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Matroid relaxations and Kazhdan–Lusztig
non-degeneracy

Luis Ferroni & Lorenzo Vecchi

Abstract In this paper we study the interplay between the operation of circuit-hyperplane
relaxation and the Kazhdan–Lusztig theory of matroids. We obtain a family of polynomials,
not depending on the matroids but only on their ranks, that relate the Kazhdan–Lusztig, the
inverse Kazhdan–Lusztig and the Z-polynomial of each matroid with those of its relaxations.
As an application of our main theorem, we prove that all matroids having a free basis are non-
degenerate. Additionally, we obtain bounds and explicit formulas for all the coefficients of the
Kazhdan–Lusztig, inverse Kazhdan–Lusztig and Z-polynomial of all sparse paving matroids.

1. Introduction
1.1. Overview. Given a Coxeter group W , to each pair of elements that are compa-
rable with respect to the Bruhat order x 6 y it is possible to associate a polynomial
Px,y(t) having integer coefficients. Such polynomials are known in the literature as
the Kazhdan–Lusztig polynomials of W and encode fundamental information about
the combinatorial and algebro-geometric features of the Coxeter group.

In 2016 Elias et al. [7] introduced an analog of the Kazhdan–Lusztig polynomial for
matroids. The role played by the Bruhat poset in the Coxeter setting is now played
by the lattice of flats of the matroid, although now instead of defining a particular
polynomial for each pair of comparable flats, we can define a unique polynomial for
the whole matroid.

These two theories can be seen as particular cases within the broader framework
of Kazhdan–Lusztig–Stanley polynomials [28, 5]. They share certain similarities: for
example both in the Coxeter setting [8] and in the matroid setting [4] the resulting
polynomials have non-negative coefficients. There are, however, manifest differences
between the type of polynomials that can arise as the Kazhdan–Lusztig polynomial
of a matroid as opposed to a Kazhdan–Lusztig polynomial of a pair of elements of a
Coxeter group. For example, Gedeon et al. posed the following conjecture.

Conjecture 1.1 ([13, Conjecture 3.2]). The Kazhdan–Lusztig polynomial of a ma-
troid is real-rooted.
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This conjecture, if true, would establish a profound difference between these two
settings. This is because it is known that every polynomial with non-negative coef-
ficients and constant term 1 arises as the Kazhdan–Lusztig polynomial of a pair of
elements in a suitable Coxeter group [24].

To approach the above conjecture, in [13] Gedeon et al. proposed a line of attack
by conjecturing that there are interlacing properties for the roots of the Kazhdan–
Lusztig polynomial of a matroid M and those of a contraction M/{e} by one element.
As interlacing of roots makes sense only if the degrees of the considered polynomials
differ at most by one, it is natural to ask about the degree of the Kazhdan–Lusztig
polynomials of matroids.

A matroid M is said to be non-degenerate if its Kazhdan–Lusztig polynomial has
the maximal possible degree, namely b rk(M)−1

2 c.
Conjecture 1.2 ([13, Conjecture 2.5]). Every connected regular matroid is non-
degenerate.

On the other hand, since its introduction in [7], the Kazhdan–Lusztig theory of
matroids has been approached under different perspectives. In particular, some fami-
lies of polynomials related to the Kazhdan–Lusztig polynomials have been introduced
for matroids. In [26] Proudfoot et al. introduced the so-called “Z-polynomial” of a
matroid. Also, in [12] Gao and Xie defined the “inverse Kazhdan–Lusztig polyno-
mial” of a matroid. It is now customary to use the notation PM for the Kazhdan–
Lusztig polynomial, QM for the inverse Kazhdan–Lusztig polynomial and ZM for the
Z-polynomial.

The definitions of these three families of polynomials, namely PM, QM and ZM,
are recursive. It is computationally expensive to calculate them explicitly using their
defining recurrence. For some particular families of matroids such as uniform matroids
[11, 12], wheels and whirls [18] and other graphic matroids [14], it is possible to derive
concrete and explicit formulas. Although these particular cases are interesting, the
number of matroids belonging to each of these classes is almost negligible within
the family of all matroids. On the other hand, in [17] a combinatorial formula for
PM when M is a sparse paving matroid is obtained via enumerating certain (skew)
Young tableaux. The family of sparse paving matroids is conjectured to predominate
asymptotically [19].

1.2. Outline and main results. After reviewing in Section 2 the basics of matroid
theory and Kazhdan–Lusztig polynomials, in Section 3 we study the interplay between
the Kazhdan–Lusztig theory of a matroid and that of its “relaxations.” This classical
operation allows to enlarge the set of bases of a matroid by one extra element. We
prove the following key fact from which we derive the remaining main results of the
present article.
Theorem 1.3. For each integer k > 1 there exist polynomials pk, qk and zk with
integer coefficients such that for every matroid M of rank k having a circuit-hyperplane
H the following equalities hold:

PM̃(t) = PM(t) + pk(t),
QM̃(t) = QM(t) + qk(t),
ZM̃(t) = ZM(t) + zk(t),

where M̃ denotes the corresponding relaxation of M by H. Moreover, pk, qk and zk
have non-negative coefficients, deg pk = deg qk = bk−1

2 c and deg zk = k − 1.
As a consequence of the known formulas for PM and QM when M is a uniform

matroid, and ZM when M is a wheel matroid, in Corollary 3.8 we are able to deduce
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closed formulas for each of pk, qk and zk. Moreover, we discuss how Theorem 1.3 in
some sense exhibits explicitly a particular case of the fact that the Kazhdan–Lusztig
polynomial and inverse Kazhdan–Lusztig polynomial are valuative invariants of the
matroid polytope [2, Theorems 8.8 and 8.9] (i.e. they behave nicely for matroidal
subdivisions of the base polytope).

Turning back our attention to the non-degeneracy of matroids, in Section 4 we
study the notion of “free basis” of a matroid. We say that the basis B of the matroid
M is free if M has at least two bases and B has the property that for every element
e /∈ B, B ∪ {e} is a circuit. In [3, Conjecture 22] Bansal et al. posed a conjecture
that essentially states that asymptotically almost all matroids have a free basis. From
Theorem 1.3 we deduce the following fact.

Theorem 1.4. If a matroid has a free basis, then it is non-degenerate.

In Section 5 we address sparse paving matroids. This class is conjectured to be
predominant among all matroids [19, Conjecture 1.6]. Using Theorem 1.3 we prove
the following result.

Theorem 1.5. Let M be a sparse paving matroid of rank k and cardinality n. Assume
that M has exactly λ circuit-hyperplanes. Then:

PM(t) = PUk,n
(t)− λpk(t),

QM(t) = QUk,n
(t)− λqk(t),

ZM(t) = ZUk,n
(t)− λzk(t).

In other words, we have derived closed formulas for the polynomials PM, QM and
ZM for all sparse paving matroids. This recovers and extends results by Lee et al. [17],
which were valid only for PM. In particular, as a consequence of the non-negativity of
our polynomials pk, qk and zk, we are able to conclude the following statement.

Theorem 1.6. The uniform matroid Uk,n maximizes the Kazhdan–Lusztig coefficients,
the inverse Kazhdan–Lusztig coefficients, and the Z-polynomial coefficients among all
sparse paving matroids of rank k and cardinality n.

Also, as another application of Theorem 1.3, we give an elementary proof of the
following fact.

Theorem 1.7. If M is a sparse paving matroid, then QM and ZM have non-negative
coefficients.

The formulas derived from Theorem 1.5 might be useful for testing several state-
ments such as Conjecture 1.1. For example, combining it with the bound discussed
in Lemma 5.4, now it is possible to verify in a reasonable amount of time with a
computer that:

Proposition 1.8. If M is a sparse paving matroid with at most 30 elements, then PM
and ZM have real roots and QM has log-concave coefficients.

In [10] the first author used a similar strategy to disprove a conjecture in Ehrhart
theory asserting that the coefficients of the Ehrhart polynomials of matroid polytopes
were always non-negative.

