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Application of hypergraph Hoffman’s bound
to intersecting families

Norihide Tokushige

Abstract Using the Filmus–Golubev–Lifshitz method [7] to bound the independence number
of a hypergraph, we solve some problems concerning multiply intersecting families with biased
measures. Among other results we obtain a stability result of a measure version of the Erdős–
Ko–Rado theorem for multiply intersecting families.

1. Introduction
It is an important problem to estimate the size of a maximum independent set in a
graph, and Hoffman’s bound(1) is one the most useful algebraic tools for the problem.
Recently, Filmus, Golubev, and Lifshitz [7] extended the bound to hypergraphs. In
this paper we apply these bounds to some problems concerning multiply intersecting
families with biased measures.

We start with the easiest and the most basic result about intersecting families with
a biased measure. Let V be a finite set and let A ⊂ 2V be a family of subsets of V .
For a fixed real number p with 0 < p < 1 we define the p-biased measure of the family
A by

µp(A) =
∑
A∈A

p|A|(1− p)|V |−|A|.

By definition it follows that µp(2V ) = 1. We say that A is intersecting if A ∩A′ 6= ∅
for all A,A′ ∈ A. A typical intersecting family is

S = {A ∈ 2V : v ∈ A}
for some fixed v ∈ V . This family is called a star centered at v. The star can be
rewritten as {{v} ∪B : B ∈ 2W } where W = V r {v}, and it follows that

µp(S) =
∑
A∈S

p · p|A|−1(1− p)|V |−|A| = p
∑
B∈2W

p|B|(1− p)|W |−|B| = p.

Indeed, it is not difficult to show that if p 6 1
2 and A ⊂ 2V is intersecting, then

µp(A) 6 p, see e.g. [2, 8], or [10, Chapter 12]. We will extend this result in several
ways.
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To state our problems and results we need some more notation and definitions. Let
n, r be positive integers and let [n] := {1, 2, . . . , n}. We say that a family of subsets
A ⊂ 2[n] is r-wise intersecting if A1 ∩ A2 ∩ · · · ∩ Ar 6= ∅ for all A1, A2, . . . , Ar ∈ A.
Let 1 > p1 > p2 > · · · > pn > 0 be real numbers, and let p = (p1, p2, . . . , pn). We
define the p-biased measure (or µp-measure) µp : 2[n] → (0, 1) by

µp(A) :=
∏
i∈A

pi
∏

j∈[n]rA

(1− pj)

for A ∈ 2[n], and for a family A ⊂ 2[n] we define

µp(A) :=
∑
A∈A

µp(A).

The star centered at i ∈ [n] is an r-wise intersecting family with µp(A) = pi.
Fishburn et al. [8] studied the maximal µp-measure for 2-wise intersecting fami-

lies using combinatorial tools. Then Suda et al. [16] extended their result to cross-
intersecting families (see Theorem 4.10 in the last section) by solving a semidefinite
programming problem, and posed the following conjecture.

Conjecture 1.1 ([16]). Let 1 > p1 > p2 > · · · > pn > 0 and p = (p1, p2, . . . , pn).
Let p3 6 1

2 . If A ⊂ 2[n] is a 2-wise intersecting family, then µp(A) 6 p1. Moreover, if
p1 > p3 (except for the case p1 = p2 > p3 = 1

2 ), or p1 <
1
2 , then equality holds if and

only if A is a star centered at some i ∈ [n] with p1 = pi.

This conjecture is true if the condition p3 6 1
2 is replaced with p2 6 1

2 , which is
proved in [8] and [16]. In this paper we apply Hoffman’s bound to show the following
result which supports the conjecture.

Theorem 1.2. Let 1 > p1 > p2 > · · · > pn > 0 and p = (p1, p2, . . . , pn). Let p3 <
1
2 .

Suppose that p1 6 1
2 or 1− p2 > p3. If A ⊂ 2[n] is a 2-wise intersecting family, then

µp(A) 6 p1. Moreover equality holds if and only if A is a star centered at some i ∈ [n]
with p1 = pi.

Frankl and the author [9] studied r-wise intersecting families with a µp-measure
where p = (p, p, . . . , p), and proved that if p < r−1

r then µp(A) 6 p for every r-wise
intersecting family A ⊂ 2[n]. The proof was combinatorial. Filmus et al. [7] gave a
new proof by extending Hoffman’s bound to r-uniform hypergraphs (r-graphs). In
this paper we further extend their method to obtain the following result.

Theorem 1.3. Let 1 > p1 > p2 > · · · > pn > 0 and p = (p1, p2, . . . , pn). If 2
3 > p2 and

A ⊂ 2[n] is a 3-wise intersecting family, then µp(A) 6 p1. Moreover equality holds if
and only if A is a star centered at some i ∈ [n] with p1 = pi.

Friedgut [11] studied the case r = 2 and p = (p, p, . . . , p), and found a stability
result. We combine his method with Filmus–Golubev–Lifshitz (FGL) bound to get a
stability result for the case r = 3.

Theorem 1.4. Let 0 < p < 2
3 be fixed, and let p = (p, p, . . . , p). Then there exists a

positive constant εp such that the following holds for all 0 < ε < εp. If A ⊂ 2[n] is a
3-wise intersecting family with µp(A) = p − ε, then there exists a star B ⊂ 2[n] such
that

(i) if p 6 1
2 then A ⊂ B, and

(ii) if p > 1
2 then µp(A4B) < (Cp + o(1))ε, where Cp = 16p(1−p)2

(2p−1)(3−4p) , and the
o(1) term vanishes as ε→ 0.
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Finally we mention that there are different and more combinatorial approaches to
the related problems concerning weighted intersecting families, see, e.g. [3] and [4].

In Section 2 we prepare tools for the proofs, and then we prove Theorems 1.2–1.4 in
Section 3. In Section 4 we discuss an easy generalization and some related problems.

2. Preliminaries
In this section we collect some tools used to prove our results. In the first two sub-
sections we reproduce the proof of Hoffman’s bound for a hypergraph established by
Filmus, Golubev, and Lifshitz, for in the next section we will use not only the bound
itself but also some equalities and inequalities appearing in their proof. Our formu-
lation and definitions follow those in [6], which are slightly different from [7] (but of
course essentially the same). In the last subsection we present some basic facts about
spectral information related to families with the µp-measure.

Remark for notation: In this paper we often identify a set and its indicator. Let V
be a finite set and let {0, 1}V denote the set of boolean functions from V to {0, 1}.
For I ∈ 2V we write 1I ∈ {0, 1}V to denote the indicator of I, that is,

1I(v) =
{

1 if v ∈ I,
0 if v 6∈ I,

where v ∈ V . We identify I and 1I , and we write v ∈ 1I to mean v ∈ I. For simplicity
we just write 1 to mean 1V , so 1(v) = 1 for all v ∈ V . For x, y ∈ V and a matrix T ,
where the rows and columns are indexed by V , we write (T )x,y for the (x, y)-entry of
T . Throughout the paper let q := 1− p and qi := 1− pi.

2.1. Hoffman’s bound for a graph. Let V be a finite set with |V | > 2. We say
that µ2 : V × V → R is a symmetric signed measure if

• µ2(x, y) = µ2(y, x) for all x, y ∈ V , and
•
∑
x∈V

∑
y∈V µ2(x, y) = 1.

Note that µ2(x, y) can be negative, which is essential for the proof of Theorem 1.2.
Let µ1 : V → R be the marginal of µ2, that is,

µ1(x) :=
∑
y∈V

µ2(x, y).(1)

Then
∑
x∈V µ1(x) =

∑
x∈V

∑
y∈V µ2(x, y) = 1.

Definition 2.1. Let µ2 : V × V → R be a symmetric signed measure. We say that
G = (V, µ2) a weighted graph if

µ1(x) > 0 for all x ∈ V.(2)

In this paper we only deal with µ2 whose marginal µ1 satisfies (2). Here V is the
vertex set, and each (x, y) ∈ V × V is an ordered edge (or a directed edge) including
loops with possibly negative weight µ2(x, y). So (x, y) should be considered a non-edge
if and only if µ2(x, y) = 0. We say that I ⊂ V is an independent set if x, y ∈ I implies
µ2(x, y) = 0. Write µ1(I) for

∑
x∈I µ1(x), and define the independence ratio α(G) by

α(G) := max{µ1(I) : I is an independent set in G}.

