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Abstract
In this paper,we consider a problemof Lang about finite-
ness of torsion points on plane rational curves, and prove
some results towards a matrix analogue of this prob-
lem, including a full analogue for 2 × 2matrices defined
over ℂ.
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1 INTRODUCTION AND STATEMENTS OFMAIN RESULTS

1.1 Motivation

Pivotal work of Lang made it clear that the existence of multiplicative relations between coordi-
nates of points on algebraic curves in𝔾𝑛

𝑚 = (ℂ ⧵ {0})𝑛 is a very rare event, whichmay occur only if
the curve is ‘special’. In particular, the celebrated result conjectured by Lang [9, 13] in the 1960s and
proved by Ihara, Serre and Tate asserts the finiteness of the so-called torsion points on curves, that
is, points with all coordinates roots of unity. For the case of plane curves, Beukers and Smyth [2,
Section 4.1] give a uniform bound for the number of such points, and Corvaja and Zannier [7] give
an upper bound for the maximal order of torsion points on the curve. More precisely, one has the
following result [2, Section 4.1]:

Theorem A. An algebraic curve 𝐹(𝑦1, 𝑦2) = 0, where 𝐹 ∈ ℂ[𝑦1, 𝑦2], contains at most 11(deg 𝐹)2
torsion points unless 𝐹 has a factor of the form 𝑦𝑖

1
− 𝜌𝑦

𝑗
2
or 𝑦𝑖

1
𝑦
𝑗
2
− 𝜌 for some non-negative integers

𝑖, 𝑗 not both zero and some root of unity 𝜌.

TheoremA in the case of plane rational curves can be reformulated as follows: givenmultiplica-
tively independent rational functions 𝑓, g ∈ ℂ(𝑥) (see below for the precise definition), there are
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1553

at most

11(deg 𝑓 + deg g)2 min(deg 𝑓, deg g) ⩽ 22(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

elements 𝛼 ∈ ℂ such that both 𝑓(𝛼) and g(𝛼) are roots of unity, see also the proof of [11, Lemma
2.2]. This has been extended to a finiteness result of elements 𝛼 ∈ ℂ such that |𝑓(𝛼)| = |g(𝛼)| = 1,
first by Corvaja, Masser and Zannier [5] for 𝑓(𝑥) = 𝑥 and g ∈ ℂ[𝑥], and later by Pakovich and
Shparlinski [12] for the general case, improving also the bound above for genus zero curves. More
precisely, we have the following result [12, Theorem 2.2]:

Theorem B. Let 𝑓, g ∈ ℂ(𝑥). Then one has

#{𝛼 ∈ ℂ ∶ |𝑓(𝛼)| = |g(𝛼)| = 1} ⩽ (deg 𝑓 + deg g)2,

unless

𝑓 = 𝑓1 ◦ℎ and g = g1 ◦ℎ

for some quotients of Blaschke products 𝑓1 and 𝑓2 and some rational function ℎ.

As remarked in [12] (see the comment after Theorem 2.2 in [12]), if 𝑓 and g are polynomi-
als, then the conclusion of Theorem B holds, unless the polynomials 𝑓 and g are multiplica-
tively dependent.
In this note, we aim at obtaining an analogue of Theorem A (for plane rational curves) for

matrix polynomials.
Notation and conventions: We now set the following notation, which remains fixed for the

remainder of this paper:

∙ For 𝑟 ⩾ 1, M𝑟(ℂ) is the set of all 𝑟 × 𝑟 matrices with entries in ℂ, GL𝑟(ℂ) the set of invertible
matrices, and SL𝑟(ℂ) the set of matrices of determinant one.

∙ 𝐼 ∈ M𝑟(ℂ) is the identity matrix.
∙ We use 0 for both the zero scalar and the zero matrix, which shall be clear from the context.
∙ By a scalar matrix we mean a scalar multiple of the identity 𝐼, that is, 𝜆𝐼 for some 𝜆 ∈ ℂ.
∙ 𝑥, 𝑦1, 𝑦2 are “scalar” variables, that is, we apply them at elements 𝜆 ∈ ℂ. We reserve 𝑍, 𝑍1, 𝑍2
for “matrix” variables, that is, we apply them at matrices 𝐴 ∈ M𝑟(ℂ).
We also write 𝑥𝐼 for the multiplication of the variable 𝑥 with the identity matrix 𝐼.

∙ 𝑓, g ∈ M𝑟(ℂ)[𝑍] are matrix polynomials with coefficients in M𝑟(ℂ), that is, polynomials of the
form

𝐶𝑑𝑍
𝑑 +⋯ + 𝐶1𝑍 + 𝐶0, 𝐶𝑖 ∈ M𝑟(ℂ), 𝑖 = 0, … , 𝑑,

for some 𝑑 ⩾ 1 with 𝐶𝑑 ≠ 0.
∙ For 𝐴 ∈ M𝑟(ℂ), we write 𝐴𝑇 for the transpose of 𝐴.
∙ For 𝐴 ∈ M𝑟(ℂ), det(𝐴) is the determinant of the matrix 𝐴.
∙ 𝐴 ∈ GL𝑟(ℂ) is called torsion matrix if 𝐴𝑛 = 𝐼 for some 𝑛 ⩾ 1. A pair of matrices (𝐴, 𝐵) is called
a torsion point in GL𝑟(ℂ)2 if both matrices 𝐴 and 𝐵 are torsion.
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1554 OSTAFE

We say that two matrices 𝐴, 𝐵 ∈ M𝑟(ℂ) are conjugate if there exists an invertible matrix 𝑉 ∈

M𝑟(ℂ) such that

𝐴 = 𝑉𝐵𝑉−1.

Clearly, two conjugate matrices have the same set of eigenvalues with the same multiplicities.
We say that two algebraic functions ℎ1, ℎ2 ∈ ℂ(𝑥) are multiplicatively dependent if there is a

non-zero vector (𝑘1, 𝑘2) ∈ ℤ2 such that

ℎ1(𝑥)
𝑘1ℎ2(𝑥)

𝑘2 = 1.

Otherwise they are calledmultiplicatively independent.
As a direct consequence of Theorem B, one already has an immediate result for matrix poly-

nomials 𝑓, g ∈ M𝑟(ℂ)[𝑍] such that all the eigenvalues of 𝑓(𝜆𝐼) and g(𝜆𝐼), 𝜆 ∈ ℂ, are of absolute
value one. More precisely, one has:

Corollary 1.1. Let 𝑓, g ∈ M𝑟(ℂ)[𝑍] be such that det(𝑓(𝑥𝐼)) and det(g(𝑥𝐼)) are multiplicatively
independent in ℂ(𝑥). Then there are at most

𝑟2(deg 𝑓 + deg g)2

elements 𝜆 ∈ ℂ such that 𝑓(𝜆𝐼) and g(𝜆𝐼) satisfy

| det(𝑓(𝜆𝐼))| = | det(g(𝜆𝐼))| = 1.