Finally, in Section 6 we discuss what are the cases of Conjecture 1.2 covered by
our Theorem 1.4; we characterize all the connected, regular matroids that have a free
basis. Also, we present an example of a degenerate matroid that is not modular that
was communicated to us by Nicholas Proudfoot.
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2. Basics and Notations
In this section we recall the basic definitions about matroids and their Kazhdan–
Lusztig theory, and establish the notation we will use throughout the paper. For any
undefined concept, we refer to Oxley’s book on matroid theory [23].

2.1. Matroid theory.

Definition 2.1.A matroid M = (E,B) consists of a finite set E and a family of
subsets B ⊆ 2E that satisfies the following two conditions.

(a) B 6= ∅.
(b) If B1 6= B2 are members of B and a ∈ B1 rB2, then there exists an element

b ∈ B2 rB1 such that (B1 r {a}) ∪ {b} ∈ B.

We usually refer to condition (b) as the basis-exchange-property. The size of the
ground set E is usually referred to as the cardinality or the size of the matroid. An
element e ∈ E that does not belong to any basis B is said to be a loop, whereas an
element that belongs to all the bases of M is said to be a coloop. Sometimes we will
focus on loopless matroids, i.e. matroids that do not have any loops.

One of the classic examples of matroids is that of uniform matroids. Throughout
this article we will denote by Uk,n the uniform matroid of rank k and cardinality n.
Concretely, Uk,n is defined by E = {1, . . . , n} and B = {B ⊆ E : |B| = k}. We also
denote with Bn = Un,n the Boolean matroid of rank n. The matroid given by E = ∅
and B = {∅} is referred to as the empty matroid; notice that it is the only matroid
of cardinality 0.

Warning: in some other articles, the notation Um,d stands for the uniform matroid
of rank d and m+ d elements.

There are several basic concepts about matroids that we will use throughout this
article.

Definition 2.2. Let M = (E,B) be a matroid.
• If I ⊆ E is contained in some B ∈ B, we say that I is independent.
• If A ⊆ E is not independent, we say that A is dependent.
• If C ⊆ E is dependent but every proper subset of C is independent, we say
that C is a circuit.
• For every A ⊆ E we define its rank to be:

rkM(A) = max
B∈B

|A ∩B|.

We say that the rank of M is just rkM(E).
• If F ⊆ E is a subset such that for every e /∈ F we have rkM(F∪{e}) > rkM(F ),
we say that F is a flat. The family of all flats of M will be denoted by F(M).
• If H ⊆ E is a flat and rkM(H) = rkM(E) − 1, then we say that H is a
hyperplane.

Each of these notions can be used to give equivalent definitions for matroids. When
M is clear from context it is customary to just write F, rk, etc.

Motivated by certain graph-theoretic classical concepts, it is possible to define
“connectedness” and “simplicity” for matroids. The matroid M is said to be connected
if for every pair of elements x 6= y in the ground set it is possible to find a circuit
containing both x and y. Furthermore, M is said to be simple if it does not have loops
nor circuits of size 2 (namely, parallel elements).
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2.2. Kazhdan–Lusztig polynomials. Remarkably, the family F(M) of flats of a
matroid M, when looked as a poset with respect to inclusion, is a geometric lattice, i.e.
a lattice which is both atomistic and semi-modular. It is a fundamental result of ma-
troid theory that up to simplification of the matroid, geometric lattices and matroids
are in one-to-one correspondence. The lattice of flats of a matroid M will be denoted
by L(M). Since for a ranked poset one can define its “characteristic polynomial”, and
geometric lattices are ranked, we can define the characteristic polynomial χM of a
matroid M to be just the characteristic polynomial of its lattice of flats.
Definition 2.3. Let M = (E,B) be a matroid and fix F ∈ F(M). We define:

(a) MF the matroid with ground set E r F and with family of flats given by the
sets F ′ r F for all the flats F ′ ∈ F(M) such that F ′ ⊇ F .

(b) MF the matroid with ground set F , whose flats are the flats contained in F .
The fact that these two objects are indeed matroids can be proved by noticing that

their lattices of flats are isomorphic to the intervals in L(M) given by [F, 1̂] and [0̂, F ]
respectively, where by 0̂ and 1̂ we denote the bottom and top element of the lattice.
In [23, Chapter 1-3] the operations of “restriction” and “contraction” for matroids are
defined. The matroid that we denote by MF is the matroid obtained by contracting
the flat F in M. On the other hand, MF is the matroid obtained by restricting M to
the flat F . In [23] and a significant part of the matroid theory literature these two
matroids are also denoted by M/F and M|F .
Remark 2.4. The notation for MF and MF is usually a cause of confusion. For exam-
ple, in [7] the authors have denoted MF and MF in the opposite way. The notation
we used for our Definition 2.3 follows [4].
Theorem 2.5 ([7, Theorem 2.2]). There is a unique way to assign to each matroid M
a polynomial PM(t) ∈ Z[t] such that the following three conditions hold:

(1) If rk(M) = 0, then PM(t) = 1 when M is empty, and PM(t) = 0 otherwise.
(2) If rk(M) > 0, then degPM < rk(M)

2 .
(3) For every M, the following holds:

trk(M)PM(t−1) =
∑

F∈L(M)

χMF (t)PMF
(t).

Theorem 2.6 ([12, Theorem 1.2]). There is a unique way to assign to each matroid
M a polynomial QM(t) ∈ Z[t] such that the following three conditions hold:

(1) If rk(M) = 0, then QM(t) = 1 when M is empty, and QM(t) = 0 otherwise.
(2) If rk(M) > 0, then degQM < rk(M)

2 .
(3) For every M, the following holds:

(−t)rk(M)QM(t−1) =
∑

F∈L(M)

(−1)rk(F )QMF (t)trk(M)−rk(F )χMF
(t−1).

The polynomials PM and QM arising from the above two results are called the
Kazhdan–Lusztig and the inverse Kazhdan–Lusztig polynomials of the matroid M,
respectively. Also, in [26, Definition 2.1] the following definition is given.
Definition 2.7. For every matroid M we define the Z-polynomial of M to be:

ZM(t) =
∑

F∈L(M)

trk(F )PMF
(t).

Remark 2.8. In [7] and [12] PM and QM are defined only for loopless matroids. The
definitions here include the cases in which the matroids contain loops. From these
definitions it follows that PM(t) = 0 and QM(t) = 0 whenever M contains a loop.
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3. Relaxations of a Matroid
3.1. Circuit-hyperplanes and relaxations. When a matroid M possesses a sub-
set H that is at the same time a circuit and a hyperplane, we say that H is a circuit-
hyperplane. It is straightforward to check that every circuit-hyperplane has cardinality
equal to the rank of the matroid. An important feature of circuit-hyperplanes is that
they can be “relaxed” in order to build a new matroid with one extra basis. More
precisely:

Proposition 3.1. Let M = (E,B) be a matroid that has a circuit-hyperplane H. Let
B̃ = B ∪ {H}. Then B̃ is the set of bases of a matroid M̃ on E.

Proof. See [23, Proposition 1.5.14]. �

The operation of declaring a circuit-hyperplane to be a basis is known in the litera-
ture by the name of relaxation. Many famous matroids arise as a result of applying this
operation to another matroid. For instance the Non-Pappus matroid is the result of
relaxing a circuit-hyperplane on the Pappus matroid, and analogously the Non-Fano
matroid can be obtained by a relaxation of the Fano matroid.

Example 3.2. For k > 2, consider the graph Ck given by a cycle of length k (when
k = 2 this amounts to two parallel edges connecting a pair of points). The cone over
Ck gives a graph that we call the k-wheel. The underlying (graphic) matroid of rank
k is denoted by Wk and will also be called the k-wheel. Figure 1 depicts the 5-wheel.

2

3

45

6

Figure 1. The wheel graph W5

The subset Ck corresponds to a circuit of rank k − 1 in the matroid Wk. This
circuit is also a flat since adding any other edge increases the rank, therefore it is
also a hyperplane. The relaxation of this circuit-hyperplane yields a (non-graphic)
matroid, which will be called the k-whirl and denoted Wk. The Kazhdan–Lusztig
polynomial and Z-polynomial of wheels and whirls were computed in [18, Theorem
1.1 and 1.6]. For example, when k = 5, the polynomials are:

PW5(t) = 1 + 11t+ 5t2,
PW5(t) = 1 + 15t+ 10t2,
ZW5(t) = 1 + 21t+ 80t2 + 80t3 + 21t4 + t5,

ZW5(t) = 1 + 25t+ 100t2 + 100t3 + 25t4 + t5.