Example 2.2. Let G = (V,E) be a usual simple d-regular graph. Let us construct a
symmetric measure µ2 so that µ1 becomes a uniform measure µ1(x) ≡ 1/|V |. To this
end we just set

µ2(x, y) :=
{

0 if {x, y} 6∈ E,
1

d|V | if {x, y} ∈ E.
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Then (V, µ2) is a weighted graph, and in this case α(G) = |I|/|V |, where I ⊂ V is a
usual maximum independent set in G.

Let RV be the set of functions from V to R, and for f, g ∈ RV let

Eµ1 [f ] :=
∑
x∈V

f(x)µ1(x),

Eµ2 [f, g] :=
∑
x∈V

∑
y∈V

f(x)g(y)µ2(x, y).

Since µ2 is symmetric it follows Eµ2 [f, g] = Eµ2 [g, f ].

Fact 2.3. Let ϕ := 1I ∈ {0, 1}V be the indicator of an independent set I. Then we
have Eµ1 [ϕ] = µ1(I) and Eµ2 [ϕ,ϕ] = 0.

Proof. Indeed we have

Eµ1 [ϕ] =
∑
x∈V

ϕ(x)µ1(x) =
∑
x∈I

µ1(x) = µ1(I).

Since µ2(x, y) = 0 for x, y ∈ I we also have

Eµ2 [ϕ,ϕ] =
∑
x∈V

∑
y∈V

ϕ(x)ϕ(y)µ2(x, y) =
∑
x∈I

∑
y∈I

µ2(x, y) = 0. �

We define a measure version of the adjacency matrix, which is an extension of the
usual adjacency matrix, and we simply call it an adjacency matrix in this paper.

Definition 2.4. Let G = (V, µ2) be a weighted graph. We define the adjacency matrix
T = T (G). This is a |V | × |V | matrix, and for x, y ∈ V the (x, y)-entry of T is given
by

(T )x,y = µ2(x, y)
µ1(x) .(3)

We introduce an inner product 〈·, ·〉µ1
: RV × RV → R by

〈f, g〉µ1
:= Eµ1 [fg] =

∑
x∈V

f(x)g(x)µ1(x).(4)

Note that condition (2) is necessary to define the above inner product properly. Clearly
〈f, g〉µ1

= 〈g, f〉µ1
. We list some easy facts. (We include the proof in Appendix.)

Fact 2.5. Let G = (V, µ2) be a weighted graph with adjacency matrix T . Let f, g ∈ RV
and ϕ ∈ {0, 1}V .

(i) 〈f, Tg〉µ1
= Eµ2 [f, g].

(ii) 〈f, Tg〉µ1
= 〈Tf, g〉µ1

, that is, T is self-adjoint.
(iii) T1 = 1.
(iv) 〈1,1〉µ1

= 1.
(v) 〈ϕ,1〉µ1

= Eµ1 [ϕ].
(vi) 〈ϕ,ϕ〉µ1

= Eµ1 [ϕ].

Setup 2.6. Let G = (V, µ2) be a weighted graph with adjacency matrix T . By
Fact 2.5(iii) the matrix T has eigenvector 1 with eigenvalue 1. Since T is self-adjoint,
T has |V | real eigenvalues l0 = 1, l1, l2, . . . , l|V |−1 with corresponding eigenvectors
v0 = 1,v1,v2 . . . ,v|V |−1, that is, Tvi = livi. We may assume that these vectors
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consist of an orthonormal basis of RV with respect to the inner product 〈·, ·〉µ1
. Then,

for ϕ ∈ {0, 1}V , we can expand ϕ using the basis:

ϕ = ϕ̂01 +
∑
i>1

ϕ̂ivi,(5)

where ϕ̂i = 〈ϕ,vi〉µ1
. Let λmin(T ) denote the minimum eigenvalue of T .

Fact 2.7. Let ϕ ∈ {0, 1}V .
(i) Eµ1 [ϕ] = ϕ̂0 and Eµ1 [ϕ] = ϕ̂2

0 +
∑
i>1 ϕ̂

2
i .

(ii) Eµ2 [ϕ,ϕ] = ϕ̂2
0 +

∑
i>1 ϕ̂

2
i li.

Lemma 2.8. For ϕ ∈ {0, 1}V we have Eµ2 [ϕ,ϕ] > Eµ1 [ϕ]
(
1−(1−λmin(T ))(1−Eµ1 [ϕ])

)
.

Proof. By Fact 2.7(ii)

Eµ2 [ϕ,ϕ] = ϕ̂2
0 +

∑
i>1

ϕ̂2
i li

> ϕ̂2
0 + λmin(T )

∑
i>1

ϕ̂2
i

= Eµ1 [ϕ]2 + λmin(T )(Eµ1 [ϕ]− Eµ1 [ϕ]2) (by Fact 2.7(i))
= Eµ1 [ϕ]

(
1− (1− λmin(T ))(1− Eµ1 [ϕ])

)
. �

Theorem 2.9 (Hoffman’s bound, see [13]). Let G = (V, µ2) be a weighted graph with
adjacency matrix T . Let ϕ be the indicator of an independent set of G. Suppose that
λmin(T ) < 1. Then we have

1− Eµ1 [ϕ] > 1
1− λmin(T ) ,

and
α(G) 6 −λmin(T )

1− λmin(T ) .

Proof. By Lemma 2.8 with Eµ2 [ϕ,ϕ] = 0 it follows
0 > Eµ1 [ϕ]

(
1− (1− λmin(T ))(1−Eµ1 [ϕ])

)
= Eµ1 [ϕ]

(
λmin(T ) + (1− λmin(T ))Eµ1 [ϕ]

)
.

Since Eµ1(ϕ) > 0 and λmin(T ) < 1 we get the desired inequality. �

2.2. Hoffman’s bound for a 3-graph. Let V be a finite set with |V | > 2, and let
µ3 : V 3 → R be a symmetric signed measure, that is,

• µ3(x, y, z) = µ3(p, q, r) whenever (p, q, r) is a permutation of (x, y, z), and
•
∑
x∈V

∑
y∈V

∑
z∈V µ3(x, y, z) = 1.

Define the marginals µ2 ∈ RV 2 and µ1 ∈ RV as follows:

µ2(x, y) :=
∑
z∈V

µ3(x, y, z).

µ1(x) :=
∑
y∈V

µ2(x, y) =
∑
y∈V

∑
z∈V

µ3(x, y, z).

Definition 2.10. Let µ3 : V 3 → R be a symmetric signed measure. We say that
H = (V, µ3) is a weighted 3-graph if µ2(x, y) > 0 for all x, y ∈ V .

Note that µ1(x) > 0 for all x follows from (1). We will consider two inner products,
one is with respect to µ1(x), and the other is with respect to µ2(x, y)/µ1(x) for fixed
x. We need the conditions in the above definition to ensure that these inner products
are defined properly.
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We say that a subset I ⊂ V is an independent set in H if µ3(x, y, z) = 0 for all
x, y, z ∈ I, and we define the independence ratio α(H) by

α(H) := max{µ1(I) : I is an independent set in H}.
Suppose that H = (V, µ3) is a weighted 3-graph. Then G = (V, µ2) is a weighted

2-graph because µ2 is a symmetric measure and µ1 satisfies (2). The adjacency matrix
T = T (G) is defined by (3). Now we define a link graph relative to x which will be
denoted by Hx. To this end, for x, y, z ∈ V , we define µ2,x ∈ RV 2 and its marginal
µ1,x ∈ RV by

µ2,x(y, z) := µ3(x, y, z)
µ1(x) ,

µ1,x(y) :=
∑
z∈V

µ2,x(y, z) = µ2(x, y)
µ1(x) .

Then Hx := (V, µ2,x) is a weighted 2-graph because µ2,x is a symmetric measure and
µ1,x satisfies (2). The adjacency matrix Tx = Tx(Hx) is also defined by (3), so the
(y, z)-entry of Tx is

(Tx)y,z = µ2,x(y, z)
µ1,x(y) = µ3(x, y, z)

µ2(x, y) .(6)

By definition both T and Tx are self-adjoint, and they have |V | real eigenvalues.
We can relate Eµ2 and Eµ1,x

as follows. Here we write x ∈ ϕ to mean ϕ(x) = 1.

