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Bounds for the regularity of product of edge
ideals

Arindam Banerjee, Priya Das & S Selvaraja

Abstract Let I and J be edge ideals in a polynomial ring R = K[x1, . . . , xn] with I ⊆ J . In
this paper, we obtain a general upper and lower bound for the Castelnuovo–Mumford regularity
of IJ in terms of certain invariants associated with I and J . Using these results, we explicitly
compute the regularity of IJ for several classes of edge ideals. In particular, we compute the
regularity of IJ when J has a linear resolution. Finally, we compute the precise expression for
the regularity of J1J2 · · · Jd, d ∈ {3, 4}, where J1, . . . , Jd are edge ideals, J1 ⊆ J2 ⊆ · · · ⊆ Jd

and Jd is the edge ideal of a complete graph.

1. Introduction
Let M be a finitely generated graded module over R = K[x1, . . . , xn] where K is a
field. The Castelnuovo–Mumford regularity (or simply, regularity) of M , denoted by
reg(M), is defined to be the least integer i so that, for every j, the jth syzygy of M
is generated in degrees 6 i+ j. Regularity is an important invariant in commutative
algebra and algebraic geometry that measures the computational complexity of ideals,
modules, and sheaves. In this paper, we study bounds on the regularity of products
of ideals in a polynomial ring.

The regularity of products of ideals was studied first by Conca and Herzog [8]. They
studied whether for homogeneous ideal I and finitely generated graded moduleM over
R, one has reg(IM) 6 reg(I)+reg(M). This question is essentially a generalization of
the simple fact that the highest degree of a generator of the product IM is bounded
above by the sum of the highest degree of a generator of M and the highest degree of
a generator of I. The answer to this question is negative in general. There are several
examples already known with M = I such that reg(I2) > 2 reg(I), see Sturmfels [23].
They found some special classes of ideals I and modules M such that reg(IM) 6
reg(I) + reg(M). In particular, they showed that if I is a homogeneous ideal in a
polynomial ring R with dim(R/I) 6 1, then reg(IM) 6 reg(I) + reg(M) for any
finitely generated module M over R.

In case M is also a homogeneous ideal, the situation becomes particularly inter-
esting. For example, Sidman proved that if dim(R/(I + J)) 6 1, then the regularity
of IJ is bounded above by reg(I) + reg(J), [22]. Also, she proved that if two ideals
of R, say I and J , define schemes whose intersection is a finite set of points, then
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reg(IJ) 6 reg(I) + reg(J). Chardin, Minh and Trung [6] proved that if I and J are
monomial complete intersections, then reg(IJ) 6 reg(I)+reg(J). Cimpoeaş [7] proved
that for two monomial ideals of Borel type I, J , we have reg(IJ) 6 reg(I) + reg(J).
Caviglia [5] and Eisenbud, Huneke and Ulrich [9] studied the more general problem
of the regularity of tensor products and various Tor modules of R/I and R/J .

In this paper, we study the same problem for the case of edge ideals and seek
better bounds by exploiting the combinatorics of the underlying graph. Let G be
a finite simple graph without isolated vertices on the vertex set {x1, . . . , xn} and
I(G) := ({xixj | {xi, xj} ∈ E(G)}) ⊂ R = K[x1, . . . , xn] the edge ideal corresponding
to G. In general, computing the regularity of I(G) is NP-hard [24, Corollary 23].
Several recent papers have related the reg(I(G)) with various invariants of the graph
G (see [2] for a survey in this direction). A primary inspiration for this paper is
Katzman’s and Woodroofe’s theorem from [18] and [24]. They showed that if G is a
graph, then

(1.1) ν(G) + 1 6 reg(I(G)) 6 co-chord(G) + 1,

where ν(G) denotes the induced matching number of G (see Section 2 for the defi-
nition) and co-chord(G) denotes the co-chordal cover number of G (see Section 2 for
the definition). In this context, a natural question is if I and J are edge ideals in R,
then what is the regularity of IJ? This question give rise to two directions of research.
One direction is to obtain the precise expression for reg(IJ) for particular classes of
edge ideals. Another direction is to obtain upper and lower bounds for reg(IJ) using
combinatorial invariants associated to graphs. Therefore, one may ask for edge ideals
I and J ,
(Q1) can we find lower and upper bounds for the regularity of IJ using combina-

torial invariants associated to the graphs?
(Q2) can we find precise expressions for the regularity of IJ for particular classes

of graphs?
This paper revolves around these two questions.

Computing the regularity of products of two edge ideals of graphs seems more
challenging compared to the regularity of edge ideals of graphs. Even in the case of
simple classes of graphs, a formula for the regularity of products of two edge ideals is
not known. So, naturally one restricts the attention to important subclasses. We are
therefore interested in families of edge ideals I and J with I ⊆ J .

First, we prove a lower bound for the regularity of the product of more than two
edge ideals. More precisely, let J1 = I(G1), . . . , Jd = I(Gd) be edge ideals of graphs
G1, . . . , Gd with J1 ⊆ · · · ⊆ Jd. Then we prove 2d + νG1···Gd − 1 6 reg(J1 · · · Jd),
where νG1···Gd denotes the joint induced matching number of Gi (see Section 2 for
the definition) for all 1 6 i 6 d (Theorem 4.1). We prove an upper bound for the
regularity of product of two edge ideals in terms of co-chordal cover numbers. We prove
that if G is a graph and H is a subgraph of G with I = I(H) and J = I(G), then
reg(IJ) 6 max{co-chord(G)+3, reg(I)}. In particular, reg(IJ) 6 max{co-chord(G)+
3, co-chord(H)+1} (Theorem 4.2). The above bound is inspired by the general upper
bound for the regularity of powers of edge ideals given in [15, Theorem 3.6] and [16,
Theorem 4.4]. Theorem 4.2 has a number of interesting consequences. For example,
Corollary 4.4 says that if H is any subgraph of G, then reg(IJ) 6 m(G) + 3 where
m(G) denotes the matching number of G. On the other hand, Corollary 4.6 says that
if H is an induced subgraph of G, then ν(H) + 3 6 reg(IJ) 6 co-chord(G) + 3.

We then move on to compute the precise expression for the regularity of product of
edge ideals. As a consequence of the techniques that we have developed, we explicitly
compute the regularity of IJ when J has a linear resolution (Theorem 5.1). Next,
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we study the regularity of products of more than two edge ideals. We compute the
precise expression for reg(J1 · · · Jd) when J1 ⊆ · · · ⊆ Jd, d ∈ {3, 4} and Jd is the
edge ideal of complete graph (Theorem 5.4). We use Theorem 4.2 and Theorem 5.4
to get an upper bound for the regularity of J1 · · · Jd in terms of co-chordal cover
numbers (Corollary 5.5). As an immediate consequence of these results, we give suf-
ficient conditions for product of edge ideals to have linear resolutions (Corollary 5.3,
Corollary 5.6).

Our paper is organized as follows. In Section 2, we collect the necessary notions,
terminologies and some results that are used subsequently. In Section 3 we prove
several technical lemmas which are needed for the proof of our main results, which
appear in Sections 4 and 5.

2. Preliminaries
In this section, we set up basic definitions and notation needed for the main results.
Let G be a finite simple graph with vertex set V (G) and edge set E(G). A subgraph
L ⊆ G is called induced if {u, v} is an edge of L if and only if u and v are vertices
of L and {u, v} is an edge of G. For {u1, . . . , ur} ⊆ V (G), let NG(u1, . . . , ur) = {v ∈
V (G) | {ui, v} ∈ E(G) for some 1 6 i 6 r} and NG[u1, . . . , ur] = NG(u1, . . . , ur) ∪
{u1, . . . , ur}. For U ⊆ V (G), we denote by Gr U the induced subgraph of G on the
vertex set V (G) r U . Let Ck denote the cycle on k vertices.