In particular, there are at most finitely many elements 𝜆 ∈ ℂ such that all eigenvalues of 𝑓(𝜆𝐼) and
g(𝜆𝐼) are of absolute value one.

Remark 1.2. The condition that det(𝑓(𝑥𝐼)) and det(g(𝑥𝐼)) aremultiplicatively independent inℂ(𝑥)
in Corollary 1.1 can be reformulated as follows: there is no non-zero vector (𝑘1, 𝑘2) ∈ ℤ2 such that

𝑓(𝑥𝐼)𝑘1g(𝑥𝐼)𝑘2 ∈ SL𝑟(ℂ).

Indeed, det(𝑓(𝑥𝐼)) and det(g(𝑥𝐼)) are multiplicatively independent in ℂ(𝑥) if and only if there is
no non-zero vector (𝑘1, 𝑘2) ∈ ℤ2 such that

det(𝑓(𝑥𝐼))𝑘1 det(g(𝑥𝐼))𝑘2 = det
(
𝑓(𝑥𝐼)𝑘1g(𝑥𝐼)𝑘2

)
= 1,

which implies the above condition.

We also note that if 𝑓, g ∈ ℂ[𝑍], then for any matrix 𝐴 ∈ M𝑟(ℂ), by the spectral theorem on
eigenvalues, the eigenvalues of 𝑓(𝐴) are 𝑓(𝜆𝑖), 𝑖 = 1, … , 𝑟, where 𝜆1, … , 𝜆𝑟 are the eigenvalues of
𝐴, and similarly for g . Thus, if 𝑓(𝐴)𝑛 = 𝐼 for some 𝑛, then all 𝑓(𝜆𝑖), 𝑖 = 1, … , 𝑟, are roots of unity,
and similarly for g . We thus reduce the problem to the classical Lang problem, that is, TheoremA.
Similarly, if all eigenvalues of𝑓(𝐴) and g(𝐴) are of absolute value one, thenwe reduce the problem
to Theorem B.
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1555

If 𝑓, g ∈ M𝑟(ℂ)[𝑍]with coefficients 𝐶𝑖 = 𝑐𝑖𝐼, 𝑖 = 1, … , deg 𝑓, and similarly for g , then we are in
the case above, that is, 𝑓 ∈ ℂ[𝑍] is given by

𝑓(𝑍) =

deg 𝑓∑
𝑖=0

𝑐𝑖𝑍
𝑖,

and similarly for g , and thus the discussion above applies, again.
TheoremA is also intimately related to the question of giving uniform bounds for the degree of

gcd(𝑓𝑛 − 1, g𝑚 − 1), 𝑛,𝑚 ⩾ 1, for some polynomials 𝑓, g ∈ ℂ[𝑥], which was initially considered
by Ailon and Rudnick [1] and later in [11] and further extended in several ways by other authors. It
is worth mentioning that matrices have already been considered in this context in [1], that is, the
authors give results for gcd(𝐴𝑛 − 𝐼), 𝑛 ⩾ 1, for a matrix 𝐴 defined over ℤ, cyclotomic extensions
or ℂ[𝑇] (here, by the greatest common divisor of a matrix we mean the greatest common divisor
of all entries of the matrix). Moreover, in [6], Corvaja, Rudnick and Zannier study the growth of
the order of matrices in reduction modulo integers 𝑁 ⩾ 1 as 𝑁 goes to infinity.
We note that the finiteness result in Theorem A has been extended to higher-order multiplica-

tive relations of points on curves in 𝔾𝑛
𝑚 defined over ℚ by Bombieri, Masser and Zannier [3], and

then further generalised in [4, 10].
We conclude this section with a rather vague question towards obtaining a full matrix analogue

of Theorem A for torsion points on plane curves.

Question 1.3. Let 𝐹 ∈ M𝑟(ℂ)[𝑍1, 𝑍2]. Under what conditions on 𝐹 are there, up to conjugacy,
finitely many torsion points (𝐴1, 𝐴2) ∈ GL𝑟(ℂ)

2 such that 𝐹(𝐴1, 𝐴2) = 0?

In this paper, we give an answer for the 2 × 2matrix analogue of TheoremA in the case of plane
rational curves.

1.2 Main results

Informally, given matrix polynomials 𝑓, g ∈ M𝑟(ℂ)[𝑍], we would like to have a finiteness result
for the set ofmatrices𝐴 ∈ M𝑟(ℂ), such that 𝑓(𝐴) and g(𝐴) are ‘roots’ of the identitymatrix. In this
paper, we are able to prove this in any dimension 𝑟 for matrices 𝐴 ∈ M𝑟(ℂ) that commute with
the coefficients of both 𝑓 and g , as well as for arbitrary matrices 𝐴 ∈ M2(ℂ) in dimension two.
It is clear that, in the case of matrices, one cannot expect a finiteness result as in Theorem A.

Indeed, let 𝑓 have the coefficients 𝑐𝑖𝐼, 𝑐𝑖 ∈ ℂ, 𝑖 = 0, … , deg 𝑓, and let 𝐴 ∈ M𝑟(ℂ) be such that
𝑓(𝐴)𝑛 = 𝐼 for some 𝑛. Then anymatrix conjugate to𝐴 is also a solution to𝑓(𝑍)𝑛 = 𝐼, and similarly
for g . Thus, one can only expect a finiteness result up to conjugacy.
Our first result gives an answer towards Lang’s problem for matrices which commute with the

coefficients of the polynomials 𝑓 and g . More precisely, we have:

Theorem 1.4. Let 𝑓, g ∈ M𝑟(ℂ)[𝑍] be such that any eigenvalue of 𝑓(𝑥𝐼) and any eigenvalue of
g(𝑥𝐼) are multiplicatively independent functions in ℂ(𝑥). Then, up to conjugacy, there are at most

2
(
22𝑟5(deg 𝑓 + deg g)(deg 𝑓 ⋅ deg g)

)𝑟
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1556 OSTAFE

matrices 𝐴 ∈ M𝑟(ℂ) which commute with the coefficients of 𝑓 and g , such that (𝑓(𝐴), g(𝐴)) is a
torsion point in GL𝑟(ℂ)2.

The proof reduces to considering scalar specialisations, see Lemma 2.2 (in Section 2.2), and thus
relies on Theorem A above.
As an example, one can consider all coefficients of 𝑓 and g to bematrices inℂ[𝐵] for some fixed

𝐵 ∈ M𝑟(ℂ). Then Theorem 1.4 gives finiteness, up to conjugacy, of the set of matrices 𝐴 ∈ M𝑟(ℂ)

which commute with 𝐵, such that (𝑓(𝐴), g(𝐴)) is a torsion point.
The main result of the paper is a full analogue of Lang’s result (in the case of plane rational

curves) for 2 × 2 complex matrices. To state our result, we introduce the following notation and
definition: for 𝑓 ∈ M2(ℂ)[𝑍], we define the set

𝑓 = {det(𝑓(𝑥𝐼)), 𝜇𝑖(𝑥), 𝑖 = 1, … , 𝑟}, (1.1)

where 𝜇𝑖(𝑥), 𝑖 = 1, … , 𝑟, are the eigenvalues of 𝑓(𝑥𝐼) in ℂ(𝑥).

