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A HIGHER ORDER LEVIN-FAĬNLEĬB THEOREM

OLIVIER RAMARÉ, ALISA SEDUNOVA, AND RITIKA SHARMA

Abstract. When restricted to some non-negative multiplicative func-
tion, say f , bounded on primes and that vanishes on non square-free
integers, our result provides us with an asymptotic for

∑
n≤X

f(n)/n

with error term O((logX)κ−h−1+ε) (for any positive ε > 0) as soon as
we have

∑
p≤Q

f(p)(log p)/p = κ logQ + η + O(1/(log 2Q)h) for a non-
negative κ and some non-negative integer h. The method generalizes the
1967-approach of Levin and Făınlĕıb and uses a differential equation.

1. Introduction

In 1908, E. Landau [7], was the first to obtain an asymptotic formula
for the number of integers up to a given number that are sum of two co-
prime squares. He used analytical method, which involves considering the
squareroot of some analytical function and avoiding its pole through Hankel
contour. Later, this procedure was further developed by H. Delange and A.
Selberg allowing them to obtain asymptotic for partial sums of arithmetic
functions whose Dirichlet series can be written in terms of complex powers of
the Riemann ζ-function. This is now often referred to as the Selberg-Delange
method. In [8], B.V. Levin and A.S. Făınlĕıb established the logarithmic
density of the same set by an elementary argument under more general con-
ditions. When combined with the earlier method of E. Wirsing [18], as was
done in [13], this leads to the determination of the natural density as well.
In [17], J.-P. Serre used Landau’s method to examine several other cases and
deployed it to encompass not only the main term but also an asymptotic de-
velopment, leading to a better error term. Extending the Levin and Făınlĕıb
approach in a similar fashion would allow for more general hypotheses as
well. This is the aim of the present paper. To express our results, we take a
non-negative multiplicative function f and, following Levin and Făınlĕıb, we
associate to it the function Λf (n) which is 0 when n is not a prime power
and which is otherwise defined by the formal power expansion:

(1)
∑

k≥0

Λf (p
k)

pks
=

(

∑

k≥1

f(pk) log p

pks

)

/
∑

k≥0

f(pk)

pks
.

We recall some of its properties in Section 2. To handle the uniformity
in our result, we recall that we use f = O∗(g) to mean that |f | ≤ g and
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f = OA,h,κ(g) to mean that |f | ≤ C(A,κ, h)g, where the constant C(A,h, κ)
depends only on the stated parameters. Here is our main theorem.

Theorem 1. Let f be a non-negative multiplicative function. Assume that,

for some integer h ≥ 0, one has

(Hh) ∀Q ≥ 1,
∑

m≤Q

Λf (m)

m
= κ logQ+ η0 +O∗(A/ logh(2Q))

for some constants κ ≥ 0, A and η0. We further assume that |η0| ≤ A. Then

there exist constants C and (ak)1≤k≤h such that, when X ≥ 3, we have

∑

n≤X

f(n)

n
(log n)h+1 = C(logX)κ+h+1

(

1 +
a1

logX
+ . . .+

ah
(logX)h

)

+OA,κ,h

(

(logX)κ(log log(3X))
(h+2)(h+1)

2

)

,

where

C =
1

Γ(κ+ 1)

∏

p≥2

((

1− 1

p

)κ
∑

ν≥0

g(pν)

pν

)

.

We have a same error term for the sum

∑

n≤X

f(n)

n

(

log
X

n

)h+1

.

We can also obtain
∑

n≤X
f(n)
n (log n)k for any k ∈ {0, . . . , h} with an er-

ror term O((log logX)
(h+2)(h+1)

2 /(logX)h+1−k), by summation by parts, but
some additional log logX term may appear in the development when κ is an
integer, which is why we state our result in this manner. The non-negative
assumption is not essential in our method, nor is the fact that f is real valued
(but κ has to be a real number), we may instead assume that

(2)
∑

n≤X

|f(n)| ≪ (logX)κ
∗

for some parameter κ∗ and modify our error term O((logX)κ(log logX)c) to
O((logX)κ

∗

(log logX)c). This is for instance the path chosen, when h = 0
in Theorem 1.1 of the book [5] by H. Iwaniec and E. Kowalski. We did not
try to optimize the power of log log(3X) that appears. It is likely that no
such term should be present in fact, but in practice, when our assumption
holds for h ≥ 1, it holds for any h. Using the result for h + 1 removes this
parasitic factor.