Lemma 2.11. For ϕ ∈ {0, 1}V we have Eµ2 [ϕ,ϕ] 6 Eµ1 [ϕ] maxx∈ϕ Eµ1,x
[ϕ].

Proof. Note that if x 6∈ ϕ then ϕ(x) = 0 and the term having ϕ(x) does not contribute
in the sum below. Thus we have

Eµ2 [ϕ,ϕ] =
∑
x∈V

∑
y∈V

ϕ(x)ϕ(y)µ2(x, y)

=
∑
x∈ϕ

ϕ(x)µ1(x)
∑
y∈V

ϕ(y)µ2(x, y)
µ1(x)

=
∑
x∈ϕ

ϕ(x)µ1(x)
∑
y∈V

ϕ(y)µ1,x(y)

6
∑
x∈V

ϕ(x)µ1(x) max
x∈ϕ

∑
y∈V

ϕ(y)µ1,x(y)

= Eµ1 [ϕ] max
x∈ϕ

Eµ1,x
[ϕ]. �

Theorem 2.12 (Hoffman’s bound for a 3-graph [7]). Let H = (V, µ3) be a weighted
3-graph. Let ϕ be the indicator of an independent set. Suppose that λmin(T ) < 1 and
λmin(Tx) < 1 for x ∈ ϕ. Then

1− Eµ1 [ϕ] > 1
(1− λmin(T )) maxx∈ϕ(1− λmin(Tx)) .

In particular, if ϕ is the indicator of a maximum independent set, then

α(H) 6 1− 1
(1− λmin(T )) maxx∈ϕ(1− λmin(Tx)) .

Proof. Let I ⊂ V be the independent set in H such that 1I = ϕ. By Lemma 2.8 we
have

Eµ2 [ϕ,ϕ] > Eµ1 [ϕ]
(
1− (1− λmin(T ))(1− Eµ1 [ϕ])

)
.
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This together with Lemma 2.11 yields
Eµ1 [ϕ] max

x∈ϕ
Eµ1,x [ϕ] > Eµ1 [ϕ]

(
1− (1− λmin(T ))(1− Eµ1 [ϕ])

)
,

that is,

1− Eµ1 [ϕ] >
1−maxx∈ϕ Eµ1,x [ϕ]

1− λmin(T ) .(7)

Next we bound Eµ1,x[ϕ] by using the link graph Hx := (V, µ2,x) relative to x ∈ I.
Note that I is an independent set in Hx as well. Indeed if y, z ∈ I then µ2,x(y, z) = 0
because µ3(x, y, z) = 0. By applying Theorem 2.9 to the adjacency matrix Tx of Hx

we get
1− Eµ1,x

[ϕ] > 1
1− λmin(Tx) ,

and

1−max
x∈ϕ

Eµ1,x
[ϕ] > 1

maxx∈ϕ(1− λmin(Tx)) .(8)

By (7) and (8) we obtain the desired inequality. �

2.3. Tools for uniqueness. In Setup 2.6 any ϕ ∈ {0, 1}V can be expanded in the
form in (5). We first show that if Eµ2 [ϕ,ϕ] is small, then we only need the eigenvectors
corresponding to the largest and the smallest eigenvalues for the expansion.

Lemma 2.13. We assume Setup 2.6. If
Eµ2 [ϕ,ϕ] 6 ϕ̂2

0 + λmin(T )(ϕ̂0 − ϕ̂2
0),(9)

then ϕ = ϕ̂01 +
∑
i∈J ϕ̂ivi, where J = {i : 1 6 i < |V |, li = λmin(T )}.

Proof. By Fact 2.7 and (9) we have

Eµ2 [ϕ,ϕ] = ϕ̂2
0 +

∑
i>1

ϕ̂2
i li 6 ϕ̂

2
0 + λmin(T )(ϕ̂0 − ϕ̂2

0) = ϕ̂2
0 + λmin(T )

∑
i>1

ϕ̂2
i ,

and ∑
i>1

(li − λmin(T ))ϕ̂2
i 6 0.

This yields li = λmin(T ) or ϕ̂i = 0, and the result follows. �

Let 1 > p1 > p2 > · · · > pn > 0 be given. Let V = 2[n] and let µ1 : V → (0, 1)
be the measure defined by µ1(S) =

∏
i∈S pi

∏
j∈[n]rS qj for S ∈ V . Then we can view

RV as a 2n-dimensional inner space over R, where the inner product is defined by (4).
We will construct an orthonormal basis that suits our purpose.

Fact 2.14. Let pi > r−2
r−1 and let

T (i) =
[1− pi

(r−1)qi

pi

(r−1)qi
1
r−1 1− 1

r−1

]
.

Then T (i) has eigenvalues 1 and λi := 1 − 1
(r−1)qi

< 0 with the corresponding eigen-

vectors v
(i)
∅ = ( 1

1 ) and v
(i)
{i} =

(
ci

− 1
ci

)
, where ci =

√
pi/qi.

Let T = T (n) ⊗ T (n−1) ⊗ · · · ⊗ T (1). Then the rows and columns of T are indexed
by the order ∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, . . .. For each S ∈ V the
corresponding indicator is given by the column vector of the matrix[

1 0
1 1

]
⊗ · · · ⊗

[
1 0
1 1

]
.
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One can construct the eigenvectors of T by routine computation, and we have the
following, see e.g. [11, 16],

Fact 2.15. Let S ∈ V and let vS be the column vector (indexed by S) of the matrix

Cn :=
[
1 cn
1 − 1

cn

]
⊗
[
1 cn−1
1 − 1

cn−1

]
⊗ · · · ⊗

[
1 c1
1 − 1

c1

]
.

(i) RV with the inner product defined by (4) is spanned by the orthonormal basis
{vS : S ∈ V }.

(ii) The vector vS is an eigenvector of T with the corresponding eigenvalue λS :=∏
j∈S λj. In particular, v∅ = 1 and λ∅ = 1.

(iii) The entry of v{i} corresponding to S ∈ V is ci if i 6∈ S and −1/ci if i ∈ S, and
pi1−

√
piqiv{i} is the indicator of the star centered at i, i.e. {S ∈ V : i ∈ S}.

(iv) We have vS =
∏
i∈S v{i}, where the product is taken componentwise.

For example, the matrix C3 is as follows, where the columns are in the order v∅,
v{1}, v{2}, v{1,2}, v{3}, v{1,3}, v{2,3}, v{1,2,3}.

C3 =



1 c1 c2 c1c2 c3 c1c3 c2c3 c1c2c3
1 − 1

c1
c2 − c2

c1
c3 − c3

c1
c2c3 − c2c3

c1
1 c1 − 1

c2
− c1
c2

c3 c1c3 − c3
c2
− c1c3

c2
1 − 1

c1
− 1
c2

1
c1c2

c3 − c3
c1
− c3
c2

c3
c1c2

1 c1 c2 c1c2 − 1
c3
− c1
c3
− c2
c3
− c1c2

c3
1 − 1

c1
c2 − c2

c1
− 1
c3

1
c1c3
− c2
c3

c2
c1c3

1 c1 − 1
c2
− c1
c2
− 1
c3
− c1
c3

1
c2c3

c1
c2c3

1 − 1
c1
− 1
c2

1
c1c2
− 1
c3

1
c1c3

1
c2c3
− 1
c1c2c3


.

Lemma 2.16. Let L = {i ∈ [n] : pi = p1} and ϕ ∈ {0, 1}V . Suppose that λmin(T ) < λS
for all S ∈ V r

(
L
1
)
. If ϕ(∅) = 0 and ϕ([n]) = 1, and ϕ is expanded as

ϕ = p11 +
∑
k∈L

ϕ̂{k}v{k},(10)

then ϕ is the indicator of a star centered at some i ∈ L.

Proof. We first show that there is only one i ∈ [n] such that ϕ = p11 − √piqi v{i}.
Suppose, to the contrary, that there are distinct i, j such that both ϕ̂{i} and ϕ̂{j}
are non-zero. Let ϕ2 ∈ {0, 1}V be such that ϕ2(x) = ϕ(x)2. Then, by Fact 2.15(iv),
ϕ2 = (p11 +

∑
k∈L ϕ̂{k}v{k})2 must contain the term

ϕ̂{i}ϕ̂{j}v{i}v{j} = ϕ̂{i}ϕ̂{j}v{i,j}

whose coefficient ϕ̂{i}ϕ̂{j} is non-zero. But this contradicts the fact that the expan-
sion (10) is unique and ϕ = ϕ2.

