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Splitting groups with cubic Cayley graphs of
connectivity two

Babak Miraftab & Konstantinos Stavropoulos

Abstract A group G splits over a subgroup C if G is either a free product with amalgamation
A ∗

C
B or an HNN-extension G = A ∗

C
(t). We invoke Bass–Serre theory to classify all infinite

groups which admit cubic Cayley graphs of connectivity two in terms of splittings over a
subgroup.

1. Introduction
The study of the structure of groups in terms of the connectivity of their Cayley
graphs was started by Jung and Watkins. They characterized infinite transitive graphs
of connectivity one whose automorphism groups act on their vertex sets as primitive
and regular permutation groups [13]. Later, Watkins [18] characterized all Cayley
graphs of connectivity one.

A topic that has been already paired with the connectivity of Cayley graphs in
order to study them is the planarity of infinite Cayley graphs. A finitely generated
group G is called planar if it admits a generating set S such that the Cayley graph
Cay(G,S) is planar. In that case, S is called a planar generating set. For the first
time, in 1896, Maschke [14] characterized all finite groups admitting planar Cayley
graphs. Infinite planar groups attracted more attention, as some of them are related to
surface and Fuchsian groups [19, Section 4.10] which play a substantial role in complex
analysis, see survey [19]. Hamann [11] uses a combinatorial method in order to show
that planar groups are finitely presented. His method is based on tree decompositions,
a crucial tool of graph minor theory which we also utilize extensively in this paper.

In [8], Droms, B. Servatius, and H. Servatius characterized planar groups with low
connectivity in terms of the fundamental group of the graph of groups. Indeed, they
showed:

Theorem ([8, Theorem 4.4]). If a group G has planar connectivity(1) 2, then either G
is a finite cyclic or dihedral group, or it is the fundamental group of a graph of groups
whose edge groups all have order two or less and whose vertex groups all have planar
connectivity at least three. In the latter case, the vertex groups have planar generating
sets which include the nontrivial elements of the incident edge groups.

Manuscript received 2nd September 2019, revised and accepted 6th June 2021.
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(1)The planar connectivity κ(G) of a planar group G is the minimum connectivity of all its planar
Cayley graphs.
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Later, Georgakopoulos in [10] determines all presentations of groups which admit
planar cubic Cayley graphs with connectivity two. Furthermore, he provides partial
information about the presentations of non-planar ones. Our result provides full in-
formation not only for the planar, but also the non-planar groups with cubic Cayley
graphs of connectivity two.

More specifically, Georgakopoulos’ method does not assert anything regarding (and
is, in a sense, independent of) splitting the group over subgroups to obtain its struc-
ture. By combining tree decompositions and Bass–Serre theory, we give a simple proof
for the full characterization of all groups with cubic Cayley graphs of connectivity two
via the following theorem:

Theorem 1.1. Let G = 〈S〉 be a group such that Γ = Cay(G,S) is a cubic graph of
connectivity two. Then G is isomorphic to one of the following groups:

(i) Zn ∗ Z2 = 〈a, b | b2, (ba)n〉 or 〈a, b, c | a2, b2, c2, (bcba)n〉,
(ii) D2n ∗

Z2
(t) = 〈a, b | b2, (ba−1ba)n〉,

(iii) D2n ∗
Z2
D2m = 〈a, b, c | a2, b2, c2, (ba)n, (bc)m〉

or 〈a, b, c | a2, b2, c2, (bc)2n, (a(bc)n)m〉 or 〈a, b, c | a2, b2, c2, (bc)n, (a(bc)kb)m〉,
(iv) Z2n ∗

Z2
D2m = 〈a, b | b2, a2n, (ban)m〉,

(v) D∞ ∗
Z2
D2m = 〈a, b, c | a2, b2, c2, (a(bc)nb)m〉.

Theorem 1.1 is a direct consequence of Theorems 4.3, 4.5, 5.4 and 5.8, where we
also discuss in detail the planarity of the corresponding Cayley graphs in each case, as
well as their presentations. This allows us to obtain as a corollary the results of [10],
as well as full presentations for the non-planar groups with cubic Cayley graphs of
connectivity two.

Compared to the methods in [10], we believe that our graph theoretical arguments
are simplified, while we inevitably spend more time to recover the full algebraic struc-
ture of the group in terms of splitting this time around. Moreover, even though the
planar part of our result can be relatively quickly recovered from [10] by applying Ti-
etze transformations accordingly, such an approach usually works only provided that
one knows or guesses beforehand the new desired presentation (in our case, the one
that expresses the splitting of the group) in order to apply the correct Tietze trans-
formations. By applying Bass–Serre theory, we naturally determine the structure of
the group in terms of splitting avoiding the nuisance above, which was also the way
we originally obtained it.

2. Preliminaries
Our terminology of groups and graphs is standard. We refer the reader to [16] for
Bass–Serre theory and [7] for graph theory for any notation missing.

2.1. Graphs. Throughout this paper, Γ always denotes a connected locally finite
graph with vertex set V (Γ) and edge set E(Γ). A ray is a one-way infinite path and
a tail of a ray is an infinite subpath of the ray. Two rays R1 and R2 are equivalent
if there is no finite set S of vertices such that R1 and R2 have tails in different
components of G r S. The equivalence classes of rays are called ends. We refer the
reader to surveys [5, 6] for a detailed study of the end structure of graphs.

For a subset U ⊆ V (Γ), we denote by Γ[U ] the subgraph induced by the vertices
of U . A separation of Γ is an ordered pair (A,B), where A,B ⊆ V (Γ), such that
Γ[A]∪Γ[B] = Γ and there is no edge between ArB and BrA. The order of (A,B)
is the size of A∩B and we denote it by |(A,B)|. If |(A,B)| = k, we say that (A,B) is
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a k-separation. The set of separations of Γ can be equipped with the following partial
order: (A,B) 6 (C,D) if A ⊆ C and B ⊇ D. We say that (A,B) is nested with (C,D)
if (A,B) is comparable to either (C,D) or (D,C). Otherwise, we say that the two
separations cross. We say that a vertex set X separates vertex sets U and W if there
exists a separation (A,B) such that U ⊆ A, W ⊆ B and X = A ∩B.

