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Abstract
1.	 Traits are key for understanding the environmental responses and ecological 

roles of organisms. Trait approaches to functional ecology are well established 
for plants, whereas consistent frameworks for animal groups are less developed. 
Here we suggest a framework for the study of the functional ecology of animals 
from a trait-based response–effect approach, using dung beetles as model sys-
tem. Dung beetles are a key group of decomposers that are important for many 
ecosystem processes. The lack of a trait-based framework tailored to this group 
has limited the use of traits in dung beetle functional ecology.

2.	 We review which dung beetle traits respond to the environment and affect eco-
system processes, covering the wide range of spatial, temporal and biological 
scales at which they are involved. Dung beetles show trait-based responses to 
variation in temperature, water, soil properties, trophic resources, light, vegeta-
tion structure, competition, predation and parasitism. Dung beetles' influence 
on ecosystem processes includes trait-mediated effects on nutrient cycling, bio-
turbation, plant growth, seed dispersal, other dung-based organisms and para-
site transmission, as well as some cases of pollination and predation.

3.	 We identify 66 dung beetle traits that are either response or effect traits, or both, 
pertaining to six main categories: morphology, feeding, reproduction, physiol-
ogy, activity and movement. Several traits pertain to more than one category, in 
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1  |  INTRODUC TION

Trait-based ecology is advancing our understanding of species' 
responses to the environment, and their effects on ecosystem 
processes and services. Traits are morphological, physiological, phe-
nological or behavioural features measurable at the individual level 
that relate to the organism's fitness and impact on ecosystem pro-
cesses (Brousseau et al., 2018; Violle et al., 2007). Thus, trait-based 
frameworks seek to understand the consequences of environmen-
tal change by studying the linkage between traits and individual 
performance to determine how species respond to changes and, in 
turn, affect ecosystem processes (Gladstone-Gallagher et al., 2019; 
Lavorel et al.,  2013; Lavorel & Garnier,  2002). Indeed, trait-based 
approaches provide a deeper understanding on the relationship be-
tween biodiversity and ecosystem functioning than species-based 
perspectives, allowing us to delve into the mechanisms and com-
pare patterns across regions and taxa (McGill et al., 2006; Moretti 
et al., 2017). Based on the success of plant functional ecology, animal 
researchers have started portraying, measuring and applying traits in 
research questions (see Moretti et al., 2017). However, there remain 
knowledge gaps about which traits are more directly related to indi-
vidual fitness (i.e. response traits) or impact ecosystem functioning 
(i.e. effect traits), and how to measure them in a standardized way.

This is the case of dung beetles, a group where the use of traits 
has received considerable attention (see Wong et al.,  2019), but 
lacking an explicit framework for selecting key response and effect 
traits. Dung beetles (Coleoptera, Scarabaeoidea) are primarily co-
prophages; they use the excrement of mammalian herbivores as a 
resource in either or both adult and larval stages, although some spe-
cies present other trophic preferences (see Holter & Scholtz, 2007). 
Besides participating in dung decomposition, they distribute dung 
horizontally and vertically across soils and landscapes, playing a cru-
cial role in the recycling of nutrients and stimulation of plant pro-
ductivity (Finn & Gittings, 2003; Nichols et al., 2008). Dung beetles 

are also ecosystem engineers through the major effects that their 
burrowing and tunnelling activity have on soil physical structure and 
chemical composition (Jones et al., 1997). They also mix the organic 
matter from the dung with mineral soil, enhancing decomposition 
and nutrient mineralization, and reducing greenhouse gas emissions 
(Slade, Riutta, et al., 2016; Verdú et al., 2020). Moreover, they per-
form seed dispersal, dung fly and livestock parasite suppression and 
pest control, serve as trophic resources for insectivores, and some 
species are even pollinators or predators (Hanski & Cambefort, 1991; 
Nichols et al., 2008; Young, 2015).

The value of trait-based approaches for dung beetle ecology 
has long been recognized through their characterization in func-
tional groups according to the way they utilize dung to feed and 
nest (Bornemissza, 1969; Halffter & Matthews, 1966). Dung bee-
tles are grouped into five main functional groups: paracoprids (or 
tunnellers) dig tunnels under the dung pat where they relocate 
dung masses; telecoprids (or rollers) construct a brood ball, roll it 
away from the dung pat, and bury it; endocoprids (dwellers) nest 
and feed inside the dung pat or right beneath it in the dung–soil 
interface; non-nesters (also dwellers) feed on dung but do not 
make nests or nest elsewhere (e.g. on roots); and kleptocoprids 
(i.e. brood parasites) nest in the brood balls created by other spe-
cies (Fountain-Jones et al.,  2015; González-Megías & Sánchez-
Piñero, 2003; Tonelli, 2021; see also Bornemissza, 1969; Halffter 
& Edmonds, 1982; Halffter & Matthews, 1966). These functional 
groups have been repeatedly correlated to variations in ecosystem 
functions such as dung removal (e.g. Tonelli et al., 2020), but they 
include large intraspecific and interspecific variations in different 
traits of functional significance (deCastro-Arrazola et al.,  2020; 
Raine, Gray, et al.,  2018). Body size relates to the efficiency in 
dung removal, so the combination of body size with nesting/
feeding behaviour is commonly used to describe the ecological 
functionality of dung beetle communities (Doube,  1990). Other 
functional classifications have included competitive ability for 

particular dung relocation behaviour during nesting or feeding. We also identify 
136 trait–response and 77 trait–effect relationships in dung beetles.

4.	 No response to environmental stressors nor effect over ecological processes 
were related with traits of a single category. This highlights the interrelation-
ship between the traits shaping body-plans, the multi-functionality of traits, and 
their role linking responses to the environment and effects on the ecosystem.

5.	 Despite current developments in dung beetle functional ecology, many knowl-
edge gaps remain, and there are biases towards certain traits, functions, tax-
onomic groups and regions. Our framework provides the foundations for the 
thorough development of trait-based dung beetle ecology. It also serves as an 
example framework for other taxa.

K E Y W O R D S
ecosystem engineers, ecosystem processes, effect traits, multifunctionality, response traits, 
Scarabaeoidea, trait–function relationships
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dung and space (Finn & Gittings, 2003; Krell et al., 2003), segre-
gation of diel activity (e.g. Slade et al., 2007) or trophic behaviour 
(Larsen et al., 2008).