Therefore we can write ϕ = p11 + ϕ̂{i}v{i} for some i ∈ [n]. By Fact 2.15(iii) we
have v{i}(∅) = ci and v{i}([n]) = −1/ci, and so

ϕ(∅) = 0 = p1 + ϕ̂{i}ci and ϕ([n]) = 1 = p1 − ϕ̂{i}/ci.

Solving the equations we get ϕ̂{i} = −√p1q1 and ci = c1. This means that i ∈ L.
Consequently ϕ = pi1−

√
piqiv{i}, and by Fact 2.15(iii) we complete the proof. �

3. Application
Recall that a family of subsets A ⊂ 2[n] is r-wise intersecting if A1∩A2∩· · ·∩Ar 6= ∅
for all A1, . . . , Ar ∈ A. Let p = (p1, . . . , pn) ∈ (0, 1)n be a fixed real vector. The
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µp-measure of a family A ⊂ 2[n] is defined by

µp(A) :=
∑
A∈A

∏
i∈A

pi
∏

j∈[n]rA

qj .

3.1. 2-wise case: Proof of Theorem 1.2.

Proof of Theorem 1.2. The case n = 1. In this case the only intersecting family is
A = {{1}}, and µp(A) = p1, where p = (p1). But we will get this result by using
Hoffman’s bound because the spectral information in this case will be used later to
get the spectral information for the general n > 2 case.

Let V (1) = 2{1} = {∅, {1}}, and define the symmetric signed measure µ(1)
2 : V (1)×

V (1) → R by

µ
(1)
2 (∅, {1}) = µ

(1)
2 ({1},∅) = p1, µ

(1)
2 (∅,∅) = 1− 2p1, µ

(1)
2 ({1}, {1}) = 0.

This induces the marginal

µ
(1)
1 ({1}) = p1, µ

(1)
1 (∅) = q1.

Then we obtain a weighted 2-graph G = (V, µ(1)
2 ). Note that µp = µ

(1)
1 . (Indeed

this µ2 is the only symmetric signed measure which satisfies µ(1)
2 ({1}, {1}) = 0 and

µp = µ
(1)
1 .) The adjacency matrix T (1) is given by

T (1) =
[
1− p1

q1

p1
q1

1 0

]
,

where the rows and columns are indexed in the order ∅, {1}. This matrix has eigen-
values 1 and −p1

q1
. Thus λmin(T (1)) = −p1

q1
. Then by Theorem 2.9 we have

1− α(G) > 1
1− λmin(T (1))

= 1
1 + p1

q1

= q1,

and α(G) 6 1 − q1 = p1. Now it follows from the definition of µ(1)
2 that a 2-wise

intersecting family A ⊂ V (1) is an independent set in G. Thus we have shown that
µp(A) 6 p1 in this case n = 1.

The general case n > 2. For i = 1, 2, . . . , n, let Vi = 2{i} and let µ(i)
2 be defined

as in the previous n = 1 case. Let G(i) = (V (i), µ
(i)
2 ) with the adjacency matrix T (i),

where

T (i) =
[
1− pi

qi

pi

qi

1 0

]
.

Now we define G = (V, µ2) to be a product of G(1), . . . , G(n). To this end let V =
V (1)× · · · ×V (n) ∼= 2[n], and define µ2 : V 2 → R by µ2 = µ

(1)
2 × · · · ×µ

(n)
2 , that is, for

S, S′ ∈ V , let

µ2(S, S′) := µ
(1)
2 (s1, s

′
1)× · · · × µ(n)

2 (sn, s′n),

where si = S ∩ {i} and s′i = S′ ∩ {i} for 1 6 i 6 n.

Claim 3.1. The marginal µ1 satisfies µ1 = µ
(1)
1 × · · · × µ

(n)
1 , and µ1 = µp.
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Proof. Indeed, by (1), we have

µ1(S) =
∑
S′∈V

µ2(S, S′)

=
∑
S′∈V

µ
(1)
2 (s1, s

′
1)× · · · × µ(n)

2 (sn, s′n)

=
∑

s′1∈V (1)

µ
(1)
2 (s1, s

′
1)× · · · ×

∑
s′n∈V (n)

µ
(n)
2 (sn, s′n)

= µ
(1)
1 (s1)× · · · × µ(n)

1 (sn) = µp(S). �

Thus 0 < µ1(S) < 1 for all S ∈ V , and G is a weighted graph. By construction we
see that the adjacency matrix is T = T (n) ⊗ · · · ⊗ T (1). We can apply Fact 2.14 with
r = 2 and Fact 2.15. Then, for each S ∈ V , T has an eigenvalue λS :=

∏
j∈S

(
−pj

qj

)
with the corresponding eigenvector vS . Now we determine λmin(T ) = minS λS .

Claim 3.2. We have λmin(T ) = λ{1} = −p1
q1
, and if λS = λmin(T ) then S = {i} with

pi = p1.

Proof. Since pi > pi+1 we have λ{i} = −pi

qi
6 −pi+1

qi+1
= λ{i+1} < 0, and mini λ{i} =

λ{1}. The assumption p3 < 1
2 means −1 < λ{3}, and so −1 < λ{i} < 0 for all

3 6 i 6 n. Thus if λmin(T ) = λS then, using Fact 2.15(ii), S contains at most one i
with i > 3. In particular if λS = λ{1} then S = {i} with pi = p1.

If p1 6 1
2 then −1 6 λ{1}, and −1 6 λ{1} 6 λ{2} < 0. Therefore if i ∈ S ⊂ [n] then

λ{i} 6 λS with equality holding if and only if S = {j} with pj = pi. Thus we get the
statement of the claim in this case.

If p1 >
1
2 then λ{1} < −1. Thus we have λmin(T ) = min{λ{1}, λ{1,2,3}}. By sim-

ple computation we see that λ{1} < λ{1,2,3} is equivalent to p3 < q2, which is our
assumption. Thus we get the statement of the claim again. �

Thus by Theorem 2.9 we have α(G) 6 p1. Now let A ⊂ 2[n] be a 2-wise intersecting
family. If A,B ∈ A then there is some i ∈ A∩B. Then µ2(A,B) = 0 follows from the
fact that µ(i)

2 ({i}, {i}) = 0 with the definition of µ2. This means that A ⊂ V is an
independent set of G. Since µ1 = µp we see that µp(A) = µ1(A) 6 α(G) 6 p1, which
completes the proof of inequality.

Finally we prove the uniqueness. Suppose that α(G) = p1 and let ϕ be the indicator
of a maximum independent set. Then ϕ̂∅ = 〈ϕ,1〉µ1

= Eµ1 [ϕ] = p1. We also have
Eµ2 [ϕ,ϕ] = 0 by Fact 2.3. Thus, using ϕ̂∅ = p1 and λmin(T ) = −p1

q1
, we can verify (9),

and by Lemma 2.13 we have ϕ = p11 +
∑
S∈W ϕ̂SvS , where W = {S ∈ V : λS =

λmin(T )}. Since λS = λmin(T ) is equivalent to S = {i} with pi = p1, we can rewrite
ϕ = p11+

∑
k∈L ϕ̂{k}v{k}, where L = {i ∈ [n] : pi = p1}. Consequently it follows from

Lemma 2.16 that ϕ is the indicator of a star centered at some i ∈ L. This completes
the proof of Theorem 1.2. �

Example 3.3. Define a 2-wise intersecting family A ⊂ 2[n] by A = {A ∈ 2[n] :
|A ∩ [3]| > 2}, and let p = (p1, p2, . . . , pn). Then

µp(A) = p1p2q3 + p1q2p3 + q1p2p3 + p1p2p3 = p1p2 + p1p3 + p2p3 − 2p1p2p3.

If p1 = p2 = p3 then µp(A) = p2
1(3− 2p1) and µp(A) > p1 iff 1

2 < p1 < 1. If p1 = p2
and p3 = 1

2 then µp(A) = p1.
These examples show the sharpness of the condition p3 <

1
2 in Conjecture 1.1 (if

true) in the following sense. First, for the inequality (µp(A) 6 p1) we cannot replace
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the condition with p4 <
1
2 . Second, to ensure the uniqueness we cannot replace the

condition with p3 6 1
2 .