Let S be a set of vertices of Γ. The set of neighbors of S is denoted by N(S) :=⋃
s∈S N(s)rS, whereas N [S] denotes S∪N(S). A component C of GrS is called tight

if N(C) = S. A separation (A,B) is called tight if both ArB and B rA have tight
components. A separation (A,B) distinguishes two ends ω1 and ω2 if a ray R1 ∈ ω1
has a tail in A r B and a ray R2 ∈ ω2 has a tail in B r A or vise versa. Moreover,
it distinguishes ω1 and ω2 efficiently if there is no separation (C,D) distinguishing
ω1 and ω2 such that |(C,D)| < |(A,B)|. Two ends ω1 and ω2 are k-distinguishable if
there is a separation of order at most k distinguishing ω1 and ω2 efficiently.

A separation is splitting if it distinguishes at least two ends efficiently. We note
that if (A,B) is splitting, then (A,B) is a tight separation. Let (A,B) be a splitting
k-separation. The crossing number cn(A,B) of (A,B) is the cardinality of the set
containing all crossing tight `-separations distinguishing at least two ends, where ` 6k
(which can be seen to be finite [4]).

Let Γ be an arbitrary connected graph. A tree decomposition of Γ is a pair (T,V)
of a tree T and a family V = (Vt)t∈V (T ) of vertex sets Vt ⊆ V (Γ), which are called
parts, such that:

(T1) V (Γ) =
⋃

t∈T Vt,
(T2) for every edge e ∈ E(Γ), there exists a t ∈ V (T ) such that both ends of e lie

in Vt,
(T3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the (t1, t3)-path in T .

In order to distinguish them from the vertices of the graph Γ, we will usually refer
to the vertices of the underlying tree T of a tree decomposition of Γ as nodes.

An adhesion set of (T,V) is a set of the form Vt ∩ Vt′ , where tt′ ∈ E(T ). The
adhesion of (T,V) is the maximum over the sizes of its adhesion sets. It is not hard to
see that each adhesion set leads to a separation of Γ. More precisely, assume that Tt

and T ′t are the components of T−tt′ containing t and t′ respectively. Then the adhesion
set Vt ∩ Vt′ induces the separation (Wtrt′ ,Wt′rt) of Γ, where Wtrt′ =

⋃
s∈Tt

Vs and
Wt′rt =

⋃
s∈Tt′ Vs. When every such separation is tight, we call the tree decomposition

tight as well. Finally, a tree decomposition is reduced if no part is contained in another
one.

The following folklore fact about tree decompositions and nested set of separations
is well-known, see [3].

Remark 2.1. Every nested set N of separations gives rise to a reduced tree decom-
position whose adhesion sets are exactly the elements of N . On the other hand, each
adhesion set of a tree decomposition induces a separation and the set of all induced
separations of adhesion sets of a tree decomposition is a nested set of separations.

Let Γ be a locally finite graph with a tree decomposition (T,V). We call the torso
of a part Vt the supergraph of Γ[Vt] obtained by adding to it all possible edges in the
adhesion sets incident to Vt. The following general lemma for tree decompositions is
folklore.

Lemma 2.2. Let (T,V) be a tree decomposition of a connected graph Γ and t ∈ V (T )
such that every adhesion set of t induces a connected subgraph. Then Γ[Vt] is con-
nected. In particular, the torso of every part of (T,V) is connected.
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In this paper, we are studying groups admitting cubic Cayley graphs of connectivity
two.

2.2. Groups. Let G be a group acting on a set X. Then the setwise stabilizer of a
subset Y of X is the set of all elements g ∈ G stabilizing Y setwise, i.e.

StG(Y ) := {g ∈ G | gY = Y }.

Let G be a group acting on a graph Γ. Then this action induces an action on E(Γ).
We say that G acts without inversion on Γ if g(uv) 6= vu for all uv ∈ E(Γ) and
g ∈ G. In the case that g(uv) = vu, we say that g inverts u, v. Notice that when G
acts transitively with inversion on the set E(T ) of edges of a tree T without leaves,
it must also act transitively on the set V (T ) of its vertices.

Let G1 = 〈S1 | R1〉 and G2 = 〈S2 | R2〉 be two groups. Suppose that a subgroup
H1 of G1 is isomorphic to a subgroup H2 of G2, say via an isomorphism φ : H1 → H2.
The free-product with amalgamation of G1 and G2 over H1 is

G1 ∗
H1
G2 = 〈S1 ∪ S2 | R1 ∪R2 ∪ hφ(h)−1,∀h ∈ H1〉.

If H1 and φ(H1) are isomorphic subgroups of G1, then the HNN-extension of G1
over H1 with respect to φ is

G1 ∗
H1

(t) = 〈S1, t | R1 ∪ tht−1φ(h)−1,∀h ∈ H1〉.

The crux of Bass–Serre theory is captured in the next lemma which determines the
structure of groups acting on trees.

Lemma 2.3 ([16]). Let G act without inversion on a tree which has no vertices of degree
one and let G act transitively on the set of (undirected) edges. If G acts transitively
on the vertices of the tree, then G is an HNN-extension of the stabilizer of a vertex
over the stabilizer of an edge. If there are two orbits on the vertices of the tree, then G
is the free product of the stabilizers of two adjacent vertices with amalgamation over
the stabilizer of an edge.

There is a standard way to deal with the case where we cannot apply Lemma 2.3
directly when G acts with inversion on the tree.

Lemma 2.4. Let G act transitively with inversion on the edges of a tree T without
leaves. Then G is the free product of the stabilizer of a vertex and the stabilizer of an
edge with amalgamation over their intersection.

Proof. Subdivide every edge tt′ of T to obtain a tree T ′ and let vtt′ be the corre-
sponding new node. Notice that G now acts transitively on E(T ′) without inversion
and with two orbits on V (T ′). Each old node t of T has the same pointwise stabi-
lizer in T ′. Observe that for each new node vtt′ we have StG(vtt′) = StG(e), where
tt′ = e ∈ E(T ). The result follows from Lemma 2.3. �

Finally, Zn denotes the cyclic group of order n. A finite dihedral group is defined
by the presentation 〈a, b | b2, an, (ba)2〉 and denoted by D2n. Moreover, the infinite
dihedral group D∞ is defined by 〈a, b | b2, (ba)2〉.

3. General structure of the tree decomposition
Our key tool is the canonical tree decomposition (T,V) of Lemma 3.3, which will allow
us to translate the action of G on Γ to an action of G on T and apply Bass–Serre
theory. The lemma follows easily by the following results of [4], which we slightly
reformulate for our needs.
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Theorem 3.1 ([4, Corollary 1.2.]). Let Γ be a locally finite graph with more than
one end. For each ` ∈ N, there is a canonical tree decomposition distinguishing all `-
distinguishable ends efficiently. Moreover, its adhesion sets induce splitting separations
of minimum crossing number.