To measure the relative strength our theorem, let us mention that, with
h = 1 for instance and µ is the Moebius function, it gives us a proof
that the estimate

∑

p≤X(log p)/p = logX + c + O(1/ logX) implies that
∑

n≤X µ(n)/n ≪ (log logX)3/ logX. The case h > 1 yields another proof

of the results of A. Kienast in [6].
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A. Granville and D. Koukoulopoulos considered a similar question in [4],
our hypotheses are in some place weaker, as we consider averages of f(p)/p
rather than averages of f(p) and no boundedness condition on f(p) is asked
for, but we require that f is non-negative. However the main difference
truly comes at the methodological level: our proof stays in the realm of real
analysis while Granville and Koukoulopoulos use complex analysis around
the Perron summation formula. The readers may also consult [16, pp. 183–
185] by A. Selberg, [10] by M.R. Murty and N. Saradha, and [9] by P. Moree
and H.J.J. te Riele on related issues.

The proof relies on a recursion on h. It is however easier to assume a more
complete hypothesis.

Recursion Hypothesis (for h). For each ℓ ∈ [0, h + 1], there exists a

polynomial Pℓ of degree ℓ such that

(3)
∑

n≤X

f(n)

n
(log n)ℓ =

(

Pℓ(logX) +O
(

(log logX)
(h+1)(h+2)

2

)

)

(logX)κ.

We show during the proof that we may as well assume a similar hypothesis
with (log(X/n))ℓ rather than (log n)ℓ: this is a consequence of the functional
relation we prove at the beginning of our proof, see (11). The Levin-Făınlĕıb
Theorem gives a proof of this claim when h = 0 (and even better as the
log log(3X) is absent in this theorem). We provide in Section 8 a survey of
the proof.

Notation. We set for typographical simplicity g(n) = f(n)/n. Next, for a
non-negative integer j define

(4) Gj(X) =
∑

n≤X

g(n) logj(X/n), G0(X) = G(X).

For k ≥ 0, we define Hk(logX) = Gk(X).

Acknowledgments. This paper started in 2018 when the first and third
authors were invited by the Indian Statistical Institute of Delhi under Ce-
fipra program 5401-A. It was continued when these authors were visiting
Stockholm in early 2019 and then in July of the same year when both first
and second authors were invited by the Max Planck Institute in Bonn. It was
finalized in 2021 when the first author was invited by the Haussdorf Institut
für Mathematik in Bonn and the second one was invited by the Max Planck
Institute in Bonn. These bodies are to be thanked warmly for providing
suitable conditions without which this piece of work would surely have died
in our drawers.

2. On the function Λf

Let F denotes the formal Dirichlet series of f , namely

F (s) =
∑

n≥1

f(n)

ns
.
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Note that Euler product formula gives

F (s) =
∏

p≥2

(

1 +
∑

k≥1

f(pk)

pks

)

.

On taking the logarithmic derivative of F (s), we find that

−F ′(s)

F (s)
=

∑

p≥2

(

∑

k≥1

f(pk)

pks
log(pk)

)(

1 +
∑

k≥1

f(pk)

pks

)−1

=
∑

p≥2

Zp(s) log p.

Further, expanding the second product in Zp(s) and changing the order of
summation we find that

Zp(s) =
∑

k≥1

kf(pk)

pks

∑

r≥0

(−1)r
∑

ℓ≥0

∑

k1+k2+...+kr=ℓ

f(pk1) · · · f(pkr)
pℓs

=
∑

m≥1

1

pms

(

∑

k+k1+...+kr=m

(−1)rkf(pk)f(pk1) · · · f(pkr)
)

.

Thus,

(5) − F ′(s)

F (s)
=

∑

n≥1

Λf (n)

ns
,

where

(6) Λf (p
m) =

∑

k+k1+...+kr=m

(−1)rkf(pk)f(pk1) · · · f(pkr) log p

and Λf (n) = 0 when n is not a prime power. Note that Λf (p
m) depends

only on the local factor of F (s) at prime p. In particular Λ1(p
m) = Λ(pm).

Moreover, when f(pm) = 1p∈P , we have Λf (p
m) = Λ(pm) · f(pm) (here

1X = 1 if X is true and 0 otherwise). For example, let us select P = {p ≡ 1
(mod 4)}. As mentioned above, the definition of Λf (p

m) depends only on the
local factor at prime p, hence we readily see that Λf (p

m) = Λ(pm) for p ≡ 1
(mod 4) and 0 otherwise. Note that when f is supported on square-free
integers, we get Λf (p

m) = (−1)m−1f(p)m log p.

