
ALGEBRAIC
 COMBINATORICS
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Intersection density of transitive groups of
certain degrees

Ademir Hujdurović, Klavdija Kutnar, Dragan Marušič
& Štefko Miklavič

Abstract Two elements g and h of a permutation group G acting on a set V are said to be
intersecting if vg = vh for some v ∈ V . More generally, a subset F of G is an intersecting
set if every pair of elements of F is intersecting. The intersection density ρ(G) of a transitive
permutation group G is the maximum value of the quotient |F|/|Gv | where F runs over all
intersecting sets in G and Gv is a stabilizer of v ∈ V . In this paper the intersection density
of transitive groups of degree twice a prime is determined, and proved to be either 1 or 2. In
addition, it is proved that the intersection density of transitive groups of prime power degree
is 1.

1. Introductory remarks
For a finite set V let Sym(V ) and Alt(V ) denote the corresponding symmetric group
and alternating group on V . (Of course, if |V | = n the standard notations Sn, An

apply.) Let G 6 Sym(V ) be a permutation group acting on a set V . Two elements
g, h ∈ G are said to be intersecting if vg = vh for some v ∈ V . Furthermore, a
subset F of G is an intersecting set if every pair of elements of F is intersecting. The
intersection density ρ(F) of the intersecting set F is defined to be the quotient

ρ(F) = |F|
maxv∈V |Gv|

,

and the intersection density ρ(G) of a group G, first defined by Li, Song and Pantangi
in [8], is the maximum value of ρ(F) where F runs over all intersecting sets in G,
that is,

ρ(G) = max{ρ(F) : F ⊆ G,F is intersecting} = max{|F| : F ⊂ G is intersecting}
maxv∈V |Gv|

.
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Observe that, since Gv is an intersecting set in G, we have ρ(G) > 1. Observe also
that for a transitive group G acting on a set V we have ρ(G) = 1 if and only if the
maximum cardinality of the intersecting set is |G|/|V |, in which case we say that G has
the Erdős-Ko-Rado property or EKR-property in short. Moreover, G has the strict-
EKR-property if the canonical intersecting sets are the only maximum intersecting
sets of G, where a canonical intersecting set is an intersecting set of the form gGv,
v ∈ V and g ∈ G.

Following [12] we define In to be the set of all intersection densities of transitive
permutation groups of degree n, that is,

In = {ρ(G) | G transitive of degree n},
and we let I(n) to be the maximum value in In.

Motivation for this paper comes from [12, Conjectures 6.(3) and 6.(4)] and [13,
Question 7.1].

Conjecture 1.1. [12, Conjecture 6.6(3)] If n is a prime power, then I(n) = 1.

Conjecture 1.2. [12, Conjecture 6.6(4)] If n = 2p where p is an odd prime, then
I(n) = 2.

Conjecture 1.2 is settled in [13], where an additional problem regarding the possible
values of intersection densities in I2p was posed.

Question 1.3. [13, Question 6.1] Does there exist an odd prime p and a transitive
group G of degree 2p such that ρ(G) is not an integer?

In this paper we settle Conjecture 1.1 and give a negative answer to Question 1.3
by obtaining a complete classification of intersection densities of transitive groups of
degree twice a prime. We would like to remark that Conjecture 1.1 has been proved
in [8], however the proof presented in this paper is a different one. The main tool we
developed in order to prove Conjecure 1.1 is Lemma 3.1, for which we believe that it
can be quite useful for other applications as well.

Theorem 1.4. For a transitive permutation group G of prime power degree the inter-
section density ρ(G) is equal to 1.

Theorem 1.5. Let G be a transitive permutation group of degree 2p, where p is a
prime. Then the intersection density ρ(G) is either 1 or 2. More precisely, ρ(G) = 2
if and only if either

(i) G ∼= K oH acting on a set V = {xi : i ∈ Zp} ∪ {yi : i ∈ Zp} where K 6 E ∩
Alt(V ), E ∼= Zp

2 is an elementary abelian 2-group generated by the involutions
εi = (xi yi), i ∈ Zp, and H = 〈(x0 x1 . . . xp−1)(y0 y1 . . . yp−1)〉 ∼= Zp, or

(ii) G ∼= A5 acting on a 10-element set of pairs of {1, 2, 3, 4, 5}.