Let G be a graph. We say 2 non-adjacent edges {f1, f2} form a 2K2 in G if G does
not have an edge with one endpoint in f1 and the other in f2. A graph without 2K2
is called 2K2-free also called gap-free graph.

A matching in a graph G is a subgraph consisting of pairwise disjoint edges. The
matching number of G, denoted by m(G), is the maximum cardinality among match-
ings of G. If the subgraph is an induced subgraph, the matching is an induced match-
ing. The largest size of an induced matching in G is called its induced matching number
and denoted by ν(G). The complement of G, denoted by Gc, is the graph on the same
vertex set as G, where {u, v} is an edge of Gc if and only {u, v} /∈ E(G). A graph G
is chordal if every induced cycle in G has length 3, and is co-chordal if Gc is chordal.
The co-chordal cover number, denoted co-chord(G), is the minimum number n such
that there exist co-chordal subgraphs H1, . . . ,Hn of G with E(G) =

⋃n
i=1 E(Hi).

Consider graphs Gi for 1 6 i 6 d where Gi is a subgraph of Gi+1 for all 1 6 i 6
d − 1. The largest size of an induced matching in Gi for all 1 6 i 6 d is called the
joint induced matching number and denoted by νG1···Gd . Note that if Gi is an induced
subgraph of Gi+1 for all 1 6 i 6 d− 1, then νG1···Gd = ν(G1).

Example 2.1. Let G be the graph as shown in Figure 1. Then {{x1, x2}, {x3, x4},
{x5, x6}, {x7, x8}} forms a matching of G, but not an induced matching. The set
{{x1, x2}, {x4, x5}} forms an induced matching. Then ν(G) > 2. It is not hard to
verify that ν(G) = 2. Let H be a subgraph of G with E(H) = {{x1, x2}, {x3, x4}}.
Since H is a disjoint union two edges, ν(H) = 2. The set {{x1, x2}} forms an induced
matching of G and H. Then νHG > 1. Since the set {{x1, x2}, {x3, x4}} forms an
induced matching of H but not in G, νHG = 1.

Let H1, H2 and H3 be subgraphs of G with E(H1) = {{x1, x2}, {x2, x3}, {x3, x4}},
E(H2) = {{x4, x5}, {x5, x6}, {x6, x7}} and E(H3) = {{x7, x8}, {x8, x1}} respec-
tively. We can seen that H1, H2 and H3 are co-chordal subgraphs of G and
E(G) =

⋃3
i=1 E(Hi). Therefore, co-chord(G) 6 3. It is also not hard to verify that

co-chord(G) = 3.

Polarization is a process to obtain a squarefree monomial ideal from a given mono-
mial ideal.
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Figure 1. Graph G for Example 2.1

Definition 2.2. Let M = xa1
1 · · ·xann be a monomial in R = K[x1, . . . , xn]. Then we

define the squarefree monomial P (M) (polarization of M) as
P (M) = x11 · · ·x1a1x21 · · ·x2a2 · · ·xn1 · · ·xnan

in the polynomial ring R1 = K[xij | 1 6 i 6 n, 1 6 j 6 ai]. If I = (M1, . . . ,Mq)
is an ideal in R, then the polarization of I, denoted by Ĩ, is defined as Ĩ =
(P (M1), . . . , P (Mq)).

Let M be a graded R = K[x1, . . . , xn] module. For non-negative integers i, j, let
βi,j(M) denote the (i, j)-th graded Betti number of M . In this paper, we repeatedly
use an important property of the polarization, namely:

Corollary 2.3. [14, Corollary 1.6.3(a)] Let I ⊆ R = K[x1, . . . , xn] be a monomial
ideal. If Ĩ ⊆ R̃ is a polarization of I, then for all i, j, we have βi,j(R/I) = βi,j(R̃/Ĩ).
In particular, reg(R/I) = reg(R̃/Ĩ).

3. Technical lemmas
In this section we prove several technical results concerning the graph associated with
˜(IJ : ab), for any ab ∈ I, where I and J are edge ideals and I ⊆ J . We first fix the

set-up that we consider throughout this paper.

Set-up 1. Let G be a graph and H be a subgraph of G. Set I = I(H) and J = I(G).

For a monomial ideal K, let G(K) denote the minimal generating set of K. For a
monomial m ∈ R = K[x1, . . . , xn], the support of m is the set of variables appearing
in m and is denoted by supp(m), i.e. supp(m) = {xi | xi divides m}.

The following result is used repeatedly in this paper.

Lemma 3.1. Let I and J be as in Set-up 1. Then the colon ideal (IJ : ab) is a generated
by quadratic monomial ideal for any ab ∈ I. More precisely,

(IJ : ab) = J +K1 +K2,

where K1 = (pq | p ∈ NG(a) and q ∈ NH(b)) and K2 = (rs | r ∈ NH(a) and s ∈
NG(b)).

Proof. Let m ∈ G((IJ : ab)). By degree considerations m cannot have degree 1.
Suppose deg(m) > 3. Then there exist e ∈ G(I) and f ∈ G(J) such that ef | mab.
Sincem is a minimal monomial generator of (IJ : ab), there does not existm′,m′ 6= m
and m′ | m such that ef | m′ab. If there exists g ∈ G(J) such that g | m, then the
minimality ofm and g ∈ (IJ : ab) imply g = m. This is a contradiction to deg(m) > 3.
Therefore, deg(m) = 2. We assume that g - m for any g ∈ G(J). Then e - ab. Let
e = ax, where x | m. Therefore, xf | mb. If f = by, where y | (mx ), then xy | m.
Hence, by minimality of m, m is a quadratic monomial. Similarly, for e = bx we can
prove that m is quadratic in a similar manner.

Algebraic Combinatorics, Vol. 5 #5 (2022) 1018
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Clearly, J + K1 + K2 ⊆ (IJ : ab). We need to prove the reverse inclusion. Let
uv ∈ G(IJ : ab). If uv ∈ J , then we are done. Suppose uv /∈ J . Since uvab ∈ IJ , we
have the following cases ua ∈ I and vb ∈ J or ua ∈ J and vb ∈ I or ub ∈ I and va ∈ J
or ub ∈ J and va ∈ I. In all cases, one can show that either uv ∈ K1 or uv ∈ K2.
Therefore, (IJ : ab) = J +K1 +K2. �

Let I and J be as in Set-up 1. Then for any ab ∈ I, ˜(IJ : ab) is a quadratic square-
free monomial ideal by Lemma 3.1. There exists a graph P associated to ˜(IJ : ab).
Suppose xy is a minimal generator of (IJ : ab). If x 6= y, then set {[x, y]} = {x, y}
and {[x, y]} is an edge of P. If x = y, then set {[x, y]} = {x, zx}, where zx is a
new vertex of P, and {[x, y]} is an edge of P. Observe that G is a subgraph of P,
i.e. V (G) ⊆ V (P) and E(G) ⊆ E(P). For example, let I = (x4x5, x5x6, x4x6) and
J = (x1x2, x2x3, x3x4, x4x5, x5x6, x1x6, x4x6). Then (IJ : x4x5) = J + (x2

6, x3x6) ⊂
K[x1, . . . , x6] and ˜(IJ : x4x5) = J + (x6zx6 , x3x6) ⊂ K[x1, . . . , x6, zx6 ]. Let P be the
graph associated to ˜(IJ : x4x5). Then V (P) = V (G) ∪ {zx6} and E(P) = E(G) ∪
{{[x6, x6]}, {x3, x6}}.