As a last preparatory step before we state and prove Lemma 3.3, we need the
following result which ensures that our Cayley graph is multi-ended.

Lemma 3.2 ([1, Lemma 2.4]). Let Γ be a connected vertex-transitive d-regular graph.
Assume Γ has one end. Then the connectivity of Γ is > 3(d+ 1)/4.

For the rest of the paper, we assume that G = 〈S〉 is an infinite finitely generated
group such that Γ = Cay(G,S) is cubic with connectivity two.

The proof idea of the following lemma is similar to [12, Corollary 4.3].

Lemma 3.3. Let G = 〈S〉 be an infinite finitely generated group such that Γ =
Cay(G,S) is cubic with connectivity two. Then there exists a reduced tree decom-
position (T,V) with the following properties:

(i) The adhesion sets of (T,V) have size exactly 2 and induce splitting separations
of minimum crossing number.

(ii) The action of G on Γ induces an action on V (T ) and a transitive action on
the set of separations corresponding to the adhesion sets.

Proof. Since Γ is an infinite graph of connectivity exactly 2, Lemma 3.2 implies that
Γ has at least two ends. Let (T ′,V ′) be a canonical tree decomposition obtained by
Theorem 3.1 which distinguishes all 2-distinguishable ends and since Γ is 2-connected,
its adhesion sets have size 2. We consider the set S of all induced separations by (T,V)
and choose a separation (A,B) of S. It follows from [4, Lemma 2.1] that the orbit
of (A,B) under the action of G is a nested set N of separations of order 2. Now by
Remark 2.1, the set N gives rise to a tree decomposition (T,V) which has the desired
properties. �

Notice that the transitive action on the set of separations in Lemma 3.3 (ii) implies
at most two orbits for Γ[V] := {Γ[Vt] | t ∈ V (T )} under the action of G. Moreover, we
can translate the action of item (ii) to an action of G on T in the natural way (and
G will clearly act transitively on E(T )):

gt = t′ ⇔ gVt = Vt′ .

Let N be a nested set of separations of order two in such a way that N gives a
tree decomposition as in Lemma 3.3. It is easy to see that every 2-separation of Γ
such that A∩B is a proper subset of A and B distinguishes at least two ends, see [9,
Lemma 3.4]. For an arbitrary element (A,B) ∈ N , there are three cases in terms
of the degrees of the vertices of the separator on each side of the separation, as in
Figure 1.

First, we dismiss the case of Type III separations. This follows as an easy corollary
of the following lemma.

Lemma 3.4. There is always a splitting 2-separation of crossing number 0 in Γ.

Proof. Any Type I separation has crossing number 0, as the two vertices of the
separator are connected with an edge and thus they are inseparable. Hence we can
assume that every splitting 2-separation is not of Type I. We show that there is
always a splitting 2-separation (A,B) on A ∩B = {x, y} such that there are at least
two internally disjoint (x, y)-paths in Γ[A]. This will directly imply that there is no 2-
separation (C,D) crossing such an (A,B) as in that case the single vertex in C∩D∩A
would separate x and y in Γ[A], so cn(A,B) = 0.
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Type I Type II Type III

Figure 1. The three types of splitting 2-separations in cubic Cayley
graphs of connectivity 2.

First, we note that for every 2-separation (A,B) both A r B,B r A are tight
components of Gr (A∩B): otherwise, by the 2-connectivity of Γ there are two tight
connected components in either ArB or BrA, hence there are two internally disjoint
(x, y)-paths in Γ[A] or Γ[B]. Then (A,B) or (B,A) is the desired separation.

Now, consider a splitting separation (A,B) on A∩B = {x, y} such that there exist
single vertices separating x, y in Γ[A] and let SA be the (non-empty) set of these cut
vertices in Γ[A]. Let P be a shortest (x, y)-path in Γ[A]. Then SA ⊆ V (P ). It is easily
verified that any two consecutive vertices of SA∪{x, y} in the ordering inherited by P
constitute the separator of a 2-separation (C,D) in Γ nested with (A,B), and suppose
w.l.o.g. that B ⊆ D. Since (A,B) is a splitting separation, say distinguishing ω1, ω2,
there is a separation (C,D) as above that is also splitting, distinguishing ω1, ω2 as well.
Then (C,D) is the desired separation as any vertex separating the vertices of C∩D in
Γ[C] must also separate x, y in Γ[A], contradicting the fact that SA∩(CrD) = ∅. �

Lemma 3.5. Any tree decomposition of Γ as in Lemma 3.3 is either of Type I or
Type II.

Proof. Let (A,B) be a Type III separation with A∩B = {x, y}. We can assume that
|N(x) ∩ A| = 1 and |N(x) ∩ B| = 2. Let x′ be the unique neighbor of x in A and y′
be the unique neighbor of y in B. Then (A′, B′) := (A ∪ {y′}r {x}, B ∪ {x′}r {x})
is a tight Type III separation on {x′, y′}, clearly crossing (A,B) and distinguishing
efficiently the same ends. The lemma is now a direct consequence of Lemma 3.3 and
Lemma 3.4. �

In what follows, (T,V) will always be as in Lemma 3.3, either of Type I or Type
II if not explicitly stated otherwise. For a node t ∈ V (T ), we define

n(t) := Γ
[ ⋃

t∈NT [t]
Vt

]
.

Recall that every adhesion set Vt ∩ Vt′ of (T,V) induces the separation
(Wtrt′ ,Wt′rt) of Γ. Assume that (T,V) and the separations (Wtrt′ ,Wt′rt) it
induces are of Type II. We call such a separation (Wtrt′ ,Wt′rt) small if the vertices
of the separator Vt∩Vt′ have degree 1 in Wt′rt and big if they have degree 2 in Wt′rt.

One of our main goals towards the general structure of the tree decomposition of
Γ is to eventually prove in Lemma 3.8 that all adhesion sets of (T,V) are disjoint. As
a preparatory step for that, we need the following lemma.

Lemma 3.6. Every vertex u belongs to at least one and at most two different adhesion
sets of (T,V) (as subsets of V (Γ) and not as intersections of different pairs of parts).
Moreover, for every node t of T and every t1, t2 ∈ NT (t), we have |Vt1 ∩ Vt2 | 6 1.
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Proof. The lower bound for the first assertion of the lemma follows directly from the
transitivity of the actions of G on Γ and E(T ). For the upper bound, let {x, u} and
{y, u} be two adhesion sets of the tree decomposition meeting on u. Since G acts
transitively on E(T ), there is a 1 6= g ∈ G such that g{x, u} = {y, u}. Observe that
since g 6= 1, we must have gx = u and gu = y, from which we obtain ux−1u = y.
Since {x, u} and {y, u} were arbitrary adhesion sets containing u, the upper bound
follows.