Definition 1.5. We say that two polynomials 𝑓, g ∈ M2(ℂ)[𝑍] are spectrally multiplicatively inde-
pendent if for any pair (𝛼, 𝛽) ∈ 𝑓 × g , where 𝑓 and g are defined by (1.1), 𝛼 and 𝛽 are multi-
plicatively independent.

Remark 1.6. We note that any eigenvalue 𝜇𝑖(𝑥) of 𝑓(𝑥𝐼) being multiplicatively independent with
any eigenvalue 𝜂𝑗(𝑥) of g(𝑥𝐼) would not necessarily imply that det(𝑓(𝑥𝐼)) is multiplicatively
independent with all 𝜂𝑗(𝑥), 𝑗 = 1,… , 𝑟, or that det(𝑓(𝑥𝐼)) is multiplicatively independent with
det(g(𝑥𝐼)). We need the latter conditions to apply Corollary 1.1 or Lemma 2.5 (see Section 2.2) in
the proof of our main result, Theorem 1.7 below, whence the need to add det(𝑓(𝑥𝐼)) =

∏𝑟
𝑖=1 𝜇𝑖(𝑥)

to the set 𝑓 .
For example, if

𝑓(𝑍) = 𝑍2 +

(
1 0

0 −1

)
𝑍 +

(
0 1

0 0

)

and

g(𝑍) = 𝑍2 +

(
0 0

1 −1

)
,

then 𝜇1(𝑥) = 𝑥(𝑥 + 1), 𝜇2(𝑥) = 𝑥(𝑥 − 1), 𝜂1(𝑥) = 𝑥2 and 𝜂2(𝑥) = (𝑥 − 1)(𝑥 + 1), and thus 𝜇1𝜇2 =
𝜂1𝜂2 = 𝑥2(𝑥2 − 1).

We have the following:

Theorem 1.7. Let 𝑓, g ∈ M2(ℂ)[𝑍] be spectrally multiplicatively independent and such that 𝑓(𝑥𝐼)
and g(𝑥𝐼) are non-singular. Then, up to conjugacy, there are at most

225(deg 𝑓 + deg g)2(deg 𝑓 ⋅ deg g)2

matrices 𝐴 ∈ M2(ℂ) such that (𝑓(𝐴), g(𝐴)) is a torsion point in GL2(ℂ)2.
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1557

The proof of this result is based on [8, Theorem 1] (see Section 2.3), coupled with Corollary 1.1
above, Lemmas 2.2 and 2.5 (see Section 2.2).

Remark 1.8. We note that to ensure that 𝑓(𝑥𝐼) and g(𝑥𝐼) are non-singular, it is enough to assume,
for example, that the leading matrix coefficients of 𝑓 and g are non-singular matrices.
We expect that the spectral multiplicative independence condition in Theorem 1.7 holds for the

overwhelming majority of pairs of matrix polynomials 𝑓 and g .
We also remark that, if all the eigenvalues of 𝑓(𝑥𝐼) and g(𝑥𝐼) are multiplicatively independent

functions in ℂ(𝑥), then the spectral multiplicative independence condition is satisfied. For exam-
ple, let

𝑓(𝑍) = 𝑍𝑑 +

(
𝑎1 0

𝑎2 𝑎3

)
and g(𝑍) = 𝑍𝑒 +

(
𝑏1 𝑏2
0 𝑏3

)

be such that 𝑎1, 𝑎3, 𝑏1, 𝑏3 ∈ ℂ∗ are multiplicatively independent. The eigenvalues of 𝑓(𝑥𝐼) are
𝑥𝑑 + 𝑎𝑖 , 𝑖 = 1, 3, and similarly the eigenvalues of g(𝑥𝐼) are 𝑥𝑒 + 𝑏𝑖 , 𝑖 = 1, 3. Since 𝑎1, 𝑎3, 𝑏1, 𝑏3 ∈
ℂ∗ are multiplicatively independent, all conditions of Theorem 1.7 are satisfied.

We obtain the following consequence of Theorem 1.7.

Corollary 1.9. Let 𝐹(𝑍1, 𝑍2) = 𝑍1 − 𝑍2 − 𝐶 ∈ M2(ℂ)[𝑍1, 𝑍2] be such that 𝐶 is non-singular. Then,
up to conjugacy, there are at most 227 torsion points (𝐴1, 𝐴2) ∈ GL2(ℂ)

2 such that 𝐹(𝐴1, 𝐴2) = 0.

Remark 1.10. We note that indeed Corollary 1.9 is not necessarily true if det(𝐶) = 0. For example,
let

𝐹(𝑍1, 𝑍2) = 𝑍1 − 𝑍2 −

(
0 1

0 0

)
.

For any primitive 𝑛th root of unity 𝜆, where 𝑛 ⩾ 2, the point

((
𝜆 0

0 1

)
,

(
𝜆 −1

0 1

))

is torsion of order 𝑛. Indeed, this follows immediately since

(
𝜆 −1

0 1

)𝑛

=

(
𝜆𝑛 −(

∑𝑛−1
𝑖=0 𝜆𝑖)

0 1

)
.

Therefore, we have infinitely many such matrices (which are not conjugate) when 𝜆 runs over all
primitive 𝑛th roots of unity, 𝑛 ⩾ 2.

In Theorems 1.4 and 1.7, we look at matrices 𝐴 ∈ M𝑟(ℂ) such that all the eigenvalues of 𝑓(𝐴)
and g(𝐴) are roots of unity. We would also like to have a more general result for the case when all
the eigenvalues of 𝑓(𝐴) and g(𝐴) are of absolute value one. This, then, would be an analogue of
Theorem B and would extend Corollary 1.1 to non-scalar matrices. We thus formulate the follow-
ing problem:
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1558 OSTAFE

Problem 1.11. Let 𝑓, g ∈ M𝑟(ℂ)[𝑍]. Prove that, under certain conditions on 𝑓 and g , there are, up
to conjugacy, finitely many matrices 𝐴 ∈ M𝑟(ℂ) such that all the eigenvalues of 𝑓(𝐴) and g(𝐴)
are of absolute value one.

2 PRELIMINARIES

2.1 Multiplicative independence of eigenvalues

Let 𝑓, g ∈ M𝑟(ℂ)[𝑍]. We define

𝑃𝑓(𝑥, 𝑦1) = det (𝑦1𝐼 − 𝑓(𝑥𝐼)) ∈ ℂ[𝑥, 𝑦1],

𝑃g (𝑥, 𝑦2) = det (𝑦2𝐼 − g(𝑥𝐼)) ∈ ℂ[𝑥, 𝑦2],
(2.1)

and the following two resultants

𝑅𝑓,g (𝑦1, 𝑦2) = Res𝑥
(
𝑃𝑓(𝑥, 𝑦1), 𝑃g (𝑥, 𝑦2)

)
∈ ℂ[𝑦1, 𝑦2],

𝑇𝑓,g (𝑦1, 𝑦2) = Res𝑥
(
𝑃𝑓(𝑥, 𝑦1), 𝑦2 − det(g(𝑥𝐼))

)
∈ ℂ[𝑦1, 𝑦2].