The following is a useful result on co-chordal graphs that allow us to assume certain
order on their edges.

Lemma 3.2. [3, Lemma 1 and Theorem 2] Let G be a graph and E(G) = {e1 . . . , , et}.
Then G is a co-chordal graph if and only if there is an ordering of edges of G, ei1 <
· · · < eit , such that for 1 6 r 6 t, (V (G), {ei1 , . . . , eir}) has no induced subgraph
isomorphic to 2K2.

One of the key ingredients in the proof of the main results is a new graph P obtained
from the given graphs G and H as in Lemma 3.1. Our main aim in this section is to
get an upper bound for the co-chordal cover number of P which in turn will help us
in bounding reg(IJ). For this purpose, we need to understand the structure of the
graph P in more detail. First we discuss the procedure to get a new graph from the
given co-chordal subgraph of G.

Discussion 1. Let I and J be as in Set-up 1. Let P be the graph associated to
˜(IJ : ab) for any ab ∈ I. Suppose co-chord(G) = ñ. Then there exist co-chordal sub-

graphs H1, . . . ,Hñ
of G such that E(G) =

ñ⋃
i=1

E(Hi). Let NH(a) r b = {a1, . . . , aα′},

NG(a) r b = {a1, . . . , aα′ , aα′+1, . . . , aα}, NH(b) r a = {b1, . . . , bβ′} and NG(b) r a =
{b1, . . . , bβ′ , bβ′+1, . . . , bβ}. Set

N (G)a = {{a, ai} ∈ E(G) | 1 6 i 6 α} and N (G)b = {{b, bi} ∈ E(G) | 1 6 i 6 β}.

Note that if c ∈ (NG(a) r b)∩ (NG(b) r a), then {a, c} ∈ N (G)a and {b, c} ∈ N (G)b.
Since Hm is co-chordal for all 1 6 m 6 ñ, by Lemma 3.2, there is an ordering of
edges of Hm:

f1 < · · · < ftm ,(3.1)

such that for 1 6 r 6 tm, (V (Hm), {f1, . . . , fr}) has no induced subgraph isomorphic
to 2K2.

We now define a procedure to add certain edges to Hm to get a new graph H ′m in
the following steps:

Algebraic Combinatorics, Vol. 5 #5 (2022) 1019
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Step 1 If fk = {a, b} for some 1 6 k 6 tm, then we extend the ordered sequence of
edges fis by adding some new edges in the following order:

· · · < fk < {a, a1} < · · · < {a, aα′} < {b, b1} < · · · < {b, bβ′} < {[a1, b1]} < · · ·
< {[a1, bβ′ ]} < {[a2, b1]} < · · · < {[a2, bβ′ ]} < · · · < {[aα′ , b1]} < · · ·
< {[aα′ , bβ′ ]} < fk+1 < · · ·

Step 2 (i) If for 1 6 µ 6 α, fk1 = {a, aµ} ∈ N (G)a for some 1 6 k1 6 tm, then
extend the ordered sequence of edges obtained in Step 1 by adding some
new edges in the following order:

· · · < fk1 < {[aµ, b1]} < · · · < {[aµ, bβ′ ]} < fk1+1 < · · ·

(ii) If for 1 6 µ 6 β, fk2 = {b, bµ} ∈ N (G)b for some 1 6 k2 6 tm, then
extend the ordered sequence obtained from Step 2(i) by adding new edges
in the following order:

· · · < fk2 < {[bµ, a1]} < · · · < {[bµ, aα′ ]} < fk2+1 < · · ·

otherwise do not do anything.
Step 3 After applying Step 1 and Step 2, we get that the ordered sequence

g1 < · · · < gtm′(3.2)

of whose elements are edges of H ′m. Note that these steps give us an ordered
sequence of edges where some edges may appear more than once, i.e. gi may
be equal to gj for some 1 6 i, j 6 tm′ in (3.2). For each edge we keep the
first appearance and delete the subsequent ones in (3.2) to get a non repeating
ordered sequence

g1 < · · · < gtm1

of edges of H ′m where tm1 6 tm′ .

First note that {g1, . . . , gtm′} = {g1, . . . , gtm1
}. For the convenience of the readers,

we give an example in next describing the ordering just defined.

Example 3.3. Let G and H be the graphs as shown in the figure below. Set I = I(H),
J = I(G), a = x7 and b = x6. Let P be the graph associated to ˜(IJ : ab). Note that
NG(x6) r {x7} = {x5, x8, x10}, NG(x7) r {x6} = {x2, x4, x8}, NH(x6) r {x7} =
{x5, x8} and NH(x7)r {x6} = {x4, x8}. Let H1, H2 and H3 be co-chordal subgraphs
of G such that E(G) =

⋃3
i=1 E(Hi); see Figure 3. Therefore co-chord(G) = 3.

G H P

x1 x2

x10

x9

x3

x4

x8
x5

x7 x6 x7 x6

x5

x4

x8

x9

x7 x6

x8

x9

x10

x1 x2

x3

x4

x5

zx8

Figure 2. Graphs G and H for Example 3.3.

Let f1 = {x1, x2} < f2 = {x2, x7} < f3 = {x2, x3} < f4 = {x3, x4}. This is
an ordering of the edges of H1 such that for 1 6 i 6 4, (V (H1), {f1, . . . , fi}) has
no induced subgraph isomorphic to 2K2. Note that fi 6= {a, b} for all 1 6 i 6 4.
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H1 H2 H3
H ′1 H ′2 H ′3

x1 x2

x3

x4

x7

x1

x10

x9 x8

x6

x7 x6

x8 x5

x4 x1 x2

x7 x3

x4

x8

x5

x10

x1

x6

x9
x8

x4

x7 x6

x8

x5

x4zx8

Figure 3. Graphs H1, H2, and H3 for Example 3.3

Therefore there is no change in the ordered sequence of edges fi’s. Since f2 ∈ N (G)a,
by Step 2(i), we get

f1 < f2 < {x2, x5} < {x2, x8} < f3 < f4.

Also note that fi /∈ N (G)b for all 1 6 i 6 4. Since there are no repeated edges
in the ordering above, by Step 3 we have that H ′1 is the graph with the edge set
E(H1) ∪ {{x2, x5}, {x2, x8}} and whose edges appear in the above ordered sequence.

Let f ′1 = {x1, x10} < f ′2 = {x6, x10} < f ′3 = {x9, x10} < f ′4 = {x9, x8}. This is
an ordering of the edges of H2 such that for 1 6 i 6 4, (V (H2), {f ′1, . . . , f ′i}) has no
induced subgraph isomorphic to 2K2. Note that f ′i 6= {a, b} and f ′i /∈ N (G)a for all
1 6 i 6 4. Since f ′2 ∈ N (G)x6 , by Step 2(ii) we get

f ′1 < f ′2 < {x10, x4} < {x10, x8} < f ′3 < f ′4.

In this case also there are no repeated edges. By Step 3, H ′2 is the graph with the edge
set E(H2) ∪ {{x10, x4}, {x10, x8}} and edges in H ′2 appear in the ordered sequence
above.

Let

f ′′1 = {x7, x6} < f ′′2 = {x6, x5} < f ′′3 = {x5, x4} < f ′′4 = {x4, x7} <
f ′′5 = {x7, x8} < f ′′6 = {x6, x8}.