2. Preliminaries
2.1. (Im)primitivity of transitive permutation groups. Let G be a transitive
permutation group G acting on a set V . A partition B of V is called G-invariant if
the elements of G permute the parts, the so called blocks of B, setwise. If the trivial
partitions {V } and {{v} : v ∈ V } are the only G-invariant partitions of V , then G
is primitive, and is imprimitive otherwise. In the latter case the corresponding G-
invariant partition will be referred to as the complete imprimitivity block system of
G. We say that G is doubly transitive if given any two ordered pairs (u, v) and (u′, v′)
of elements u, v, u′, v′ ∈ V , such that u 6= v and u′ 6= v′, there exists an element
g ∈ G such that g(u, v) = (u′, v′). Note that a doubly transitive group is primitive. A
primitive group which is not doubly transitive is called simply primitive.
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The following result about normalizers of Sylow p-subgroups in doubly transitive
groups of prime degree will be needed in the proof of Theorem 1.5.

Lemma 2.1. Let G be a doubly transitive group of prime degree p. Then a Sylow p-
subgroup P of G is strictly contained in its normalizer NG(P ).

Proof. Let G be a doubly transitive group of prime degree p acting on a set V .
Consider the action of G on the set P of all Sylow p-subgroups of G by conjugation.
By Sylow theorems this action is transitive with N = NG(P ) as the corresponding
stabilizer of P . If N = P then the intersection of any two stabilizers of this action is
trivial, and so G acts on P as a Frobenius group. It follows that G contains a regular
normal subgroup T of order |P| ≡ 1 (mod p). Now consider the action of T on the
set V . Since T is a normal subgroup of a transitive group G of prime degree it follows
that T is transitive on V , a contradiction since |T | is not divisible by p. �

2.2. Derangement graphs. The intersection density of a permutation group can
be studied via derangements, that is, fixed-point-free elements of G. Let D be the
set of all derangements of a permutation group G. Then following [12] we define the
derangement graph of G to be the graph ΓG = Cay(G,D) with vertex set G and
edge set consisting of all pairs (g, h) ∈ G × G such that gh−1 ∈ D. Therefore ΓG

is the Cayley graph of G with connection set D, which is a loop-less simple graph
since D does not contain the identity element of G and D is inverse-closed. In the
terminology of the derangement graph an intersecting set of G is an independent set or
a coclique of ΓG. Since, by a classical theorem of Jordan [7, Théorème I], a transitive
permutation group G on a finite set V of cardinality at least 2 contains derangements,
we have ρ(G) < |V |. (Note also, that by a theorem of Fein, Kantor and Schacher [1,
Theorem 1], every transitive permutation group contains a derangement of prime
power order.)

The following classical upper bound on the size of the largest coclique in vertex-
transitive graphs turns out to be very useful when considering the intersection den-
sities of permutation groups. Namely, the derangement graph ΓG of a permutation
group G is always vertex-transitive.

Proposition 2.2. [2] Let Γ be a vertex-transitive graph. Then the largest coclique in
Γ is of size α(Γ) bounded by

α(Γ) 6 |V (Γ)|
ω(Γ) ,

where ω(Γ) is the size of a maximum clique in Γ.

2.3. Intersection density of transitive groups.

Proposition 2.3. Let G be a transitive permutation group and F an intersecting set
of G. Then there exists an intersecting set F ′ such that |F| = |F ′| and 1 ∈ F ′.

Proof. Take an element f ∈ F and let F ′ = f−1F . Then 1 ∈ F ′ and since for g1, g2 ∈
F the element f−1g1(f−1g2)−1 = f−1g1g

−1
2 f is not a derangement (as it is a conjugate

of a non-derangement) we can conclude that F ′ is an intersecting set of G. �

The following observation regarding intersection density of doubly transitive per-
mutation groups was made in [12].

Proposition 2.4. [12, Lemma 2.1(3)] If G is a doubly transitive permutation group
then ρ(G) = 1.