For the second assertion, we clearly have that |Vt1 ∩ Vt2 | 6 2. Suppose that |Vt1 ∩
Vt2 | = 2. It follows from the definition of a tree decomposition that Vt1 ∩Vt2 ⊆ Vt and
so Vt1 ∩ Vt2 is a subset of both Vt ∩ Vt1 and Vt ∩ Vt2 . Therefore, we have Vt1 ∩ Vt =
Vt2 ∩ Vt = Vt1 ∩ Vt2 := S. We observe that the 2-connectivity of Γ implies that all
components of Γ r S are tight (and in particular, the one containing Vt r S).

Let TS be the subtree of T whose corresponding parts contain S. Then |V (TS)| >
3 and assume that |V (TS)| > 4. Observe that Γ r S then has at least four tight
components, which contradicts the fact that Γ is cubic. Hence, |V (TS)| = 3 and so
V (TS) = {t, t1, t2}. Consequently, we see that C1 = Wt1rt r S, C2 = Wt2rt r S and
C3 = (Wtrt1) r (Wt2rt) = (Wtrt2) r (Wt1rt) must be the components of Gr S, all
of them tight.

This means that both vertices of S must have degree one in each of C1, C2, C3,
respectively, and that S induces an independent set. Since G acts transitively on Γ
and E(T ) and t was an arbitrary node of t, it follows that every vertex has degree
at most one in every part it belongs to. We conclude that every part of V induces at
most a matching where every pair of vertices in the same adhesion set is unmatched.
It easily follows that Γ is the disjoint union of two infinite cubic trees, contradicting
the fact that Γ is connected. �

Let H be an arbitrary graph with a set U ⊆ V (H) and a subgraph H ′ of H. The set
U is called connected in H ′ if for every pair of vertices u, u′ ∈ U there is a (u, u′)-path
in H ′.

Lemma 3.7. Let t be an arbitrary vertex of T . Then for every t′ ∈ NT (t), the following
holds:

(i) The adhesion set Vt ∩ Vt′ is connected in at least one of Vt, Vt′ .
(ii) Vt is connected in n(t).

Proof.
(i) Let Vt ∩ Vt′ = {u, u′} and P be a path between u and u′. Suppose that

P is contained in Wtrt′ and consider the tree decomposition (T ′,V ′) of P
by restricting (T,V) on the parts that contain at least two vertices of P .
Notice that every adhesion set of (T ′,V ′) has size exactly 2. Root T ′ on t.
Since T ′ ⊆ T , the second assertion of Lemma 3.6 holds for (T ′,V ′) as well,
therefore we have that every part of (T ′,V ′) contains at least one new vertex
of P compared to its predecessor in the tree-order of T ′ when rooted on t.
Since P is finite, it follows that T ′ is finite as well. We eventually find a part
Vs of (T,V) — in particular a leaf of T ′ — such that P ′ = V (P ) ∩ Vs is a
subpath of P whose end vertices constitute exactly one of the adhesion sets
S of Vs. Recall that G acts transitively on the set of adhesion sets of (T,V).
Hence, we can map S to Vt ∩ Vt′ , say gS = Vt ∩ Vt′ . Then gs ∈ {t, t′}. Thus,
gP ′ is a (u, u′)-path that either lies in Vt or V ′t .

(ii) Since Γ is connected, the torso of Vt is a connected graph. The result follows by
replacing the virtual edges of a path within the torso of Vt by paths obtained
by (i). �
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The next crucial lemma implies that all adhesion sets in N are disjoint. Recall that
(T,V) is a tree decomposition as in Lemma 3.3.

Lemma 3.8. Let t be a node of T . Then for every t1, t2 ∈ NT (t), we have Vt1∩Vt2 = ∅.

Proof. By Lemma 3.6, we have that |Vt1 ∩ Vt2 | 6 1. Suppose that |Vt1 ∩ Vt2 | = 1. Let
Vt1 ∩Vt = {x, y}, Vt2 ∩Vt = {x, z}. By Lemma 3.6, these are the only adhesion sets of
Vt containing x. We can assume that (T,V) is of Type II: indeed, assume that (T,V)
is of Type I. By the tightness of all separations in N , we have that x has at least
one neighbor in each of Vt1 r Vt and Vt2 r Vt in addition to y and z, a contradiction
to Γ being cubic. Hence, (T,V) is of Type II.

Now, by the transitive action on E(T ) we have that (Wtrt1 ,Wt1rt) is either iso-
morphic to (Wtrt2 ,Wt2rt) or its inverse (as an ordered separation). In the latter case,
assume there are g ∈ G, t ∈ V (T ), such that
(1) (Wtrt1 ,Wt1rt) = (gWt2rt, gWtrt2).
Recall the definition of small and big separations (given after Lemma 3.5 and before
Lemma 3.6). We can assume w.l.o.g. that the above separations are small (a similar
situation arises in case they are big separations). We observe that this implies that
degWt1rt

(x) = 1, degWt2rt
(x) = 2 and the degree of x in the component of Γr{x, y, z}

containing Vtr{x, y, z} is 0. By Lemma 3.7, there is an (x, y)-path P lying completely
within Vt1 , but by (1) we have that the (x, y)-path gP lies within Vt, which yields a
contradiction to the degree of x.

Otherwise, for every t ∈ V (T ) there is a g ∈ G such that
(Wtrt1 ,Wt1rt) = (gWtrt2 , gWt2rt).

Let C ′1, C ′2, C ′3 be the components of Γr{x, y, z} corresponding to Vt1 , Vt2 , Vt. Then we
directly observe that both separations (Wtrt1 ,Wt1rt), (Wtrt2 ,Wt2rt) must be small.
The only way for this to happen is when x has degree one in each of C1, C2, C3 and
therefore degree at most one in Vt1 , Vt2 , Vt (in other words, every part that contains
it). By the transitivity of Γ and the fact that t was arbitrary, we conclude that
every vertex of Γ has degree at most one in every part that contains it, to obtain a
contradiction to Lemma 3.7 exactly as before. �

Lemma 3.8 has some important consequences. Combined with Lemma 3.6, we
immediately obtain the following.