3.2. Structural properties of relaxations. Our first step towards a proof of
our main results is characterizing the flats of a relaxed matroid M̃ in terms of the flats
of M.
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Proposition 3.3. Let M = (E,B) be a matroid having a circuit-hyperplane H. Let
M̃ be the relaxed matroid. Then, the set of flats F̃ of M̃ is given by:

F̃ = (F r {H}) ∪ {A ⊆ H : |A| = |H| − 1},
where F is the set of flats of M.

Proof. Notice that the rank function r̃k of M̃ coincides with the rank function rk of
M with the only exception of rk(H) + 1 = r̃k(H).

Let F be a flat of M̃ that is not a flat of M. Then r̃k(F ∪{e}) > r̃k(F ) for all e /∈ F .
Since F 6= H, we have that r̃k(F ) = rk(F ). Notice that there exists an e such that
F ∪ {e} = H, since otherwise our inequality holds for all e with rk instead of r̃k and
thus contradicts that F is not a flat of M. Then F ⊆ H and |F | = |H|−1, as claimed.

The reverse inclusion follows from the fact that all such sets are flats of M̃. If
F 6= H is a flat of M, then rk(F ∪ {e}) > rk(F ) for all e /∈ F ; in particular, by
using r̃k instead of rk this will still be true even if F ∪ {e} = H, because in that case
r̃k(F ∪{e}) = 1+rk(F ∪{e}) > rk(F ) = r̃k(F ). Also, if A = Hr{h} for some h ∈ H,
then clearly adding h to A will increase its rank in M̃, so let us pick an element e /∈ H.
By applying the submodular inequality of the rank and using that H is a circuit and
a hyperplane, we obtain:

rk(H)︸ ︷︷ ︸
rk(M)−1

+ rk((H r {h}) ∪ {e}) > rk(H r {h})︸ ︷︷ ︸
rk(M)−1

+ rk(H ∪ {e})︸ ︷︷ ︸
rk(M)

.

This gives us that rk((Hr{h})∪{e}) = rk(M) or, in other words, that (Hr{h})∪{e}
is a basis. Also, notice that as A ∪ {e} 6= H, we have:

r̃k(A ∪ {e}) = rk(A ∪ {e}) = rk((H r {h}) ∪ {e}) = rk(M).

Since rk(M) = r̃k(H) = r̃k(A) + 1, it follows that A is indeed a flat of M̃. �

Remark 3.4.Observe that, as we mentioned in the first paragraph of the preceding
proof, if M is a matroid of rank k that has a circuit-hyperplane H, and M̃ is the
corresponding relaxation, the rank functions rk of M and r̃k of M̃ coincide everywhere
but in H. Therefore, if we consider the Tutte polynomial of M̃, we have:

TM̃(x, y) =
∑
A⊆E

(x− 1)r̃k(E)−r̃k(A)(y − 1)|A|−r̃k(A)

= (x− 1)r̃k(E)−r̃k(H)(y − 1)|H|−r̃k(H) +
∑
A⊆E
A 6=H

(x− 1)r̃k(E)−r̃k(A)(y − 1)|A|−r̃k(A)

= (x− 1)k−k(y − 1)k−k +
∑
A⊆E
A 6=H

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A)

= 1 + TM(x, y)− (x− 1)rk(E)−rk(H)(y − 1)|H|−rk(H)

= 1 + TM(x, y)− (x− 1)1(y − 1)1

= TM(x, y)− xy + x+ y.

In particular, since the characteristic polynomial of a matroid can be obtained by
specifying the Tutte polynomial as follows, χM(t) = (−1)kTM(1− t, 0), we obtain:

χM̃(t)− χM(t) = (−1)k(1− t),

which gives a relation between the characteristic polynomial of a matroid and that of
a relaxation.
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Remark 3.5.Assume that M is a matroid of rank 1 having a circuit-hyperplane H.
We must have that H is a singleton. Moreover, since H is a hyperplane, adding any
other element to it should increase the rank. In other words, we have that H = {h}
and h is the only loop of M. Conversely, if a matroid M of rank 1 has a unique
loop h, then H = {h} is a circuit-hyperplane. The matroids of rank 1 having one
loop are isomorphic to direct sums of the form U0,1 ⊕ U1,n−1, and their relaxations
are isomorphic to U1,n. Moreover, for matroids of rank strictly greater than 1, the
presence of a circuit-hyperplane implies automatically that the matroid is loopless;
this is because if M has a loop, it belongs to every flat of M, preventing any hyperplane
from being a circuit.

3.3. Relaxations in the Kazhdan–Lusztig framework. Let us now state a
result relating all the Kazhdan–Lusztig invariants of a matroid and those of a relax-
ation.

Theorem 3.6. For each integer k > 1 there exist polynomials pk, qk and zk with
integer coefficients such that for every matroid M of rank k having a circuit-hyperplane
H the following equalities hold:

PM̃(t) = PM(t) + pk(t),
QM̃(t) = QM(t) + qk(t),
ZM̃(t) = ZM(t) + zk(t),

where M̃ denotes the corresponding relaxation of M by H.

Proof. We shall split the proof into three parts: one for PM, another for QM and lastly
one for ZM.

Let us prove by induction on k that there exists a unique polynomial pk with the
property of the statement. From Remark 3.5 we already know that p1(t) = 1 does
satisfy the property of the statement. Every loopless matroid of rank 2 has a constant
Kazhdan–Lusztig polynomial equal to 1, hence p2(t) = 0 satisfies the property of the
statement as well. Now, assume that k > 3. Using the defining relation for PM(t), we
write

tkPM̃(t−1)− PM̃(t) =
∑

F∈L(M̃)
F 6=∅

χM̃F (t)PM̃F
(t)

and
tkPM(t−1)− PM(t) =

∑
F∈L(M)
F 6=∅

χMF (t)PMF
(t).

Subtracting the second equation from the first we obtain, using Proposition 3.3:

tk
[
PM̃(t−1)− PM(t−1)

]
−
[
PM̃(t)− PM(t)

]
=∑

A⊆H
|A|=k−1

χM̃A(t)PM̃A
(t)(1)

− χMH (t)PMH
(t)(2)

+ χM̃(t)− χM(t)(3)

+
∑

F∈L(M)
F 6=∅,H,E

(
χM̃F (t)PM̃F

(t)− χMF (t)PMF
(t)
)
.(4)

We show that each summand of this expression is independent of M.
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(1) For all the terms in the first sum, we have PM̃A
(t) = 1, since M̃A is a matroid

of rank 1, and χM̃A = (t−1)k−1, since A is independent and, thus, M̃A ∼= B|A|.
(2) Similarly, PMH

(t) = 1 and MH ∼= Uk−1,k, since H is a circuit of rank k− 1 in
M.

(3) By Remark 3.4, we can write χM̃(t)− χM(t) = (−1)k(1− t).
(4) In the last sum, we observe that if F 6= H and F 6= E, then M̃F = MF . We

then consider two cases.
I If F 6⊆ H, we observe that M̃F = MF , thus all the corresponding terms

vanish.
I If F ⊆ H, MF ∼= Brk(F ) and M̃F = M̃F , where M̃F is the relaxation of
HrF in MF (here we are using [23, Proposition 3.3.5]). Hence, the sum
can be rewritten as∑

∅(F(H
χMF (t)pk−rk(F )(t) =

k−2∑
j=1

(
k

j

)
(t− 1)jpk−j(t) =

k−1∑
j=2

(
k

j

)
(t− 1)k−jpj(t).

By the induction hypothesis we have that the right-hand-side of the preceding
equation does not depend on the matroid M and only depends on the rank k. Also,
observe that the following becomes a defining equation for pk(t),

tkpk(t−1)− pk(t) = k(t− 1)k−1 − χUk−1,k
(t) + (−1)k(1− t) +

k−1∑
j=2

(
k

j

)
(t− 1)k−jpj(t).

Since pk must have degree strictly smaller than k
2 , the above equation is satisfied by

one and only one polynomial pk. By induction we conclude the proof of the existence
and uniqueness of pk(t) for every k > 1.