Beyond functional classifications, several traits have been re-
lated to dung beetle responses and effects (reviewed in Halffter 
& Edmonds,  1982; Scholtz et al.,  2009; Simmons & Ridsdill-
Smith,  2011). Comparatively little systematic research on dung 
beetle trait ecology has been done so far (but see e.g. Griffiths, 
Louzada, et al.,  2016; Radtke & Williamson,  2005; Raine, Gray, 
et al., 2018). Thus, there is a dearth of knowledge on which traits 
are associated with dung beetle responses to environmental 
stress, how intraspecific variation links to fitness, and the effects 
of shifts in species composition on ecosystem processes. This is 
particularly important as dung beetles show consistent species 
responses to habitat transformation, mammalian defaunation 
and changes in climate and weather (e.g. Calatayud et al.,  2021; 
Fuzessy et al.,  2021). However, the increasing use of dung bee-
tle traits has not been backed up by a conceptual framework for 
their standardized measurement and analysis as it has for plants or 
other animal groups (e.g. Moretti et al., 2017; Pérez-Harguindeguy 
et al., 2013; see Schneider et al., 2019 for a review). Establishing 
a theoretically robust dung beetle functional ecology requires (i) 
recognizing the limitations of traits as simplifications of natural 
variation in the performance of individuals and (ii) contextualizing 
their use within a comprehensive functional ecology that relates 
traits with individual responses to environmental gradients and 
effects on ecosystem functions.

Here we develop a framework for the study of the functional 
ecology of animals from a trait-based response–effect approach, 
using dung beetles as a model system. We review the main trait-
based dung beetle responses to the environment and effects on 
ecosystem functions, outlining the measurable traits that are ei-
ther known or hypothesized to be related to them. Then, we iden-
tify the potential trait-mediated linkages between responses and 
effects following a multi-trait approach, and discuss their impli-
cations for setting up a hypothesis-driven dung beetle functional 
ecology. The framework will help researchers to select specific 
traits according to particular research questions, identify research 
knowledge gaps and serve as a starting point for a collaborative 
research program to study the ecological significance of dung 
beetle traits. More broadly, we aim to provide an example of how 
to develop such trait-based research programs for other animal 
groups.

2  |  TR AIT RESPONSES TO THE 
ENVIRONMENT

Dung beetles respond to both abiotic conditions, such as temperature 
or moisture, and biotic interactions, such as presence of predators 
or competitors (Figure  1). We identify the traits involved in these 
responses, outlining the main relationships between traits and 
environment (see Supplementary Table  S1), and identifying gaps 

in the knowledge necessary to predict dung beetle community 
responses to global change.

2.1  |  Temperature

Dung beetle species differ in their thermal limits and associated 
physiological traits, such as thermal tolerance to extreme hot 
or cold conditions (Birkett et al.,  2018; Gaston & Chown,  1999; 
Sheldon & Tewksbury, 2014). Therefore, they respond to ambient 
temperature in various ways along geographical and altitudinal 
gradients (Calatayud et al.,  2021; Williamson et al.,  2022). This 
affects activity time (Cuesta & Lobo, 2019a; Gotcha et al., 2021), 
reproduction (Holley & Andrew, 2019), habitat selection (Giménez 
Gómez et al.,  2020, 2022), community composition (Gaston & 
Chown,  1999; Nyamukondiwa et al.,  2018) and geographical 
distributions (Lobo et al.,  2002; Sheldon & Tewksbury,  2014). 
Extreme soil temperatures are avoided by flying to cooler places 
(Caveney et al., 1995), walking to other (micro)habitats (Menéndez 
& Gutiérrez, 2004), using their balls as temporal thermal refuges 
(Smolka et al.,  2012), digging deeper into the soil (Macagno 
et al.,  2016; Mamantov & Sheldon,  2021) or nesting deeper in 
the soil to protect eggs/larvae from superficial heat (Kirkpatrick 
& Sheldon, 2022; Snell-Rood et al., 2016)—which could lead to a 
reduced brood ball size and number (Mamantov & Sheldon, 2021), 
abandoning the reproductive attempt (Holley & Andrew,  2019), 
or community-level shifts in the dominant nesting strategy 
along altitudinal gradients (Chamberlain et al.,  2015). As well 
as increased thermal tolerances (e.g. critical thermal maxima) 
increased body size and decreased pilosity have been found to 
be associated with higher temperatures (Williamson et al., 2022). 
Furthermore, many species can heat themselves through the 
rapid movement of wing muscles (Giménez Gómez et al., 2020) or 
adopt different behaviours during flight to dissipate heat (Verdú 
& Lobo, 2008). This allows them to segregate their activity along 
temporal and spatial gradients of temperature through different 
thermoregulatory strategies (Verdú et al., 2022). The current rise 
in average annual temperature due to climate change has indeed 
resulted in phenological shifts, anticipated egg laying (Wu & 
Sun, 2012), faster larval development rate (Macagno et al., 2018) 
and geographic range shifts (Menéndez et al.,  2014), but more 
information on the upper thermal limits of dung beetles (i.e. when 
they stop reproducing; Holley & Andrew,  2020) is needed to 
forecast their responses to climate change.

2.2  |  Water

Insects respond to spatial and temporal variations in air, soil and 
moisture (Block,  1996; Sømme,  1986). Dung desiccation may af-
fect reproduction success through impediments on larval feeding 
(especially in dwellers). Dung beetles respond quickly to varia-
tions in water availability by dispersing to appropriate locations 
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(Sowig,  1995), via behavioural traits like time invested in repro-
duction or the structure of the burrows they build (Rougon & 
Rougon, 1983; Sowig, 1996), or by adjusting their seasonal phe-
nology (deCastro-Arrazola et al.,  2018; Liberal et al.,  2011). At 
longer time-scales, variation in soil humidity can cause changes 
in morphological and reproductive traits (Duncan,  2002; 
Hammond, 1976; Rougon & Rougon, 1983; Verdú & Galante, 2004), 
and even in ontogenetic development (Vessby, 2001). In general, 
larger body sizes allow a higher desiccation resistance (Nervo, 
Roggero, Chamberlain, Caprio, et al., 2021), although physiologi-
cal responses to desiccation vary at the species and individual 
levels, with females often being more resistant than males within 
a species (Nervo, Roggero, Chamberlain, Rolando, et al.,  2021). 
Physiological traits also respond to water gradients along with 
behavioural responses, reducing water loss rate and/or tolerat-
ing water loss in dryer conditions (Duncan & Byrne, 2000; Nervo, 
Roggero, Chamberlain, Caprio, et al., 2021), or increasing their tol-
erance to the hypoxic conditions in the wet dung pats of humid 
environments (Holter, 1991; Whipple et al., 2013). Wet dung can 
sometimes reach up to 90% water content, requiring particular ad-
aptations in mouthparts' morphology to squeeze fluids out of the 

food (Holter, 2004; Tonelli et al., 2021). Given recent increases in 
drought and flooding events, more information is needed on dung 
beetle tolerance to these extreme conditions.