The following result proved in [12] shows that it suffices to consider minimal tran-
sitive subgroups when searching for the maximum value of In.
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Proposition 2.5. [12, Lemma 6.5] If H 6 G are transitive permutation groups then
ρ(G) 6 ρ(H).

Proposition 2.6. Let G be a transitive permutation group acting on a set V and
containing a semiregular subgroup H with k orbits on V . Then ρ(G) 6 k. In particular,
if H is regular then ρ(G) = 1.

Proof. Since H is semiregular it follows that for any two different elements g, h ∈ H
the element gh−1 ∈ H is a derangement. This implies that H ⊆ V (ΓG) induces a
clique in ΓG of size |H|. Consequently, Proposition 2.2 implies that

α(ΓG) 6 |V (ΓG)|
|H|

= |G|
|H|

, and so ρ(G) = α(ΓG)
|Gv|

6
|G|
|H||Gv|

= |V |
|H|

= k.

If H is regular (that is, if k = 1) then the above inequality gives ρ(G) 6 1. But as
observed in the introduction the intersection density is at least 1 for any permutation
group, and so we conclude that in this case ρ(G) = 1. �

By the above proposition every transitive permutation group admitting a regu-
lar subgroup has the EKR-property. Trivial examples of permutation groups with
the strict-EKR-property are regular permutation groups. Observe that a transi-
tive permutation group G admitting a regular subgroup of index 2 also has the
strict-EKR-property. Namely, if F is a maximum intersecting set of G containing
1 and f ∈ F r {1}, then f fixes a point v, and therefore {1, f} = Gv (since
stabilizers have order 2). This shows that every generalized dihedral group has the
strict-EKR-property. The same idea cannot be generalized to cases where G has
a regular subgroup of index greater than 2. For example, consider G = A4 acting
on {1, 2, 3, 4}. Then G has the EKR-property, as it admits a regular subgroup
{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ∼= Z2 × Z2 of index 3. However, G does not
have the strict-EKR-property since {id, (1 3 2), (1 4 2)} is a maximum non-canonical
intersecting set.

In the example below we show that the action of S4 on 2-element subsets of
{1, 2, 3, 4} has the EKR-property but not the strict-EKR-property, while the action
of A4 on the same set does not have the EKR-property.

Example 2.7. Let G = S4 acting on the set of all 2-element subsets of {1, 2, 3, 4}.
Observe that B = {{1, 2}, {3, 4}} is a block of size 2 for G that induces a complete
imprimitivity block system B with 3 blocks of size 2. The kernel of the action of G on
B is

K = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Observe that {id, (1 2 3 4), (1 3 2), (1 4 2), (1 2 4 3)} is a clique of size 5 in the derange-
ment graph ΓG. It follows that α(ΓG) 6 |V (ΓG)|/ω(ΓG) 6 24/5, and since α(ΓG) is
an integer, we have α(ΓG) 6 4 = |Gv|. This shows that G has the EKR-property, that
is, ρ(G) = 1. Observe that K is an intersecting set of size 4 which is not canonical,
and so G does not have the strict-EKR-property.

Also, since K 6 A4 it follows that the action of H = A4 on the set of all 2-element
subsets of {1, 2, 3, 4} has an intersecting set of size 4, and so H does not have the
EKR-property. In fact ρ(H) = 2.

3. Transitive groups of prime power degree pk

The next lemma about intersection densities of transitive permutation groups admit-
ting imprimitivity block systems arising from semiregular subgroups will be used in
the proofs of the main results of this paper.
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Lemma 3.1. Let G be a transitive permutation group admitting a semiregular subgroup
H whose orbits form a G-invariant partition B, and let G be the permutation group
induced by the action of G on B. Then ρ(G) 6 ρ(G).

Proof. Let G be a transitive permutation group acting on a set V . Let K = Ker(G→
G) be the kernel of the action of G on B, and let F be an intersecting set of G. We
claim that

|F ∩ gH| 6 1 for every g ∈ G.(1)
Let x, y ∈ F ∩ gH. Then x = gh1 and y = gh2 for some h1, h2 ∈ H, and xy−1 =
g(h1h

−1
2 )g−1. Since x, y ∈ F , it follows that xy−1 fixes a point. On the other hand,

xy−1 is a conjugate of an element h1h
−1
2 ∈ H, and thus since H is semiregular, it

follows that h1 = h2, implying that x = y, proving (1).
For each g ∈ G its induced action on B is denoted by g. We now show that

F = {f | f ∈ F} is an intersecting set of G. Let f, g ∈ F . Then fg−1 fixes a point v,
and hence fg−1 = fg−1 fixes the block of B that contains v, and so F is indeed an
intersecting set of G.