Lemma 1. Let k, h be two non-negative real numbers. Then for any k ≤ h,

there exists a constant ηk, such that, under assumption (Hh) we have

(A)
∑

n≤Q

Λf (n) log
k n

n
=

κ

k + 1
logk+1Q+ ηk + Ek,h(Q),

where Ek,h(Q) ≪ 1/ logh−k(2Q) for k < h and Eh,h(Q) ≪ log log(3Q).

Proof. Denote the sum on the left hand side of (A) by Sk(Q). Then using
partial summation, we have

Sk(Q) = S0(Q) logk Q− k

∫ Q

1
S0(t) log

k−1 t
dt

t
.
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Further, when k < h, we may apply (Hh) to get

Sk(Q) =
κ

k + 1
logk+1Q+ η0 log

k Q− η0k

∫ Q

1

logk−1 tdt

t

− k

∫ ∞

1

(

S0(t)− κ log t− η0

) logk−1 tdt

t

+O
(

1

logh−k Q
+

∫ ∞

Q

d log t

logh−k+1 t

)

,

whence
Sk(Q) =

κ

k + 1
logk+1Q+ ηk +O(1/ logh−k(2Q))

as announced. Analogous argument gives the result for k = h. �

3. Generalizations of Λf

We will use the next formula several times.

Lemma 2 (Faà di Bruno Formula). We have

dnf(g(x))

dxn
=

∑

m1,m2,··· ,mn≥0,
m1+2m2+···+nmn=n

n!

m1!m2! · · ·mn!
f (m1+m2+···+mn)(x)

n
∏

j=1

(

g(j)(x)

j!

)mj

.

Here is a combinatorial identity, which is an immediate corollary of [14,
Theorem 2.1], itself being a straightforward consequence of the Faà di Bruno
Formula.

Lemma 3. Let F be a function and denote ZF = −F ′/F . We have

F (h+1) = F
∑

∑
i≥1 iki=h+1

(h+ 1)!(−1)
∑

i ki

k1!k2! · · · (1!)k1(2!)k2 · · ·
∏

ki

Z
(i−1)ki
F .

Notation Z
(i−1)ki
F denotes the (i−1)-th derivative multiplied ki times by itself.

Proof. This is an immediate corollary of [14, Theorem 2.1] with F = 1/G
and hence ZF = −ZG. �

When h = 1, this gives F ′′ = F (Z2
F − Z ′

F ). We thus define

(7)
∑

n≥1

Λf,h(n)

ns
= (−1)h

∑

∑
i≥1 iki=h

h!(−1)
∑

i ki

k1!k2! · · · (1!)k1(2!)k2 · · ·
∏

ki

Z
(i−1)ki
F

so that
f logh = f ⋆ Λf,h.

When f = 11, these functions have their origin in the work of A. Selberg [15]
around an elementary proof of the Prime Number Theorem. They have been
generalized as above by E. Bombieri in [1], see also the papers [2] and [3] by
J. Friedlander and H. Iwaniec. Incidentally, Lemma 3 gives a non-recursive
description of the functions Λh = Λ11,h, something that is missing from the
aforementioned works.
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Lemma 4. Let θ1 and θ2 be two functions on the integers that satisfy, for

i ∈ {1, 2},
∑

n≤X

θi(n) = Ci(logX)di +Qi(logX) +O(1/(log 2X)h−di)

where di ≥ 1, Qi is a polynomial of degree at most di− 1 and h is some fixed

parameter. Then

∑

mn≤X

θ1(m)θ2(n) = C1C2
d1!d2!

(d1 + d2)!
(logX)d1+d2 +Q(logX)

+O
(

1

(log 2X)h−d1−d2

)

,

where Q is a polynomial of degree at most d1 + d2 − 1.

Proof. We use the Dirichlet Hyperbola Formula. We split the variables at√
X to get the announced error term. In order to compute the main term,

it is enough to consider

S =
∑

n≤X

θ1(n)C2

(

log
X

n

)d2

.