This is an ordering of the edges of H3 such that for 1 6 i 6 6, (V (H3), {f ′′1 , . . . , f ′′i })
has no induced subgraph isomorphic to 2K2. Since f ′′1 = {a, b}, by Step 1,

f ′′1 = {x7, x6} < {x7, x8} < {x7, x4} < {x6, x5} < {x6, x8} < {[x8, x8]} <
{x8, x5} < {x4, x5} < {x4, x8} < f ′′2 < f ′′3 < f ′′4 < f ′′5 < f ′′6 .

Since f ′′4 , f ′′5 ∈ N (G)a, by Step 2(i), we get

f ′′1 = {x7, x6} < {x7, x8} < {x7, x4} < {x6, x5} < {x6, x8} < {[x8, x8]} <
{x8, x5} < {x4, x5} < {x4, x8} < f ′′2 < f ′′3 < f ′′4 < {x4, x5} < {x4, x8} < f ′′5

< {[x8, x8]} < {x8, x6} < f ′′6 .

Since f ′′2 , f ′′6 ∈ N (G)b, by Step 2(ii), we get

f ′′1 = {x7, x6} < {x7, x8} < {x7, x4} < {x6, x5} < {x6, x8} < {[x8, x8]} < {x8, x5}
< {x4, x5} < {x4, x8} < f ′′2 = {x6, x5} < {x5, x4} < {x5, x8} < f ′′3 = {x5, x4}
< f ′′4 = {x4, x7} < {x4, x5} < {x4, x8} < f ′′5 = {x7, x8} < {[x8, x8]} < {x8, x6}
< f ′′6 = {x6, x8} < {[x8, x8]} < {x8, x4}.
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Since the edges {x6, x5}, {x5, x4}, {x5, x8}, {x4, x7}, {x4, x5}, {x4, x8}, {x7, x8},
{x6, x8}, {[x8, x8]} are repeated in the above ordering, by Step 3, we get

{x7, x6} < {x7, x8} < {x7, x4} < {x6, x5} < {x6, x8} < {[x8, x8]} < {x8, x5}
< {x4, x5} < {x4, x8}.

So, H ′3 is the graph with edge set E(H ′3) = E(H3)∪{{x8, x4}, {x8, x5}, {x8, zx8}} and
edges in H ′3 appear in the ordered sequence above.

The operations used in Step 1 and Step 2 above will also be used subsequently.
So we fix notation to refer to them. Instead of separately describing them on each
occasion we shall simply refer to the operation number.

Op 1 The operation used in Step 2(i), i.e. if for 1 6 µ 6 α, fk1 = {a, aµ} ∈ N (G)a
for some 1 6 k1 6 tm, then

· · · < fk1 < {[aµ, b1]} < · · · < {[aµ, bβ′ ]} < fk1+1 < · · · .
Op 2 The operation used in Step 2(ii), i.e. if for 1 6 µ 6 β, fk2 = {b, bµ} ∈ N (G)b

for some 1 6 k2 6 tm, then
· · · < fk2 < {[bµ, a1]} < · · · < {[bµ, aα′ ]} < fk2+1 < · · · .

Op 3 The operation used in Step 1, i.e. if fk = {a, b} for some 1 6 k 6 tm, then
· · · < fk < {a, a1} < · · · < {a, aα′} < {b, b1} < · · · < {b, bβ′} < {[a1, b1]} < · · ·
< {[a1, bβ′ ]} < {[a2, b1]} < · · · < {[a2, bβ′ ]} < · · · < {[aα′ , b1]} < · · ·
< {[aα′ , bβ′ ]} < fk+1 < · · · .

We refer to the added edges in these operations as new edges.
We make some observations which follows directly from the preceding discussion.

Observation 1. We use the same notation as in Discussion 1.
(1) Let P be the graph associated to ˜(IJ : ab) for any ab ∈ I. Let h = {[c, d]}

be a new edge as in Op 1–Op 3. First note that h ∈ N (G)a ∪ N (G)b or
c ∈ NG(a), d ∈ NH(b) or c ∈ NH(a), d ∈ NG(b). It follows from Lemma 3.1
that h ∈ E(P). Therefore H ′m is a subgraph of P for all 1 6 m 6 ñ.
Hence

⋃
16m6ñ

E(H ′m) ⊆ E(P). It is also not hard to verify that E(P) ⊆⋃
16m6ñ

E(H ′m). Therefore E(P) =
⋃

16m6ñ

E(H ′m).

(2) Let g1 < · · · < gtm′ be the ordered sequence whose elements are edges of H ′m
as in (3.2). Suppose gi is a new edge as in Op 1 ( Op 2 or Op 3) where
1 6 i 6 tm′ . Then there exists gi′ ∈ N (G)a (gi′ ∈ N (G)b or gi′ = {a, b}) such
that gi′ < gi i.e. g1 < · · · < gi′ < · · · < gi < · · · < gtm1

.

Now we fix some notation for some of the technical lemmas that are needed for the
proof of the main result.

Notation 3.4. We use the same notation as in Discussion 1. Let g1 < · · · < gtm′ be
the ordered sequence whose elements are edges of H ′m as in (3.2). For 1 6 i 6 tm′ ,
let Ki denote the graph with edge set {g1, . . . , gi} and whose edges appearing in the
following ordered sequence g1 < · · · < gi.

In the next two lemmas, we further reveal the structure of H ′m.

Lemma 3.5. We use the same notation as in Discussion 1. If Ki has no induced
subgraph isomorphic to 2K2 for all 1 6 i 6 tm′ , then (V (H ′m), {g1, . . . , gj}) has no
induced subgraph isomorphic to 2K2 for all 1 6 j 6 tm1 .
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Proof. Suppose (V (H ′m), {g1, . . . , gq}) has an induced subgraph isomorphic to 2K2,
say {gp, gq}, for some 1 6 p < q 6 tm1 . Set gq = gs for some 1 6 s 6 tm′ . It
can also noted that gp = gr < gs for some 1 6 r < s. Since {gr, gs} cannot form
an induced subgraph 2K2 in Ki for all 1 6 i 6 tm′ , gr and gs have a vertex in
common or there exist an edge fl ∈ E(Hm) such that fl < gs connecting gr and gs.
Note that fl ∈ {g1, . . . , gq}. In both cases we get a contradiction to the assumption.
Therefore (V (H ′m), {g1, . . . , gj}) has no induced subgraph isomorphic to 2K2 for all
1 6 j 6 tm1 . �

Lemma 3.6. Assume notation as in Discussion 1. If Kj has an induced subgraph iso-
morphic to 2K2, say {gi, gj}, for some 1 6 i < j 6 tm′ , then gi, gj /∈ E(Hm).

Proof. Let f1 < · · · < ftm be the ordering of edges of Hm as in (3.1). Suppose
gi, gj ∈ E(Hm). Set fp = gi and fq = gj for some 1 6 p < q 6 tm. Note that
(V (Hm), {f1, . . . , fr}) has no induced subgraph isomorphic to 2K2 for all 1 6 r 6 tm.
Since gi, gj ∈ E(Hm), by Lemma 3.2, they cannot form an induced 2K2-subgraph
of Hm. Therefore, either gi and gj have a vertex in common or there exist an edge
fl ∈ E(Hm) such that fl < gj connecting gi and gj . If gi and gj have a vertex in
common in Hm, then this contradicts the assumption that {gi, gj} forms an induced
2K2-subgraph in Kj . If fl is an edge connecting gi and gj , then fl ∈ E(Kj). This is a
contradiction to gi, gj ∈ E(Hm). Therefore gi, gj /∈ E(Hm). �

Now we prove that the co-chordal cover number of P is bounded above by that of
G.

Lemma 3.7. Let I and J be as in Set-up 1. Let P be the graph associated to ˜(IJ : ab)
for any ab ∈ I. Then

co-chord(P) 6 co-chord(G).