Let f ∈ F and let [f ] = {g ∈ F | g = f} be the set of all those elements in F whose
image under the homomorphism G→ G is equal to f . Of course, [f ] ⊆ fK. Writing
fK as a union of |K : H| cosets of H, and using (1), it follows that [f ] contains at
most one element from each of the cosets of H, that is, |[f ]| 6 |K|/|H|. Since

F =
⋃

f∈F
[f ] it follows that |F| 6 |K||F|

|H|
.

Now F being an intersecting set of G, implies that |F| 6 ρ(G) · |GB | for B ∈ B.
Since G is a transitive permutation group of degree |V ||H| we have that |GB | = |G||H|

|V | ,
and so

|F| 6 |K|
|H|
· |F| 6 |K|

|H|
·ρ(G) · |GB | =

|K|
|H|
·ρ(G) · |G||H|

|V |
= ρ(G) · |K||G|

|V |
= ρ(G) · |Gv|.

Hence |F|/|Gv| 6 ρ(G), and since F is an arbitrary intersecting set of G, it follows
that ρ(G) 6 ρ(G). �

Proof of Theorem 1.4. Let G be a transitive permutation group of degree pk, where
p is a prime and k > 1, acting on a set V . Let P be a Sylow p-subgroup of G of order
|P | = pm. Then, by [16, Theorem 3.4], P is transitive on V . In view of Proposition 2.5
we only need to show that ρ(P ) = 1.

The proof will be by induction on |P | = pm. If m = 1, it follows that P is regular,
hence ρ(P ) = 1 by Proposition 2.6. Suppose that m > 1, and that the intersection
density of every transitive p-group of order less than pm is equal to 1. By a well-known
result on p-groups, the center Z = Z(P ) of P is non-trivial. Observe that, since G acts
faithfully on V , the group Z is semiregular on V . Moreover, Z is a normal subgroup
of P , hence the orbits of Z form a P -invariant partition. Let Q be the permutation
group induced by the action of P on the orbits of Z. Then Q is a transitive p-group of
order less than |P |, hence by the induction hypothesis ρ(Q) = 1. Applying Lemma 3.1
it follows that ρ(P ) 6 ρ(Q) = 1, hence ρ(P ) = 1. �

4. Transitive groups of degree 2p
The intersection density of transitive permutation groups of degree 2p, p a prime, has
first been addressed in [12], with the partial answer that this density is at most 2 given
in [13] (see Proposition 4.1). Its proof relies on the fact that a transitive permutation
group of degree 2p, p prime, is either doubly transitive, in which case Proposition 2.4
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implies that its intersection density equals 1, or it contains a derangement of order p,
in which case the corresponding derangement graph contains a clique of size p, and
so Proposition 2.2 applies to get that its intersection density is at most 2.

Proposition 4.1. [13, Theorem 1.10] LetG be transitive permutation group of degree
2p, p a prime, then ρ(G) 6 2.

Transitive permutation groups of degree 2p, p a prime, have received a considerable
attention over the last decades, mostly within the context of vertex-transitive graphs
(see [3, 4, 5, 6, 10, 14, 15]). Such a group is doubly transitive, simply primitive or
it admits a complete imprimitivity block system consisting of blocks of size 2 or p.
By Proposition 2.4 the intersection density of doubly transitive permutation groups
is equal to 1. By the classification of finite simple groups (CFSG) the only simply
primitive groups of degree twice a prime are the groups A5 and S5 acting on the set
of pairs of a 5-element set, see [9]. (It would be of interest to produce a CFSG-free
proof of this fact.)