Now let us focus on QM(t). When k = 1, again by Remark 3.5 we have q1(t) = 1.
On the other hand, for k > 2, we first write

(−t)kQM̃(t−1) = (−1)kQM̃(t) +
∑

F∈L(M̃)
F 6=E

(−1)rk(F )QM̃F (t)tk−rk(F )χM̃F
(t−1),

and a counterpart equality, using QM instead of QM̃. Subtracting one equation from
the other gives us

(−t)k
[
QM̃(t−1)−QM(t−1)

]
− (−1)k

[
QM̃(t)−QM(t)

]
=∑

A⊆H
|A|=|H|−1

(−1)rk(A)QM̃A(t)tk−rk(A)χM̃A
(t−1)

− (−1)rk(H)QMH (t)tk−rk(H)χMH
(t−1)

+ tk
[
χM̃(t−1)− χM(t−1)

]

+
∑

F∈L(M)
F 6=∅,H,E

(−1)rk(F )tk−rk(F )
[
QM̃F (t)χM̃F

(t−1)−QMF (t)χMF
(t−1)

]
.

This permits us to write

tkqk(t−1)− qk(t) = (t− 1)

tk−1 + k −QUk−1,k
(t) +

k−1∑
j=2

(
k

j

)
tj−1

 .
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By an analogous reasoning we conclude the existence and uniqueness of qk(t) for each
k > 1.

Finally, for the Z-polynomial we write

ZM̃(t) =
∑

F∈L(M̃)

trk(F )PM̃F
(t),

and similarly for ZM(t). Then,

ZM̃(t)− ZM(t) =
∑
A⊆H

|A|=|H|−1

tk−1PM̃A
(t)− tk−1PM̃H

(t)

+
∑

F∈L(M)

trk(F )
(
PM̃F

(t)− PMF
(t)
)

= (k − 1)tk−1 +
∑

F∈L(M)

trk(F )
(
PM̃F

(t)− PMF
(t)
)
.

Considering separately the two cases F ⊆ H and F * H as we did for PM, this can
be further simplified to get

zk(t) = (k − 1)tk−1 +
k∑
j=2

(
k

j

)
tk−jpj(t),

which completes the proof. �

Now that we know that each of these polynomials is independent of the considered
matroids, we will use this fact to give an explicit formula for each of them. To this
end, we will consider a case in which both the matroid M and its relaxation M̃ have
nice Kazhdan–Lusztig polynomials.

Proposition 3.7. Let M be the matroid of rank k and cardinality n > k+ 1 given by:
M = Uk−1,k ⊕ U1,n−k.

Then, M has a circuit-hyperplane H. The corresponding relaxation M̃, denoted by
Tk,n, is such that its simplification is isomorphic to Uk,k+1.

Proof. Since M = Uk−1,k⊕U1,n−k, it is clear that rk(M) = k and that the cardinality of
M is n. Let us suppose that the ground set of M consists of the set E = {x1, . . . , xn},
and let us assume that E1 = {x1, . . . , xk} is the ground set of Uk−1,k and E2 =
{xk+1, . . . , xn} is the ground set of U1,n−k.

Let us describe all the flats of M first. By [23, p. 125] (which characterizes the
flats of a direct sum of matroids), we have that the flats of M are exactly the subsets
F ⊆ E such that F ∩E1 is a flat in Uk−1,k and F ∩E2 is a flat in U1,n−k. Thus, F is
a flat of M if and only if we have:

|F ∩ E1| ∈ {0, 1, . . . , k − 2, k} and |F ∩ E2| ∈ {0, n− k}.
We claim that:

H = {x1, . . . , xk} = E1

is a circuit-hyperplane in M. Indeed:
• H is a flat, because of the above conditions.
• H has rank k − 1, since rkM H = rkUk−1,k

H = k − 1.
• H is a circuit, because the removal of any member of H yields an independent
subset of Uk−1,k which will of course be an independent subset of the matroid
M.
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Now that we know that H is a circuit-hyperplane of M we can consider the relaxation
M̃ of M by H. Also, we can use Proposition 3.3 to characterize all the flats of M̃. In
fact, we see that F̃ ∈ F̃ if and only if:

|F̃ ∩ E1| ∈ {0, 1, . . . , k − 2, k − 1} and |F̃ ∩ E2| = 0,

or |F̃ ∩ E1| ∈ {0, 1, . . . , k − 2, k} and |F̃ ∩ E2| = n− k.
Notice that the set E2 is an atom of this lattice of flats. The remaining k atoms

are the elements of E1. Moreover, if we label the elements of E1 as 1, . . . , k and label
the atom E2 as k + 1, we can construct an order-preserving bijection from the flats
of M̃ to the family of subsets of {1, . . . , k + 1} having cardinality {0, . . . , k− 1, k+ 1}.
The latter is just isomorphic to the lattice of flats of Uk,k+1 which implies that the
simplification of M̃ is isomorphic to Uk,k+1, as desired. �

A useful property of the (inverse) Kazhdan–Lusztig polynomials and the Z-
polynomials is that they behave particularly well under direct sums of matroids.
Namely, in [7, Proposition 2.7] Elias et al. proved that
(5) PM1⊕M2(t) = PM1(t) · PM2(t).
An analogous statement for the inverse Kazhdan–Lusztig polynomial of a direct sum
of matroids was proved in [12, Lemma 3.1]. For the Z-polynomial we have as well
(6) ZM1⊕M2(t) = ZM1(t) · ZM2(t).
The proof follows directly from the definition of the Z-polynomial and the fact that
the contraction of a direct sum of matroids M1 and M2 with ground sets E1 and E2,
namely, (M1⊕M2)F is exactly the direct sum (M1)E1∩F ⊕(M2)E2∩F , see [23, Exercise
4.2.19]. This, together with the property of equation (5) yields a straightforward proof
of (6).

Corollary 3.8. For each k > 1 we have:
(a) pk(t) = PUk,k+1(t)− PUk−1,k

(t).
(b) qk(t) = QUk,k+1(t)−QUk−1,k

(t).
(c) zk(t) = ZUk,k+1(t)− (1 + t)ZUk−1,k

(t).

Proof. Let us call M = Uk−1,k ⊕ U1,1 (this corresponds to taking n = k + 1 in
Proposition 3.7) and M̃ its relaxation. Since M̃ and Uk,k+1 have isomorphic lattices
of flats, we know that PM̃(t) = PUk,k+1(t). Also:

pk(t) = PM̃(t)− PM(t)
= PUk,k+1(t)− PUk−1,k

(t) · PU1,1(t)
= PUk,k+1(t)− PUk−1,k

(t),

where we used the property in equation (5) and the fact that PU1,1(t) = 1. An identical
proof but using Q instead of P shows (b). In the case of the Z-polynomial, we observe
that ZU1,1(t) = 1 + t. �

Example 3.9.As a simple application we find that our results are consistent with the
ones found by Lu et al. in [18, Theorem 1.1] for wheel matroids and whirl matroids
(cf. Example 3.2). Since the wheel matroid Wk is a matroid of rank k, using Theorem
3.6, we obtain that:

pk(t) = PWk (t)− PWk
(t),

qk(t) = QWk (t)−QWk
(t),

zk(t) = ZWk (t)− ZWk
(t).
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It is possible to prove with a direct computation that PWk (t) − PWk
(t) does indeed

coincide with PUk,k+1(t)− PUk−1,k
(t), as one should expect.

When the matroid M under consideration is a uniform matroid of the form Uk,k+1,
there exist formulas for PM and QM; see [25, Theorem 1.2(1)] and [12, Theorem 3.3]
respectively. Also, for wheel and whirl matroids (see Example 3.2), in [18, Theorem
1.6] Lu et al. obtained simple formulas for the Z-polynomial. Using all these results,
we can deduce many properties about our polynomials pk, qk and zk. Whenever we
have a polynomial f(t), we will denote by [ti]f(t) the coefficient of ti in f(t).

Theorem 3.10. For each k > 1, we have that the coefficients of pk, qk and zk are all
non-negative. Moreover, the following statements hold:

deg pk = deg qk =
⌊
k − 1

2

⌋
and

deg zk = k − 1.