Corollary 3.9. Every vertex u of Γ is contained in exactly two parts t, t′ ∈ V (T ).
In addition, NΓ(u) ⊆ Vt ∪ Vt′ and every part is the disjoint union of its adhesion
sets. �

Moreover, let {x, y} be an adhesion set. Observe that xy−1{x, y} is again an adhe-
sion set containing x, so xy−1{x, y} = {x, y} with xy−1x = y. We obtain:

Lemma 3.10. For every adhesion set {x, y}, we have (xy−1)2 = 1. �

Lemma 3.10 implies the following Corollary for the edge stabilizers of T .

Corollary 3.11. Let tt′ ∈ E(T ). Then StG(Vt ∩ Vt′) ∼= Z2. �

Lastly, we will invoke the following folklore lemma from the well-known theory of
tree decompositions into 3-connected components (see [15, 17] as an example) when
we argue about the planarity of Γ and G in each case that arises.

Lemma 3.12. Let (T,V) be a tight tree decomposition of a (locally finite) connected
graph H with finite parts and adhesion at most 2. Then Γ is planar if and only if the
torso of every part of (T,V) is planar.
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Proof. The forward implication follows from the fact that the torso of a part in (T,V)
is a topological minor of H: for every virtual edge of the part realized by an adhesion
set of size exactly two, there is always a path outside of the part that connects the
two vertices of the adhesion set.

For the backward implication, we will inductively embed the planar torsos of the
parts of (T,V) on the plane by gluing (the torso of) each new bag at the appropriate
adhesion set. For the inductive step, we consider the adhesion set Vt ∩ Vt′ = {x, y} of
the new bag Vt along which it is going to be amalgamated with the already embedded
torso of Vt′ . We simply replace the edge xy with a planar embedding of the torso of
Vt (restricted inside a thin disk around the embedded xy), keeping the edge xy in the
so far embedded part of Γ depending on whether it is an actual edge of Γ or a virtual
edge of the torsos of Vt, Vt′ , accordingly. It is straightforward to check that the above
inductive strategy to combine the planar embeddings of the torsos along the adhesion
sets produces an embedding of Γ on the plane, since each virtual edge of the torsos is
replaced with a new bag at some inductive step. �

Our goal in the following sections is to determine the structure of the parts of the
tree decomposition of Γ obtained by Corollary 3.3 in order to compute their stabilizers
and apply Lemma 2.3 or 2.4.

4. Tree decomposition of Type I
In this section, we assume that (T,V) is of Type I. Suppose that b is the label of the
edge induced by the adhesion sets of (T,V), which by Lemma 3.10 is an involution. It
will be enough to study two neighboring parts Vt, Vt′ to obtain the general structure
of (T,V). In order to simplify this, we can assume w.l.o.g that Vt ∩ Vt′ = {1, b}, so
StG(Vt ∩ Vt′) = 〈b〉.

Notice that if G acts on (T,V) with inversion, there is an element in g ∈ StG(Vt ∩
Vt′) = 〈b〉 that inverts Vt, Vt′ . Let us express this easy fact with the following lemma.

Lemma 4.1.G acts with inversion on (T,V) if and only if b inverts Vt and Vt′ . �

Lemma 4.2. Every part of V induces a finite cycle.

Proof. Let t ∈ V (T ). Since every adhesion set induces a connected subgraph, we
conclude by Lemma 2.2 that Γ[Vt] is connected. Moreover, Corollary 3.9 implies that
Γ[Vt] is 2-regular. It follows that Γ[Vt] is either a finite cycle or a double ray. Recall
that by Lemma 3.8 all adhesion sets are disjoint. The conclusion follows by observing
that every vertex of Vt is a cut vertex when Vt induces a double ray and hence, the
graph Γ is not 2-connected. �

It will be clear by Lemma 3.12 that we will obtain planar Cayley graphs in all
subcases.

4.1. Two Generators. Assume that G = 〈a, b〉, where b is an involution. We distin-
guish the following cases depending on the colors of the edges incident to the adhesion
sets, depicted as Figure 2.

4.1.1. Case I. Suppose that the edges incident to each adhesion set inducing a separa-
tion in N are as in Case I of Figure 2. Observe that {a−1, ba} ⊆ Vt and {a, ba−1} ⊆ Vt′

are the neighbors of 1 and b in Vt and Vt′ , respectively. Since b{a−1, ba} = {a, ba−1},
it must be that bVt = Vt′ and bVt′ = Vt. Lemma 4.1 implies that G acts on E(T ) with
inversion (and hence transitively on V (T )).

By Lemma 4.2, there is an n ∈ N such that (ba)n = 1 and
Vt = {1, b, ba, . . . , (ba)n−1b = a−1}.
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Vt

Vt′

Vt

Vt′

Case I Case II

Figure 2. Cases of Type I with two generators

This gives a partition 〈ba〉t〈ba〉b of Vt. We next conclude that StG(Vt) ⊆ Vt by noting
that 1 ∈ Vt. Clearly, we have 〈ba〉 ⊆ StG(Vt). Moreover, for the element ba ∈ Vt, we
observe that

(ba)ib(ba) = (ba)ia 6∈ Vt.

Since Vt = 〈ba〉 t 〈ba〉b , we conclude that StG(Vt) = 〈ba〉 ∼= Zn. Moreover, StG(Vt) ∩
StG(Vt ∩ Vt′) = 〈ba〉 ∩ 〈b〉 = 1.

We apply Lemma 2.4 and obtain that
G ∼= Zn ∗ Z2.

4.1.2. Case II. By the structure of the neighborhood of {1, b} and Lemma 4.1 we see
that b cannot invert Vt and Vt′ , hence G acts on (T,V) without inversion.

Now, consider the adhesion set a−1{1, b} = (a−1Vt)∩ (a−1Vt′). From the fact that
a−1{1, b} ⊆ Vt we deduce that either a−1Vt = Vt or a−1Vt′ = Vt. Since the adhesion set
{1, b} has ingoing a-edges but a{1, b} has outgoing a-edges in Vt, we cannot have that
a−1Vt = Vt. Consequently, it must be that a−1Vt′ = Vt. The fact that two adjacent
parts lie in the same orbit under the action of G implies that G acts transitively on
V (and V (T )).

By Lemma 4.2, there is in this case an n ∈ N such that (ba−1ba)n = 1 and
Vt = {1, b, ba−1, ba−1b, . . . , (ba−1ba)n−1ba−1b = a−1}.