3.2. 3-wise case: Proof of Theorem 1.3.

Proposition 3.4. Let 2
3 > p1 > 1

2 and p1 > p2 > · · · > pn > 0. Let A ⊂ 2[n] be a
3-wise intersecting family. Then

µ(A) 6 p1.

Moreover equality holds if and only if A is a star centered at some i ∈ [n] with pi = p1.

Proof. The case n = 1. Let V (1) = 2{1} = {∅, {1}}, and we will define a symmetric
signed measure µ(1)

3 : V (1) × V (1) × V (1) → R. Here, for simplicity, we write 0 and 1
to mean ∅ and {1}, e.g. we write µ(1)

3 (0, 1, 1) to mean µ(1)
3 (∅, {1}, {1}). Now µ

(1)
3 is

defined by

µ
(1)
3 (0, 1, 1) = µ

(1)
3 (1, 0, 1) = µ

(1)
3 (1, 1, 0) = 1

2p1, µ
(1)
3 (0, 0, 0) = 1− 3

2p1,

µ
(1)
3 (1, 0, 0) = µ

(1)
3 (0, 1, 0) = µ

(1)
3 (0, 0, 1) = µ

(1)
3 (1, 1, 1) = 0.

Then

µ
(1)
2 (1, 1) = 1

2p1, µ
(1)
2 (1, 0) = µ

(1)
2 (0, 1) = 1

2p1, µ
(1)
2 (0, 0) = 1− 3

2p1,

and
µ

(1)
1 (1) = p1, µ

(1)
1 (0) = q1.

It follows from 0 < p1 <
2
3 that µ(1)

1 and µ
(1)
2 /µ

(1)
1 take values in (0, 1). So we can

define a weighted 3-graph H = (V (1), µ
(1)
3 ). Then, from (3) and (6), we have the

following matrices.

T (1) =
[
1− p1

2q1

p1
2q1

1
2

1
2

]
, T

(1)
∅ =

[
1 0
0 1

]
, T

(1)
{1} =

[
0 1
1 0

]
.

By direct computation we get the following table concerning spectral information.

T (1) T
(1)
∅ T

(1)
{1}

eigenvalues λ 1, 1− 1
2q1

1, 1 1,−1

λmin 1− 1
2q1

1 −1

Let ϕ be the indicator of a maximum independent set in H. Then α(H) = E
µ

(1)
1

[ϕ]
and ∅ 6∈ ϕ. So, by Theorem 2.12, we have

1− α(H) > 1
(1− λmin(T (1))) maxx∈ϕ(1− λmin(T (1)

x ))

= 1
(1− 1 + 1

2q1
)(1 + 1)

= q1,

and α(H) 6 1− q1 = p1.
The general case n > 2. For i = 1, 2, . . . , n let Vi = 2{i} and let µ(i)

3 be defined as in
the previous n = 1 case. Let H(i) = (V (i), µ

(i)
3 ) be the weighted 3-graph. This induces

the weighted 2-graph and the link graphs with the adjacency matrices T (i), T
(i)
∅ , T

(i)
{i},

where
T (i) =

[
1− pi

2qi

pi

2qi
1
2

1
2

]
, T

(i)
∅ = T

(1)
∅ , T

(i)
{i} = T

(1)
{1}.
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We will construct a weighted 3-graph H = (V, µ3) from H(1), . . . ,H(n). Let V =
V (1) × · · · × V (n) ∼= 2[n]. Define µ3 : V 3 → R by µ3 = µ

(1)
3 × · · · × µ

(n)
3 . Let µ2 ∈ RV 2

and µ1 ∈ RV be the marginals. Then, as in Claim 3.1, we see that µi = µ
(1)
i ×· · ·×µ

(n)
i

for i = 1, 2, as well, in particular, µ1 = µp. Note also that both µ1 and µ2/µ1 take
values in (0, 1), and we need the condition p1 <

2
3 here. Consequently H is a weighted

3-graph with adjacency matrix T = T (n) ⊗ · · · ⊗ T (1).
We apply Fact 2.14 with r = 3 and Fact 2.15. Then, for each S ∈ V , the matrix

T has an eigenvalue λS :=
∏
j∈S

(
1− 1

2qj

)
with the corresponding eigenvector vS

from Fact 2.15. Since 1
2 6 p1 < 2

3 and λ{1} = 1 − 1
2q1

we have − 1
2 < λ{1} 6 0

and λmin(T ) = λ{1}. The adjacency matrix of the link graph HS = (V, µ2,S) is
TS = T

(n)
sn ⊗ · · · ⊗ T

(1)
s1 , where si = S ∩ {i}. If S 6= ∅ then TS has eigenvalues {1,−1}

and

λmin(TS) = −1.(11)

Let ϕ be the indicator of a maximum independent set in H. We have ∅ 6∈ ϕ because

µ3(∅,∅,∅) =
n∏
i=1

µ
(i)
3 (0, 0, 0) =

n∏
i=1

(1− 3
2pi) 6= 0.

Thus, by Theorem 2.12, we have

1−α(H)> 1
(1− λmin(T )) maxS∈ϕ(1− λmin(TS)) = 1(

1− (1− 1
2q1

)
)

(1− (−1))
= q1,

and α(H) 6 1− q1 = p1.
Now let A ⊂ 2[n] be a 3-wise intersecting family. If A,B,C ∈ A then there is some

i ∈ A∩B ∩C. Then µ3(A,B,C) = 0 follows from the fact that µ(i)
3 ({i}, {i}, {i}) = 0

with the definition of µ3. This means that A ⊂ V is an independent set in H. Since
µ1 = µ

(1)
1 × · · · × µ(n)

n = µp we have µp(A) = µ1(A) 6 α(H) 6 p1, which completes
the proof of inequality.

Finally we show the uniqueness of equality case. Suppose that α(H) = p1 and let
ϕ be the indicator of a maximum independent set I in H. Then ∅ 6∈ I and I is also
an independent set in the link graph HS = (V, µ2,S) if S 6= ∅. Thus by applying
Theorem 2.9 to HS with (11) we have

max
S∈ϕ

Eµ1,S [ϕ] 6 max
S 6=∅

−λmin(TS)
1− λmin(TS) = 1

2 .(12)

(We note that (12) holds for the indicator of any independent set, not necessarily a
maximum one, and we will use this fact in the next subsection.) Then by Lemma 2.11
we have Eµ2 [ϕ,ϕ] 6 p1

2 . This together with ϕ̂0 = p1 and λmin(T ) = 1− 1
2q1

verifies (9),
and we can apply Lemma 2.13. Since λmin(T ) is attained only by λ{i} with i ∈ J :=
{j ∈ [n] : pj = p1} we have ϕ = p11 +

∑
j∈J ϕ̂{j}v{j}. Finally by Lemma 2.16 it

follows that ϕ is the indicator of a star centered at some i ∈ J . �

Proof of Theorem 1.3. We note that the µ1 in Theorem 1.2 and the µ1 in Proposi-
tion 3.4 are the same, and moreover µp = µ1. Then Theorem 1.3 for the case p1 6 1

2
follows from Theorem 1.2, and the case 1

2 6 p1 < 2
3 follows from Proposition 3.4.

Thus we may assume that p1 > 2
3 and p2 <

2
3 . Now we follow the argument in [8]. Let

p = (p1, p2, p3, . . . , pn) and p′ = (p2, p2, p3, . . . , pn), that is, p′ is obtained from p by
replacing p1 with p2. LetA be the star centered at 1, and let B be an inclusion maximal
intersecting family. Suppose that B 6= A, and we will show that µp(A) > µp(B).
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By the construction we have µp(A) = p1 and µp′(A) = p2. Thus µp(A) =
p1
p2
µp′(A).
On the other hand, by Proposition 3.4, we have µp′(B) 6 p2. Let B ∈ B. If 1 ∈ B

then µp(B) = p1
p2
µp′(B). If 1 6∈ B then µp(B) = q1

q2
µp′(B) < p1

p2
µp′(B), where we

used p1 > p2. Since B 6= A and B is inclusion maximal there is some B ∈ B such
that 1 6∈ B, e.g. {2, 3, . . . , n} ∈ B. Thus we have µp(B) < p1

p2
µp′(B) 6 p1 = µp(A), as

needed. This means that A is the only intersecting family which attains the maximum
µp-measure. �

3.3. Stability: Proof of Theorem 1.4. Friedgut [11] obtained a stability result
for 2-wise t-intersecting families. The special case t = 1, which is a stability version
of a result by Ahlswede–Katona [1], reads as follows.

