly conductive linear IVs (most likely
ferritin aggregates); still open gaps (no ferritin trapped); tunneling; and Coulomb-blockade
(CB)-like IVs. Figure S4 shows the reference measurements, using only the buffer solution;
after three buffer depositions, no CB-like features were detected.

Here, we focused on analyzing the CB-like IV characteristics, since they may represent
devices with one particle trapped (see below). Figure 2 shows two typical CB-like IVs
recorded at 4.2 or 5 K, displaying clear step-like features (light blue dots) or a single
transport gap centered around zero bias (green dots). For clarity and to facilitate the
simulations, these IV curves were either the descendant curves of the IV cycles, i.e., the
current recorded from 50 mV to −50 mV, or the ascendant ones. In some cases, abrupt IV
changes, especially in conductivity, were observed after thermal, voltaic, and temporal
cycling (for details, see Supplementary Materials). An example of this effect is shown in
Figure 2; device D1 (Figure 2g) was recorded first, at 4.2 K. The same device was measured
at 5 K again (Figure 2a), after warming it up to 250 K. The current increased by three orders
of magnitude, and the IV curve showed clear steps.

We used the orthodox Coulomb Blockade (CB) model [30] to describe the IV charac-
teristics, measured at the lowest recorded temperature as shown in Figure 2. The model
considered single-electron tunneling, without incorporating second-order processes such
as tunneling through virtual states and cotunneling. A Matlab script was written with
R1, R2, C1, C2, Q0, and T as the simulation parameters; the parameters are defined in the
caption of Table 1. The temperature was taken to be the measured temperature near the
sample and was not adjusted in the simulations. The black dashed lines shown in Figure 2
are the CB fits to the data; the simulation parameters are listed in Table 1. The consistency
between the data and simulations is visible both in the IV and the differential conductance
(dI/dV) plots. The excellent agreement indicates that the dominant transport channel is
indeed through a single particle, although three-terminal measurements with a gate are
needed to give a conclusive answer.
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Figure 2. Experimental current−voltage (IV) characteristics (colored dots) and the corresponding
calculated curves using the orthodox Coulomb blockade model (black dashed lines) acquired on
four devices, displaying clear step-like features (light blue dots) or a single transport gap centered
around zero bias (green dots). (a,e,g) Experimental IVs measured on, respectively, device D2, E1,
and D1; obtained by sweeping the voltage from positive to negative values. (c) IV measured on
device I1, obtained by sweeping the voltage from negative to positive values. The corresponding
differential conductance is depicted in figures (b,d,f,h). The data were recorded at either 4.2 or 5.0 K.
The parameters used for the simulations are presented in Table 1.

Table 1. Coulomb-blockade simulation parameters used to generate the four simulated IVs depicted
in Figure 2. C1 and C2 are the junction capacitances on the left and right sides, respectively. R1 and
R2 are the tunnel resistances on the left and right sides, respectively. Q0 is the offset charge, and T is
the temperature.

Device C1 (aF) C2 (aF) R1 (MΩ) R2 (MΩ) Q0 (e) T (K)

D2 12.0 12.0 0.4 22.0 −0.55 5.0
I1 0.8 8.7 8.6 38.2 −0.06 4.2
E1 9.5 9.2 17.8 17.8 −0.12 4.2
D1 12.0 12.0 5500.0 5500.0 −0.35 4.2

To further investigate the validity of the CB model, we measured IVs at different
temperatures. Figure 3 shows IVs obtained at different temperatures, on device A1. At
4.2 K (blue light dots), the IVs present clear Coulomb-blockade steps. At 22 K (orange dots),
steps are no longer visible, and the blockade part of the IVs is linear, i.e., the blockade has
been lifted. The black dashed lines are the Coulomb-blockade fits to the data, using the
same simulations parameters R1, R2, C1, C2, and Q0, while adjusting only the temperature.

In total, 22 devices displayed Coulomb-blockade like IVs. Figure S5 shows the ex-
perimental IVs and the CB fits of all data. The simulation parameters are collected in
Table S1. Figure 4 summarizes the total capacitances and resistances used for the simula-
tions. A broad dispersion was found in the parameters: the total capacitance varied over
two orders of magnitude from 0.84 to 62.7 aF, while the total resistance varied over four
orders of magnitude from 0.02 GΩ to 72 GΩ.
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Figure 3. Experimental current−voltage characteristics acquired on device A1, at two different
temperatures. (a) Data measured at 4.2 K (light blue dots). (b) Data acquired at 22 K (orange dots).
The black dashed lines indicate the calculated curves using the orthodox Coulomb blockade model
with parameters: C1 = 28 aF, C2 = 34.7 aF, R1 = 0.4 MΩ, R2 = 0.08 GΩ, Q0 = 0.15 e.
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Figure 4. Total capacitances (C = C1 + C2) and total resistances (R = R1 + R2) calculated with the
orthodox Coulomb blockade model for the 22 devices showing Coulomb-blockade at temperatures
below 100 K. Table S1 contains the entire set of Coulomb blockade parameters used to model each
device, at the lowest recorded temperature. (a) Total capacitance histogram. (b) Total resistance
histogram. (c) Total capacitance plotted against the total resistance.

3. Discussion

To place the values of the fit parameters in a broader context, we compared them with
values found in other experiments. For ferritin, a resistance of 2 GΩ was reported [24]
by STM, but, a much higher resistance was reported by AFM (25 GΩ–1.8 TΩ) [7,26,31].
Our experimental resistances were closer to that reported by STM and to the lower range
obtained by AFM. Capacitance values have not been reported for single ferritin particles in
the literature.