Proof. Let co-chord(G) = ñ. Then there exist co-chordal subgraphs H1, . . . ,Hñ
of G

such that E(G) =
ñ⋃
i=1

E(Hi). If E(G) = E(P), then we are done. Suppose E(G) 6=

E(P). We use the same notation as in Discussion 1. Since Hm is co-chordal, by
Lemma 3.2, there is an ordering of the edges of Hm, f1 < · · · < ftm , such that for
1 6 r 6 tm, (V (Hm), {f1, . . . , fr}) has no induced subgraph isomorphic to 2K2. By

Observation 1(1), we have E(P) =
ñ⋃

m=1
E(H ′m). Let g1 < · · · < gtm′ be the ordered

sequence of edges of H ′m as in (3.2). Now we claim that Kr has no induced subgraph
isomorphic to 2K2 for all 1 6 r 6 tm′ . Suppose not i.e. there exists a least j such that
Kj has an induced 2K2-subgraph, say {gi, gj} for some i < j. First note that both gi
and gj cannot be new edges as in Op 1–Op 3. By Lemma 3.6, we have gi, gj /∈ E(Hm).
Therefore, we have the following cases:

(1) gi ∈ E(Hm), gj is a new edge as in Op 1 or gi is a new edge as in Op 1,
gj ∈ E(Hm);

(2) gi ∈ E(Hm), gj is a new edge as in Op 2 or gi is a new edge as in Op 2,
gj ∈ E(Hm);

(3) gi ∈ E(Hm), gj is a new edge as in Op 3 or gi is a new edge as in Op 3,
gj ∈ E(Hm);

(4) gi is a new edge as in Op 1, gj is a new edge as in Op 2 or gi is a new edge
as in Op 2, gj is a new edge as in Op 1;

(5) gi is a new edge as in Op 1, gj is a new edge as in Op 3 or gi is a new edge
as in Op 3, gj is a new edge as in Op 1;
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(6) gi is a new edge as in Op 2, gj is a new edge as in Op 3 or gi is a new edge
as in Op 3, gj is a new edge as in Op 2.

We consider each case separately.
Case 1: Suppose gi ∈ E(Hm) and gj is a new edge as in Op 1. Let gi = {u, v} ∈ E(Hm)

and gj = {[aµ, bp]} for some 1 6 µ 6 α, 1 6 p 6 β′. By Op 1, we have
gj′ = {a, aµ} < gj . Since gi, gj′ ∈ E(Hm), they cannot form an induced 2K2-
subgraph of Hm. Therefore, either gj′ and gi have a vertex in common or
there exist an edge gl ∈ E(Hm) such that gl < gj′ connecting gi and gj′ . If gi
and gj′ have a vertex in common, then this contradicts the assumption that
{gi, gj} forms an induced 2K2-subgraph. Suppose gl is an edge connecting gi
and gj′ . Let gl = {u, a} and u 6= b. Then gl ∈ N (G)a. By Op 1, gl < {[u, bp]}.
We have gl < {[u, bp]} < gj′ < gj . This is a contradiction to {gi, gj} is
an induced 2K2-subgraph. If gl = {a, b}, then by Op 3, gl < {b, bp}. This
also contradicts the assumption that {gi, gj} is an induced 2K2-subgraph.
Similarly, if gl = {u, aµ} or gl = {v, a} or gl = {v, aµ}, then one arrives at
a contradiction. Therefore {gi, gj} cannot form an induced 2K2-subgraph of
H ′m.

If gi is a new edge as in Op 1 and gj ∈ E(Hm), then we get a contradiction
in a similar manner.

Case 2: Suppose either gi ∈ E(Hm) and gj is a new edge as in Op 2 or gj ∈ E(Hm)
and gi is a new edge as in Op 2. Proceeding as in Case 1, one can show that
gi and gj cannot form an induced 2K2-subgraph.

Case 3: Suppose gi ∈ E(Hm) and gj is a new edge as in Op 3. Let gi = {u, v} ∈
E(Hm). Then gj = {a, aµ} for some 1 6 µ 6 α′ or gj = {b, bµ} for some
1 6 µ 6 β′ or gj = {[ap, bq]} for some 1 6 p 6 α′, 1 6 q 6 β′. If gj =
{a, aµ} for some 1 6 µ 6 α′, then by Op 3, we have gj′ = {a, b} < gj .
Since gi, gj′ ∈ E(Hm), they cannot form an induced 2K2-subgraph of Hm.
Therefore, either gj′ and gi have a vertex in common or there exist an edge
gl ∈ E(Hm) such that gl < gj′ connecting gi and gj′ . If gi and gj′ have a
vertex in common, then this contradicts the assumption that {gi, gj} forms
an induced 2K2-subgraph. Suppose gl is an edge connecting gi and gj′ . If
gl = {b, u} ∈ N (G)b, then by Op 2, gl < {[u, aµ]}. This also contradicts the
assumption that {gi, gj} is an induced 2K2-subgraph. Similarly, if gl = {v, b}
or gl = {u, a} or gl = {u, a}, then one arrives at a contradiction. If gj = {b, bµ}
for some 1 6 µ 6 β′, then we get a contradiction in a similar manner.

Suppose gj = {[ap, bq]} for some 1 6 p 6 α′, 1 6 q 6 β′. By Op 3, we
have gj′ = {a, b} < gj . Since gi, gj′ ∈ E(Hm), they cannot form an induced
2K2-subgraph of Hm. Therefore, either gj′ and gi have a vertex in common
or there exist an edge gl ∈ E(Hm) such that gl < gj′ connecting gi and gj′ .
Suppose gi and gj′ have a vertex in common. If u = a, then gi ∈ N (G)a.
By Op 1, gi < {[v, bq]}. Therefore, we have gi < {[v, bq]} < gj′ < gj . This is a
contradiction to {gi, gj} forms an induced 2K2-subgraph. Similarly, if u = b
or v = a or v = b, then one arrives at a contradiction. Suppose gl is an edge
connecting gi and gj′ . Note that gl < gj′ . If gl = {u, a}, then gl ∈ N (G)a.
By Op 1, gl < {[u, bq]}. This also contradicts the assumption that {gi, gj} is
an induced 2K2-subgraph. Similarly, if gl = {v, b} or gl = {v, a} or gl = {u, b},
then one arrives at a contradiction.

If gi is a new edge as in Op 3 and gj ∈ E(Hm), then we get a contradiction
in a similar manner.

Case 4: Suppose gi is a new edge as in Op 1 and gj is a new edge as in Op 2.
Let gi = {[ap, bq]} and gj = {[ap′ , bq′ ]} for some 1 6 p 6 α, 1 6 q 6 β′,
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1 6 p′ 6 α′, 1 6 q′ 6 β. Then by Op 1 and Op 2,

gi′ = {a, ap} < gi < gj′ = {b, bq′} < gj .

Since gi′ , gj′ ∈ E(Hm), they cannot form an induced 2K2-subgraph of Hm.
Therefore, either gi′ and gj′ have a vertex in common or there exist an
edge gl ∈ E(Hm) such that gl < gj′ connecting gi′ and gj′ . If gi′ and gj′

have a vertex in common, then this contradicts the assumption that {gi, gj}
forms an induced 2K2-subgraph. Suppose gl is an edge connecting gi′ and gj′ .
If gl = {ap, bq′}, then this contradicts the assumption that {gi, gj} forms
an induced 2K2-subgraph. If gl = {ap, b}, then gl ∈ N (G)b. By Op 2,
gl < {[ap, ap′ ]}. This also contradicts the assumption that {gi, gj} is an in-
duced 2K2-subgraph. Similarly, if gl = {a, bq′}, then one arrives at a contra-
diction. If gl = {a, b}, then by Op 3, gl < {[ap′ , bq′ ]}. This also contradicts
the assumption that {gi, gj} is an induced 2K2-subgraph.