2.3  |  Soil properties

The physical properties of the soil, such as texture, structure and 
compactness—which are related to types of soil particles (clay, silt 
and sand), can affect its water content (see previous section), but 
also dung beetle underground movements. Some dry sandy soils are 
too loose for tunnelling (Barkhouse & Ridsdill-Smith,  1986), while 
digging in loamy soils is time consuming (Sowig, 1995). Thus, vari-
ation in soil physical conditions generate responses in traits related 
to digging ability—such as prothorax volume and metatibia shape 
and size, as well as in nesting behaviour (see Macagno et al., 2016). 
Soil conditions may influence time investment in nest construction 
for burrowing species (paracoprids and telecoprids), thus affect-
ing several traits of the extended phenotype of dung beetles (see 
Royauté et al., 2018), including burrow depth, burrow ramification, 
burrow distance from the dung pat or soil relocation (Brussaard & 

F I G U R E  1  Dung beetle responses to the abiotic and biotic environment. Arrow titles in bold identify the main types of stressors or filters 
to which dung beetle traits respond, depicted as subsections in this review. Arrow titles in regular font identify some specific stressors.
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Runia, 1984; Silva et al., 2015). These traits may also respond to soil 
chemical properties such as pH and organic matter content (influ-
encing soil structure and cation exchange capacity), salinity (tightly 
related to soil humidity), nutrient availability and microbial activity 
(Brady & Weil,  2001). Tolerance to soil acidity and salinity affect 
dung beetle performance, and therefore their nesting and burrow-
ing behaviour (Simons et al., 2018).

2.4  |  Trophic resources

The characteristics, quantity, quality and types of trophic resources 
(i.e. dung, carrion, fungi or plant detritus) vary widely through time 
in many environments, hence driving spatial and temporal changes 
in dung beetle diet (e.g. Barton et al., 2011; Raine & Slade, 2019). 
This promotes responses in traits involved in modifying yearly and 
diel activity (e.g. thermoregulation; Ybarrondo & Heinrich,  1996), 
as well as in locating and reaching the resource (olfactory traits, 
Dormont et al., 2010; Tribe & Burger, 2011; eye size, Raine, Mikich, 
et al., 2018; movement and dispersal traits, Raine, Gray, et al., 2018). 
Both quantity and quality of dung are important for larval 
development (Shafiei et al., 2001; Sullivan et al., 2016), size of adults, 
and male horn allometry (Emlen, 1997). Although most dung beetles 
and their larvae are fairly generalist in their feeding habits (Frank 
et al., 2018; Raine & Slade, 2019), some show trophic preferences 
even within species (Raine et al., 2019), via mouthpart adaptations 
to shift from filtering to triturating mouthparts and modifications in 
their nesting and burrowing behaviour (Tonelli et al.,  2021; Verdú 
& Galante, 2004). These behavioural responses may cause changes 
in traits linked to dung relocation, such as leg length (elongated for 
ball rolling), and body size (related to resource quantity). However, 
little is known about resource selection for nesting, although 
DNA metabarcoding has revealed diet shifts during different life 
stages in a South African beetle (Kerley et al., 2018). Furthermore, 
reproductive activity responds to the presence of pesticides and 
ivermectins in the dung, which affect community structure and 
ecosystem functioning (González-Tokman et al.,  2017; Tonelli 
et al., 2020; Verdú et al., 2018).

2.5  |  Light

Dung beetles respond to variations in near-infrared, visible light, 
UV and light intensity (Dacke et al., 2021; el Jundi et al., 2015). UV 
radiation can damage internal tissues causing mortality (Beresford 
et al., 2013) or inhibiting development (Faruki et al., 2005). Exoskeleton 
ultrastructure (i.e. arrangement of chitin layers) responds to these 
radiations. It determines heating rate via absorption of different 
light wavelengths (Cuesta & Lobo,  2019b), facilitating activity in 
cold environments (Amore et al., 2017), but also produces different 
colours and/or iridescence (Alves et al., 2018; Carrascal et al., 2017), 
which can diminish deleterious UV effects (Shi et al., 2015) or affect 
species interactions (Bothwell et al., 1994; Rousseaux et al., 1998). 

Body areas that fluoresce under UV light have a function in sexual 
selection (Vulinec, 1997), but can also attract predators (Bennett & 
Cuthill, 1993; Young, 2015) or protect against them (Alves et al., 2018; 
Hernandez, 2002). Within the visible light spectrum, polarized and 
non-polarized natural and artificial light serve as orientation cues 
for foraging dung beetles (Dacke et al.,  2003). These behavioural 
responses are associated with morphological changes in eye size and 
the lower/upper ratio of the eye divided by the canthus (Byrne & 
Dacke, 2011; Raine, Gray, et al., 2018). Higher sight resolution allows 
for a safer landing directly on dung pats, thus reducing predation 
risk (Byrne et al., 2009). Higher sight sensitivity allows for obstacle 
avoidance while moving under reduced light conditions. Structural 
responses to reduced light include increasing focal lengths and eye 
aperture (McIntyre & Caveney,  1998; Warrant & McIntyre,  1993) 
and larger rhabdoms (Dacke et al., 2003). These responses to light 
may be highly conserved among related species (Alves et al., 2018).

2.6  |  Vegetation structure

Vegetation structure is a major driver of the diversity and 
composition of dung beetle communities (Gardner et al.,  2008; 
Nichols et al., 2007), as it produces variations in many environmental 
stressors (e.g. microclimate conditions, resource availability and 
soil conditions). The more extreme conditions and microclimatic 
variations of open habitats may promote a higher diversity 
of physiological traits (Giménez Gómez et al.,  2022), whereas 
the structural complexity of vegetation affects movement, 
social signalling and perching behaviours and their associated 
morphological traits (e.g. body size, eye size, wing size). The complex 
vegetation of dense forests favours shorter flights and higher 
manoeuvrability, and thus lower wing aspect ratio and larger eyes 
(Bai et al., 2012), although variations in wing morphology may be a 
response to constraints associated with foraging on the ephemeral 
and patchy resources typically found in forests (Ospina-Garcés 
et al.,  2018). Dung beetle colour may also respond to vegetation 
structure through evolutionary pressures related to social signalling 
(Vulinec,  1997), with iridescence potentially favouring co-specific 
detection (male advertisement and female mate choice) in habitats 
with higher vegetation complexity as a result of varied light 
conditions (see Douglas et al.,  2007). Furthermore, some tropical 
dung beetles use specific plants for perching, a behaviour associated 
with resource detection (Gill, 1991; Howden et al., 1991) and pre-
flight body-heat increase (Young, 1984), which has been related to 
body size and feeding guilds (Noriega et al., 2020).