(2.2)

We note that both 𝑅𝑓,g and 𝑇𝑓,g are non-zero polynomials. Indeed, assume 𝑅𝑓,g = 0. Then,
by the definition of the resultant, the polynomials 𝑃𝑓(𝑥, 𝑦1) and 𝑃g (𝑥, 𝑦2), as polynomials in 𝑥,
share a common root 𝑡 ∈ ℂ(𝑦1) ∩ ℂ(𝑦2) = ℂ. Thus we obtain that det(𝑦1𝐼 − 𝑓(𝑡𝐼)) = det(𝑦2𝐼 −

g(𝑡𝐼)) = 0, which is a contradiction, since both polynomials have as leading monomials 𝑦𝑟
1
and

𝑦𝑟
2
, respectively. Similarly, 𝑇𝑓,g is a non-zero polynomial.
We know that deg𝑥 𝑃𝑓 ⩽ 𝑟 deg 𝑓 and deg𝑥 𝑃g ⩽ 𝑟 deg g , and 𝑅𝑓,g is a polynomial of degree

deg𝑥 𝑃𝑓 in 𝑦2 and of degree deg𝑥 𝑃g in 𝑦1. Similarly, deg det(g(𝑥𝐼)) ⩽ 𝑟 deg g , and 𝑇𝑓,g is a poly-
nomial of degree deg𝑥 𝑃𝑓 in 𝑦2 and of degree deg det(g(𝑥𝐼)) in 𝑦1. We thus obtain that

deg 𝑅𝑓,g , deg 𝑇𝑓,g ⩽ 𝑟(deg 𝑓 + deg g). (2.3)

Lemma 2.1. Let 𝑓, g ∈ M𝑟(ℂ)[𝑍].

(i) If any eigenvalue of𝑓(𝑥𝐼)andany eigenvalue of g(𝑥𝐼)aremultiplicatively independent functions
inℂ(𝑥), then 𝑅𝑓,g (𝑦1, 𝑦2) defined by (2.2) does not have a factor of the form 𝑦𝑖

1
𝑦
𝑗
2
− 𝜌 or 𝑦𝑖

1
− 𝜌𝑦

𝑗
2

for some non-negative integers 𝑖, 𝑗 not both zero and some root of unity 𝜌.
(ii) If any eigenvalue of 𝑓(𝑥𝐼) and det(g(𝑥𝐼)) are multiplicatively independent functions in ℂ(𝑥),

then 𝑇𝑓,g (𝑦1, 𝑦2) defined by (2.2) does not have a factor of the form 𝑦𝑖
1
𝑦
𝑗
2
− 𝜌 or 𝑦𝑖

1
− 𝜌𝑦

𝑗
2
for

some non-negative integers 𝑖, 𝑗 not both zero and some root of unity 𝜌.

Proof. The proofs for (i) and (ii) follow the same discussion, so we only provide the proof for (i).
Let 𝜇𝑖(𝑥), 𝑖 = 1, … , 𝑟, be the eigenvalues of 𝑓(𝑥𝐼) in ℂ(𝑥), that is, the roots of the polynomial

𝑃𝑓(𝑦1, 𝑥) defined by (2.1) as a polynomial in 𝑦1. Similarly, let 𝜂𝑗(𝑥), 𝑗 = 1,… , 𝑟, be the eigenvalues
of g(𝑥𝐼) in ℂ(𝑥).
Assume that 𝑅𝑓,g (𝑦1, 𝑦2) has a factor of one of the forbidden forms, say 𝑦𝑖1𝑦

𝑗
2
− 𝜌 for some non-

negative integers 𝑖, 𝑗 not both zero and some root of unity 𝜌. We note that any point on the curve
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1559

𝑅𝑓,g (𝑦1, 𝑦2) = 0 is of the form (𝜇𝑘(𝑡), 𝜂𝓁(𝑡)) for some 1 ⩽ 𝑘,𝓁 ⩽ 𝑟 and some 𝑡 ∈ ℂ. Indeed, let
(𝑡1, 𝑡2) ∈ ℂ2 be such that 𝑅𝑓,g (𝑡1, 𝑡2) = 0. Then, by definition of the resultant 𝑅𝑓,g , the two poly-
nomials

det(𝑡1𝐼 − 𝑓(xI)) =
𝑟∏

𝑖=1

(𝑡1 − 𝜇𝑖(𝑥)), det(𝑡2𝐼 − g(xI)) =
𝑟∏

𝑖=1

(𝑡2 − 𝜂𝑖(𝑥))

have a common root 𝑥 = 𝑡 ∈ ℂ. This implies 𝑡1 = 𝜇𝑘(𝑡) and 𝑡2 = 𝜂𝓁(𝑡) for some 𝑘,𝓁. Since 𝑦𝑖1𝑦
𝑗
2
−

𝜌 is a factor of 𝑅𝑓,g , there are infinitely many (𝑡1, 𝑡2) ∈ ℂ2 which are roots of this factor, and thus
we deduce that there are infinitely many 𝑡 ∈ ℂ such that

𝜇𝑘(𝑡)
𝑖𝜂𝓁(𝑡)

𝑗 = 𝜌

for some 1 ⩽ 𝑘,𝓁 ⩽ 𝑟. Since 𝜇𝑘 and 𝜂𝓁 are algebraic functions, we conclude that 𝜇𝑘(𝑥)𝑖𝜂𝓁(𝑥)𝑗 = 𝜌,
which contradicts our hypothesis.
The case when 𝑅𝑓,g (𝑦1, 𝑦2) has a factor of the form 𝑦𝑖

1
− 𝜌𝑦

𝑗
2
is treated entirely similar. A

similar discussion applies for (ii), replacing only det(𝑡2𝐼 − g(𝑥𝐼)) above with the polynomial
𝑡2 − det(g(𝑥𝐼)). □

2.2 Scalar specialisations

Two of the main tools for the proof of Theorems 1.4 and 1.7 are the following results which apply,
again, to scalar matrices 𝜆𝐼, however for which the matrices 𝑓(𝜆𝐼) and g(𝜆𝐼) satisfy different con-
ditions than in Corollary 1.1. More precisely, we have:

Lemma 2.2. Let 𝑓, g ∈ M𝑟(ℂ)[𝑍] be such that any eigenvalue of 𝑓(𝑥𝐼) and any eigenvalue of g(𝑥𝐼)
are multiplicatively independent functions in ℂ(𝑥). Then there are at most

22𝑟5(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

elements 𝜆 ∈ ℂ such that

𝑓(𝜆𝐼)𝑛 − 𝐼 and g(𝜆𝐼)𝑚 − 𝐼

are singular matrices for some 𝑛,𝑚 ⩾ 1.