If gi = {[ap′ , bq′ ]} is a new edge as in Op 2 and gj = {[ap, bq]} is a new
edge as in Op 1, then we get a contradiction in a similar manner.

Case 5: Suppose gi = {[ap′ , bq′ ]} is a new edge as in Op 1 for some 1 6 p′ 6 α,
1 6 q′ 6 β′ and gj is a new edge as in Op 3. Note that gj = {a, aµ} for some
1 6 µ 6 α′ or gj = {b, bµ} for some 1 6 µ 6 β′ or gj = {[ap, bq]} for some
1 6 p 6 α′, 1 6 q 6 β′. Suppose gj = {a, aµ} for some 1 6 µ 6 α′. By Op 1,
we have

{a, ap′} < gi < gj = {a, aµ}.
This is a contradiction to the assumption that {gi, gj} forms an induced 2K2-
subgraph. Suppose gj = {b, bµ} for some 1 6 µ 6 β′. Since gi is a new edge
as in Op 1, we have

{a, ap′} < {[ap′ , b1]} < · · · < {[ap′ , bµ]} < · · · < {[ap′ , bβ′ ]}.

Therefore {[ap′ , bµ]} < gj . This is a contradiction to the assumption that
{gi, gj} forms an induced 2K2-subgraph. Suppose gj = {[ap, bq]} for some
1 6 p 6 α′, 1 6 q 6 β′. It can also seen that {[ap′ , bq]} < gj . This is a
contradiction to the assumption that {gi, gj} forms an induced 2K2-subgraph.

If gi is a new edge as in Op 3 and gj is a new edge as in Op 1, then we get
a contradiction in a similar manner.

Case 6: Suppose either gi is a new edge as in Op 2 and gj is a new edge as in Op 3 or gj
is a new edge as in Op 3 and gi is a new edge as in Op 2. Proceeding as in the
Case 5, one can show that gi and gj cannot form an induced 2K2-subgraph.

In all cases we get a contradiction to the assumption that Kj has an induced 2K2-
subgraph for some 1 6 j 6 tm′ . Therefore Kj has no induced 2K2-subgraph for all
1 6 j 6 tm′ . By Lemma 3.5, (V (H ′m), {g1, . . . , gr′}) has no induced 2K2-subgraph
for all 1 6 r′ 6 tm′ . By Lemma 3.2, H ′m is a co-chordal graph. Therefore, H ′m is a
co-chordal graph for all 1 6 m 6 ñ. Hence co-chord(P) 6 ñ. �

As a consequence of Lemma 3.7 one has:

Corollary 3.8. Let I and J be edge ideals with I ⊆ J . If J has a linear minimal free
resolution and for any ab ∈ I, then (IJ : ab) also has a linear minimal free resolution

Proof. Let G and P be the graphs associated to J and ˜(IJ : ab) respectively. By [12,
Theorem 1], G is a co-chordal graph and by Lemma 3.7, P is also co-chordal. Again
by [12, Theorem 1], P has a linear minimal free resolution. Therefore, (IJ : ab) has a
linear minimal free resolution. �
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4. Upper and lower bound for the regularity of products of
two edge ideals

In this section, we obtain a general upper and lower bounds for the regularity of
products of two edge ideals.

We start by recalling the notion of upper-Koszul simplicial complexes associated
to monomial ideals. Let I ⊆ R = K[x1, . . . , xn] be a monomial ideal and let α =
(α1, . . . , αn) ∈ Nn be a Nn-graded degree. The upper-Koszul simplicial complex as-
sociated to I at degree α, denoted by Kα(I), is the simplicial complex over V =
{x1, . . . , xn} whose faces are:{

W ⊆ V | x
α1
1 · · ·xαnn∏
u∈W

u
∈ I
}
.

Given a monomial ideal I, its Nn-graded Betti numbers are given by the following
formula of Hochster [19, Theorem 1.34]:

βi,α(I) = dimK H̃i−1(Kα(I);K) for all i > 0 and α ∈ Nn.

We now prove the general lower bound for the regularity of product of edge ideals.
One can see that [4, Lemma 4.2] works more generally and we generalize their argu-
ment to prove it below:

Theorem 4.1. Let J1 = I(Gi), . . . , Jd = I(Gd) be the edge ideals of G1, . . . , Gd with
J1 ⊆ · · · ⊆ Jd. Then

2d+ νG1···Gd − 1 6 reg(J1 · · · Jd).

Proof. Let f1, f2, . . . , fνG1···Gd
be the induced matching of Gi for all 1 6 i 6 d. Let Q

be an induced subgraph of Gi with E(Q) = {f1, . . . , fνG1···Gd
} for all 1 6 i 6 d. First,

we claim that if for any α = (α1, . . . , αn) ∈ Nn and supp(α) ⊆ V (Q), where supp(α) =
{xi | αi 6= 0}, then Kα(I(Q)d) = Kα(J1 · · · Jd). Clearly, Kα(I(Q)d) ⊆ Kα(J1 · · · Jd).
Suppose W ∈ Kα(J1 · · · Jd). Since supp(α) ⊆ V (Q), we have W ⊆ V (Q). Then
m = x

α1
1 ···x

αn
n∏

u∈W

u
∈ J1 · · · Jd, which implies that g1 · · · gd | m where gi ∈ Ji for all

1 6 i 6 d. Clearly supp(gi) ⊆ supp(m) for all 1 6 i 6 d. Therefore gi ∈ I(Q) for all
1 6 i 6 d. Then m = x

α1
1 ···x

αn
n∏

u∈W

u
∈ I(Q)d, which implies that W ∈ Kα(I(Q)d), proving

the claim. It follows from [19, Theorem 1.34] that

βi,α(I(Q)d) = dimK H̃i−1(Kα(I(Q)d);K)

= dimK H̃i−1(Kα(J1 · · · Jd);K) = βi,α(J1 · · · Jd).
Therefore,

βi,j(I(Q)d) =
∑

α∈Nn, supp(α)⊆V (Q), |α|=j

βi,α(I(Q)d)

=
∑

α∈Nn, supp(α)⊆V (Q), |α|=j

βi,α(J1 · · · Jd)

6
∑

α∈Nn, |α|=j

βi,α(J1 · · · Jd) = βi,j(J1 · · · Jd).

Hence reg(I(Q)d) 6 reg(J1 · · · Jd). By [4, Lemma 4.4], reg(I(Q)d) = 2d+νG1···Gd −1.
Hence 2d+ νG1···Gd − 1 6 reg(J1 · · · Jd). �

We now prove an upper bound for the regularity of IJ .
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Theorem 4.2. Let I and J be as in Set-up 1. Then
reg(IJ) 6 max{co-chord(G) + 3, reg(I)}.(4.1)

In particular,
reg(IJ) 6 max{co-chord(G) + 3, co-chord(H) + 1}.

Proof. Set I = (f1, . . . , ft). It follows from the short exact sequences:

0 −→ R

(IJ : f1) (−2) ·f1−→ R

IJ
−→ R

(IJ, f1) −→ 0;

...
...

...(4.2)

0 −→ R

((IJ, f1, . . . , ft−1) : ft)
(−2) ·ft−→ R

(IJ, f1, . . . , ft−1) −→
R

(IJ, I) −→ 0,

that

reg
(
R

IJ

)
6 max

{
reg
(

R
(IJ:f1)

)
+ 2, . . . , reg

(
R

(IJ,f1,...,ft−1):ft)

)
+ 2, reg

(
R
I

)}
.