An integration by parts gives us

S = C2

∑

n≤X

θ1(n)d2

∫ X/n

1
(log t)d2−1dt

t

= C2d2

∫ X

1

∑

n≤X/t

θ1(n)(log t)
d2−1dt

t
,

so that the principal part of the main term is given by

M = C1C2d2

∫ X

1

(

log
X

t

)d1

(log t)d2−1dt

t

= C1C2d2(logX)d1+d2

∫ 1

0
(1− u)d1ud2−1du

= C1C2
d1!d2!

(d1 + d2)!
(logX)d1+d2

by the classical evaluation of the Euler beta-function. �

On iterating the previous lemma, we get the next one.

Lemma 5. Let (θi)i≤r be r functions on the integers that satisfy, for i ∈
{1, · · · , r},

∑

n≤X

θi(n) = Ci(logX)di +Qi(logX) +O(1/(log 2X)h−di),
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where di ≥ 1, Qi is a polynomial of degree at most di− 1 and h is some fixed

parameter. Then

∑

m1···mr≤X

∏

i≤r

θi(mi) =
∏

i≤r

Ci
d1! · · · dr!

(d1 + · · ·+ dr)!
(logX)d1+···+dr +Q(logX)

+O
(

1

(log 2X)h−d1−···−dr

)

,

where Q is a polynomial of degree at most d1 + d2 + · · · + dr − 1.

Lemma 6. Under (Hh), we have

∑

n≤X

Λf,k(n)

n
=

κ(κ+ 1) · · · (κ+ k − 1)

k!
(logX)k

+Q(logX) +O
(

log log(3X)

(log 2X)h+1−k

)

.

where Q is polynomial of degree at most k − 1.

Proof. Lemma 5 tells us that the sum reads

(8)
∑

n≤X

Λf,k(n)

n
=

∑

∑
i≥1 iki=k

k!

k1!k2! · · · (1!)k1(2!)k2 · · ·
∏

i

κkii!ki

iki
(logX)k

k!

+Q(logX) +O
(

log log(3X)

(log 2X)h+1−k

)

.

The main term simplifies into

∑

∑
i≥1 iki=k

1

k1!k2! · · ·
∏

i

κki

iki
(logX)k.

The i-th derivative of g(x) = −κ log(1 − x) is (i − 1)!κ/(1 − x)i so that

κ/i is also g(i)(0)/i!. The Faà di Bruno Formula for the k-th derivative of
exp(g(x)) = (1− x)−κ tells us that

∑

∑
i≥1 iki=k

k!

k1!k2! · · ·
∏

i

κki

(i(1 − x)i)ki
=

κ(κ+ 1) · · · (κ+ k − 1)

(1− x)κ+k
.

We evaluate this equality at x = 0. �

4. Auxiliary results

Lemma 7. For k ≥ 1 we have Gk(X) = k

∫ X

1
Gk−1(t)

dt

t
.

Proof. Notice that by a simple change of variable t = log(u/n) we have

1

k

(

log
X

n

)k

=

∫ log(X/n)

0
tk−1dt =

∫ X

n

(

log
u

n

)k−1du

u
.
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Using the above together with the definition of Gk we directly compute

∫ X

1
Gk−1(t)

dt

t
=

∑

n≤X

g(n)

∫ X

n

(

log
t

n

)k−1dt

t

=
1

k

∑

n≤X

g(n)

(

log
X

n

)k

=
Gk(X)

k

as claimed in the lemma. �

Here is a direct consequence of the previous lemma, on recalling that
Hk(logX) = Gk(X).

Lemma 8. When ℓ ∈ {0, . . . , ℓ}, we have H
(ℓ)
k (u) =

k!

(k − ℓ)!
Gk−ℓ(e

u).

Lemma 9. When k ≥ 0, we have
∑

n≤eu

g(n)(log n)k =
uk+1

k!
(Hk(u)/u)

(k).

Proof. This lemma is true for k = 0. For k = 1, we find that

u2(H1(u)/u)
(1) = uH ′

1(u)−H1(u) =
∑

n≤eu

g(n)
(

u− (u− log n)
)

as required. For general k, write

∑

n≤eu

g(n)(log n)k =
∑

n≤eu

g(n)
(

u− log
eu

n

)k

=
∑

0≤j≤k

(

k

j

)

uj(−1)k−jGk−j(e
u)

=
∑

0≤j≤k

(

k

j

)

uj(−1)k−j (k − j)!

k!
H

(j)
k (u).