Proof. We will consider each family of polynomials separately.
• By [25, Theorem 1.2(1)], we know that [ti]PUk,k+1 is equal to 1

i+1
(
k−i−1
i

)(
k+1
i

)
for each 0 6 i 6 bk−1

2 c. When i ∈
{

0, . . . , bk−2
2 c
}
we can compute:

[ti]pk(t) = 1
i+ 1

(
k − i− 1

i

)(
k + 1
i

)
− 1
i+ 1

(
k − i− 2

i

)(
k

i

)
.

To conclude the non-negativity of the coefficients of pk, it suffices to show
that (

k − i− 1
i

)(
k + 1
i

)
>

(
k − i− 2

i

)(
k

i

)
.

However, expanding the binomial coefficients as quotients of factorials, this is
equivalent to proving that

k − i− 1
k − 2i− 1 ·

k + 1
k + 1− i > 1,

which is clear, since both factors on the left are greater or equal to 1. Moreover,
the preceding argument shows that the coefficients of degree 1, . . . , bk−2

2 c are
strictly positive, and that the constant term is zero when k > 1. Now, if k is
even, we have that bk−1

2 c = bk−2
2 c, so we conclude that deg pk = bk−1

2 c, and
if k is odd, then degPUk,k+1 > degPUk−1,k

, so that we clearly have deg pk =
degPUk,k+1 = bk−1

2 c, as desired.
• By [12, Theorem 3.3], we know that [ti]QUk,k+1(t) is given by:

[ti]QUk,k+1(t) = (k + 1)
(
k

i

)
· k − 2i

(i+ 1)(k + 1− i) .

Notice that for 0 6 i 6 bk−2
2 c, we have that:

[ti]qk = (k + 1)
(
k

i

)
k − 2i

(i+ 1)(k + 1− i) − k
(
k − 1
i

)
k − 1− 2i

(i+ 1)(k − i) ,

and we want to show that:

(k + 1)
(
k

i

)
k − 2i

(i+ 1)(k + 1− i) > k
(
k − 1
i

)
· k − 1− 2i

(i+ 1)(k − i) ,

which, expanding the binomial coefficients as quotients of factorials, is equiv-
alent to:

k + 1
k + 1− i ·

k − 2i
k − 2i− 1 > 1.
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which is true because both fractions are trivially greater or equal than 1.
Moreover, since the second fraction is strictly greater than 1, we actually have
that all the coefficients of qk are strictly positive. The same considerations
regarding the parity of k yield the conclusion about the degree of qk in an
analogous fashion to what was said for pk before.

• The statement is trivially true for k = 1 as one has z1(t) = 0. By [18, Theorem
1.6] we know that for k > 2:

ZWk (t) =
k∑
j=0

(
k

j

)2
tj

ZWk
(t) =

k∑
j=0

((
k

j

)2
− 2
k

(
k

j + 1

)(
k

j − 1

))
tj .

In Example 3.2 we proved that Wk is a relaxation of Wk, so that zk can be
obtained by considering the difference ZWk (t)− ZWk

(t), namely

zk(t) =
k−1∑
j=1

2
k

(
k

j + 1

)(
k

j − 1

)
tj ,

which has degree k − 1 and non-negative coefficients. Alternatively, one can
use the formulas obtained in [26, Proposition 4.9] to obtain the exact same
expression as above. �

Remark 3.11. In Table 1 we can see the coefficients of pk for small values of k. In
Table 2 we see the corresponding coefficients for qk. In Table 3 we see the coefficients
of zk. The coefficients of qk coincide with [15, A008315], and the coefficients of zk
coincide with [15, A145596].

3.4. A polyhedral interpretation. We end this section with a brief and informal
discussion of what is going on at the level of matroid polytopes. Recall that if M is a
matroid with ground set E = {1, . . . , n} and set of bases B, its base polytope is defined
as the convex hull in Rn of the indicator vectors of all the bases of M. In other words,
if for each basis B ∈ B we denote eB =

∑
i∈B ei, where ei is the i-th canonical vector

of Rn, then the base polytope of M is defined as

P(M) = convex hull{eB : B ∈ B(M)}.

In [2, Theorems 8.8 and 8.9], Ardila and Sanchez proved that the (inverse)
Kazhdan–Lusztig polynomial of a matroid is a “valuative invariant” for matroidal
subdivision of base polytopes. This means that if one picks a subdivision of P(M) into
subpolytopes that are themselves base polytopes of suitable matroids, then one can
compute the (inverse) Kazhdan–Lusztig polynomial of the original matroid by first
computing it for the smaller pieces and then using an inclusion-exclusion argument.
For a precise account and thorough discussion of the properties of valuative invariants
of (poly)matroids we refer the reader to [1, 6].

On the other hand, in [9, Theorem 5.4] Ferroni proved that the circuit-hyperplane
relaxation consists geometrically of stacking the polytope of a “minimal matroid” on
a facet of the polytope. In other words, using the notation that we have established
so far, we have that for every matroid M of rank k, cardinality n, having a circuit-
hyperplane H, there is a decomposition of the polytope:

P(M̃) = P(M) ∪ P(Tk,n),
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k
1 1
2 0
3 0 2
4 0 3
5 0 4 5
6 0 5 16
7 0 6 35 14
8 0 7 64 70
9 0 8 105 216 42
10 0 9 160 525 288
11 0 10 231 1100 1155 132
12 0 11 320 2079 3520 1155

0 1 2 3 4 5
i

Table 1. [ti]pk(t)

k
1 1
2 1
3 1 2
4 1 3
5 1 4 5
6 1 5 9
7 1 6 14 14
8 1 7 20 28
9 1 8 27 48 42
10 1 9 35 75 90
11 1 10 44 110 165 132
12 1 11 54 154 275 297

0 1 2 3 4 5
i

Table 2. [ti]qk(t)
k
1 0
2 0 1
3 0 2 2
4 0 3 8 3
5 0 4 20 20 4
6 0 5 40 75 40 5
7 0 6 70 210 210 70 6
8 0 7 112 490 784 490 112 7
9 0 8 168 1008 2352 2352 1008 168 8
10 0 9 240 1890 6048 8820 6048 1890 240 9

0 1 2 3 4 5 6 7 8 9
i

Table 3. [ti]zk(t)

where Tk,n is the relaxed matroid of Proposition 3.7 (i.e. the relaxation of Uk−1,k ⊕
U1,n−k).

If we denote the matroid with base polytope P(M) ∩ P(Tk,n) by N, then what we
have proved in the present article is that:

PM̃(t) = PM(t) + PTk,n
(t)− PN(t).

This is something that we might have expected from the valuative property of the
Kazhdan–Lusztig polynomials on the polytopes. Observe that by Proposition 3.7 we
have PTk,n

(t) = PUk,k+1(t). Also, from the proof of [9, Theorem 5.4] one can deduce
that N ∼= Uk−1,k ⊕ U1,n−k, so that PN(t) = PUk−1,k

(t), and we recover what we had
initially expected:

PM̃(t)− PM(t) = pk(t),

and the polynomial on the right does not depend on M but only on its rank. Observe
that a similar phenomenon occurs for the Tutte polynomial, as we proved in Re-
mark 3.4. This is not a coincidence, because the Tutte polynomial is also a valuative
invariant.
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Remark 3.12. It has not been proved yet that Z-polynomials are valuative invariants,
but we expect this to be true and, along these lines, our Theorem 3.6 is good evidence
to support that assertion. We believe that the techniques used by Ardila and Sanchez
in [2] can be extended to the Z-polynomials as well.

4. Free bases and non-degeneracy
4.1. Relaxations and free bases. The fact that M has a circuit-hyperplane can
be reformulated as a property of M̃ as follows.

Definition 4.1. Let M be a matroid on E that has at least two bases. We say that a
basis B of M is free if B ∪ {e} is a circuit for each e ∈ E rB.

Lemma 4.2. Let M be a matroid with a circuit-hyperplane H. Then, the corresponding
relaxation M̃ is such that its basis H is free. Conversely, if a matroid M with set of
bases B, |B| > 2, has a free basis B, then Br {B} is the set of bases of a matroid M′
that has B as a circuit-hyperplane.