Note that ((IJ, f1, . . . , fi−1) : fi) = (IJ : fi) + (variables) for any 1 6 i 6 t. By [17,
Theorem 1.2] and Corollary 2.3, we have

reg((IJ, f1, . . . , fi−1) : fi) 6 reg((IJ : fi)) = reg( ˜(IJ : fi)).

Let Pi be the graph associated to ˜(IJ : fi). Therefore, by [24, Theorem 1] and
Lemma 3.7, we get reg(ĨJ : fi) 6 co-chord(Pi)+1 6 co-chord(G)+1. Hence reg(IJ) 6
max{co-chord(G) + 3, reg(I)}. Now the second assertion follows from [24, Theorem
1]. �

Remark 4.3. Let G be a graph and H be a subgraph of G. We would like to note
here that the invariant co-chord(G) and co-chord(H) are not comparable in general.
For example, if G is the graph with E(G) = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5},
{x5, x1}, {x1, x3}} and H is a subgraph of G with E(H) = {{x1, x2}, {x2, x3},
{x3, x4}, {x4, x5}, {x5, x1}}, then co-chord(G) = 1 and co-chord(H) = 2. If G is
a graph with E(G) = {{x1, x2}, {x2, x3}, {x3, x4},{x4, x5}} and H is a graph with
E(H) = {{x1, x2}, {x2, x3}}, then co-chord(G) = 2 and co-chord(H) = 1.

As an immediate consequence, we have the following statements.

Corollary 4.4. Let I and J be as in Set-up 1. Then reg(IJ) 6 m(G) + 3.

Proof. Since H is a subgraph of G, m(H) 6 m(G). Hence the assertion follows from
Theorem 4.2. �

The following example shows that the inequalities given in Theorem 4.1 and Corol-
lary 4.4 are sharp.

Example 4.5. Let H and G be graphs with I(H) = (x2x3, x4x5) and I(G) =
(x1x2, x1x3, x1x4, x1x5, x2x3, x4x5). It is not hard to verify that m(G) = 2 and
νHG = 2. Therefore, by Theorem 4.1 and Corollary 4.4, we have reg(I(H)I(G)) = 5.

Corollary 4.6. Let I and J be as in Set-up 1. If H is an induced subgraph of G,
then

ν(H) + 3 6 reg(IJ) 6 co-chord(G) + 3.

Proof. If H is an induced subgraph of G, then co-chord(H) 6 co-chord(G) and
νHG = ν(H). Therefore, by Theorems 4.1 and 4.2, we have ν(H) + 3 6 reg(IJ) 6
co-chord(G) + 3. �
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It follows from Corollary 4.4 that if G1 is a subgraph of G2, then

reg(J1J2) 6 3 + m(G2),

where Ji = I(Gi) for all i = 1, 2. As a natural extension of this result, one may
tend to think that the same expression may hold true for reg(J1 · · · Jd). This question
is inspired by previous work [2, 15, 16] of the regularity of powers of edge ideals of
graphs. More precisely, we would like to ask:

Question 4.7. If Gi−1 is a subgraph of Gi for all i = 2, . . . , d, is it true that

reg(J1 · · · Jd) 6 2d+ m(Gd)− 1,

where Ji = I(Gi) for all 1 6 i 6 d? In particular, if Gi−1 is an induced subgraph of
Gi for all i = 2, . . . , d, is it true that

reg(J1 · · · Jd) 6 2d+ co-chord(Gd)− 1?

The following example shows that the above inequality can be equality.

Example 4.8. Let J1 = ({xi−1xi | 5 6 i 6 6}), J2 = J3 = ({xi−1xi | 3 6 i 6 8})
and J4 = J5 = ({xi−1xi | 2 6 i 6 10}) be the edge ideals. Set Ji = I(Gi) for all
1 6 i 6 5. A computation on Macaulay2 shows that reg(J1 · · · J5) = 12. Note that
Gi−1 is an induced subgraph of Gi for all 2 6 i 6 5 and co-chord(G5) = 3. Then
reg(J1 · · · J5) = 12 6 2 · 5 + co-chord(G5)− 1 = 12.

Let G1 and G2 be graphs with disjoint vertex sets, i.e. V (G1) ∩ V (G2) = ∅. The
join of G1 and G2, denoted by G1 ∗G2, is the graph with vertex set V (G1) ∪ V (G2)
whose edge set is E(G1∗G2) = E(G1)∪E(G2)∪{{x, y} | x ∈ V (G1) and y ∈ V (G2)}.

Corollary 4.9. Let G1, G2 be graphs with disjoint edges and G = G1∗G2. If H = G1
or H = G2, then

ν(H) + 3 6 reg(I(H)I(G)) 6 max{co-chord(G1), co-chord(G2)}+ 3.

In particular, if co-chord(G1) 6 co-chord(G2) and H = G2, then reg(I(H)I(G)) =
ν(G2) + 3.

Proof. IfH is equal to eitherG1 orG2, thenH is an induced subgraph ofG. Therefore,
by Corollary 4.6, we have

ν(H) + 3 6 reg(I(H)I(G)) 6 max{co-chord(G) + 3, co-chord(H) + 1}.

By [21, Proposition 4.12], we know that

co-chord(G) = max{co-chord(G1), co-chord(G2)}.

Therefore reg(I(H)I(G)) 6 max{co-chord(G1), co-chord(G2)}+ 3. �

5. Precise expressions for the regularity of product of edge
ideals

In this section, we explicitly compute the regularity of product of edge ideals for
certain classes of graphs. First, we compute the regularity of IJ when J has a linear
resolution.

Theorem 5.1. Let I and J be edge ideals with I ⊆ J . Suppose J has a linear resolu-
tion.

(1) If reg(I) 6 4, then IJ has a linear resolution.
(2) If 5 6 reg(I), then reg(IJ) = reg(I).
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Proof. Suppose reg(I) 6 4. Since J has a linear resolution, by (4.1), 4 6 reg(IJ) 6
max{4, reg(I)}. Hence reg(IJ) = 4.

Suppose reg(I) > 5. By (4.1), we have reg(IJ) 6 max{4, reg(I)} 6 reg(I). Since
4 6 reg(R/I), there exist i, j such that j− i > 4 and βi,j(R/I) 6= 0. From (4.2), either

βi,j

(
R

(IJ, f1, . . . , ft−1)

)
6= 0 or βi−1,j

(
R

((IJ, f1, . . . , ft−1) : ft)
(−2)

)
6= 0. Note that

((IJ, f1, . . . , ft−1) : ft) = (IJ : ft) + (variables). Since J has a linear resolution, by
Corollary 3.8 we infer that (IJ : ft) has a linear resolution. Hence (IJ, f1, . . . , ft−1) :
ft) has a linear resolution, i.e. reg((IJ, f1, . . . , ft−1) : ft)) = 2.

If βi−1,j−2

(
R

((IJ, f1, . . . , ft−1) : ft)

)
6= 0, then

reg
(

R

((IJ, f1, . . . , ft−1) : ft)

)
> j − 1− i > 4− 1 = 3.

This is a contradiction to reg
(

R

((IJ, f1, . . . , ft−1) : ft)

)
6 1. Therefore

βi,j

(
R

(IJ, f1, . . . , ft−1)

)
6= 0.

Then again either

βi,j

(
R

(IJ, f1, . . . , ft−2)

)
6= 0

or
βi−1,j

(
R

((IJ, f1, . . . , ft−2) : ft−1) (−2)
)
6= 0.