We next notice that

dℓ

duℓ
1

u
=

(−1)ℓℓ!

uℓ+1

so that

∑

n≤eu

g(n)(log n)k =
uk+1

k!

∑

0≤j≤k

(

k

j

)

(−1)k−j (k − j)!

uk−j+1
H

(j)
k (u)

=
uk+1

k!
(Hk(u)/u)

(k)

as announced. �
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5. Approximate solutions of an Euler differential equation

In [11] and building on D. Popa and G. Rasa [12], Popa and Pugna studied
perturbation of an Euler differential equation, say

(9) ury(r)(u) +
∑

0≤i≤r−1

biu
iy(i)(u)

for a function y that is in Cr(I) for some interval I ⊂ [0,∞). On looking
more closely at their work which goes by iteration, one sees that the last
derivative does not need to be continuous provided one may integrate, and
so may be simply absolutely continuous on every subinterval of I. We denote
this class by Cr−(I).

We next need a second modification of their work. For any c ∈ I, any
complex number α and any suitable function ϕ, they consider

Φ∗
α,c(ϕ)(x) = xℜα

∣

∣

∣

∣

∫ x

c
u−ℜαϕ(u)

du

u

∣

∣

∣

∣

.

Please notice that Popa and Pugna forgot this change of variable that is
necessary between their Theorems 2.1 and 2.3. This explains our notation
Φ∗ rather than the Φ that these two authors have. We have added the index
c to their notation and we may in fact take c = ∞ (and reverse the order
of integration as usual). We select r parameters c1, . . . , cr, some of them
maybe be infinite.

Following Popa and Pugna, we consider the root λ1, . . . , λr of the equation

(10) b0 +
∑

1≤s≤r

λ(λ− 1) · · · (λ− s+ 1)bs = 0.

We also select a function S in Cr(I). With these notations, here is the
version of [11, Theorem 2.3] that we shall use.

Lemma 10. Let ϕ : I → [0,∞) be such that Φ∗
λr ,cr

◦ · · · ◦ Φ∗
λ1,c1

(ϕ) exists

and is finite. Then for every y ∈ Cr−(I) satisfying

∀u ∈ I,

∣

∣

∣

∣

ury(r)(u) +
∑

0≤i≤r−1

biu
iy(i)(u)− S(u)

∣

∣

∣

∣

≤ ϕ(u)

there exists a solution y0 of

ury(r)(u) +
∑

0≤i≤r−1

biu
iy(i)(u) = 0

with the property

∀u ∈ I, |y(u)− y0(u)| ≤ Φ∗
λr ,cr ◦ · · · ◦ Φ

∗
λ1,c1(ϕ)(u).
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6. A differential equation

On using Lemma 3 and 6, we get

∑

n≤X

g(n)(log n)h+1 =
∑

n≤X

g(n)

(

κ(κ+ 1) · · · (κ+ h)

(h+ 1)!

(

log
X

n

)h+1

(11)

+Q(log(X/n)) +O(log log(3X))

)

.

hence, by our recursion hypothesis in h, we get

(12)
∑

n≤X

g(n)(log n)h+1 =
κ(κ + 1) · · · (κ+ h)

(h+ 1)!
Gh+1(X)

+ P (logX)(logX)κ +O((logX)κ(log logX)
(h−1)h

2 )

for some polynomial P of degree at most h. Here we have used the recursion
hypothesis with a (logX/n)k. It is precisely Equation (12) that allows us to
switch easily from one form of our hypothesis to the other. When h = 1, so
h− 1 = 0, we do not have power of log logX.

We may express the left-hand side by Lemma 9, getting our first funda-
mental formula:

(13) uh+1

(

Hh+1(u)

u

)(h+1)

=
(κ+ h)!

(κ − 1)!

Hh+1(u)

u

+ (h+ 1)!P (u)uκ−1 +O(uκ−1(log u)
h(h−1)

2 ),

where we use the shortcut

(κ+ h)!

(κ+ h− j)!
= (κ+ h) · · · (κ+ h− j + 1).

This is an Euler differential equation. As mentioned before, it may be re-
duced to a linear differential equation with constant coefficients with the
change of variables u = ev, but we shall skip this step and use an already
made result. It is technically clearer to first extract a ’simplifying term’ and
this is our first step.

Simplifying the equation. Since we may assume that the polynomial P
has no constant coefficient, we set

(h+ 1)!P (u) =
∑

1≤s≤h

qsu
s.