Proposition 3.5 ([11]). Let 0 < p < 1
2 be fixed. Then there exists a constant εp > 0

such that the following holds for all 0 < ε < εp. If A ⊂ 2[n] is a 2-wise intersecting
family with µp(A) = p − ε, then there exists a star B ⊂ 2[n] such that µp(A4B) <
(Cp + o(1))ε, where p = (p, p, . . . , p) and Cp = 4q2

1−2p .

We include the proof for convenience in Appendix. (The Cp is not explicitly computed
in [11].)

In this subsection we adapt his proof to 3-wise intersecting families to show the
following.

Proposition 3.6. Let 1
2 < p < 2

3 be fixed. Then there exists a constant εp > 0 such
that the following holds for all 0 < ε < εp. If A ⊂ 2[n] is a 3-wise intersecting family
with µp(A) = p−ε, then there exists a star B ⊂ 2[n] such that µp(A4B) < (Cp+o(1))ε,
where p = (p, p, . . . , p) and

Cp = 16pq2

(2p− 1)(3− 4p) .

For the proof we use the Kindler–Safra theorem, which extends the Friedgut–
Kalai–Naor theorem [12]. To state the result we need a definition. Let V = 2[n] and
g ∈ {0, 1}V . We say that a boolean function g ∈ {0, 1}V depends on at most one
coordinate if g is one of the following:
(G1) there is some i ∈ [n] such that g = 1{i}, or
(G2) there is some i ∈ [n] such that g = 1− 1{i}, or
(G3) g is a constant function, that is, g = 0, or g = 1.

(G1) means that g is the indicator of the star centered at i, and (G2) means that g
is the indicator of the complement of the star.

We can expand any boolean function f ∈ {0, 1}V as f =
∑
S∈V f̂SvS , where vs

is defined in Subsection 2.3 (see Fact 2.15). Let f>1 :=
∑
|S|>1 f̂SvS , and let ‖f‖

denote the square root of 〈f, f〉µp
, where p = (p, . . . , p). For example, if f = 1{i} then

f = pv∅ −
√
pqv{i}, and ‖f‖ = p, ‖f>1‖ = 0.

Theorem 3.7 (Kindler–Safra, Corollary 15.2 in [14], see also [15]). Let p ∈ (0, 1) be
fixed and let V = 2[n]. Let f ∈ {0, 1}V and ‖f>1‖2 6 δ � p. Then there exists
g ∈ {0, 1}V which depends on at most one coordinate and ‖f − g‖2 < (4 + o(1))δ.

The o(1) term is actually smaller than c1 exp(− c2
δ ), where c1, c2 are positive constants

depending only on p, see Corollary 6.1 in [15] for more details.

Proof of Proposition 3.6. Let V = 2[n] and let µ3 ∈ RV 3 be the measure defined
in the proof of Proposition 3.4. By definition of µ3 with 1

2 < p < 2
3 we have that
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0 < µ2(x, y) < 1 for all x, y ∈ V , and µ1 = µp. Thus we can define a weighted 3-graph
(V, µ3).

Let ϕ be the indicator of A and we write

ϕ = ϕ̂∅1 +
∑
S 6=∅

ϕ̂SvS .

To apply Theorem 3.7 we need to show that ‖ϕ>1‖ is small. By Fact 2.7(ii) we have

Eµ2 [ϕ,ϕ] = ϕ̂2
∅ +

∑
|S|=1

ϕ̂2
SλS +

∑
|S|>1

ϕ̂2
SλS ,

where λS = (1− 1
2q )|S|. Since − 1

2 < 1− 1
2q < 0 the minimum and the second minimum

eigenvalues come from the cases |S| = 1 and |S| = 3, respectively. So let λ1 := 1− 1
2q

and λ3 := (1− 1
2q )3. Then we have

Eµ2 [ϕ,ϕ] > ϕ̂2
∅ + λ1

∑
|S|=1

ϕ̂2
S + λ3

∑
|S|>1

ϕ̂2
S .(13)

Define τ by
∑
|S|>1 ϕ̂

2
S = τϕ̂∅. Then, by Fact 2.7(i),

∑
|S|=1 ϕ̂

2
S = ϕ̂∅ − ϕ̂2

∅ − τϕ̂∅.
Thus we have

Eµ2 [ϕ,ϕ] > ϕ̂2
∅ + λ1(ϕ̂∅ − ϕ̂2

∅ − τϕ̂∅) + λ3τϕ̂∅.

On the other hand we have Eµ1(ϕ) = ϕ̂∅ and maxx∈ϕ Eµ1,x[ϕ] 6 1
2 by (12). Thus it

follows from Lemma 2.11 that Eµ2 [ϕ,ϕ] 6 1
2 ϕ̂∅. So estimating Eµ2 [ϕ,ϕ]/ϕ̂∅ we get

1
2 > ϕ̂∅ + λ1(1− ϕ̂∅ − τ) + λ3τ,

which yields

τ 6
1

λ3 − λ1

(
1
2 − ϕ̂∅ − λ1(1− ϕ̂∅)

)
= 1
λ3 − λ1

· ε2q = 4q2

(2p− 1)(3− 4p) ε,

where we used ϕ̂∅ = p− ε for the first equality. Since

‖ϕ>1‖2 =
∑
|S|>1

ϕ̂2
S = τϕ̂∅ < τp

we obtain

‖ϕ>1‖2 <
4pq2

(2p− 1)(3− 4p) ε.

By applying Theorem 3.7 with δ = 4pq2

(2p−1)(3−4p)ε we can find g ∈ {0, 1}V which
depends at most one coordinate and ‖ϕ− g‖2 < (4 + o(1))δ.

We claim that g is the indicator of a star, that is, (G1) happens. Note that 1
2 <

p < 2
3 and p� ε+ δ by the choice of ε. So we have ‖ϕ− 0‖2 = ‖ϕ‖2 = p− ε� δ and

‖ϕ − 1‖2 = 1 − (p − ε) � δ. Thus (G3) cannot happen. If g is the indicator of the
complement of a star, then ‖g‖2 = 1− p and

‖ϕ− g‖2 > (‖ϕ‖ − ‖g‖)2 = (
√
p− ε−

√
1− p)2 >

16pq2

(2p− 1)(3− 4p)ε = 4δ

by choosing ε � p small enough (we need to choose ε quite small when p is close
to 1/2). This shows that (G2) cannot happen. So the only possibility is (G1), as
needed. �
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Proof of Theorem 1.4. LetA ⊂ 2[n] be a 3-wise intersecting family with µp(A) = p−ε.
First let 1

2 < p < 2
3 . Then (ii) of the theorem follows from Proposition 3.6.

Next let p = 1
2 . It follows from the Brace–Daykin Theorem [5] that if F ⊂ 2[n] is

a 3-wise intersecting family which is not a subfamily of a star, then

|F| 6 |{F ⊂ [n] : |F ∩ [4]| > 3}|,

or equivalently µp(F) 6 5
16 , where p = ( 1

2 , . . . ,
1
2 ). Thus if p − ε > 5

16 , that is,
0 < ε < 3

16 , then A is a subfamily of a star, which shows (i) of the theorem in this
case.

Finally let 0 < p < 1
2 . We say that A is 2-wise 2-intersecting if |A ∩ A′| > 2 for

all A,A′ ∈ A. If A is not 2-wise 2-intersecting, then there exist A,A′ ∈ A such that
|A∩A′| = 1, say, A∩A′ = {i}. In this case every A ∈ Amust contain i due to the 3-wise
intersecting condition. Thus A is contained in a star B centered at i, and we get (i) of
the theorem in this case. The only remaining case is that A is 2-wise 2-intersecting,
and we show that this cannot happen. For i = 0, 1, . . ., let i

2i+1 6 p 6 i+1
2i+3 . Then it

follows from the Ahlswede–Khachatrian theorem [2] that µp(A) 6 µp(Gi), where

Gi = {G ⊂ [n] : |G ∩ [2i+ 2]| > i+ 2}.