Proof. We use a similar approach as for the proof of [1, Theorem 3], reducing the problem to an
application of Theorem A.
Let 𝜆 ∈ ℂ be such that 𝑓(𝜆𝐼)𝑛 − 𝐼 and g(𝜆𝐼)𝑚 − 𝐼 are singular matrices for some 𝑛,𝑚 ⩾ 1. This

implies that 𝐽𝑛
𝑓(𝜆𝐼)

and 𝐽𝑚
g(𝜆𝐼)

, which are triangular matrices, have at least one element 1 on the
main diagonal, where 𝐽𝑓(𝜆𝐼) and 𝐽g(𝜆𝐼) are Jordan normal forms of 𝑓(𝜆𝐼) and g(𝜆𝐼), respectively.
Let 𝑢𝜆,𝑖, 𝑣𝜆,𝑗 ∈ ℂ, 𝑖, 𝑗 = 1, … , 𝑟, be the eigenvalues of 𝑓(𝜆𝐼), g(𝜆𝐼), respectively, that is, 𝑢𝜆,𝑖 are

the (not necessarily distinct) roots of the polynomial 𝑃𝑓(𝜆, 𝑦1) and 𝑣𝜆,𝑗 are the (not necessarily
distinct) roots of the polynomial 𝑃g (𝜆, 𝑦2), where 𝑃𝑓(𝑥, 𝑦1) and 𝑃g (𝑥, 𝑦2) are defined by (2.1).
Consequently, there exist 𝑖, 𝑗 ∈ {1, … , 𝑟} such that 𝑢𝑛

𝜆,𝑖
= 1 and 𝑣𝑚

𝜆,𝑗
= 1, that is, both 𝑢𝜆,𝑖 and 𝑣𝜆,𝑗

are roots of unity.
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1560 OSTAFE

Notice that, since 𝑃𝑓(𝜆, 𝑢𝜆,𝑖) = 𝑃g (𝜆, 𝑣𝜆,𝑗) = 0, one also has

𝑅𝑓,g (𝑢𝜆,𝑖 , 𝑣𝜆,𝑗) = 0

for all 𝑖, 𝑗, where 𝑅𝑓,g is defined by (2.2). Moreover, from the above discussion, there exist 𝑖, 𝑗 such
that (𝑢𝜆,𝑖 , 𝑣𝜆,𝑗) is a torsion point on the curve 𝑅𝑓,g (𝑦1, 𝑦2) = 0.
Since, by our hypothesis and Lemma 2.1 (i), 𝑅𝑓,g does not have any of the special factors men-

tioned in the statement of Theorem A, it follows from Theorem A and (2.3) that there are at
most

11(deg 𝑅𝑓,g )
2 ⩽ 11𝑟2(deg 𝑓 + deg g)2

torsion points (𝜁1, 𝜁2) on the curve 𝑅𝑓,g (𝑦1, 𝑦2) = 0. Each such point (𝜁1, 𝜁2) = (𝑢𝜆,𝑖, 𝑣𝜆,𝑗) for
some 𝑖, 𝑗 corresponds to at most 𝑟 min(deg 𝑓, deg g) values of 𝜆. Indeed, since 𝑅𝑓,g (𝜁1, 𝜁2) = 0,
𝜆 is a common root of the polynomials 𝑃𝑓(𝑥, 𝜁1), 𝑃g (𝑥, 𝜁2). We note that both polynomials
𝑃𝑓(𝑥, 𝜁1), 𝑃g (𝑥, 𝜁2) are non-zero, since, otherwise, 𝜁1 or 𝜁2 would be an eigenvalue of 𝑓(𝑥𝐼) or
g(𝑥𝐼), respectively. However, since 𝜁1 or 𝜁2 are roots of unity, this contradicts the multiplicative
independence assumption on the eigenvalues of 𝑓(𝑥𝐼) and g(𝑥𝐼).
Taking the contribution from each 𝑖, 𝑗 ⩽ 𝑟, we conclude that there at most

11𝑟5(deg 𝑓 + deg g)2 min(deg 𝑓, deg g) ⩽ 22𝑟5(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

possibilities for such 𝜆 ∈ ℂ, which concludes the proof. □

Remark 2.3. It is worth mentioning that Lemma 2.2 is equivalent to the following reformulation:
Let 𝑓, g ∈ M𝑟(ℂ)[𝑍] be as in Lemma 2.2. Then there are at most

22𝑟5(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

elements 𝜆 ∈ ℂ such that 𝑓(𝜆𝐼) and g(𝜆𝐼) have each at least one eigenvalue that is a root of unity.

Remark 2.4. When 𝑟 = 1, the conditions in Corollary 1.1 and Lemma 2.2 are equivalent to the
polynomials 𝑓 and g beingmultiplicatively independent, and, in this case, we recover TheoremA.

Lemma 2.5. Let 𝑓, g ∈ M𝑟(ℂ)[𝑍] be such that any eigenvalue of 𝑓(𝑥𝐼) and det(g(𝑥𝐼)) are multi-
plicatively independent functions in ℂ(𝑥). Then there are at most

22𝑟4(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

elements 𝜆 ∈ ℂ such that

𝑓(𝜆𝐼)𝑛 − 𝐼 is singular and det (g(𝜆𝐼))𝑚 = 1

for some 𝑛,𝑚 ⩾ 1.

Thus, in Lemma 2.5, we look at 𝜆 ∈ ℂ such that 𝑓(𝜆𝐼) has an eigenvalue a root of unity and
det(g(𝜆𝐼)) is a root of unity.
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1561

Proof. The proof follows exactly the same lines as the proof of Lemma 2.2, but, instead of the
polynomial 𝑅𝑓,g , we consider 𝑇𝑓,g defined by (2.2).
Indeed, let 𝜆 ∈ ℂ be such that 𝑓(𝜆𝐼)𝑛 − 𝐼 is singular for some 𝑛 ⩾ 1 and det(g(𝜆𝐼)) is a root

of unity. As observed above, this means that an eigenvalue of 𝑓(𝜆𝐼) is a root of unity, which we
denote, as in the previous proof, by 𝑢𝜆,𝑖 for some 𝑖 = 1, … , 𝑟. Since

𝑇𝑓,g (𝑢𝜆,𝑖 , det(g(𝜆𝐼))) = 0,

we are, again, in the situation of looking at torsion points on the algebraic curve 𝑇𝑓,g (𝑦1, 𝑦2)=0
and apply TheoremA.Using (2.3) and applying Lemma 2.1 (ii) and TheoremA,we obtain atmost

11(deg 𝑇𝑓,g )
2 ⩽ 11𝑟2(deg 𝑓 + deg g)2

torsion points (𝜁1, 𝜁2) on the curve 𝑇𝑓,g (𝑦1, 𝑦2) = 0. Each such torsion point (𝜁1, 𝜁2) =

(𝑢𝜆,𝑖, det(g(𝜆𝐼))) for some 𝑖 = 1, … , 𝑟, corresponds, again, to at most 𝑟 min(deg 𝑓, deg g) values of
𝜆. Taking the contribution from each 𝑖 ⩽ 𝑟, we conclude that there at most