Whereas simply primitive groups and groups admitting a complete imprimitivity
block system consisting of blocks of size p are dealt with directly in the proof of The-
orem 1.5, some preliminary observations are needed for groups admitting a complete
imprimitivity block system with blocks of size 2. So let G be a transitive permutation
group acting on the set V = {x0, . . . , xp−1, y0, . . . , yp−1} with complete imprimitivity
block system B with blocks {xi, yi} of size 2. We denote by G = G/B the permutation
group induced by the action of G on B, that is, for each g ∈ G its induced action on B
is denoted by g. In this induced action the block {xi, yi} is identified with i for each
i ∈ Zp.

Lemma 4.2. Let p be a prime and G be a transitive permutation group of degree 2p
acting on a set V and having a complete imprimitivity block system B with blocks of
size 2 such that the kernel K = Ker(G → G) 6= 1 and the induced action G = G/B
is not doubly transitive. Then ρ(G) = 1 unless G is cyclic and K 6 Alt(V ), in which
case ρ(G) = 2.

Proof. Let K = Ker(G → G). Suppose first that K contains an odd permutation k.
Let c ∈ G be such that c acts on B as a p-cycle. Then c is of order p or 2p. If c
is of order 2p, then 〈c〉 is a regular subgroup of G, and it follows that ρ(G) = 1 by
Proposition 2.6. If c is of order p, then it is easy to see that ck is of order 2p since k
swaps elements inside a block of B an odd number of times. Hence 〈ck〉 is a regular
subgroup of G, and again ρ(G) = 1 by Proposition 2.6. We may therefore assume
that K 6 Alt(V ).

Suppose first that G is cyclic. Then |G| = |K||G| = p|K|. Since K 6 Alt(V ), K
contains no derangement, and so K is an intersecting set. Since |K| = 2|Gv| it follows
that ρ(G) > 2, and so, by Proposition 4.1, ρ(G) = 2.

Suppose now that G is not cyclic. Since G is not doubly transitive group of degree
p, it follows that G = 〈a〉o 〈b〉 ∼= Zp o Zd for some divisor d > 2 of p − 1, where we
assume that b fixes 0 and has all other cycles of length d in its cycle decomposition.
Let F be an intersecting set of G. By Proposition 2.3 we may assume that 1 ∈ F ,
and so no element of F is a derangement. In particular, every element of F must fix
at least one block in B, and so we can express F as a union of disjoint sets

F = (F ∩K) ∪ F0 ∪ F1 ∪ . . . ∪ Fp−1,

where Fi = {f ∈ F | fix(f) = {i}}. Namely, for k ∈ K we have fix(k) = Zp, whereas
a non-identity element of G ∼= ZpoZd can have at most one fixed point. Consequently
an element of G can belong to at most one of the sets Fi.

Algebraic Combinatorics, Vol. 5 #2 (2022) 294



Intersection density of transitive groups of certain degrees

Suppose that Fi 6= ∅, for some i ∈ Zp. Since no element of F is a derangement
it follows that for each f ∈ Fi we have fix(f) = {xi, yi}. Let σ ∈ G be such that
σ = b. In particular, σ /∈ K, and σ fixes only the block {x0, y0} and is of order d.
Consequently, either fix(σ) = ∅ or fix(σ) = {x0, y0}. We may assume that fix(σ) =
{x0, y0} for if fix(σ) = ∅ we can multiply σ with an element of k ∈ K interchanging
x0 and y0 (such an element exists sinceK 6= 1), and so σk = b and fix(σk) = {x0, y0}.
Choose π ∈ G in such a way that π = a, and let fi = πiσπ−i. Then fix(fi) = {xi, yi}
and fix(fi) = {i}. Let Ki = {k ∈ K | xi, yi ∈ fix(k)}.

Claim 4.3. Fi ⊆ fiKi ∪ f2
i Ki ∪ . . . ∪ fd−1

i Ki, for every i ∈ Zp.