A direct computation shows that µp(Gi) =
∑i
j=0

(2i+2
j

)
p2i+2−j(1 − p)j < p. So by

choosing ε < εp := p − µp(Gi) we see that µp(A) = p − ε > p − εp = µ(Gi), a
contradiction. �

4. Concluding remarks
4.1. Generalization to r-graphs. Filmus et al. extended Hoffman’s bound to an
r-graph in [7]. We briefly explain how to extend Theorem 2.12 to an r-graph by
induction on r. Let V be a finite set with |V | > 2 and we define a weighted r-graph
on V as follows.

Definition 4.1. Let µr : V r → R be a symmetric signed measure. We say that
H = (V, µr) is a weighted r-graph if µr−1(x1, . . . , xr−1) > 0 for all x1, . . . , xr−1 ∈ V ,
where

µr−1(x1, . . . , xr−1) :=
∑
y∈V

µr(x1, . . . , xr−1, y).

For i = r − 2, r − 3, . . . , 1 we define a measure µi ∈ RV i inductively by

µi(x1, . . . , xi) :=
∑
y∈V

µi+1(x1, . . . , xi, y).

Note that µi(x1, . . . , xi) > 0 for all x1, . . . , xi ∈ V .
Let ϕ be the indicator of an independent set I in the weighted r-graph H =

(V, µr). Then Lemma 2.8 and Lemma 2.11 work for H as well. Here we define
µr−1,x(y2, . . . , yr) := µr(x, y2, . . . , yr)/µ1(x). Then Eµ1,x

[ϕ] is bounded from above by
α(Hx), whereHx = (V, µr−1,x) is the link (r−1)-graph ofH relative to x. By induction
hypothesis we can bound α(Hx), and we eventually bound Eµ1 [ϕ] using Lemma 2.8
and Lemma 2.11. To state the bound, for s = 1, . . . , r−2, and S = {v1, . . . , vs}, where
v1, . . . , vs ∈ V , let TS be the adjacency matrix of the link (r− s)-graph relative to S,
defined by

(TS)x,y = µs+2(v1, . . . , vs, x, y)
µs+1(v1, . . . , vs, x) .(14)
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Let λs := minS λmin(TS) and minS is taken over all s-element (multi)subset S of I.
Also let λ0 := λmin(T ) where T is the adjacency matrix of H defined by (3). Then
the FGL bound is stated as follows.

Eµ1 [ϕ] 6 1−
r−2∏
s=0

1
1− λs

.(15)

With this bound it is not difficult to extend Theorem 1.3 to an r-graph.

Theorem 4.2. Let 1 > p1 > p2 > · · · > pn > 0 and p = (p1, p2, . . . , pn). Let r > 3. If
r−1
r > p2 and A ⊂ 2[n] is an r-wise intersecting family, then µp(A) 6 p1. Moreover

equality holds if and only if A is a star centered at some i ∈ [n] with p1 = pi.

The proof of Theorem 4.2 goes exactly the same as that of Theorem 1.3, and the
main part is the proof of the following result which corresponds to Proposition 3.4.

Proposition 4.3. Let r−1
r > p1 > r−2

r−1 and p1 > p2 > · · · > pn > 0. Let A ⊂ 2[n] be
an r-wise intersecting family. Then

µ(A) 6 p1.

Moreover equality holds if and only if A is a star centered at some i ∈ [n] with pi = p1.

Proof. The matrices for the proof are different from the ones used in the proof of
Theorem 7.1 in [7], because we will introduce a parameter ε > 0 so that all the
measures µi take positive values and (14) is well defined. Here we only record the
matrices and the corresponding eigenvalues. Otherwise the proof is the same as the
one for Proposition 3.4.

Let n = 1 and V = {∅, {1}}. We need to define a symmetric measure µ(1)
r . For

this we start with a symmetric function µ(1)
r : V r → R defined by

µ(1)
r (0i, 1r−i) =


0 if i = 0,
p1
r−1 − δ1 if i = 1,
ε if 2 6 i 6 r − 1,
1− rp1

r−1 − δ2 if i = r,

where ε, δ1, δ2 are small positive constants, and (0i, 1r−i) in the LHS means i repeated
∅ and r− i repeated {1}. Since µ(1)

r is symmetric, any permutation of (0i, 1r−i) takes
the same value. We require

∑
x∈V r µ

(1)
r (x) = 1 for µ(1)

r to be a measure, that is,

∑
x∈V r

µ(1)
r (x) =

(
r

1

)(
p1

r − 1 − δ1

)
+
r−1∑
i=2

(
r

i

)
ε+

(
r

r

)(
1− rp1

r − 1 − δ2

)
= 1.

We also require that the induced measure µ(1)
1 is the p1-biased one, that is, µ(1)

1 (1) =
p1, and so

µ
(1)
1 (1) =

∑
x2∈V

µ
(1)
2 (1, x2) = · · · =

∑
(x2,...,xr)∈V r−1

µ(1)
r (1, x2, . . . , xr)

=
(
r − 1

1

)(
p1

r − 1 − δ1

)
+
r−1∑
i=2

(
r − 1
i

)
ε = p1.

These two requirements yield that

δ1 = 2r−1 − r
r − 1 ε, δ2 = (2r−1 − 1)(r − 2)

r − 1 ε.
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Then H = (V, µ(1)
r ) is a weighted r-graph by choosing ε > 0 sufficiently small. For

each s = 1, . . . , r− 2, and S ∈ V s, the link (r− s)-graph HS = (V, µ(1)
r−s,S) is induced

from H. Let T (1)(ε) and T (1)
S (ε) be the adjacency matrices corresponding to H and

HS , respectively, and let T (1) = limε→0 T
(1)(ε) and T

(1)
S = limε→0 T

(1)
S (ε). After a

somewhat tedious but direct computation one can verify that, for i > 2 and j > 1,

T (1) =
[1− p1

(r−1)q1

p1
(r−1)q1

1
r−1 1− 1

r−1

]
, T

(1)
0 =

[
1 0
0 1

]
, T

(1)
1j =

[
0 1
1

r−j−1
r−j−2
r−j−1

]
,

T
(1)
0i1j = 1

2

[
1 1
1 1

]
, T

(1)
0i = 1

2

[
2 0
1 1

]
, T

(1)
01j = 1

2

[
1 1
0 2

]
.

The above six matrices have the corresponding eigenvalues below:
{1− 1

(r−1)q1
, 1}, {1, 1}, {− 1

r−j−1 , 1},

{0, 1}, { 1
2 , 1}, { 1

2 , 1}.

Thus we have λ(1)
0 := λmin(T ) = 1 − 1

(r−1)q1
< 0, and λ

(1)
s := minS∈V s λmin(TS) =

− 1
r−s−1 for s = 1, . . . , r− 2. Let ϕ be the indicator of an independent set in H. Then

by (15) we have Eµ1 [ϕ] 6 1−
∏r−2
s=0

1
1−λ(1)

s

= p1.
For the general case let n > 2 and V = 2[n]. We define the measure µr : V r → R

by µr := µ
(1)
r × · · · × µ(n)

r . Then the corresponding adjacency matrices are obtained
by taking tensor product of the ones in the n = 1 case. So T = T (1) ⊗ · · · ⊗ T (n) with
eigenvalues

λv(T ) :=
∏
i∈v

(
1− 1

(r − 1)qi

)
(16)

for v ∈ V , and λ0 := minv∈V λv(T ) = λ{1} = 1 − 1
(r−1)q1

. For 1 6 s 6 r − 2 and
S ∈ V s we have TS = T

(1)
S ⊗ · · · ⊗ T (n)

S with

λs := min
S∈V s

λmin(TS) = λmin(T1s) = − 1
r − s− 1 .(17)

Finally it follows from (15) that Eµ1 [ϕ] 6 p1. �

Conjecture 4.4. The condition r−1
r > p2 in Theorem 4.2 can be replaced with r−1

r >

pr+1. In particular, Theorem 1.3 holds if p4 <
2
3 instead of p3 <

2
3 .

On the other hand, the condition above cannot be replaced with r−1
r > pr+2. To see

this let A = {A ∈ 2[n] : |A ∩ [r + 1]| > r}, and p1 = · · · = pr+1 =: p. Then A is
an r-wise intersecting family with µp(A) = (r + 1)prq + pr+1. A computation shows
µp(A) is greater than p provided, e.g. p > 1 − 1

r2 . More generally we can ask the
following.