11𝑟4(deg 𝑓 + deg g)2 min(deg 𝑓, deg g) ⩽ 22𝑟4(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

possibilities for such 𝜆 ∈ ℂ, which concludes the proof. □

2.3 Singular differences of powers of matrices

In this section, we consider only 2 × 2matrices. For matrices 𝐴, 𝐵 ∈ GL2(ℂ), we define the set

𝑆𝐴,𝐵 = {(𝑛,𝑚) ∈ ℤ2 ∶ 𝐴𝑛 − 𝐵𝑚 is singular}. (2.4)

In [8, Theorem 1], Evertse and Tijdeman give a classification of pairs of matrices (𝐴, 𝐵) such
that the set 𝑆𝐴,𝐵 is infinite. This is our main tool in the proof of Theorem 1.7. For completeness,
we present their result in this section, and, for this, we say that two pairs of matrices (𝐴, 𝐵) and
(𝐴1, 𝐵1) are similar, if there exists a matrix 𝑉 ∈ GL2(ℂ) such that

𝐴 = 𝑉𝐴1𝑉
−1 and 𝐵 = 𝑉𝐵1𝑉

−1.

Moreover, we say that (𝐴, 𝐵) is related to (𝐴1, 𝐵1) if

(𝐴, 𝐵) is similar to (𝐴1, 𝐵1), (𝐵1, 𝐴1), (𝐴
𝑇
1 , 𝐵

𝑇
1 ) or (𝐵

𝑇
1 , 𝐴

𝑇
1 ).

We define now four pairs of matrices (𝐴1, 𝐵1) for which 𝑆𝐴1,𝐵1
is infinite, see [8] for more

details.

(I) 𝐴𝓁
1
=
(
𝜃 ∗
0 ∗

)
and 𝐵𝑠

1
=
(
𝜃 ∗
0 ∗

)
for some integers 𝓁, 𝑠 not both zero, and some non-zero 𝜃 ∈ ℂ.

(II) 𝐴𝓁
1
=
(
𝜃 0
0 𝜅

)
and 𝐵𝑠

1
=
(
0 𝜁
𝜁 0

)
for some integers 𝓁, 𝑠 with 𝓁𝑠 ≠ 0 and some non-zero 𝜃, 𝜅, 𝜁 ∈

ℂ such that 𝜃𝜅 = 𝜁2.
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1562 OSTAFE

(III) 𝐴𝓁
1
=
(
𝜃 0
0 𝜅

)
and𝐵𝑠

1
=
(

2𝜁 + 𝜃 2(𝜁 + 𝜃)
−(𝜁 + 𝜃) −𝜁 − 2𝜃

)
for some integers𝓁, 𝑠with𝓁𝑠 ≠ 0 and somenon-zero

𝜃, 𝜅, 𝜁 ∈ ℂ such that 𝜅𝜁 = 𝜃2.
(IV) 𝐴1 =

(
𝛼 𝛼
0 𝛼

)
and 𝐵1 =

(
(1 −

√
𝜁𝜇)𝜌 𝜁𝜌

−𝜇𝜌 (1 +
√
𝜁𝜇)𝜌

)
, for some 𝛼, 𝜌, 𝜁, 𝜇 ∈ ℂ such that 𝜇 ≠ 0, 𝛼 and 𝜌

are not roots of unity, and

(𝛼𝑛 − 𝜌𝑚)2 = 𝜇𝑛𝑚𝛼𝑛𝜌𝑚 for infinitely many (𝑛,𝑚) ∈ ℤ2.

Remark 2.6. We note that for pairs (𝐴1, 𝐵1) of type IV above, both𝐴1 and 𝐵1 have a double eigen-
value, namely 𝛼 and 𝜌, respectively.

We can now state the result of Evertse and Tijdeman [8, Theorem 1].

Theorem 2.7. Let (𝐴, 𝐵) be a pair of matrices in GL2(ℂ) such that the set 𝑆𝐴,𝐵 is infinite. Then
(𝐴, 𝐵) is related to a pair (𝐴1, 𝐵1) of type I, II, III or IV.

3 PROOFS OFMAIN RESULTS

3.1 Proof of Theorem 1.4

The proof follows as a simple application of Lemma 2.2. Indeed, let 𝐴 ∈ M𝑟(ℂ) be such that 𝐴
commutes with each of the coefficients of 𝑓 and g , and such that

𝑓(𝐴)𝑛 = 𝐼 and g(𝐴)𝑚 = 𝐼 (3.1)

for some 𝑛,𝑚 ⩾ 1.
Using the commutativity assumption on𝐴, simple computations show that there exist polyno-

mials 𝑄𝑛,𝐴, 𝑄𝑚,𝐴 ∈ M𝑟(ℂ) depending on 𝑛,𝑚 and 𝐴, such that

𝑓(𝑥𝐼)𝑛 − 𝑓(𝐴)𝑛 = 𝑄𝑛,𝐴(𝑥𝐼)(𝑥𝐼 − 𝐴),

g(𝑥𝐼)𝑚 − g(𝐴)𝑚 = 𝑄𝑚,𝐴(𝑥𝐼)(𝑥𝐼 − 𝐴).

Therefore, using (3.1), we obtain that

det(𝑥𝐼 − 𝐴) ∣ gcd (det(𝑓(𝑥𝐼)𝑛 − 𝐼), det(g(𝑥𝐼)𝑚 − 𝐼)).

We note that both polynomials det(𝑓(𝑥𝐼)𝑛 − 𝐼) and det(g(𝑥𝐼)𝑚 − 𝐼) are non-zero. Indeed,
assume, for example, det(𝑓(𝑥𝐼)𝑛 − 𝐼) = 0. Then writing

det(𝑓(𝑥𝐼)𝑛 − 𝐼) =

𝑛∏
𝑖=1

det(𝑓(𝑥𝐼) − 𝜁𝑖𝐼),

where 𝜁 ∈ ℂ is an 𝑛th root of unity, we conclude that det(𝑓(𝑥𝐼) − 𝜁𝑖𝐼) = 0 for some 𝑖 = 1, … , 𝑛.
Thus 𝜁𝑖 is an eigenvalue of 𝑓(𝑥𝐼), and similarly for g . This contradicts our multiplicative indepen-
dence assumption on the eigenvalues of 𝑓(𝑥𝐼) and g(𝑥𝐼).
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1563

Thus, every eigenvalue of 𝐴 is a root of the greatest common divisor above. In other words, for
any eigenvalue 𝜆 ∈ ℂ of 𝐴, the matrices 𝑓(𝜆𝐼)𝑛 − 𝐼 and g(𝜆𝐼)𝑚 − 𝐼 are singular. The conclusion
now follows from Lemma 2.2, that is, there are at most

𝐿 = 22𝑟5(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

possibilities for each of the eigenvalues of 𝐴.
We now partition the set {1, … , 𝑟} into 𝑘 ordered parts, 1 ⩽ 𝑘 ⩽ 𝑟, where each such part corre-

sponds to a Jordan block of 𝐴, and thus to one eigenvalue 𝜆. The number of such partitions is(𝑟−1
𝑘−1

)
, and each set in a partition corresponds to at most 𝐿 values of 𝜆 ∈ ℂ. Summing over all 𝑘 we

obtain at most

𝑟∑
𝑘=1

(
𝑟 − 1

𝑘 − 1

)
𝐿𝑘 = 𝐿

𝑟−1∑
𝑘=0

(
𝑟 − 1

𝑘

)
𝐿𝑘 = 𝐿(𝐿 + 1)𝑟−1 ⩽ 𝐿𝑟(1 + 1∕𝐿)𝐿∕2 ⩽ 2𝐿𝑟

possible Jordan normal forms, which concludes the proof.