Let f ∈ Fi be arbitrary. Then fix(f) = {i}, which together with the fact that
G ∼= Zp o Zd implies that f ∈ 〈fi〉. Therefore f = fi

t for some t ∈ Zd, and so
f−t

i f = 1 in G. Hence f−t
i f ∈ K, and so f ∈ f t

iK. Since f is not contained in K we
therefore have f = f t

i k for t 6= 0 and k ∈ K. Observe that f as an element of Fi must
have a fixed point, and so fix(f) = {xi, yi}. Consequently, since fix(fi) = {xi, yi} it
follows that k must also fix xi and yi. This implies that f = f t

i k ∈ f t
iKi, completing

the proof of Claim 4.3.
Claim 4.4. If F ∩ f t

iKi 6= ∅ (with i ∈ Zp and t ∈ Zd r {0}), then F ∩ f t
jKj = ∅ for

j ∈ Zp r {i}.
Let f = f t

i ki ∈ F ∩ f t
iKi for some ki ∈ Ki, and let g = f t

jkj ∈ F ∩ f t
jKj for some

j ∈ Zp and kj ∈ Kj . Since F is an intersecting set, it follows that fg−1 has a fixed
point. Since K is normal in G we have that fg−1 = f t

i kik
−1
j f−t

j = f t
i f
−t
j k for some

k ∈ K. Consequently, fg−1 = f t
i f
−t
j . Observe that f t

i f
−t
j = (πiσtπ−i)(πjσ−tπ−j) =

(πiσtπ−i)πj−i(πiσ−tπ−i)πi−j , which implies that f t
i f
−t
j belongs to the commutator

subgroup [G,G] of G. But [G,G] = 〈π〉 = 〈a〉. By assumption fg−1 is not a de-
rangement, and so it follows that fg−1 = 1, that is, f = g. Recall that fix(f) =
fix(f t

i ) = {i} and fix(g) = fix(f t
j ) = {j}. It follows that i = j, completing the proof

of Claim 4.4.
Claim 4.5. If exactly m of the sets Fi are non-empty, then |F ∩K| 6 |K|2m .

Let W = {i ∈ Zp | Fi 6= ∅} and let |W | = m. Let f ∈ F ∩ K be arbitrary and
take g ∈ Fi, i ∈W . Since g is not a derangement we have that fix(g) = {xi, yi}. But
by assumption gf−1 must fix a point, and so fix(gf−1) = {xi, yi}. Consequently, f
must also fix xi and yi. This shows that F ∩K ⊆ Ki for every i ∈W . It follows that
F ∩K ⊆ ∩i∈WKi = K(W ), where K(W ) = {k ∈ K | k(xi) = xi for every i ∈ W}. It
is easy to see that |K(W )| = |K|

2m , and so |F ∩K| 6 |K|2m , proving Claim 4.5.
In the rest of the proof we distinguish two cases. If Fi = ∅ for every i ∈ Zp then

F ⊆ K, and so |F| 6 |K| 6 |K|·d
2 = |Gv|, where the second inequality holds since

d > 2. We conclude that ρ(G) = 1.
Suppose now that Fi 6= ∅ for some i ∈ Zp. Recall that F = (F ∩K) ∪ F0 ∪ F1 ∪

. . . ∪ Fp−1. By Claim 4.3 it follows that
F ⊆ (F ∩K) ∪ (F ∩ (f0K0 ∪ f1K1 ∪ . . . ∪ fp−1Kp−1))

∪ (F ∩ (f2
0K0 ∪ f2

1K1 ∪ . . . ∪ f2
p−1Kp−1))

. . .

∪ (F ∩ (fd−1
0 K0 ∪ fd−1

1 K1 ∪ . . . ∪ fd−1
p−1Kp−1)).

Claim 4.4 implies that |F ∩ (f t
0K0∪f t

1K1∪ . . .∪f t
p−1Kp−1)| 6 |f t

iKi| = |Ki| = |K|/2.
Therefore |F| 6 |F∩K|+(|K|/2)(d−1). Since at least one of the sets Fi is non-empty,
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Claim 4.5 implies that |F ∩ K| 6 |K|
2 . Consequently, |F| 6 |K|

2 · d = |Gv|, and so
ρ(G) = 1. Completing the proof of Lemma 4.2. �

Corollary 4.6. Let G be a transitive group of degree 2p acting on a set V that
admits a complete imprimitivity block system B with blocks of size 2 such that the
kernel K = Ker(G → G) 6= 1 and G = G/B ∼= Zp o Zd is not doubly transitive. If
K 6 Alt(V ) then G has EKR-property if and only if d > 1 and G has the strict-EKR-
property if and only if d > 2.