2.7  |  Competition

Mammal faeces are ephemeral and patchily distributed, making 
competition for resources a major driver of dung beetle diversifica-
tion and community structure (Halffter & Edmonds, 1982; Hanski & 
Cambefort, 1991). The ability to reach fresh excrement is determined 
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by dispersal ability (related to wing morphology and wing load) and 
olfactory capacity (e.g. antennal development area). Competition for 
nesting space and mating partners drive trait selection and promote 
phenotypic and niche divergence (Simmons & Ridsdill-Smith, 2011). 
Dung exploitation strategies have selected for diverse traits, such 
as elongated body shape (associated with poor burrowing capa-
bilities), dorsal surface area of head and prothorax (Halffter & 
Edmonds, 1982; Hernández et al., 2011), and the size and shape of 
front and hind tibiae (deCastro-Arrazola et al., 2020). Competition 
for nesting inside the dung pat triggers variations in eggs (size, num-
ber, survival), larvae (body size, development time, survival), and 
female oviposition rates (Finn & Gittings,  2003). In paracoprids, 
horns help to defend burrows and attract females, and horn size and 
shape correlate with the quality of the immune system and physi-
ological differences between individuals (Knell, 2011). Finally, klep-
tocoprids (i.e. brood parasites) show a special type of interference 
competition in which a species parasitizes both food resources and 
parental care provided by adult beetles of the same or a different 
species for their larvae (González-Megías & Sánchez-Piñero, 2003; 
Moczek & Cochrane,  2006). Dung beetles also compete with 
other dung feeders, in particular flies, that hatch earlier and have 
shorter development times than non-nester larvae (Hirschberger & 
Degro, 1996). Several strategies have been hypothesized for dung 
beetles to avoid nest infection by kleptocoprids and kleptopara-
sites, including divergence in seasonal and diel activity—leading to 
asynchrony of host and parasite species, and avoidance of micro-
habitats with higher parasitization probability (González-Megías & 
Sánchez-Piñero,  2004). Once infection occurs, sensorial traits (i.e. 
related to olfactory, visual, vibration cues) would potentially be 
key for detecting brood parasites, which may trigger responses like 
nest abandonment, increasing clutch size to dilute parasite impact 
or increasing the number of nests while reducing clutch sizes in a 
risk-spreading strategy (González-Megías, 1999; González-Megías & 
Sánchez-Piñero, 2004).

2.8  |  Predation

Dung beetles are predated by vertebrates and invertebrates, 
sometimes in large quantities (Young, 2015). Although the effect of 
predation has been seldom studied (Horgan & Berrow,  2004; Wu 
et al., 2011), the high diversity of dung beetle predators has resulted 
in the evolution of a variety of anti-predatory mechanisms (Halffter 
& Edmonds,  1982; Halffter & Matthews,  1966), including cryptic 
and aposematic coloration (comprising both Müllerian and Batesian 
mimicry); defensive secretions (Burger et al.,  1995); stridulatory 
organs producing sound that elicits a startle or aposematic 
response (Bailey,  1991); flight ability and changes in diel activity 
involving modifications of other traits such as endothermy (Kojima 
& Kato,  2017; Mena,  2001); and behavioural mechanisms such as 
thanatosis (Goljan, 1953). Additionally, predation on larvae may have 
driven the evolution of nesting strategies (Kingston & Coe,  1977; 
Scholtz et al., 2009).

2.9  |  Parasitism

Dung beetles are attacked by a variety of ecto- and endoparasites. 
Ectoparasitic mites reduce longevity, especially of large beetles 
(Kotiaho & Simmons, 2001), and may affect mate selection (Buzatto 
et al., 2019). Mechanisms to prevent or reduce ectoparasites include 
behavioural (such as brushing or kicking parasites), morphological 
(cuticle thickness and hairiness) and physiological and chemical 
(defensive secretions) traits (Price et al., 2011). The semiochemicals 
of dung beetles' cuticles provide the parasites with an advantage over 
the host (i.e. keiromonal), and favour the host-finding behaviour of 
phoretic mites (Niogret et al., 2006). Endoparasites may also reduce 
dung beetle survival and reproductive success; parasitic nematodes 
reduce burrow depth and dung removal and consumption in several 
Scarabaeinae species (Boze et al., 2012). Defensive responses against 
endoparasites include toxicity of digestive fluids, impermeability of 
the peritrophic membrane, encapsulation of parasites or pathogens 
within tissues and brood mass reduction (Reaney & Knell,  2010; 
Servín-Pastor et al., 2020; Speight et al., 2008; Verdú et al., 2013). 
Dung beetle body mass and maximum diameter of particles ingested 
may respond to the pressure of infection intensity by endoparasitic 
helminths (Nichols & Gómez, 2014).

3  |  EFFEC TS OF TR AITS ON ECOSYSTEM 
FUNC TIONS

Dung beetles affect ecosystem functions (Figure  2; Nichols 
et al., 2008), and effect traits have been studied both in the field 
(e.g. Andresen, 2002; Braga et al., 2013; Slade, Riutta, et al., 2016) 
and in laboratory and field mesocosms (e.g. Beynon et al.,  2012; 
deCastro-Arrazola et al., 2020; Nervo et al., 2014). In this section, 
we review how dung beetle traits may determine the delivery of 
ecosystem functions, outlining the main relationships between traits 
and functions (see all relationships in Supplementary Table S2, and 
additional bibliography at Supplementary Table S4), and identifying 
knowledge gaps that need to be addressed to predict changes in 
ecosystem functioning due to global change.

3.1  |  Nutrient cycling

Dung beetles play an essential role in recycling through the re-
moval, relocation and burial of mammalian dung, the instigation 
of micro-organisms, and via chemical changes in the upper soil 
layers (Nichols et al.,  2008). They incorporate phosphorus into 
the soil and plants through their dung burial activities (Haynes 
& Williams, 1993; Maldonado et al., 2019; Rowarth et al., 1985). 
Differences in feeding and reproductive behaviour, body size and 
morphology can influence the rates of dung burial. Paracoprids 
play a greater role in dung removal compared to telecoprids and 
dwellers (Nervo et al., 2017; Slade et al., 2007), although teleco-
prids may relocate dung to microhabitats that are less accessible 
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by mammals, removing large proportions of dung in some con-
texts such as Mediterranean Region (see, e.g., Milotić et al., 2019; 
Verdú et al., 2018). Next to body size (e.g. Kaartinen et al., 2013; 
Nervo et al., 2014), several morphological traits (i.e. head area and 
width, pronotum length and width, prothorax height and volume 
and size of both fore and hind tibiae) have been positively related 
with dung removal, while others cause reductions in this function 
(longer lengths of head, protibia and metatibia; deCastro-Arrazola 
et al., 2020). A smaller set of traits has been positively related to 
dung burial (i.e. prothorax height and volume and protibia surface 
area), while total body length appears to negatively affect it (prob-
ably due to its association with the elongated Aphodiinae body-
plan; deCastro-Arrazola et al., 2020). Protibia area is the only trait 
known to relate to burrow depth (Macagno et al., 2016). Several 
non-morphological traits, such as thermal tolerance, yearly and 
daily activity period, dung colonization stage, and interactions be-
tween individuals and sex within species may also indirectly affect 
dung removal (Giller & Doube,  1989; Nervo et al.,  2022; Piccini 
et al., 2020), reducing nitrogen loss from dung pats (Gillard, 1967), 
since nutrient content decreases with dung aging (Holter, 2016).