3.2 Proof of Theorem 1.7

We start by remarking that the spectral multiplicative independence assumption ensures that the
conditions in Corollary 1.1 and Lemmas 2.2 and 2.5 are satisfied, and thus we can apply these
results, see the end of the proof.
Let 𝐴 ∈ M2(ℂ) be such that

𝑓(𝐴)𝑛 = 𝐼 and g(𝐴)𝑚 = 𝐼 (3.2)

for some 𝑛,𝑚 ⩾ 1. This implies that the eigenvalues of 𝑓(𝐴) and g(𝐴) are all roots of unity.
Let 𝜆 be an eigenvalue of 𝐴 and 𝐯 the corresponding eigenvector, that is, one has

𝐴𝐯 = 𝜆𝐯. (3.3)

We note that, if 𝑓(𝜆𝐼) is singular, then this implies that det(𝑓(𝜆𝐼)) = 0, that is, 𝜆 is a zero of a
non-zero polynomial (by our hypothesis) of degree at most 2 deg 𝑓. Thus, there are at most 2 deg 𝑓
such elements 𝜆, which we exclude from the discussion below. The same discussion applies for
g(𝜆𝐼), thus, from now on, we assume that both 𝑓(𝜆𝐼) and g(𝜆𝐼) are non-singular.
The idea of the proof is to show that the sets 𝑆𝑓(𝐴),𝑓(𝜆𝐼) and 𝑆g(𝐴),g(𝜆𝐼) defined by (2.4) are infinite.

Then, applying Theorem 2.7, we obtain that (𝑓(𝐴), 𝑓(𝜆𝐼)) and (g(𝐴), g(𝜆𝐼)) are related to pairs of
matrices of type I, II or III as defined in Section 2.3 (we will see that type IV cannot occur). This
will allow us to conclude that one of 𝑓(𝜆𝐼) and g(𝜆𝐼) has an eigenvalue which is a root of unity,
while the other matrix will have the same property or the product of its eigenvalues is a root of
unity. Applying, then, Corollary 1.1, Lemma 2.2 or 2.5, we will conclude that there are finitely
many such 𝜆 ∈ ℂ. Since this discussion applies for any eigenvalue 𝜆 of 𝐴, we conclude the proof.
First, we remark that, using (3.3), for any integer 𝑖 ⩾ 1, one has

𝐴𝑖𝐯 = 𝜆𝑖𝐯,
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1564 OSTAFE

which implies

𝑓(𝐴)𝐯 = 𝑓(𝜆𝐼)𝐯,

or, equivalently,

(𝑓(𝐴) − 𝑓(𝜆𝐼))𝐯 = 0.

Since 𝐯 ∈ ℂ2 is a non-zero vector, we conclude that the matrix 𝑓(𝐴) − 𝑓(𝜆𝐼) is singular, and sim-
ilarly for g .
Moreover, using our hypothesis (3.2), we obtain, for any integer 𝑘 ⩾ 1,

𝑓(𝐴)𝑘𝑛+1 = 𝑓(𝐴) and g(𝐴)𝑘𝑚+1 = g(𝐴).

Thus, for any integer 𝑘 ⩾ 1, the matrices

𝑓(𝐴)𝑘𝑛+1 − 𝑓(𝜆𝐼) and g(𝐴)𝑘𝑚+1 − g(𝜆𝐼)

are singular, which implies that the sets 𝑆𝑓(𝐴),𝑓(𝜆𝐼) and 𝑆g(𝐴),g(𝜆𝐼) defined by (2.4) are infinite.
Therefore, Theorem 2.7 tells us that (𝑓(𝐴), 𝑓(𝜆𝐼)) and (g(𝐴), g(𝜆𝐼)) are related to pairs of type I,
II, III or IV as defined in Section 2.3.
We only consider the pair (𝑓(𝐴), 𝑓(𝜆𝐼)), a similar argument also applies to (g(𝐴), g(𝜆𝐼)).
Let (𝑓(𝐴), 𝑓(𝜆𝐼)) be related to (𝐴1, 𝐵1) of type I, II, III or IV, which means that (𝑓(𝐴), 𝑓(𝜆𝐼)) is

similar to one of

(𝐴1, 𝐵1), (𝐵1, 𝐴1), (𝐴
𝑇
1 , 𝐵

𝑇
1 ) or (𝐵

𝑇
1 , 𝐴

𝑇
1 ).

(I) We assume first that (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to (𝐴1, 𝐵1), where the pair (𝐴1, 𝐵1) is such that

𝐴𝓁
1 =

(
𝜃 ∗

0 ∗

)
and 𝐵𝑠

1 =

(
𝜃 ∗

0 ∗

)

for some integers 𝓁, 𝑠 not both zero, and some non-zero 𝜃 ∈ ℂ.
Using (3.2), since 𝑓(𝐴)𝓁𝑛 = 𝐼 is similar to 𝐴𝓁𝑛

1
, we obtain that 𝜃 is an 𝑛th root of unity (we

note that, if 𝓁 = 0, then 𝜃 = 1).
Since 𝑓(𝜆𝐼) is similar to 𝐵1, and 𝜃 is an eigenvalue of 𝐵𝑠

1
, we conclude that 𝑓(𝜆𝐼)𝑠 has an

eigenvalue 𝜃 which is a root of unity, and, thus, 𝑓(𝜆𝐼) has also an eigenvalue which is a root
of unity.
We note that a similar discussion applies for the case when (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to one
of (𝐵1, 𝐴1), (𝐴

𝑇
1
, 𝐵𝑇

1
), (𝐵𝑇

1
, 𝐴𝑇

1
), which concludes this case.

(II)
(i) We assume first that (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to (𝐴1, 𝐵1), where the pair (𝐴1, 𝐵1) is such

that

𝐴𝓁
1 =

(
𝜃 0

0 𝜅

)
and 𝐵𝑠

1 =

(
0 𝜁

𝜁 0

)

for some integers 𝓁, 𝑠 with 𝓁𝑠 ≠ 0 and some non-zero 𝜃, 𝜅, 𝜁 ∈ ℂ such that

𝜃𝜅 = 𝜁2. (3.4)
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ON A PROBLEM OF LANG FORMATRIX POLYNOMIALS 1565

The same discussion as for case (I) concludes that both 𝜃 and 𝜅 are 𝑛th roots of unity,
and thus, by (3.4), 𝜁 is also a root of unity. Since 𝜁 and−𝜁 are the eigenvalues of 𝐵𝑠

1
, and

𝑓(𝜆𝐼) is similar to 𝐵1, we conclude, again, that both eigenvalues of 𝑓(𝜆𝐼) are roots of
unity, and thus det(𝑓(𝜆𝐼)) is a root of unity.