Problem 4.5. Let 1 > p1 > p2 > · · · > pn > 0 and p = (p1, p2, . . . , pn). Determine
the maximum of µp(A), where A ⊂ 2[n] is an r-wise intersecting family.

Proposition 3.6 can be extended to r-wise intersecting families as follows.

Proposition 4.6. Let r > 3 and r−2
r−1 < p < r−1

r be fixed. Then there exists a constant
εr,p > 0 such that the following holds for all 0 < ε < εr,p. If A ⊂ 2[n] is an r-wise
intersecting family with µp(A) = p − ε, then there exists a star B ⊂ 2[n] such that
µp(A4B) < (Cp + o(1))ε, where p = (p, p, . . . , p) and

Cp = 4(r − 1)2pq2

((r − 1)p− (r − 2)) ((2r − 3)− 2(r − 1)p) .
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Proof. The proof is the same as the proof of Proposition 3.6. We estimate (13) from
both sides. For the RHS we see from (16) that the minimum and the second minimum
eigenvalues come from the cases |v| = 1 and |v| = 3, so

λ1 = 1− 1
(r − 1)q , λ3 = λ3

1.

For the LHS we use Lemma 2.11 with (17), and we have

Eµ2 [ϕ,ϕ] 6 ϕ∅

(
1−

r−2∏
s=1

1
1− λs

)
= 1− 1

r − 1 .

Then we get the Cp exactly in the same way as in the proof of Proposition 3.6. �

4.2. More about stability. Let 0 < p < 1 and p = (p, . . . , p) ∈ (0, 1)n. In The-
orem 1.4 the statement of stability differs between the two cases (i) and (ii). In (ii)
(the case p > 1

2 ) we have the following example:

An :=
(
{A ∈ 2[n] : 1 ∈ A, |A| > n

2 }r {[1]}
)
t {[n] r [1]}.

Then An is a 3-wise intersecting family with µp(An) → p as n → ∞, but An is not
contained in any star. It is worth noting that the stability in (i) (the case p 6 1

2 ) also
differs from the situation in 2-wise intersecting case in Proposition 3.5. Indeed let

A′n :=
(
{A ∈ 2[n] : 1 ∈ Ar {{1}}

)
∪ {[n] r {1}},

then A′n is a 2-wise intersecting family with µp(A′n)→ p, but no star can contain A′n.
The constant Cp in Theorem 1.4 becomes very large when p is slightly more than

1
2 . This is because our proof relies on Theorem 3.7 and we need to distinguish our
indicator from the indicator of (G2). But the family corresponding to (G2) is not 3-
wise intersecting at all. This suggests that the Cp could be far from the best possible
value especially when p is close to 1

2 , or even more bravely, we conjecture the following.

Conjecture 4.7. There exists C ′p such that the inequality in (ii) of Theorem 1.4
can be replaced with µp(A4B) < (C ′p + o(1))ε, where C ′p 6 Cp and moreover C ′p is
increasing in p for 1

2 6 p <
2
3 .

The item (ii) of Theorem 1.4 can be extended to r-wise intersecting case as in
Proposition 4.6. So maybe the item (i) could be extended to r-wise intersecting case
as well.

Problem 4.8. Let r > 4 and p 6 r−2
r−1 . Is it true that the item (i) of Theorem 1.4

holds as well for r-wise intersecting families?

It is also interesting to see whether or not Theorem 1.4 (and/or Theorem 3.7) can
be extended to a general p = (p1, p2, . . . , pn).

Problem 4.9. What happens if we replace p = (p, p, . . . , p) in Theorem 1.4 with
p = (p1, p2, . . . , pn) where 2

3 > p1 > p2 > · · · > pn?

4.3. Multiply cross intersecting families. We say that r families
A1,A2, . . . ,Ar ⊂ 2[n] are r-cross intersecting if A1 ∩ A2 ∩ · · · ∩ Ar 6= ∅ for all
A1 ∈ A1, A2 ∈ A2, . . . , Ar ∈ Ar. Let p1,p2, . . . ,pr ∈ (0, 1)n be given vectors. Then
one can ask the maximum of

∏r
i=1 µpi

(Ai) for r-cross intersecting families. For the
case r = 2, Suda et al. obtained the following result.
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Theorem 4.10 ([16]). For i = 1, 2 let pi = (p(1)
i , . . . , p

(n)
i ), and pi = max{p(`)

i : ` ∈
[n]}. Suppose that p(`)

1 , p
(`)
2 6 1/2 for ` > 2. If A1,A2 ⊂ 2[n] are 2-cross intersecting,

then
µp1(A1)µp2(A2) 6 p1p2.

Moreover, unless p1 = p2 = 1/2 and |w| > 3, equality holds if and only if both A1

and A2 are the same star centered at some ` ∈ w, where w :=
{
` ∈ [n] : (p(`)

1 , p
(`)
2 ) =

(p1, p2)
}
.

Almost nothing is known for the cases r > 3. Perhaps the easiest open problem is
the case when r = 3 and pi = (p, p, . . . , p) for all 1 6 i 6 3.

Conjecture 4.11. Let p 6 2
3 and p = (p, p, . . . , p). If A1,A2,A3 ⊂ 2[n] are 3-cross

intersecting, then µp(A1)µp(A2)µp(A3) 6 p3.

Appendix A. Proof of Fact 2.5
(i):

〈f, Tg〉µ1
=
∑
x

f(x)(Tg)(x)µ1(x)

=
∑
x

f(x)
(∑

y

µ2(x, y)
µ1(x) g(y)

)
µ1(x)

=
∑
x

∑
y

f(x)g(y)µ2(x, y)

= Eµ2 [f, g].

(ii):
〈f, Tg〉µ1

= Eµ2 [f, g] = Eµ2 [g, f ] = 〈g, Tf〉µ1
= 〈Tf, g〉µ1

.

(iii):

(T1)(x) =
∑
y

µ2(x, y)
µ1(x) 1(y) = 1

µ1(x)
∑
y

µ2(x, y) = 1 = 1(x).

(iv):
〈1,1〉µ1

=
∑
x

1(x)1(x)µ1(x) =
∑
x

µ1(x) = 1.

(v):
〈ϕ,1〉µ1

=
∑
x

ϕ(x)1(x)µ1(x) =
∑
x

ϕ(x)µ1(x) = Eµ1 [ϕ].

(vi):
〈ϕ,ϕ〉µ1

=
∑
x

ϕ(x)2µ1(x) =
∑
x

ϕ(x)µ1(x) = Eµ1 [ϕ].

Appendix B. Proof of Fact 2.7
(i): We have Eµ1 [ϕ] = 〈ϕ,1〉µ1

= ϕ̂0 and

Eµ1 [ϕ] = 〈ϕ,ϕ〉µ1
= 〈ϕ̂01 +

∑
i>1

ϕ̂ivi, ϕ̂01 +
∑
i>1

ϕ̂ivi〉µ1
= ϕ̂2

0 +
∑
i>1

ϕ̂2
i .

Thus
∑
i>1 ϕ̂

2
i = Eµ1 [ϕ]− ϕ̂2

0 = Eµ1 [ϕ]− Eµ1 [ϕ]2, which we will use to show (ii).
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(ii):
Eµ2 [ϕ,ϕ] = 〈ϕ, Tϕ〉µ1

= 〈ϕ̂01 +
∑
i>1

ϕ̂ivi, T (ϕ̂01 +
∑
i>1

ϕ̂ivi)〉µ1

= 〈ϕ̂01 +
∑
i>1

ϕ̂ivi, ϕ̂01 +
∑
i>1

ϕ̂ilivi〉µ1

= ϕ̂2
0 +

∑
i>1

ϕ̂2
i li.

Appendix C. Proof of Proposition 3.5
The proof is almost identical to the proof of Proposition 3.6, and we only give a
sketch. The only difference is that in this case we have Eµ2 [ϕ,ϕ] = 0, which makes
things easier. Then by (13) we have

0 > ϕ̂∅ + λ1(1− ϕ̂∅ − τ) + λ3τ,

where ϕ̂∅ = p− ε, λ1 = −p1
q1
, and λ3 = (−p1

q1
)3. Rearranging we have

τ 6
q2ε

p(1− 2p) ,

and ‖ϕ>1‖2 < q2ε
1−2p =: δ. Then using Theorem 3.7 with this δ we get the result.
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