Dung beetles also impact nutrient cycling through direct 
effects on microbial community composition (Slade, Roslin, 

et al., 2016; Tixier et al., 2015), and indirectly by promoting aerobic 
conditions in both dung pat and soil (e.g. Maldonado et al., 2019; 
Manning et al.,  2016; Yokohama et al.,  1991). Dung relocation 
strategy determines where nitrogen mineralization and nitrifi-
cation takes place: inside the dung pat or at the dung–soil inter-
face (dwellers) or below the surface (tunnellers and rollers; Evans 
et al.,  2019; Nervo et al.,  2017), potentially reducing ammonia 
volatilization (Ma et al., 2006; Sugimoto et al., 1992). Dung bee-
tles play a key role in regulating greenhouse gas emissions from 
cattle dung (Iwasa et al., 2015; Penttilä et al., 2013; Slade, Riutta, 
et al.,  2016). Body size impacts the reduction of methane fluxes 
from dung pats; larger individuals excavate larger holes and gal-
leries promoting aerobic processes, although these dynamics may 
vary with clutch size and female reproductive investment (Piccini 
et al., 2017). The importance of dung beetles in regulating these 
fluxes is evidenced by the strong impacts of treating cattle with 
ivermectins and antibiotics on greenhouse gas emissions from cat-
tle faeces (Hammer et al., 2016; Verdú et al., 2020). Also, as the 
microbial activity that drives mineralization processes depends 
on temperature and water availability, dung beetle seasonal and 
daily activity may modulate their impact on nutrient cycling (Evans 
et al., 2019; Lee & Wall, 2006).

F I G U R E  2  Dung beetle effects on ecosystem functioning. Arrow titles in bold identify the main types of trait-driven effects of dung 
beetles on the ecosystems, depicted as subsections in this review. Arrow titles in regular font identify some specific effects.
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3.2  |  Bioturbation and plant growth

Dung beetles play a key role in bioturbation (i.e. the displacement 
and mixing of sediment particles). Their burrowing activity enhances 
soil aeration (Manning et al., 2016), increases water infiltration, soil 
porosity and water retention (Keller et al., 2022), decreases soil erosion 
(Brown et al., 2010; Forgie et al., 2018), and increases soil nutrient 
content (Slade et al.,  2017). These structural and compositional 
changes of top soil layers alleviate the impact of drought on plants 
and maintain plant productivity under climate warming (Johnson 
et al., 2016; Slade & Roslin, 2016). Burrowing enhances soil fauna, 
fungi and microbial activity (Manning et al.,  2016; Slade, Roslin, 
et al., 2016), and maintain nutrient cycling, affecting all three main 
aspects of plant performance: survival, growth and reproduction 
(e.g. Bang et al.,  2005; Bornemissza & Williams,  1970; Manning 
et al., 2017; Rougon & Rougon, 1983; Slade et al., 2017). Although 
the role of dung beetles on bioturbation has been little studied from 
a trait–effect perspective, it is most likely related with traits involved 
in burrowing either for feeding or reproduction (Simmons & Ridsdill-
Smith, 2011; Slade & Roslin, 2016). This includes behavioural traits, 
such as reproductive strategy, where the effects of paracoprids 
and telecoprids probably have larger impacts at deeper soil layers 
than endocoprids, whose crucial contribution to bioturbation occurs 
at the dung–soil interphase (Slade & Roslin,  2016). Indeed, depth, 
length and ramification of burrows (which can be considered traits 
as part of the extended phenotype of dung beetles) determine 
bioturbation delivery (Mittal,  1993). So does parity, as more 
reproductive events per female result in higher net bioturbation. 
Bioturbation may also be affected by morphological traits such as 
adult and larval body size, or digging-related traits such as prothorax 
volume and metatibia shape and size, which in turn respond to soil 
properties (see Section 2). Furthermore, physiological traits such as 
thermal performance and metabolic rates may also influence soil 
movement rates (Macagno et al., 2018), and many of the dung beetle 
traits that respond to temperature (see Section 2.1) might have an 
indirect effect on bioturbation.

3.3  |  Seed dispersal

Many mammals ingest considerable quantities of seeds while feeding, 
that are afterwards expelled in the dung (Janzen, 1984). Dung bee-
tles unintentionally are secondary seed dispersers, relocating seeds 
vertically and/or horizontally away from the original dung deposition 
(Nichols et al., 2008). Seeds may benefit from these indirect actions 
in several ways, including relocation to more suitable microhabitats 
(Griffiths et al., 2015; Pérez-Ramos et al., 2013) and avoidance of path-
ogens and predation in the original dung pat (Beaune et al., 2012). This 
will increase seedling emergence and survival (Lawson et al.,  2012; 
but see D'hondt et al., 2008 and deCastro-Arrazola et al., 2020) and 
decrease competition of seedlings for space and resources (Griffiths, 
Bardgett, et al., 2016; Lawson et al., 2012). Moreover, burial activity 
brings soil from deep layers to the surface, potentially raising seeds 

from the seed bank to more appropriate conditions for their germi-
nation (Santos-Heredia & Andresen, 2014; Urrea-Galeano, Andresen, 
Coates, Mora Ardila, & Ibarra-Manríquez,  2019). As seeds are dis-
persed during dung manipulation, dung relocation strategy is a key trait 
(Halffter & Edmonds, 1982). In general, dung beetles disperse fewer 
large than small seeds (Andresen & Feer,  2005; Griffiths, Bardgett, 
et al., 2016), as they actively clean the dung ball before relocation to 
remove ‘contaminants’, such as large seeds or small stones (Andresen 
& Levey, 2004). Also, large seeds are placed at shallower depths than 
small seeds (Braga et al.,  2017; Griffiths, Bardgett, et al.,  2016). All 
these traits are highly correlated with dung relocation strategy and 
morphological traits, such as body size, clypeus and protibia shape 
and size (associated with digging ability), and metatibia shape and size 
(related to ball size and rolling distance). Indeed, large paracoprids 
show high rates of seed burial (Andresen, 2002; Slade et al., 2007), 
although some of these seeds may end up being buried too deep, as 
larger beetles dig deeper burrows (Gregory et al., 2015), making ger-
mination more difficult (Andresen & Levey, 2004; Koike et al., 2012). 
Telecoprids, in contrast, may bury less seeds (Andresen & Feer, 2005; 
Vulinec, 2002) but relocate them to more suitable locations for both 
germination—due to shallow nests (Gregory et al., 2015), and seed-
ling survival—away from the higher competition in the dung deposit 
(Lawson et al., 2012; but see Urrea-Galeano, Andresen, Coates, Mora 
Ardila, Diaz Rojas, et al., 2019; Urrea-Galeano et al., 2021).