(ii) We assume now that (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to (𝐵1, 𝐴1). As in the previous discussions,
since 𝑓(𝐴) is similar to 𝐵1 and 𝜁 is an eigenvalue of 𝐵𝑠

1
, we conclude that 𝜁 is a root of

unity. Using the relation (3.4), we conclude that 𝜃𝜅 is a root of unity, and, thus, so is
det(𝐴𝓁

1
). Therefore, det(𝐴1) is a root of unity.

Moreover, since 𝑓(𝜆𝐼) is similar to 𝐴1, we conclude that det(𝑓(𝜆𝐼)) = det(𝐴1), and
thus det(𝑓(𝜆𝐼)) is also a root of unity.
A similar discussion applies for the case when (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to one of

(𝐴𝑇
1
, 𝐵𝑇

1
), (𝐵𝑇

1
, 𝐴𝑇

1
), which concludes this case.

(III) We assume first that (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to (𝐴1, 𝐵1), where the pair (𝐴1, 𝐵1) is such that

𝐴𝓁
1 =

(
𝜃 0

0 𝜅

)
and 𝐵𝑠

1 =

(
2𝜁 + 𝜃 2(𝜁 + 𝜃)

−(𝜁 + 𝜃) −𝜁 − 2𝜃

)

for some integers 𝓁, 𝑠 with 𝓁𝑠 ≠ 0 and some non-zero 𝜃, 𝜅, 𝜁 ∈ ℂ such that

𝜅𝜁 = 𝜃2.

The same considerations as for cases (I) and (II) (i) apply, and thus we obtain that both 𝜃

and 𝜅 are roots of unity, which in turn implies that 𝜁 is also a root of unity. Noting now
that the eigenvalues of 𝐵𝑠

1
are 𝜁 and−𝜃, we conclude that the eigenvalues of 𝐵1, and thus of

𝑓(𝜆𝐼), are roots of unity, and thus det(𝑓(𝜆𝐼)) is a root of unity.
A similar discussion applies for the case when (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to one of

(𝐵1, 𝐴1), (𝐴
𝑇
1
, 𝐵𝑇

1
), (𝐵𝑇

1
, 𝐴𝑇

1
), which concludes this case.

(IV) If 𝑓(𝐴) is similar to 𝐴1 or 𝐴𝑇
1
, then 𝛼 is a root of unity, which contradicts the assumption

in (IV) in Section 2.3. Thus, we can only have that (𝑓(𝐴), 𝑓(𝜆𝐼)) is similar to (𝐵1, 𝐴1) or
(𝐵𝑇

1
, 𝐴𝑇

1
). However, this, again, implies that 𝜌 is an eigenvalue of 𝑓(𝐴), and thus a root of

unity, which is not possible.

Similarly as above, one concludes that either g(𝜆𝐼) has one eigenvalue which is a root of unity
(as in case (I)) or the product of its eigenvalues, and thus det(g(𝜆𝐼)), is a root of unity (as in cases
(II) and (III)).
To conclude the finiteness of the set of 𝜆 ∈ ℂ as above, we consider all possible combinations

for 𝑓(𝜆𝐼) and g(𝜆𝐼) in the cases (I), (II) and (III). For each combination, we obtain the following
bounds for the cardinality of the set of such 𝜆 ∈ ℂ:

∙ If both 𝑓(𝜆𝐼) and g(𝜆𝐼) have each one eigenvalue a root of unity (occurring in case (I)), then,
by Lemma 2.2, we obtain at most

22 ⋅ 25(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g ⩽ 210(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

possibilities for each of the eigenvalues of such 𝐴.
∙ If | det(𝑓(𝜆𝐼))| = | det(g(𝜆𝐼))| = 1 (occurring when both (𝑓(𝐴), 𝑓(𝜆𝐼)) and (g(𝐴), g(𝜆𝐼)) fall in
any of the cases (II) and (III)), we apply Corollary 1.1 to obtain at most

22(deg 𝑓 + deg g)2

possibilities for each of the eigenvalues of such 𝐴.
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1566 OSTAFE

∙ When (𝑓(𝐴), 𝑓(𝜆𝐼)) falls in case (I) and (g(𝐴), g(𝜆𝐼)) falls in one of the cases (II) or (III), or the
other way around, we apply Lemma 2.5 to obtain

22 ⋅ 24(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

possibilities for each of the eigenvalues of such 𝐴.
Thus, this case contributes in total with

22 ⋅ 25(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

possibilities for each of the eigenvalues of 𝐴 in this case.

Also taking into account the contribution of at most

22 deg 𝑓 deg g

elements 𝜆 ∈ ℂ for which det(𝑓(𝜆𝐼)) = 0 or det(g(𝜆𝐼)) = 0, which we excluded at the beginning
of the proof, and putting everything together, we obtain at most

2
(
22 ⋅ 25(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g

)
+ 22(deg 𝑓 + deg g)2 + 22 deg 𝑓 deg g

⩽ 212(deg 𝑓 + deg g) deg 𝑓 ⋅ deg g = 𝐽

possibilities for each of the eigenvalues of 𝐴.
We now conclude the proof by observing, as in the proof of Theorem 1.4, that there are at most

𝐽(𝐽 + 1) ⩽ 2𝐽2 ⩽ 225(deg 𝑓 + deg g)2(deg 𝑓 ⋅ deg g)2

possible Jordan forms.

3.3 Proof of Corollary 1.9

The result follows directly from Theorem 1.7 applied to the polynomials 𝑓(𝑍) = 𝑍 and g(𝑍) =
𝑍 − 𝐶. The determinants of 𝑓(𝑥𝐼) and g(𝑥𝐼) are given by

det(𝑓(𝑥𝐼)) = 𝑥2 and det(g(𝑥𝐼)) = 𝑥2 − tr(𝐶)𝑥 + det(𝐶),

where tr(𝐶) is the trace of the matrix 𝐶. Since det(𝐶) ≠ 0, the two determinants are multiplica-
tively independent.
The eigenvalue of 𝑓(𝑥𝐼) is 𝑥 with multiplicity two, and a simple computation shows that the

eigenvalues of g(𝑥𝐼) are given by

(
2𝑥 − tr(𝐶) ±

√
tr(𝐶)2 − 4 det(𝐶)

)
∕2.

We notice that these latter eigenvalues are multiplicatively independent with 𝑥, and thus with
det(𝑓(𝑥𝐼)) as well, since, again, det(𝐶) ≠ 0. The bound now follows from Theorem 1.7, which
concludes the proof.
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