We note that the measured core distribution can lead to a sizable dispersion in the
capacitances/resistances but cannot fully account for the observed dispersion in Table S1
and Figure 4. However, different geometrical arrangements are discussed below, which
reproduce this broad dispersion. Figure 4c indicates that high capacitances were found
for low resistances. This trend is consistent with geometrical considerations in which
good electrical contacts (low resistances) imply large electrode-particle capacitances. More
specifically, the particle could lie symmetrically in between the electrodes (case I; see
Figure S7) or on top of them (case II). If the gap between the electrodes is larger than
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the ferritin size, the particle could couple asymmetrically to the electrode if one side of
the particle makes direct contact with one of the electrodes, while there is some space in
between the particle and the other electrode. This results in two additional cases to be
considered: asymmetric contact with the particle laying completely between the electrodes
(case III) or on top of them (case IV).

For these four different cases we calculated the capacitances using a parallel plate
model, by considering εr to be between 10 and 20 [32,33], see Supplementary Materials for
details. The estimates are shown in Supplementary Materials, and the minimum estimate
for the total capacitance (0.4 aF) was in agreement with the minimum experimental capaci-
tance (0.84 aF). The maximum estimated capacitance (11.3 aF) was about five times lower
than the maximum experimental capacitance (62.7 aF), although only two capacitances
were found to be larger than 24 aF. Ways to account for this difference could be to consider
a barrier thickness thinner than 2 nm or a higher dielectric constant.

Within the CB model, the total resistance (R) of an individual ferritin particle in a gap
between source and drain contacts, comprised two tunnel resistances in series, from the
ferritin core to each electrode, i.e., R = R1 + R2. Each of these resistances can be expressed
as R1,2 = R0 exp(βd), where R0 is an effective contact resistance, d is the thickness of the
dielectric, and β is the exponential distance decay factor. For β we take 0.26 A−1, which is
the average reported value for proteins [34].

The calculated resistances in this model are again listed in the SI. We found that
the maximum experimental resistance (72 GΩ) was within the range of our estimates
(0.17–126.55 GΩ). The minimum experimental resistance (0.02 GΩ) was somewhat lower
than our minimum estimate. A possible reason is that β is smaller than what we assumed
for ferritin. For example, if we consider β = 0.21 Å−1, the minimum resistance (case I) is
0.06 GΩ, which is on the same order of magnitude as the smaller experimental resistance.

In conclusion, we demonstrated that individual ferritin particles can be trapped in
self-aligned nanogaps. The observed instability at room temperature was suppressed at
low temperature, and clear Coulomb-blockade effects were observed including Coulomb
staircases. Excellent fits of the current–voltage characteristics to the Coulomb blockade
model strongly indicate that transport is through an individual particle. Estimates based
on different arrangements of the particle in between the electrodes and reported values for
transport through proteins reproduced the capacitance and resistance values determined
from the CB model. Thus, the experiments showed that ferritin particles act as a model
CB system, and in a next step, it would be interesting to relate the transport characteristics
to specific ferritin properties. This, for example, includes a better understanding of the
unstable behavior at elevated temperatures and of the magnetic properties of the core.
The latter can be studied using a three-terminal device with a gate in combination with
magnetic field measurements.

4. Methods
4.1. Ferritin Purity Assessment

Commercial horse-spleen ferritin purchased from Sigma Aldrich (Cat. No. 270-40,
Lot: 08E1805) of 54 mg/mL protein concentration was used with no further purification.
For the conductance measurements, the ferritin solution was diluted by a factor of 200
using a buffer solution (0.15 M NaCl and 10 mM Tris, pH 8.0, 0.1% sodium azide). The
final solution had a protein concentration of 270 µg/mL with >95% purity as assessed
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (Supplementary Materials,
Figure S1c). The homogeneity of the solution was assessed by the dynamic light scattering
technique (DLS), which is reported in Supplementary Materials (Figure S1a,b).

4.2. Ferritin Size Statistics

The ferritin mineral cores were examined without further staining in a JEM-1400
transmission electron microscope (TEM). To further inspect the protein shell structure,
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uranyl acetate (2% solution) was used. For more details, refer to Supplementary Materials
(Figure S2). A home-made Matlab script was used for particle detection and size statistics.

4.3. Device Fabrication

The devices were fabricated as follows. On top of a doped Si/SiO2 substrate, the first
electrode was defined by e-beam lithography (EBL) and evaporation of 5 nm of titanium
(adhesive layer) and subsequently 25 nm of platinum. On top of the platinum layer, a
20 nm chromium layer was deposited. Upon oxidation chromium expands its size. In this
manner, chromium oxide acted as a shadow mask of a few nanometers near the edge of the
first electrode. The thickness of the chromium layer determined the expansion and, thus,
the size of the gap. A second EBL cycle defined the second electrodes, by depositing 5 nm
of titanium and 20 nm of platinum. In the final step, the chromium layer was etched away
(wet-etch step) to reveal the underlying nanogaps.

4.4. Electrical Measurements

The electrical measurements of most of the devices were performed in a variable tem-
perature insert (VTI) with TU Delft home-built low-noise electronics. The noise was about
1–2 pA at room temperature and below 1 pA at 4.2 K. A 1-K pot allowed measurements
below 4.2 K for devices J1, J2, and K1. Device H1 was measured in a dilution refrigerator
equipped with the same TUDelft home-built electronics and a similar noise level.

4.5. Coulomb-Blockade Fits

The IVs obtained showing CB-like features were fitted to the CB orthodox theory,
using a home-made Matlab script that is available upon request. The optimal fit was
determined by the user, i.e., by visual inspection.

Supplementary Materials: See the Supplementary Materials for more details of this study regarding
the ferritin purity assessment and size statistics, reference measurements, all data fitted to the CB
model, charge-offset variations, and estimates of the capacitances and resistances. The following
supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/biom12050
705/s1.
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