Proof. The claim regarding EKR-property follows directly from Lemma 4.2, since G
has EKR-property if and only if ρ(G) = 1. If d = 2 then F = K is a maximum
intersecting set which is not canonical, implying that G does not have the strict-
EKR-property.

Suppose that d > 2. Then |K| < |Gv|, hence a maximum intersecting set cannot be
contained inK. From the proof of Lemma 4.2, it follows that the size of an intersecting
set F is at most |K|2m + |K|

2 (d − 1), where m is the number of sets Fi (defined in the
proof of Lemma 4.2) that are non-empty. Observe that |K|2m + |K|

2 (d − 1) = d|K|
2 =

|Gv| if and only if m = 1. It follows that a maximum intersecting set F equals
Ki ∪ fiKi ∪ . . . ∪ fd−1

i Ki = Gxi
, implying that G has the strict-EKR-property. �

Remark 4.7. Note that Example 2.7 is the special case of the situation described in
Corollary 4.6 with p = 3, d = 2, |K| = 4 for S4 and p = 3, d = 1, |K| = 4 for A4.

The following result, which can be extracted from [10, Theorem 6.2] and [11,
Lemma 3.4], will be needed in the proof of Theorem 1.5.

Proposition 4.8 ([11, Lemma 3.4]). Let G be a transitive permutation group of degree
2p, p a prime, admitting a complete imprimitivity block system B with blocks of size
2. Then either G also admits blocks of size p, or for any pair B,B′ ∈ B there exists
g ∈ K = Ker(G→ G) fixing B pointwise and B′ setwise but not pointwise.

We are now ready to prove the main result of this paper.

Proof of Theorem 1.5. Let p be an odd prime, V a set of cardinality 2p and G a
transitive permutation group acting on V . Since every transitive permutation group of
degreemp, wherem 6 p, contains an (m, p)-semiregular element (see, for example, [10,
Theorem 3.6]) it follows that G contains a (2, p)-semiregular automorphism π. Let
P = 〈π〉 and let O and O′ be the two orbits of P . Applying Proposition 2.6 for the
semiregular subgroup P we conclude that ρ(G) 6 2 (see also Proposition 4.1).

Suppose first that G is primitive. Then by CFSG either G is doubly transitive
or p = 5 and G is isomorphic to A5 or S5 acting on a 10-element set of pairs of
{1, 2, 3, 4, 5}. In the first case ρ(G) = 1 by Proposition 2.4. As for the second case it
was calculated in [13] that ρ(G) = 2 if G = A5 and ρ(G) = 1 if G = S5. In fact it can
be seen that for G = A5 every subgroup A4 6 A5 gives rise to an intersecting set of
cardinality 12, forcing ρ(G) = 2. On the other hand, if G = S5 then in the associated
derangement graph a clique of size 10 is obtained from the union of a Sylow 5-
subgroup and the coset of this subgroup containing an element of order 4 normalizing
this subgroup (see also the more general argument in the next paragraph).

Suppose now that G is imprimitive with B as the corresponding complete imprim-
itivity block system. Clearly, B either consists of two blocks of size p or p blocks of
size 2. In the first case B = {O,O′}, and Lemma 3.1 implies that ρ(G) 6 ρ(G) = 1
where G ∼= S2 is the induced action of G on B.

We may therefore assume that B consists of blocks of size 2 and that, furthermore,
G admits no blocks of size p. Then, by Proposition 4.8, the kernel K = Ker(G→ G) is
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non-trivial. If G is not doubly transitive, the result follows by Lemma 4.2. Namely, in
this case the condition that G is cyclic and thatK 6 Alt(V ) is equivalent to part (i) of
Theorem 1.5. If G is doubly transitive then, by Lemma 2.1, a Sylow p-subgroup P̄ of
G is strictly contained in N = NG(P̄ ). Consequently, the preimage H of N under the
homomorphism G→ G is a transitive permutation group of degree 2p satisfying the
assumptions of Lemma 4.2. Since H = N is not cyclic it follows that ρ(H) = 1. Now
Proposition 2.5 implies that ρ(G) = 1, too, completing the proof of Theorem 1.5. �
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