We define, for 0 ≤ s ≤ h− 1, the real number as by
(

(κ+ s)!

(κ− 1)!
− (κ+ h)!

(κ− 1)!

)

as = qs−1.
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We then check that K(u) =
∑

0≤s≤s−1 asu
s+κ satisfies

uh+1K(h+1)(u) =
(κ+ h)!

(κ − 1)!
K(u) + (h+ 1)!P (u)uκ−1.

Note that we could have added any monomial ahu
h+κ to K(u).

From the approximate differential equation to the exact one. We
define W (u) = Hh+1(u)u

−1 −K(u). This function satisfies

uh+1W (h+1)(u) =
(κ+ h)!

(κ− 1)!
W (u) +O(uκ−1(log u)

h(h−1)
2 ).

We are in good conditions to use Lemma 10. At the beginning, we should
consider the roots λ1 = κ+ h, · · · , λr of the equation

λ(λ− 1) · · · (λ− h) = κ(κ+ 1) · · · (κ+ h)

that are such that λi > κ − 1. Set ϕ(u) = Cuκ−1(log 2u)
h(h−1)

2 for a large
enough constant C, so that

∣

∣

∣

∣

uh+1W (h+1)(u)− (κ+ h)!

(κ− 1)!
W (u)

∣

∣

∣

∣

≤ ϕ(u).

We find that

Φ∗
λi,ci(ϕ)(u) = Cuℜλi

∣

∣

∣

∣

∫ u

ci

t(κ−1−ℜλi)u log(2t)
h(h−1)

2 dt

∣

∣

∣

∣

.

When κ−ℜλi > 0, we select ci = 1 and get that Φ∗
λi,ci

(ϕ)(u) ≪ uκ−1 log(2u).
When κ− ℜλi < 0, we select ci = ∞ and get a same result. There remains
the case κ = ℜλi where we select ci = 1 and get a further power of log u.
By Lemma 10, there exist parameters C1, · · · , Cr such that

∣

∣

∣
W (u)−

∑

1≤s≤r

Csu
λs

∣

∣

∣
≤ uκ−1(log 2u)

h(h+1)
2 .

At this level, we still have not proved that the relevant roots λs that have a
non-zero coefficient Cs are of the form κ+ h− ℓ.

From W to Hh+1. The determination of W via (6) goes to H
(h+1)
h+1 by (6)

and the definition W (u) = Hh+1(u)u
−1 −K(u). We thus obtain that

∑

n≤X

g(n)(log n)h+1 =
∑

i

Ci(logX)θi +O
(

(logX)κ(log log(3X))
h(h+1)

2

)

where the sequence (θi) is the union of the one of λs and of κ + h, κ + h −
1, . . . , κ, coming from K(u). By our functional equation (12), we have a
similar development when we replace (log n)h+1 by (logX/n)h+1.
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7. Ruling out the parasiting solutions

When h = 1, the two roots are κ + 1 and −κ. Lemma 10 then implies
that we can find a and b such that

|W (u)− auκ+1 − bu−κ| ≪ uκ−1 log(2u).

This reduces to |W (u) − auκ+h| ≪ uκ−1 log(2u) when κ ≥ 1/2. But what
happens when κ < 1/2 ?

A stability remark. Assume we have a non-negative multiplicative func-
tion f that satisfies the assumptions of our Theorem 1. Assume further we
have distinct exponents κ0 = κ, κ1, . . . , κr ≥ κ such that

∑

n≤X

f(n)

n

(

log
X

n

)h+1

=
∑

0≤s≤r

Cs(logX)h+1+κs+O((logX)κ(log log(3X))C )

for some non-zero constants C0, . . . , Cr and C ≥ 0. Select a positive inte-
ger K and consider the function τK that counts the number of K-tuples of
divisors, so that τ2 is the usual divisor function. Next we consider the multi-
plicative function f ⋆τK that equally satisfies the assumptions of Theorem 1,
though with κ + K instead of κ. By the Dirichlet Hyperbola Formula, we
find that

∑

n≤X

(f ⋆ τK)(n)

n

(

log
X

n

)h+1

=
∑

0≤s≤r

∑

ℓ≥0,
h+1+K+κs−ℓ>κ−1

C ′
s,ℓ(logX)h+1+K+κs−ℓ

+O((logX)K+κ(log log(3X))C )

for some constants C ′
0, . . . , C

′
r. This tells us that the set of exponents for

f ⋆ τK is κ0 +K, . . . , κr +K. Let κs denotes the largest, if it exists, of the
κi’s that is not of the form κ + h minus some integer. Then the coefficient
C ′
s,0 comes from the main term of

Cs

∑

n≤X

τK(n)

n

(

log
X

n

)h+1+K+κs

and is thus a non-zero multiple of Cs.