Proof. Let us assume that M has ground set E = {x1, . . . , xn}, and that H =
{x1, . . . , xk} is a circuit-hyperplane of M. Consider the relaxation M̃ of M by H.
Pick an element xj ∈ E rH = {xk+1, . . . , xn}. We want to prove that H ∪ {xj} is a
circuit in M̃. It is clear that H ∪{xj} is dependent in M̃. Let us analyze what happens
if we remove one element from H ∪ {xj}.

• If we remove xj , we recover the basis H, which is of course independent in M̃.
• If we fix an index 1 6 i 6 k and consider the set A = (H ∪ {xj})r {xi}. It is
clear that |A| = k, and we can rewrite A = (H r {xi}) ∪ {xj}. Since H was
a circuit in M, we have that H r {xi} is an independent subset of M of rank
k − 1, and hence an independent subset of M̃ of rank k − 1. Since H r {xi}
is a flat of M̃ by Proposition 3.3, adding any element to this set increases its
rank. Thus, A = (H r {xi}) ∪ {xj} has rank k in M̃. Since its cardinality is
also k, we get that it is a basis of M̃ and, of course, independent.

It follows that H ∪{e} is a circuit of M̃ for all e ∈ ErH, and hence H is a free basis
of M̃.

Conversely, let us assume that the ground set of M is E = {x1, . . . , xn} and that
B = {x1, . . . , xk} is a free basis of M. Since B ∪ {xj} is a circuit for every j ∈
{k + 1, . . . , n}, we get that:

(7) Bij := (B ∪ {xj}) r {xi} = (B r {xi}) ∪ {xj}

is a basis of M for every 1 6 i 6 k and k + 1 6 j 6 n.
Now, notice that since |B| > 2, we automatically have that B r {B} 6= ∅. So, to

prove that B r {B} is the set of bases of a matroid, we must show that the basis-
exchange-property holds, that is, for every two distinct bases of M that differ from B,
and a ∈ B1rB2, there exists some b ∈ B2rB1 such that (B1r{a})∪{b} ∈ Br{B}.

Let us start applying the basis-exchange-property to the bases B1 and B2 of M and
a ∈ B1 rB2, which yields an element b′ ∈ B2 rB1 such that (B1 r{a})∪{b′} ∈ B. If
(B1 r {a}) ∪ {b′} 6= B then the result follows. Let us assume then that (B1 r {a}) ∪
{b′} = B. It follows that:

B1 r {a} = B r {b′},

and since a ∈ B1, the cardinality of the set on the left is strictly less than |B1| = |B|,
from where it follows that b′ ∈ B. Hence b′ = xi for some 1 6 i 6 k. From (7), we see
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that choosing any element b ∈ B2 rB (there is at least one, since B2 was assumed to
be different from B), we have that (B r {b′}) ∪ {b} is a basis of M. Hence:

(B1 r {a}) ∪ {b} ∈ Br {B}.
This proves that Br {B} is the set of bases of a matroid that we will denote by M′.

To finish the proof, it remains to prove that B is a circuit-hyperplane of M′.
• Let us prove that B is a circuit of M′. Consider B r {xi} for 1 6 i 6 k. This

is independent, since equation (7) guarantees that it is contained in another
basis of M different from B, and hence in a basis of M′.

• Let us prove that B is a hyperplane. Again, (7) yields immediately that the
rank of B in M′ is k − 1. Finally, B is a flat, since adding any element to B
would increase its rank again by (7). �

Remark 4.3. Let us fix a matroid M on E with set of bases B. We know one particular
scenario in which adding a new member to B preserves the basis-exchange-property.
It is a result by Truemper [29, Lemma 6] (see also [21]) that if M is a simple and
cosimple matroid on E and A ⊆ E is such that B(M) ∪ {A} is the set of bases of a
matroid, then A has to be a circuit-hyperplane. Analogously, under the simplicity and
cosimplicity hypotheses, the only case in which the removal of one basis yields a set
of bases of a matroid is when the considered basis is free.

4.2. The proof of Theorem 1.4. Now we can relate a combinatorial property of
a basis of M to the Kazhdan–Lusztig theory of M.

Theorem 4.4. If M has a free basis, then M is non-degenerate.

Proof. If M has a free basis B, then M is the relaxation of the matroid M′ with set of
bases B(M) r {B}, using the circuit-hyperplane B. Assume that the rank of M and
M′ is k. Using Theorem 3.6, we obtain that:

PM(t) = PM′(t) + pk(t).
Since the coefficients of PM′ are non-negative [4, Theorem 1.2], using the fact that the
coefficients of pk are also non-negative and that the degree of pk is

⌊
k−1

2
⌋
, it follows

that
degPM =

⌊
k − 1

2

⌋
,

and thus M is non-degenerate. �

Remark 4.5.We believe that asymptotically all matroids have a free basis. This belief
is supported by an equivalent conjecture posed by Bansal et al. [3, Conjecture 22]. A
proof of the aforementioned conjecture would automatically imply that asymptotically
all matroids are non-degenerate.

Remark 4.6.We do not need the non-negativity of the middle coefficients of the
Kazhdan–Lusztig polynomials of matroids. In the proof of Theorem 4.4 what we need
is that the coefficient of degree bk−1

2 c is non-negative. Although Braden et al. proved
that it is indeed > 0, we are not aware of a proof of the non-negativity of that
coefficient alone.

5. An application to sparse paving matroids
5.1. An overview. A matroid M of rank k is said to be paving if all its circuits have
size at least k. A paving matroid M is said to be sparse paving if all its hyperplanes have
size at most k. The class of all sparse paving matroids is particularly relevant in the
framework of asymptotic matroid enumeration. If we denote by mat(n) the number of
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matroids with ground set {1, . . . , n}, and sp(n) the number of sparse paving matroids
among them, a conjecture posed by Mayhew et al. (see [19, Conjecture 1.6] and the
discussion after that statement) asserts that

lim
n→∞

sp(n)
mat(n) = 1.

In other words, they conjecture that sparse paving matroids are predominant.
As was mentioned in the introduction, in [17, Theorem 1] Lee, Nasr and Radcliffe

found a formula for the Kazhdan–Lusztig polynomial of sparse paving matroids by
enumerating suitable (skew) Young tableaux. They took advantage of their formula
and several inequalities to prove that the Kazhdan–Lusztig polynomial PM of a sparse
paving matroid M of rank k and cardinality n satisfies two properties:

• The polynomial PM is coefficient-wisely smaller than PUk,n
.

• The coefficients of PM are non-negative.
It is possible to use our results to give an independent proof of these facts, and also

prove identical statements for QM and ZM in a more direct way. We recall that in [4]
it has been proved that PM and QM have non-negative coefficients for all matroids.
The general proof is much more involved than what we are about to do here, but we
include the one for QM and ZM when M is sparse paving as applications of our results.

We will leverage the following easy result, which gives an alternative characteriza-
tion of sparse paving matroids.

Lemma 5.1.A matroid M on E of rank k is sparse paving if and only if every subset
A ⊆ E of cardinality k is either a basis or a circuit-hyperplane.

Proof. If a matroid is such that every subset of cardinality k is either a basis or a
circuit-hyperplane, then it automatically is sparse paving. This is because the exis-
tence of a circuit of size less than k is ruled out. Such a circuit can be completed to
a set of cardinality k which will fail to be a basis or a circuit-hyperplane. Analogous
considerations avoid the possibility of the existence of a hyperplane of size larger than
k. Conversely, assume that M is sparse paving and pick a subset A of cardinality k
that is not a basis. Hence, we have that A is dependent, and thus contains a circuit
C. Since M is paving we have that k 6 |C| 6 |A| = k, and since C ⊆ A, it follows
that C = A and hence A is a circuit. Proceeding in the opposite way, we can prove
that A is also a hyperplane. �

It is immediate that uniform matroids are sparse paving and, moreover, that all
sparse paving matroids can be relaxed to a uniform matroid. This is because after
relaxing one circuit-hyperplane, the remaining circuit-hyperplanes are still circuit-
hyperplanes in the new matroid.

5.2. The Kazhdan–Lusztig theory of sparse paving matroids. By combining
the observations in the prior paragraph with our Theorem 1.3 we get the following
result.