3.4  |  Influence on other dung-associated organisms

Dung beetle activity profoundly alters dung pat conditions (see 
Section 3.1) and dung availability (Hanski & Cambefort, 1991). These 
alterations affect other dung-associated organisms, such as flies, 
soil mesofauna and microbes (Nichols et al., 2008; Skidmore, 1991), 
promoting fungal growth (Yokohama et al., 1991) and the transfer 
of microbes across the soil-dung interface (see Section 3.1; Slade, 
Roslin, et al.,  2016). Furthermore, tunnelling inside the dung pat 
may favour access to other groups, such as Staphylinid beetles or, 
after the dung is dry, to generalist saprophages and predators, such 
as Histerid beetles, predatory mites or spiders. However, little is 
known on the indirect effects of dung beetle activity on the as-
semblages of microorganisms and invertebrates associated with 
mammal faeces, beyond their role in controlling fly populations. 
The number of fly eggs and larvae in the dung are effected through 
various direct and indirect mechanisms during dung manipulation 
(Nichols et al., 2008), which are, in turn, determined by body size, 
dung exploitation strategy, aggregation and phenology. Dung bee-
tles limit the survival and development of fly eggs and larvae through 
asymmetric competition (i.e. resource preemption, see Section 2.7; 
Nichols et al., 2008). They impair microclimatic dung conditions for 
fly development by removing, spreading, desiccating and burying 
dung (Nichols et al., 2008). This is especially true when dung bee-
tles aggregate in large numbers (e.g. some Aphodiinae species from 
genera like Melinopterus, Nimbus, Chilothorax or Anomius in Europe). 
The timing of dung colonization may also determine the magnitude 
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of the effects on other dung-associated organisms. Dung beetles 
arrive within the first hours after dung deposition and remove part 
of the dung which directly damage fly eggs and early instar larvae, 
while late-colonizing species affect late instar fly larvae through 
resource competition (Ridsdill-Smith et al.,  1987; Ridsdill-Smith & 
Hayles, 1990). Seasonal activity period can also exert indirect ef-
fects on flies depending on phenological (a)synchrony (Ridsdill-
Smith & Hayles,  1990). Dung beetles also control fly populations 
indirectly through the transport of phoretic mites that predate on 
fly eggs and larvae. Transport of phoretic mites is mediated by body 
size (larger beetles transport higher mite loads), dung beetle aggre-
gation in the dung pats (allowing mite dispersion) and phenology 
(Glida et al., 2003; Niogret et al., 2009).

3.5  |  Parasite regulation

Dung beetles interact with a large diversity of mammal parasites with 
faecal-oral transmission through the consumption, manipulation and 
relocation of vertebrate faeces during feeding and reproduction 
(Bílý et al.,  1978; Mutinga & Madel,  1981). Some dung beetles 
affect parasite survival and transmission through direct and indirect 
mechanical interference, while others maintain or amplify successful 
transmission via indirect mechanical facilitation, direct biological 
facilitation and direct transport facilitation (Nichols & Gómez, 2014). 
The outcome of dung beetle–parasite interactions is influenced 
by dung relocation strategy and body size. For example, direct 
mechanical interference occurs when parasite eggs are damaged 
during passage through the beetles' masticatory and gastrointestinal 
systems (Mathison & Ditrich, 1999; Ryan et al., 2011), which may be 
most common for large-bodied species capable of consuming larger 
food particles (Holter et al., 2002). Indirect mechanical interference 
occurs when dung beetles impair dung pat abiotic conditions for 
parasites (Mfitilodze & Hutchinson, 1988; Stromberg, 1997). Here, 
endocoprid activity appears to have a particularly strong impact on 
dung pat microclimate (see Section 3.4) and may be associated with 
both positive and negative influences on parasite emergence rates 
over time (Chirico et al., 2003; Sands & Wall, 2017).

Dung beetles may also facilitate parasite survival and transmission 
rates through indirect mechanical, and direct biological and trans-
port mechanisms (Bílý et al., 1978). It has been repeatedly argued—
however with little empirical evidence—that the shallow burial of 
infected faeces by small-bodied paracoprids and telecoprids may en-
hance parasite survival and development, by creating an oxygenated 
and buffered environment from both solar radiation and temperature 
extremes (Bryan, 1976; Chirico et al., 2003; Coldham, 2011; Houston 
et al., 1984). Dung beetles also frequently act as intermediate hosts 
for parasites with indirect life cycles, particularly those that include in-
sectivorous, omnivorous or carnivorous final hosts (Anderson, 2000; 
Nichols & Gómez, 2014). When dung beetles are infected, the intensity 
and prevalence of such infection varies widely, with greater infection 
intensity biased towards larger-bodied species (Gregory et al., 2015). 
These differences in infection patterns likely stem from a combination 

of exposure to infection (e.g. diet breadth and feeding volume) and in-
fection susceptibility (i.e. immune function). Finally, dung beetles may 
positively contribute to parasite transmission success by transporting 
parasite eggs or larvae on beetle exoskeletons or within their gastro-
intestinal systems (Mushkambarova & Dobrynin, 1972). While empiri-
cal data on this relationship are scarce, larger-bodied beetles may also 
have a higher capacity for such transport activities (Boze et al., 2012; 
Mutinga & Madel, 1981).

3.6  |  Other effects

Some dung beetle species can act as pollinators (Sakai & Inoue, 1999) 
or predators (ants, Silveira et al.,  2006; millipedes, Larsen 
et al.,  2009). Although these cases may be anecdotal at a global 
scale, both functions can have important ecosystem effects. Indeed, 
dung beetles are often obligate pollinators of decay-scented flowers 
(i.e. Araceae and Lowiaceae species; Sakai & Inoue, 1999). Like other 
insects, flight ability and traits related to pollen attachment to the 
body (e.g. cuticle hairiness) are likely to affect pollination efficiency 
of dung beetles. On the other hand, predator dung beetles can 
effectively control leaf ant populations (Araújo et al., 2015). Species 
with predatory behaviour show clypeus shape modifications 
enabling the killing of prey (Larsen et al., 2009; Silveira et al., 2006). 
For both pollination and predation, spatiotemporal activity overlap 
with the resource (i.e. flower or prey) and detection ability (i.e. 
through detection of volatiles emitted by the resource) are likely to 
be important (e.g. Schmitt et al., 2004).