In other words, 〈ba−1ba〉t〈ba−1ba〉bt〈ba−1ba〉ba−1t〈ba−1ba〉ba−1b forms a partition
of Vt. Notice that 〈ba−1ba〉 is the trivial group when ba−1ba = 1. As before, since
1 ∈ Vt we infer that StG(Vt) ⊆ Vt. Clearly, we have 〈ba−1ba〉 ⊆ StG(Vt). Moreover, we
see that 〈ba−1ba〉ba−1 6⊆ StG(Vt) because we have (ba−1ba)iba−1(ba−1ba) 6∈ Vt and
that 〈ba−1ba〉ba−1a 6⊆ StG(Vt) because (ba−1ba)iba−1b(a−1ba) 6∈ Vt.

Lastly, observe that since b is an involution and all adhesion sets induce a b-edge,
we have that the action of b on Γ fixes every adhesion set. Hence, we have that
b ∈ StG(Vt). It follows that 〈ba−1ba, b〉 ⊆ StG(Vt). Therefore, we conclude that

StG(Vt) = 〈ba−1ba, b | b2, (ba−1ba)n, (a−1ba)2〉 ∼= D2n.

By Lemma 2.3, we have that
G ∼= D2n ∗

Z2
(t).

We collect both cases in the following theorem.

Theorem 4.3. If (T,V) is of Type I with two generators, then G satisfies one of the
following cases:

(i) G ∼= Zn ∗ Z2.
(ii) G ∼= D2n ∗

Z2
(t). �

The definitions of a free product with amalgamation, an HNN-extension and the
proof of Theorem 4.3 immediately imply:
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Corollary 4.4 ([10, Theorem 1.1]). If (T,V) is of Type I with two generators, then
G has one of the following presentations:

(i) G = 〈a, b | b2, (ba)n〉.
(ii) G = 〈a, b | b2, (ba−1ba)n〉. �

4.2. Three Generators. LetG = 〈a, b, c〉, where a, b and c are involutions. Suppose
that the edges induced by the adhesion sets with corresponding separations in N are
colored with b. Up to rearranging a, b, c, there are two cases for the local structure of
the adhesion sets with separations in N , as in the following figure:

Vt

Vt′

Vt

Vt′

Case I Case II

Figure 3. Cases of Type I with three generators

4.2.1. Case I. First, we observe by Lemma 4.1 that G acts on T without inversion,
since by the structure of the neighborhood of {1, b} we see that b must stabilize both
Vt and Vt′ . Consequently, G must act with two orbits O1, O2 on Γ[V], where the parts
in O1 contain the a-edges and the parts in O2 contain the c-edges. By Lemma 4.2 we
deduce that there exist n,m with (ba)n = 1 and (bc)m = 1 and so Vt = 〈ba〉 t 〈ba〉b
and Vt′ = 〈bc〉 t 〈bc〉b.

To compute the stabilizers of the parts, observe that we can escape a part in O1 only
with c-edges. Hence, we have StG(Vt) = Vt = 〈ba, b | b2, (ba)n, a2〉 ∼= D2n and similarly
StG(Vt′) = Vt′ = 〈bc, b | b2, (bc)m, c2〉 ∼= D2m. Therefore, by Lemma 2.3 we obtain

G ∼= D2n ∗
Z2
D2m.

4.2.2. Case II. In this case, we see that b inverts Vt and Vt′ , so G acts on T with
inversion by Lemma 4.1. Hence, G also acts transitively on V (T ).

Let x := bcba. By Lemma 4.2 we see that (bcba)n = 1 and that 〈x〉 t 〈x〉bt 〈x〉bct
〈x〉bcb is a partition of Vt. Clearly, we have that 〈bcba〉 ⊆ StG(Vt). We show that we
actually have equality:

• xib · bc = xic 6∈ Vt, hence 〈x〉b 6∈ StG(Vt),
• xibc · a 6∈ Vt, hence 〈x〉bc 6∈ StG(Vt),
• xibcb · c 6∈ Vt, hence 〈x〉bcb 6∈ StG(Vt).

We conclude that StG(t) = 〈bcba〉 ∼= Zn and consequently we also have that
StG(Vt) ∩ StG(Vt ∩ Vt′) = 〈bcba〉 ∩ 〈b〉 = 1. It follows from Lemma 2.4 that

G ∼= Zn ∗ Z2.

In conclusion, we have proved:

Theorem 4.5. If (T,V) is of Type I with three generators, then G satisfies one of
the following cases:

(i) G ∼= D2n ∗
Z2
D2m.

(ii) G ∼= Zn ∗ Z2. �
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Corollary 4.6 ([10, Theorem 1.1]). If (T,V) is of Type I with three generators,
then G has one of the following presentations:

(i) G = 〈a, b, c | a2, b2, c2, (ba)n, (bc)m〉.
(ii) G = 〈a, b, c | a2, b2, c2, (bcba)n〉. �

5. Tree decomposition of Type II
Even though at first glance there can be several cases for Type II separations, we
will in fact be able to quickly exclude most of them using appropriately the following
lemma.
Lemma 5.1. Let G = 〈a, b, c〉 (with possibly c = a−1), where b is an involution and let
{x, y} be the adhesion set of a Type II separation in (T,V) of Γ as in Lemma 3.3.
Let v1, v2, v3 be any consecutive vertices in a shortest (x, y)-path P with at least two
edges and suppose there is g ∈ G such that gv2 ∈ {x, y}. Then gv1 and gv3 lie in the
same component of Γ r {x, y}.
Proof. Suppose not. We observe that gx, gy must then lie in different components of
Γr {x, y} as well: if not, then gx, gy lie in the same component, say, C. The fact that
gv1, gv3 lie in different components implies that gP leaves C, therefore we have that
both x, y ∈ V (gP ). Since gv2 ∈ {x, y} is an inner vertex of gP , the subpath of gP
from x to y contradicts the choice of P .

Hence, g{x, y} is a separator where gx, gy lie in different components of Γr{x, y}.
It easily follows that {x, y} and {gx, gy} are not nested, a contradiction to
Lemma 3.1. �

Now, let W2n+1,2k, where n > 1, k > 3, n 6 k, denote the cubic graph obtained
by the 2k-cycle with vertices {0, 1, . . . , 2k − 1} along with “chord” edges of the form
{2i, 2i + 2n + 1} (mod 2k) forming a matching. Moreover, we define V2n, n > 2 as
the cubic graph obtained by the 2n-cycle along with the “diagonal” edges {i, i + n}
(mod 2n). We note that for k = 2n+ 1 we have W2n+1,4n+2 = V4n+2 (Fig. 4).

Figure 4. The graphs W5,10 = V10 and W5,8.

Lastly, let R2m+1 be the cubic graph obtained by a double ray with vertex set Z
(defined in the natural way) and by adding the edges of the form {2i, 2i + 2m + 1}
(Fig. 5).