General case. In general the discussion of previous subsection applies: we
only need to consider the roots of λ of

Rh(λ, κ) = λ(λ− 1) · · · (λ− h)− κ(κ + 1) · · · (κ+ h)

that are such that Rh(λ+K,κ+K) = 0 when K is a positive integer. This
leads to a polynomial in K of degree h + 1 that vanishes at these points
(λ, κ). The coefficient of Kh is

(h+ 1)λ− (1 + 2 + . . .+ h− 1)− (h+ 1)(κ+ h) + (1 + 2 + . . .+ h− 1)

and since it vanishes, we must have λ = κ + h. In short: only integer
translates of κ may appear, and this concludes the proof of Theorem 1.
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8. Technical remarks

The Levin-Făınlĕıb’s beginning, namely the link between
∑

n≤x g(n) log n

and
∑

n≤x g(n) where g(n) = f(n)/n, has had many application, so it is
worse providing a sketch of the present method. When h = 1 and f is re-
stricted to square-free integers, our method relies on the identity (as noticed
immediately after Lemma 3):

∑

n≤X

f(n)

n
(log n)2 =

∑

m≤X

f(m)

m
(

∑

p1p2≤X/m

f(p1)f(p2)(log p1)(log p2)

p1p2
+

∑

p≤X/m

f(p)(log p)2

p

)

+ error.

A similar equation could be reached by noticing that, by the Selberg Formula
log2 = 11 ⋆(Λ log +Λ ⋆ Λ), we have

∑

n≤X

f(n)

n
(log n)2 =

∑

m≤X

f(m)

m
(

∑

p1p2≤X/m,
(p1p2,m)=1

f(p1p2)(log p1)(log p2)

p1p2
+

∑

p≤X/m,
(p,m)=1

f(p)(log p)2

p

)

.

Our usage of Λf thus avoids the coprimality conditions that soon become a
true combinatorial hurdles. Then by Lemma 5 (or Lemma 6), we approx-
imate the sum of the two sums over primes above by κ(κ + 1)(log Y )2 +
c(log Y ) +O(log log 3Y ) and we notice that

(log n)2 =
(

logX − log
X

n

)2
= (logX)2 − 2(logX) log

X

n
+

(

log
X

n

)2
.

This gives us

(logX)2G0(X)− 2(logX)G1(X) +G2(X) = κ(κ+ 1)G2(X)

+O(G0(X) log log 3X).

We then convert this in an approximate differential equation in H2 of Euler’s
type, i.e. it can be reduced to an approximate linear differential equation,
for which one can prove deformation results.

References

[1] E. Bombieri. The asymptotic sieve. Rend., Accad. Naz. XL, V. Ser. 1-2, pages 243–
269, 1976.

[2] J. Friedlander and H. Iwaniec. On Bombieri’s asymptotic sieve. Ann. Sc. Norm. Sup.
(Pisa), 5:719–756, 1978.

[3] J. Friedlander and H. Iwaniec. Bombieri’s sieve. In B. C. e. e. a. Berndt, editor, Ana-
lytic number theory. Vol. 1. Proceedings of a conference in honor of Heini Halberstam,
May 16-20, 1995, Urbana, IL, USA. Boston, MA, volume 138 of Birkhäuser. Prog.
Math., pages 411–430, 1996.



14 OLIVIER RAMARÉ, ALISA SEDUNOVA, AND RITIKA SHARMA

[4] A. Granville and D. Koukoulopoulos. Beyond the LSD method for the partial sums
of multiplicative functions. Ramanujan J., 49(2):287–319, 2019.

[5] H. Iwaniec and E. Kowalski. Analytic number theory. American Mathematical Soci-
ety Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
xii+615 pp.

[6] A. Kienast. Über die Äquivalenz zweier Ergebnisse der analytischen Zahlentheorie.
Mathematische Annalen, 95:427–445, 1926. 10.1007/BF01206619.

[7] E. Landau. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der
Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate. Arch.
der Math. u. Phys. (3), 13:305–312, 1908.
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