4  |  INTER AC TIONS BET WEEN TR AITS , 
ENVIRONMENTAL RESPONSES AND 
EFFEC TS ON ECOSYSTEMS

Functional traits are not isolated, but part of an organism's body 
plan and physiology, where the same traits can be involved in both 
responses to the environment and effects on ecosystem processes 
(Lavorel et al., 2013; Lavorel & Garnier, 2002). This results in numer-
ous interactions between functional traits and ecosystem processes, 
as response traits might either be linked to effect traits, or be the 
same trait (Piccini et al., 2018). Linkages between response and ef-
fect traits are key to understanding the cascading effects of com-
munity trait shifts in response to environmental stressors and the 
corresponding effect on ecosystem processes and services (Hébert 
et al., 2017; Moretti et al., 2013). Thus, any comprehensive approach 
to trait-based ecology must address the interactions among traits 
together with their associated effects and responses. With this aim, 
we compiled a list of response and effect traits and identified the 
links of each one of them to several environmental stressors and ef-
fects on ecosystem processes.

We identified 66 dung beetle traits, and assigned them to six 
main categories: morphology, feeding, reproduction, activity, phys-
iology and movement (Table  1). For practical reasons, we have 
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excluded all larval morphological traits except body size from our 
review, although some of them might perform the same role as 
they do in adults. Dung handling during feeding and reproductive 
behaviours are often very similar, so they are included in both cate-
gories. There are, however, many traits specific to feeding, related to 
mode of feeding, diet and ingested particle size (Holter, 2016; Holter 
& Scholtz, 2007). In the same way, many reproductive traits are not 
related to feeding, such as clutch size and egg size, or parts of the 
extended phenotype, such as burrow ramification, covering burrow 
walls with dung or presence of antimicrobial substances in brood 
masses (Bellés & Favila, 1983; Cortez et al., 2015). The category ‘ac-
tivity’ aims to group traits describing the timing and phenology of 
dung beetle activity at different time-scales: within a day, during the 
dung desiccation process and within a year (Doube, 1990; Gittings & 
Giller, 1997; Silva et al., 2019).

Our review identified a high number of linkages between traits and 
functions or processes, totalling 136 trait–response and 77 trait–effect 
relationships (Table 1). A full description of the links between traits and 
either stressors or effects is given in Supplementary Tables S1 and S2, 
respectively. The responses to stressors, either environmental fac-
tors or evolutionary drivers, are inextricably related with the effects 
of dung beetles on ecosystem functions, as almost all responses and 
effects are mediated by traits of at least five of the six categories we 
considered (Figure  3). Nonetheless, availability of trophic resources, 
environmental moisture and air temperature stand out as the most 
important environmental stressors, acting as environmental filters 
for community assembly and inducing trait-based responses in dung 
beetles (e.g. Nichols et al.,  2013; Raine, Gray, et al.,  2018; Silva & 
Hernández, 2015; Stanbrook et al., 2021) (Table S1). The large num-
ber of traits that can be involved in the responses to these three key 
stressors are likely to be under strong selection, thus leading to a com-
plex intertwined organismic response, which poses the challenge of 
separating trait responses to each one of the stressors.

With regard to effects, dung burial may be the behavioural ac-
tivity with the highest ecological impact, as it directly affects key 
ecosystem processes such as decomposition, seed dispersal, several 
aspects of soil structure, composition, aeration and control of pop-
ulations of other dung-associated organisms (e.g. deCastro-Arrazola 
et al., 2020; Griffiths et al., 2015; Nichols & Gardner, 2011; Table S2). 
It follows that such digging behaviour thus makes dung beetles im-
portant ecosystem engineers, playing a significant role in soil struc-
ture and fertility (Keller et al., 2022; Nichols et al., 2008). Indeed, 
the variations in all traits related to burrow construction and soil and 
dung manipulation play a key role in the most important effects of 
dung beetles on ecosystem functioning.

5  |  ADVANCING TR AIT- BA SED DUNG 
BEETLE FUNC TIONAL ECOLOGY

Ecology comprises a wide scope of spatial, temporal and organiza-
tional scales; from very localized to planetary, from static patterns 
of diversity to macroevolutionary ecology and from trait heritability 

along lineages to regional species pools. A comprehensive frame-
work for the study of dung beetle traits is critical for these scales. 
Our current knowledge of dung beetles includes good baselines for 
behaviour (e.g. Halffter & Edmonds,  1982), population and com-
munity (e.g. Hanski & Cambefort,  1991), evolution (e.g. Scholtz 
et al., 2009), physiology, ontogeny, development and sexual selec-
tion (see Simmons & Ridsdill-Smith, 2011), and, thus, provides a solid 
foundation for developing a trait-based approach to their functional 
ecology. However, there are large gaps in our knowledge of many 
traits and their functional significance. Furthermore, there are some 
consistent biases, as most dung beetle ecological research has fo-
cused on: (i) a few traits (e.g. nesting behaviour and body size); (ii) a 
few processes (e.g. dung removal, dung burial and seed dispersal); 
(iii) mainly the Scarabaeinae (except for Europe, where Aphodiinae 
and Geotrupidae have also been widely studied); (iv) largely Europe, 
tropical and subtropical America and South Africa; and (v) adults. In 
addition, it is important to remark that the relationships between 
traits, responses and processes reviewed here have been mostly 
hypothesized or assumed rather than corroborated with solid data. 
Indeed, knowledge of many of the trait–ecosystem process relation-
ships discussed in our review is based on limited field data and cor-
relative studies (Noriega et al., 2018). Beyond the extensive studies 
on sexual selection and parental care for a few species (e.g. Emlen 
et al., 2005; Macagno et al., 2018), only a handful of works have es-
tablished direct trait—function relationships across species through 
experimental work (deCastro-Arrazola et al.,  2020; Macagno 
et al., 2016; Nervo et al., 2014; Slade et al., 2007; compare with the 
128 references cited in Supplementary Table S4).

Importantly, studies on global change effects on dung bee-
tle communities have seldom addressed response traits (Giménez 
Gómez et al.,  2022; Williamson et al.,  2022). As a result, there is 
limited understanding of trait-mediated responses in relation to the 
impact of abiotic and biotic stressors, including resource competi-
tion, predation, temperature and humidity at all life stages. Besides 
other global change stressors, this is particularly important in the 
case of stressors derived from different agricultural practices, such 
as pasture abandonment (Tonelli et al.,  2018) or land use intensi-
fication (Braga et al.,  2013), but also cattle intensification (Tonelli 
et al., 2018) and use of antiparasitic treatments (González-Tokman 
et al., 2017; Verdú et al., 2018, 2020), and in general the implanta-
tion of either conventional or agroecological management practices 
(Hutton & Giller, 2003; Piccini et al., 2019). Therefore, further ex-
perimental work is needed to provide solid evidence of mechanistic 
cause–effect relationships, using response and effect traits (Noriega 
et al., 2018; Wong et al., 2019). However, the study of trait–process 
relationships is challenging and we suggest some important issues 
that need to be taken into consideration.