Figure 5. The graph R5.
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We note that we will see in the next subsections that the tree decomposition of Γ
obtained by Lemma 3.3 will have two orbits of parts and that the torsos of the parts
of one of the two orbits will always be isomorphic to either W2n+1,2k, V2n or R2n+1.
The fact thatW2n+1,2k is never planar, whereas V2n and R2m+1 are planar if and only
if n = 2 and m = 1, respectively, will allow us by Lemma 3.12 to determine exactly
when Γ will be planar.

5.1. Two generators. Let G = 〈a, b〉, where b is an involution. Let (T,V) the
corresponding tree decomposition obtained by Lemma 3.3 andN the set of separations
obtained from its adhesion sets. Then we have the following cases for the neighborhood
of such an adhesion set {x, y}:

Vt

Vt′

Vt

Vt′

Case I Case II Case III

Figure 6. Cases of Type II with two generators.

Lemma 5.2. The adhesion sets of (T,V) satisfy Case III.

Proof. Let {x, y} be an adhesion set. First, observe that no path in Γ contains two
consecutive b-edges, hence every path of length two contains at least one a-edge. Let
P be a shortest (x, y)-path,(2) necessarily of length at least two.

Assume that either Case I or Case II happen. Notice that — in both cases —
for every possible edge-coloring of a path of length two there exists a path Q of
length two whose middle vertex belongs to {x, y} and its two endpoints lie in different
components of Γ r {x, y} that realizes the same edge-coloring. Consider an arbitrary
subpath P ′ = v1v2v3 of P of length two and an appropriate Q as above that realizes
the edge-coloring of P ′. Let w be the middle vertex of Q and g = wv−1

2 . Then gP = Q
and gv1, gv3 lie in different components of Γ r {x, y}, contradicting Lemma 5.1. �

Consequently, we can assume for the rest of this subsection that only Case III
happens. It follows that no part of (T,V) contains edges of all colors: otherwise, by
Corollary 3.9 and the fact that no adhesion set contains both a vertex incident with a-
edges as well as a vertex incident with b-edges in a part Vt, we see that the a-edges and
the b-edges induce different connected components in the torso of Vt, a contradiction
to the connectivity of Γ.

Hence, (T,V) has two orbits of parts O1, O2, where parts in O1 contain only edges
colored with a and parts in O2 contain edges colored with b. Moreover, G acts on
(T,V) without inversion. The structure of the parts in O2 is clear: their edges induce
a perfect b-matching in the part. We are ready to obtain the full structure of the parts
in O1 as well.

Lemma 5.3. There is an n > 2, such that for every adhesion set {x, y} we have
x = yan or x = ya−n. Moreover, every part in O1 induces an a-cycle of length 2n.

(2)By Lemma 3.7(i) we can see that P lies completely within Vt or Vt′ , but this is irrelevant to
the proof of the Lemma.
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Proof. Let Vt ∈ O1 and {x, y} = Vt ∩ Vt′ be an adhesion set of t. For every s ∈
NT (t), we have that Vs ∈ O2 and consequently that Vs induces a b-matching. By
Lemma 3.7(ii), it follows that Γ[Vt] is connected.

Consider an (x, y)-path P within Vt and let n > 2 be its length. Hence, x = yan

or x = ya−n. By Lemma 3.10, we have (xy−1)2 = 1, from which we obtain a2n = 1
after substituting x.

We have inferred that the 2-regular graph Γ[Vt] is connected. Notice that P, xy−1P
are internally disjoint paths with the same ends living inside Vt, therefore their con-
catenation induces a cycle in Vt. Recall that a has order 2n. This directly implies the
lemma. �

Observe that the torso of a part Vs ∈ O2 induces a connected, 2-regular graph. It
cannot be a double ray: in that case every vertex is a cut vertex (as is easily seen),
which violates the 2-connectivity of Γ. Hence, the torso of Vs induces a finite cycle,
whose edges we can label by Lemma 5.3 with an (corresponding to the virtual edges
of the torso) and b in an alternating fashion. Therefore, there is an m > 2 such that
(ban)m = 1.

It remains to compute the vertex stabilizers of T .
Let Vt1 ∈ O1 such that 1 ∈ Vt1 . By Lemma 5.3, we clearly have 〈a〉 = Vt1 and

therefore StG(Vt1) = 〈a〉 ∼= Z2n. Next, let Vt2 ∈ O2 such that 1 ∈ Vt2 . Recall that
(ban)m = 1 and notice that (b(ban))2 = a2n = 1. By the structure of the torso of
Vt2 , we observe that the elements of Vt2 form a group generated by b and ban with
presentation 〈ban, b | ((ba)n)m, b2, (b(ban))2〉. Since Vt2 forms a subgroup of G, we
deduce that

StG(Vt2) = Vt2 = 〈ban, b | ((ba)n)m, b2, (b(ban))2〉 ∼= D2m.

Finally, by Lemma 2.3 we obtain G ∼= Z2n ∗
Z2
D2m.

We observe that the torso of Vt1 is isomorphic to V2n. Since V2n is planar if and
only if n = 2, we conclude by Lemma 3.12 that Γ is planar if and only if n = 2. We
have obtained the following theorem, along with its corollary by the definition of a
free product with amalgamation:

Theorem 5.4. If (T,V) is of Type II with two generators, then

G ∼= Z2n ∗
Z2
D2m.

In particular, G is planar if and only if n = 2.

Corollary 5.5 ([10, Theorem 1.1]). If (T,V) is of Type II with two generators, then

G = 〈a, b | b2, a2n, (ban)m〉.

In particular, G is planar if and only if n = 2.

5.2. Three generators. Let G = 〈a, b, c〉, where a, b and c are involutions. Then,
up to rearranging a, b, c, we have the following cases for the separations in N :

As in Subsection 5.1, by properly applying Lemma 5.1 we obtain the analogue of
Lemma 5.2 for three generators with exactly the same proof.

Lemma 5.6. The adhesion sets of (T,V) satisfy Case II. �

Since the torso of every part of (T,V) is a connected graph, we deduce that the
tree decomposition has two orbits of parts: parts in O1 contain only b- and c-edges
and parts in O2 induce perfect a-matchings. Clearly, G then acts on (T,V) without
inversion. Let us quickly obtain the analogue of Lemma 5.3.
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Vt

Vt′

Vt

Vt′

Case I Case II

Figure 7. Type II cases with three generators

Lemma 5.7. Every part in O1 induces an alternating (b, c)-cycle of even length or an
alternating (b, c)-double ray.