Theorem 5.2. Let M be a sparse paving matroid of rank k and cardinality n. Assume
that M has exactly λ circuit-hyperplanes. Then:

PM(t) = PUk,n
(t)− λpk(t),

QM(t) = QUk,n
(t)− λqk(t),

ZM(t) = ZUk,n
(t)− λzk(t).
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Proof. If M has λ circuit-hyperplanes, after relaxing all of them what we end up
obtaining is just Uk,n. Hence:

PUk,n
(t) = PM(t) + pk(t) + · · ·+ pk(t)︸ ︷︷ ︸

λ times

,

which yields the desired formula for PM. The other two are entirely analogous. �

Since we have proved that the coefficients of pk are always non-negative, Theo-
rem 5.2 provides a new independent proof of [17, Conjecture 1.1] for sparse paving
matroids. Moreover, we have proved the following:

Corollary 5.3. The uniform matroid Uk,n maximizes the Kazhdan–Lusztig coeffi-
cients, the inverse Kazhdan–Lusztig coefficients, and the Z-polynomial coefficients
among all sparse paving matroids of rank k and cardinality n.

Observe that Theorem 5.2 provides a formula depending only on n, k and λ for
each of the Kazhdan–Lusztig, the inverse Kazhdan–Lusztig and the Z-polynomial of
all sparse paving matroids.

For instance, from [12, Theorem 3.3] we have a formula for QUk,n
(t):

QUk,n
(t) =

(
n

k

) b k−1
2 c∑
j=0

(n− k)(k − 2j)
(n− k + j)(n− j)

(
k

j

)
tj

so that, in particular, if M is a sparse paving matroid of rank k and cardinality n
having exactly λ hyperplanes, then:

[tj ]QM(t) =
(
n

k

)(
k

j

)
(n− k)(k − 2j)

(n− k + j)(n− j)(8)

− λ
[(
k

j

)
(k + 1)(k − 2j)

(1 + j)(k + 1− j) −
(
k − 1
j

)
k(k − 1− 2j)
(1 + j)(k − j)

]
.

Of course an analogous (but a bit more complicated) formula holds for PM using
the results of [11]. Also, there exist upper-bounds for λ that are good enough to show
the positivity of the expression above with little effort.

Lemma 5.4. Let M be a sparse paving matroid of rank k having n elements. Then, the
number of circuit-hyperplanes λ of M satisfies:

λ 6

(
n

k

)
min

{
1

k + 1 ,
1

n− k + 1

}
.

Proof. See for example [10, Lemma 8.1] or [20, Theorem 4.8]. �

Remark 5.5. There exist tighter bounds for the number of circuit-hyperplanes of a
sparse paving matroid of rank k and cardinality n for some particular values of k and
n. In fact, this quantity coincides with the independence number of the Johnson graph
J(n, k), and with the maximum number of words that a binary code with word-length
n and constant weight k can have, under the constraint of minimal distance 4. Also,
Lemma 5.4 is a weaker version of what in the coding theory literature is called the
“Johnson Bound” (see [16]). The exact computation of this maximum is a difficult
problem, and precise values are in fact known only for few particular cases.

We will write λk,n to denote the expression
(
n
k

)
min

{
1
k+1 ,

1
n−k+1

}
.

Theorem 5.6. If M is a sparse paving matroid then PM, QM and ZM have non-negative
coefficients.
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Proof. For the non-negativity of PM we refer to [17, Theorem 1], although it is possible
to give an alternative proof using our formula. We included the full proof for QM in
the appendix; the starting point is to split the proof into two cases, namely 2k 6 n
and 2k > n, to avoid working with the minimum of two fractions in every occurrence
of λk,n.

For ZM we use the following recursion found by Proudfoot et al. [26, Section 4]:

ZUk,n
(t) = tk +

k∑
j=1

(
n

k − j

)
tk−jPUj,n−k+j

(t).

Hence, if M has rank k, cardinality n, and exactly λ circuit-hyperplanes, using The-
orem 5.2 and Corollary 3.8:

ZM(t) = ZUk,n
(t)− λzk(t)

= tk +
((

n

k − 1

)
− λ(k − 1)

)
tk−1

+
k∑
j=2

((
n

k − j

)
PUj,n−k+j

(t)− λ
(
k

j

)
pj

)
tk−j .

We will prove that each summand in the last expression is a polynomial with non-
negative coefficients. Observe that the second summand has a non-negative coefficient,
since λ 6 λk,n by Lemma 5.4, and:

λk,n(k − 1) 6 1
n− k + 1

(
n

k

)
(k − 1) = k − 1

k

(
n

k − 1

)
6

(
n

k − 1

)
.

Now, if we use that PUj,n−k+j
− λj,n−k+jpj has positive coefficients (which is the

first statement in this theorem), then it suffices to verify the following inequality:(
n

k − j

)
λj,n−k+j > λk,n

(
k

j

)
.

This is just(
n

k − j

)(
n− k + j

j

)
min

{
1
j+1 ,

1
n−k+1

}
>

(
n

k

)(
k

j

)
min

{
1
k+1 ,

1
n−k+1

}
.

Since
(
n
k−j
)(
n−k+j

j

)
=
(
n
k

)(
k
j

)
, it suffices to show that:

min
{

1
j+1 ,

1
n−k+1

}
> min

{
1
k+1 ,

1
n−k+1

}
,

which holds trivially since j 6 k. �

6. Final remarks
6.1. Free bases and regularity. Conjecture 1.2 asserts that connected matroids
that are regular, i.e. representable over all fields, are non-degenerate. Although there
is good evidence that almost all matroids are expected to possess a free basis (see the
discussion in [3, Section 7.2]), a natural question that may arise at this point is which
of these are regular and connected.

Since almost all matroids are non-representable [22, Theorem 1.1], in particular
almost all matroids are non-regular. However, although the family of matroids with a
free basis is expected to be asymptotically predominant, the family of regular matroids
with a free basis is almost negligible among the whole family of regular matroids.
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Proposition 6.1. Let M be a regular matroid with a free basis. Then M is graphic,
and is obtained from a cycle graph with at least two edges by repeatedly adding a
possibly empty set of parallel edges to one of the edges of the cycle.

Proof. Since M is regular, in particular M is binary. Let us call B the basis of M such
that B∪{e} is a circuit for every e /∈ B. If ErB consists of only one element, then the
conclusion follows. Suppose then that we can pick two distinct elements y and z not
in B. Since M is binary, by [23, Theorem 9.1.2] we have that the circuits C1 = B∪{y}
and C2 = B∪{z} are such that the symmetric difference C14C2 = {y, z} is a disjoint
union of circuits. Since both B ∪ {y} and B ∪ {z} are circuits, it cannot happen that
either {y} nor {z} are circuits. The only possibility is that {y, z} is itself a circuit.
From this, it follows that the elements of E r B are parallel to each other, and the
proof is complete. �

Remark 6.2. In other words, the only matroids that are regular and contain a free
basis are the matroids Tk,n, where 1 6 k 6 n− 1, obtained by the circuit-hyperplane
relaxation of Uk−1,k⊕U1,n−k. Observe also that in Proposition 6.1 we can change the
word “regular” for “binary” and the conclusion still holds.

6.2. Modularity and non-degeneracy. In light of Theorem 1.4 it is reasonable
to expect now that degenerate matroids are a very restrictive class of matroids.

So far, computational experiments and partial results have yielded some examples
of degenerate matroids, but up to this point they all seem to share one particular
property: in some sense they are very close to being modular.

In a preliminary version of this manuscript, we left the following question.

Question 6.3 (Settled by N. Proudfoot).Are the following statements equivalent?
(1) M is connected, simple and degenerate.
(2) M is a projective geometry of rank k > 3.

It is possible to prove that the implication (2)⇒(1) is true by noticing that pro-
jective geometries are modular, and Elias et al. proved that modular matroids are
degenerate [7, Proposition 2.14]. However, the implication (1)⇒(2) is not true, as
shown by the following example communicated to us by Nicholas Proudfoot.