The classification of different traits into trait categories is sub-
ject to the limitations of categorizing complex natural variation 
within and across species. Many traits may also belong to two or 
more categories: for example, dung relocation behaviour is part of 
both the feeding and reproductive trait categories. Furthermore, 
some traits from a particular category may even be used as proxies 
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for traits in other categories; for example, morphological traits, 
such as fused elytra, can be used as a proxy for physiological traits 
related to thermoregulation (see Gallego et al.,  2018). As dis-
cussed above, traits are integrated aspects of an individual that 
perform an array of biological processes with a finite number of 
structures and behaviours. It follows that most, if not all, traits 
perform and participate in several ecosystem processes, so the 
delivery of ecosystem functions by individuals results from the 
synergy and trade-off between several traits (Violle et al., 2007). 
A good example is prothorax volume, a single morphological trait 
that acts as a proxy for muscle volume (in the morphology cate-
gory), which determines walking and flying ability (in movement 
category), and is also involved in dung and soil manipulation and 

during burial (from feeding and reproduction categories), as well as 
in temperature regulation via heat production (within the physio-
logical category) (deCastro-Arrazola et al., 2020; Edmonds, 1972; 
Verdú et al., 2012).

Disentangling the trait-mediated responses of a particular indi-
vidual from the trait-based effects on ecosystem processes of that 
same individual may be difficult. The response of an individual to 
an environmental variable is an organism-wide response involv-
ing several traits, which may lead to trade-offs or synergies in its 
responses to different environmental stressors, and eventually in 
its effects on the ecosystem. As an example, a heat wave can trig-
ger a response in multiple physiological, morphological or pheno-
logical traits, and even in their feeding and reproductive habits. 

F I G U R E  3  Relationships between dung 
beetle traits, responses to environmental 
factors and effects on ecosystem 
functions. Coloured bars identify the 
main types of traits, the environmental 
factors and/or evolutionary drivers to 
which they respond, and the ecosystem 
functions they perform (central, left and 
right columns, respectively). Bar heights 
indicate the number of traits within 
each category, and the width of the links 
between bars indicates the number of 
trait–response (to environmental factors) 
and trait–effect (on ecosystem functions) 
relationships identified during this 
review (see Table 1 and Supplementary 
Tables S1–S3).
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Individuals can adapt their metabolism (Carter & Sheldon, 2020; 
Fleming et al., 2021), enhance heat loss due to evaporative cooling 
under extreme conditions (e.g. Nervo, Roggero, Isaia, Chamberlain, 
et al.,  2021), become crepuscular or nocturnal to avoid the hot-
test time of the day, change their phenology to avoid the hottest 
days of the season (Galante et al., 1991; Mena et al., 1989), or dig 
deeper to avoid extreme surface temperatures. This has conse-
quences for the ecosystem processes affected by individuals, such 
as soil aeration and the depth at which they bury the seeds em-
bedded in the excrement.

Furthermore, a specific trait may simultaneously increase both 
desirable and undesirable ecosystem processes, providing eco-
system services and disservices. A good example are the traits 
involved in dung beetle–parasite interactions. Feeding mode and 
ingested particle size determine which parasites enter the host, 
while burrow depth and, more importantly, antimicrobials in 
brood masses may inhibit parasite use of individuals as hosts and/
or vectors. Individual suitability as either host or vector can be 
also determined by body size and certain characteristics of the 
external surfaces, such as hairiness or the presence of particular 
chemicals used to recognize sexual partners or by phoretic organ-
isms. Furthermore, colonization moment determines the possibil-
ity of interacting with the right infective phase of parasites, while 
movement traits are key features for the potential role of beetle 
individuals as vectors. This indicates the complexity of the func-
tional responses induced by environmental and biotic stressors 
and the subsequent effect they infer on the environment (Slade 
et al., 2017, 2019). The development of experiments for measur-
ing trait responses to environmental stressors (both biotic and 
abiotic), and effects on the ecosystems, should feed upon the 
trait–process relationships identified in this review, based on stan-
dardized measurements of traits (Moretti et al., 2017). It follows 
that a first step would be to develop a handbook of measurement 
protocols particularly tailored for dung beetles, ideally as a col-
laborative process involving the community of dung beetle (func-
tional) ecologists. After this handbook is ready, the next step is to 
compile databases of functionally relevant traits, building on the 
example of Buse et al.  (2018), but gathering individual measure-
ments rather than averages and ratios of trait values per species.

6  |  CONCLUDING REMARKS

Functional ecology, regardless of spatial, temporal or organizational 
scale, should be based on a good understanding of the biological 
meaning of all the variables that are relevant for the studied taxa 
and system. The trait-based framework developed here establishes 
the foundations to answer key ecological questions for dung beetles, 
providing a robust template for studying the important role they play 
in many terrestrial systems, including how variations in climate, soil 
or vegetation, via response traits, may affect their key role as eco-
system engineers, via effect traits. However, working on functional 
ecology should ideally involve measuring functions (either responses 

to environmental stressors, effects on ecosystems, or both), which is 
incredibly challenging in many cases. Many of the trait–environment 
relationships we identified are lacking quantitative experimental 
data, so we highlighted where the main knowledge gaps for future 
research lie (deCastro-Arrazola et al., 2020; Wong et al., 2019). The 
limited and sparse development of functional ecology and the chal-
lenges outlined in this review are not exclusive to dung beetles—a 
particularly well-known group, but can be extended to most animal 
groups (see Moretti et al., 2017). Therefore, we encourage experts 
in other taxa to design-specific frameworks that account for the 
responses and ecological roles of their study organisms. Studies 
performed within the conceptual umbrella of these frameworks 
will aid to the development of a solid trait-based ecology. Attention 
should be paid to the fact that, although the use of traits as prox-
ies for functions can simplify studies, the traits that are measured 
must have clear links to the functions or the responses to the envi-
ronment that are being investigated. Therefore, a first step should 
be to conduct a review such as the one presented here, eventually 
identifying large gaps in the knowledge of the response to particu-
lar stressors or the delivery of some effects. In these cases, further 
empirical work may be needed to identify and characterize potential 
functions and the traits related to them. This may require a stand-
ardization of trait measurements (Moretti et al., 2017), ensuring that 
the observations of trait variations coming from different studies 
can be readily compared. Once such knowledge is available, the links 
between traits, stressors, ecosystem effects and their interactions 
should be tested experimentally to identify cause–effect relation-
ships (Noriega et al.,  2018). We believe that adopting this kind of 
thorough and comprehensive approach will help bridge the current 
gap between the functional ecology of plants and animals, increas-
ing our understanding of the roles that many animal groups play in 
ecosystem functioning and biogeochemical cycles.
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