As in the previous case, we get βi,j
(

R

(IJ, f1, . . . , ft−2)

)
6= 0. Then one proceeds

in the same manner. At each stage, we get either βi,j
(

R

(IJ, f1, . . . , fl−1)

)
6= 0 or

βi−1,j

(
R

((IJ, f1, . . . , fl−1) : fl)
(−2)

)
6= 0 for all l. Therefore, βi,j

(
R

IJ

)
6= 0. Hence

reg(R/I) 6 reg(R/IJ). �

An immediate consequence of Theorem 5.1 is the following:

Corollary 5.2. Let I and J be as in Set-up 1. If J has a linear resolution and
ν(H) > 4, then reg(IJ) = reg(I). In particular,

ν(H) + 1 6 reg(IJ) 6 co-chord(H) + 1.

Proof. By (1.1), we have that 5 6 reg(I). Therefore, by Theorem 5.1, reg(IJ) =
reg(I). The second assertion follows from (1.1). �

A graph which is isomorphic to the graph with vertices a, b, c, d and edges {a, b},
{b, c}, {a, c}, {a, d}, {c, d} is called a diamond. A graph which is isomorphic to
the graph with vertices w1, w2, w3, w4, w5 and edges {w1, w3}, {w2, w3}, {w3, w4},
{w3, w5}, {w4, w5} is called a cricket. A graph without an induced diamond (respec-
tively cricket) is called diamond (respectively cricket)-free.

Corollary 5.3. Let I and J be as in Set-up 1. Suppose J has a linear resolution.
Then IJ has a linear resolution if

(1) co-chord(H) 6 3;
(2) H is (gap,cricket)-free;
(3) H is (gap, diamond)-free;
(4) H is (gap, C4)-free or
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(5) H is a graph such that Hc has no triangle;

Proof. By (1.1), [1, Theorem 3.4], [10, Theorem 3.5], [11, Proposition 2.11] and [20,
Theorem 2.10], we have that reg(I) 6 4. Therefore, by Theorem 5.1, IJ has a linear
resolution. �

So far, we have been discussing about the regularity of products of two edge ideals.
Now we study the regularity of products of more than two edge ideals.

Theorem 5.4. Let J1, . . . , Jd be edge ideals and J1 ⊆ J2 ⊆ · · · ⊆ Jd, d ∈ {3, 4}.
Suppose Jd is the edge ideal of a complete graph.

(1) If reg(J1 · · · Jd−1) 6 2d, then J1 · · · Jd has a linear resolution.
(2) If reg(J1 · · · Jd−1) > 2d+ 1, then reg(J1 · · · Jd) = reg(J1 · · · Jd−1).

Proof. Set J := J1 · · · Jd and J1 · · · Jd−1 = (F1, . . . ,Ft). Now we claim that, if (Fj :
Fi) = (us) for some s > 3 and j 6= i, then u2 ∈ (J : Fi). Clearly d > 3. Set
Fj = g1g2g3 and Fi = f1f2f3, where gi, fi ∈ Ji for all 1 6 i 6 3. Since s > 3, we have
u | gi and u - fi for all 1 6 i 6 3. Set g1 = ua, g2 = ub, g3 = uc, f1 = x1x2, f2 = x3x4
and f3 = x5x6 (xi may be equal to xj , for some 1 6 i, j 6 5). Note that abc | f1f2f3.
If ab | fi and c | fj , for some 1 6 i, j 6 3, then uaubfjfk ∈ J , where k 6= i, j. If a | fi,
b | fj , c | fk for some 1 6 i, j, k 6 3, then uaubfk( fifjab ) ∈ J . Therefore u2 ∈ (J : Fi).
Hence the claim.

Letm ∈ G(J : Fi). By degree considerationm cannot have degree 1. We now claim
that deg(m) = 2. Suppose | supp(m)| > 2. Since Jd is an edge ideal of a complete
graph, deg(m) = 2. Suppose | supp(m)| = 1. Assume that deg(m) > 3. Set m = us

for some s > 3. Clearly n1 · · ·nd | usFi, where nl ∈ G(Jl) for all 1 6 l 6 d. Then
n1 · · ·nd−1 | usFi. Also, us ∈ (n1 · · ·nd−1 : Fi). By the above claim, u2 ∈ (J : Fi).
This is a contradiction to deg(m) > 3. Therefore deg(m) = 2.

By the above arguments, one can see that the ideal ((J ,F1, . . . ,Fi−1) : Fi) is
generated by quadratic monomial ideals. Note that Jd ⊆ (J : Fi). LetKi be the graph
associated to ˜((J ,F1, . . . ,Fi−1) : Fi). Since Jd is the edge ideal of complete graph,
Ki is the graph obtained from complete graph by attaching pendant to some vertices.
Hence Ki is a co-chordal graph. By [12, Theorem 1], reg((J ,F1, . . . ,Fi−1) : Fi)) = 2
for all 1 6 i 6 t.

Considering similar exact sequences as in (4.2), we get that the inequality

reg
(
R

J

)
6 max

 reg
(

R
(J :F1)

)
+ 2(d− 1), . . . , reg

(
R

(J ,F1,...,Ft−1):Ft)

)
+ 2(d− 1),

reg
(

R
J1···Jd−1

) 
holds. Therefore reg

(
R
J
)
6 max

{
2d, reg

(
R

J1···Jd−1

)}
. Proceeding as in the proof of

Theorem 5.1 we get the desired conclusion. �

As an immediate consequence of Theorem 4.2, Theorem 5.4, we obtain an up-
per bound for the regularity of products of edge ideals in terms of co-chordal cover
numbers.

Corollary 5.5. Let J1 = I(G1), . . . , Jd = I(Gd) be the edge ideal of G1, . . . , Gd with
J1 ⊆ · · · ⊆ Jd.

(1) If G3 is a complete graph, then
reg(J1J2J3) 6 max{6, co-chord(G2) + 3, co-chord(G1) + 1}.

(2) If Gi is a complete graph for all i = 3, 4, then
reg(J1J2J3J4) 6 max{8, co-chord(G2) + 3, co-chord(G1) + 1}.
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As a consequence of Theorem 5.4, we give sufficient conditions for products of edge
ideals to have linear resolutions.

Corollary 5.6. Let Ji = I(Gi) be the edge ideal of Gi for all 1 6 i 6 d and
J1 ⊆ · · · ⊆ Jd.

(1) If G3 is a complete graph and max{co-chord(G2) + 3, co-chord(G1) + 1} 6 6,
then J1J2J3 has linear resolution.

(2) If Gi is a complete graph for all i = 3, 4 and max{co-chord(G2) +
3, co-chord(G1) + 1} 6 8, then J1J2J3J4 has linear resolution.

(3) If G4 is a complete graph and Gi is an induced subgraph of Gi+1 for all
1 6 i 6 3, then J1J2J3J4 has linear resolution.

(4) If Gi is a complete graph for all i = 3, 4 and J1J2 has a linear resolution,
then J1J2J3J4 has a linear resolution.

Proof. For (1) and (2), the assertions follow from Theorem 4.2 and Theorem 5.4.
Consider (3). Since G4 is a complete graph and Gi is an induced subgraph of Gi+1
for all 1 6 i 6 3, Gi is a complete graph for all 1 6 i 6 3. Therefore, by Corol-
lary 5.5(1), J1J2J3 has a linear resolution. Hence, by Theorem 5.4, J1J2J3J4 has a
linear resolution. Finally, consider (4). If J1J2 has a linear resolution, then by The-
orem 5.4, J1J2J3 has linear resolution. Therefore, by Theorem 5.4, J1J2J3J4 has a
linear resolution. �
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