Example 6.4. Let M be the projective geometry representable over the field F2 of
rank 5. Since M is modular, we know that PM(t) = 1, see [7]. According to Sage
[27], we have that PMr{e}(t) = t + 1 for any element e ∈ E(M). Also, M r {e} is
a connected, simple matroid with 30 elements and rank 5 that is not a projective
geometry (it is not modular) but is still degenerate.

7. Appendix
Here we will give the proof of Theorem 5.6 in the remaining case ofQM. We will assume
M is a sparse paving matroid of rank k, cardinality n, with λ circuit-hyperplanes. We
have already stated that:

[tj ]QM(t) =
(
n

k

)(
k

j

)
(n− k)(k − 2j)

(n− k + j)(n− j)(9)

− λ
[(
k

j

)
(k + 1)(k − 2j)

(1 + j)(k + 1− j) −
(
k − 1
j

)
k(k − 1− 2j)
(1 + j)(k − j)

]
.

Our claim is that when λ 6 λk,n, then the right-hand-side of equation (9) is non-
negative. In other words, for such a λ, after simplifying the factor

(
k
j

)
, what we assert
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is that:

(10)
(
n

k

)
(n− k)(k − 2j)

(n− k + j)(n− j) > λ
[

(k + 1)(k − 2j)
(1 + j)(k + 1− j) −

k − 1− 2j
1 + j

]
.

We are going to prove it by separating into two cases, according to whether 2k 6 n
or 2k > n. The structure of the proof is as follows:

• 2k 6 n.
– k > 7 and j > 2.
– k > 1 and j = 0.
– k > 1 and j = 1.
– Remaining cases (finite) by inspection.

• 2k > n.
– k > 4 and j > 2.
– k > 1 and j = 0.
– k > 1 and j = 1.
– Remaining cases (finite) by inspection.

Recall that we always assume that 2j 6 k and that k 6 n. The above splitting of
cases helps to decide explicitly which fraction to use as λk,n, to avoid working with
the minimum of two fractions.

• If 2k 6 n, then we have λk,n = 1
n−k+1

(
n
k

)
. So, under this hypothesis, replacing

λ by its maximum possible value in equation (10), it suffices to prove that:

(11) (n− k)(k − 2j)
(n− k + j)(n− j) >

1
n− k + 1

[
(k + 1)(k − 2j)

(1 + j)(k + 1− j) −
k − 1− 2j

1 + j

]
.

We can forget the minus sign and try to prove a stronger inequality instead:
(n− k)(k − 2j)

(n− k + j)(n− j) >
1

n− k + 1 ·
(k + 1)(k − 2j)

(1 + j)(k + 1− j) .

After cancelling the common factors, and clearing denominators, it suffices to
show that:

(n− k)(1 + j)(k + 1− j)(n− k + 1) > (n− k + j)(n− j)(k + 1).
Observe that, by the inequality between the arithmetic and geometric mean
we have that (n − k + j)(n − j) 6

( 2n−k
2
)2. In particular, it suffices now to

prove:
4(n− k)(1 + j)(k + 1− j)(n− k + 1) > (2n− k)2(k + 1),

which, after some manipulation, is equivalent to proving that:
4(n− k)(n− k + 1)

(2n− k)2 (1 + j)(k + 1− j) > k + 1.

When one fixes the value of n and considers the first fraction on the left as
a function of k, it is easy to see (for example by differentiating) that it is
strictly decreasing on the interval [1, n/2], so that it assumes its minimum
when k = bn2 c. In that case, its value is

4(n− n/2)(n− n/2 + 1)
(2n− n/2)2 = 4

9 + 8
9n,

which is always greater or equal to 4
9 . In particular, it is enough to prove that:

4
9(1 + j)(k + 1− j) > k + 1,

which is always true when j > 2 and k > 7.
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Now, in equation (11), we have to consider j = 0 and j = 1 separately.
– If j = 0, equation (11) is equivalent to:

(n− k)k(k + 1)(n− k + 1) > (n− k)n(k + 1)k − (k − 1)(k + 1)(n− k)n,
and cancelling (n− k)(k + 1) in our three terms, is just:

k(n− k + 1) > kn− (k − 1)n.
Since n > 2k, it suffices to prove:

k(n− k + 1) > kn− (k − 1)2k.
This allows us to cancel k, and gets us to prove:

n− k + 1 > n− 2(k − 1).
After cancelling the summand n, the inequality reduces to k > 1, which
is obvious.

– If j = 1, equation (11), after cancelling a (n−k+1) present in all terms,
and clearing denominators, is just:
(n− k)(k − 2)2k > (n− 1)(k + 1)(k − 2)− (k − 3)(n− 1)k.
We can try to prove the stronger inequality:

(n− k)(k − 2)2k > (n− 1)(k + 1)(k − 2)− (k − 3)(n− 1)(k − 2),
which allows us to cancel out a k − 2 factor, and reduces to:

(n− k)2k > (n− 1)(k + 1)− (k − 3)(n− 1).
Observe that, since n− k > n

2 , we have that (n− k)2k > nk, so that it
suffices to prove:

nk + (k − 3)(n− 1) > (n− 1)(k − 1),
which is just equivalent to:

kn+ 2 > 2n,
that holds for all k > 2.

Up to this point, it is clear that we have proved that the polynomial has
positive coefficients when k > 7 and 2k 6 n. Observe that if k 6 6, then
0 6 j 6 bk−1

2 c 6 2. The only cases that are not covered by the above
considerations are those where j = 2 and k ∈ {5, 6}. Plugging j = 2 and
k = 5 and clearing denominators in equation (11) requires us to prove:

(n− 5)(1)(3)(4)(n− 4) > (n− 3)(n− 2)(6)(1)− 0,
which is just:

12(n− 4)(n− 5) > 6(n− 3)(n− 2).
This holds for all n > 10. We get an analogous inequality for j = 2 and k = 6.

This proves that equations (11) and (10) are both true when 2k 6 n.
• If 2k > n, then the condition on λ is λ 6 1

k+1
(
n
k

)
. In particular, to prove (10)

it suffices to show that:

(12) (n− k)(k − 2j)
(n− k + j)(n− j) >

1
k + 1

[
(k + 1)(k − 2j)

(1 + j)(k + 1− j) −
k − 1− 2j

1 + j

]
,

we can use the same trick as before. First, ignore the negative term on the
right-hand-side. Hence, it suffices to show that:

4(n− k)(k − 2j)
(n− k + j)(n− j) >

1
k + 1

(k + 1)(k − 2j)
(1 + j)(k + 1− j) ,
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which can be simplified to:

(13) n− k > n− k + j

1 + j
· n− j
k + 1− j .

To prove this inequality, fix k and n such that 2k > n and consider the right-
hand-side as a function of j. Observe that the derivative of the right-hand-side
with respect to j is:

∂

∂j
RHS = − (n+ 1)(n− k − 1)(k − 2j)

(j + 1)2(k − j + 1)2 ,

which is always negative. In particular, the right-hand-side is a decreasing
function on j, if we fix n and k. Assume j > 2, so that to prove (13) it suffices
to show

n− k > n− k + 2
3 · n− 2

k − 1 .

This can be rewritten as:

(n− k − 1)(n− 3k + 4) 6 0,

which holds automatically since n 6 2k 6 3k − 4 for every k > 4.
– If j = 0, (12) can be reduced to:

(n− k)k
(n− k)n >

1
k + 1

[
(k + 1)k

(1)(k + 1) −
k − 1

1

]
.

This is just:
k

n
>

1
k + 1 ,

which is trivially true, since k(k + 1) = k2 + k > k + k > n.
– If j = 1 in (12), we have to show that:

(n− k)(k − 2)
(n− k + 1)(n− 1) >

1
k + 1

[
(k + 1)(k − 2)

2k − k − 3
2

]
.

Observe that n−k
n−k+1 >

1
2 . Thus, we only need to prove:

k − 2
2(n− 1) >

1
k + 1

[
(k + 1)(k − 2)

2k − k − 3
2

]
.

After simplifying the n in the denominator of the left-hand-side by using
that 2k > n, we reduce to:

k − 2
2(2k − 1) >

1
k + 1

[
(k + 1)(k − 2)

2k − k − 3
2

]
.

This depends only on k and can be checked to be true for k > 5.
The remaining cases, which are of course finite, can be checked with a direct
computation.
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