Proof. Let Vt ∈ O1 and {x, y} = Vt ∩ Vt′ be an adhesion set of t. Since all neighbors
of t induce an a-matching, it follows by Lemma 3.7(ii) that Γ[Vt] is connected.

Hence, there exists an (x, y)-path P of length i within Vt, necessarily alternating
with b- and c-edges. Then, either x = y(bc)n or x = y(bc)nb, up to swapping b and
c. To obtain the structure of the 2-regular, connected graph Vt we distinguish the
following cases.

(i) If x = y(bc)n, then the (x, y)-path xy−1P intersects P only in x, y and by
Lemma 3.10, we obtain (bc)2n = 1. In this case, Vt induces an alternating
(b, c)-cycle of length 4n.

If x = y(bc)nb, then xy−1P = P and:
(ii) either Vt induces an alternating (b, c)-cycle,
(iii) or Vt induces an alternating (b, c)-double ray. �

By the 2-connectivity of Γ, the connected, 2-regular torso of a part Vs ∈ O2 must
be a finite cycle. Depending on which of the cases of Lemma 5.7 we have, we can label
its edges with (bc)n or (bc)nb (corresponding to the virtual edges of the torso) and a
in an alternating fashion. Therefore, there is an m > 2 such that (a(bc)n)m = 1 or
(a(bc)nb)m = 1. It remains to infer the structure of G in each case.

(i) Assume that every part in O1 is an alternating (b, c)-cycle of length 4n and
(a(bc)n)m = 1.

In order to compute the vertex stabilizers of T , let Vt1 ∈ O1 with 1 ∈ Vt1 .
Since (b(bc))2 = c2 = 1, we have that

Vt1 = 〈bc〉 ∪ 〈bc〉b = 〈bc, b | (bc)2n, b2, (b(bc))2〉 ∼= D4n.

Then StG(Vt1) = Vt1
∼= D4n, as Vt1 forms a group. Next, let Vt2 ∈ O2 with

1 ∈ Vt2 . Notice that (a(bc)n)m = a2 = 1 and (a(a(bc)n))2 = (bc)2n = 1. We
can deduce that Vt2 is a group (and hence StG(Vt2) = Vt2), along with its
presentation:

StG(Vt2) = Vt2 = 〈a(bc)n, a | (a(bc)n)m, a2, (a(a(bc)n))2〉 ∼= D2m.

By Lemma 2.3, we have

G ∼= D4n ∗
Z2
D2m.

In this case, the torso of Vt1 is isomorphic to V4n, which is planar if and only
if n = 1.
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(ii) Suppose that parts in O1 induce an alternating (b, c)-cycle of even length and
that (a(bc)nb)m = 1.
Let Vt1 ∈ O1 and Vt2 ∈ O2 both containing 1 in the respective parts. We see
that
StG(Vt1) = Vt1 = 〈bc, b | (bc)k, b2, (b(bc))2〉 ∼= D2k,

StG(Vt2) = Vt2 = 〈a(bc)nb, a | (a(bc)nb)m, a2, (a(a(bc)nb))2〉 ∼= D2m.

By Lemma 2.3,
G ∼= D2k ∗

Z2
D2m.

Notice that the torso of Vt1 is isomorphic to W2n+1,2k, which is not planar.
(iii) In this case, every part in O1 is an alternating (b, c)-double ray and

(a(bc)nb)m = 1.
Let Vt1 ∈ O1 and Vt2 ∈ O2 with 1 contained in their common adhesion set.

Similarly, we have that
StG(Vt1) = Vt1 = 〈bc, b | b2, (b(bc))2〉 ∼= D∞,

StG(Vt2) = Vt2 = 〈a(bc)nb, a | (a(bc)nb)m, a2, (a(a(bc)nb))2〉 ∼= D2m.

By Lemma 2.3, we have
G ∼= D∞ ∗

Z2
D2m,

to conclude that the torso of Vt1 is isomorphic to R2n+1, which is planar if
and only if n = 1.

By Lemma 3.12 and the above discussion, we have deduced:

Theorem 5.8. If (T,V) is of Type II with three generators, then G satisfies one of
the following cases:

(i) G ∼= D4n ∗
Z2
D2m.

(ii) G ∼= D2k ∗
Z2
D2m.

(iii) G ∼= D∞ ∗
Z2
D2m. �

Corollary 5.9 ([10, Theorem 1.1]). If (T,V) is of Type II with three generators,
then G has one of the following presentations:

(i) G = 〈a, b, c | a2, b2, c2, (bc)2n, (a(bc)n)m〉 and Γ is planar if and only if n = 1.
(ii) G = 〈a, b, c | a2, b2, c2, (bc)k, (a(bc)nb)m〉. Γ is not planar.
(iii) G = 〈a, b, c | a2, b2, c2, (a(bc)nb)m〉 and Γ is planar if and only if n = 1. �

6. Open Questions
Having obtained the full characterization of groups admitting cubic Cayley graphs
of connectivity two, some further open questions can naturally be raised. In light of
Lemma 3.2, we can ask the following.

Question 6.1. Characterize all groups admitting 4-regular Cayley graphs of connec-
tivity at most three in terms of splitting over subgroups.

Let G be the family of graphs containing all cycles and all graphs of the form
W2n+1,k, V2n or R2m+1. A graph is called quasi-transitive if it has a finite number of
orbits under the action of its automorphism group. Looking back at Theorem 1.1, we
see that cubic Cayley graphs of connectivity two can be expressed as a tree decom-
position whose torsos induce graphs from G. The main tools from our proof seem to
go through to support that this is in general the case for every cubic transitive graph
of connectivity two. We can go a step further and ask the following question:
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Question 6.2. Characterize all cubic quasi-transitive graphs of connectivity two in
terms of “canonical” tree decompositions with the property that the automorphism
group of the graph acts transitively on the set of the adhesion sets.

Acknowledgements. The authors would like to thank the anonymous reviewers for all
their careful and constructive comments.

References
[1] László Babai, The growth rate of vertex-transitive planar graphs, in Proceedings of the Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), ACM, New
York, 1997, pp. 564–573.

[2] Johannes Carmesin, Reinhard Diestel, Matthias Hamann, and Fabian Hundertmark, Canonical
tree-decompositions of finite graphs I. Existence and algorithms, J. Combin. Theory Ser. B 116
(2016), 1–24.

[3] Johannes Carmesin, Reinhard Diestel, Fabian Hundertmark, and Maya Stein, Connectivity and
tree structure in finite graphs, Combinatorica 34 (2014), no. 1, 11–45.

[4] Johannes Carmesin, Reinhard Diestel, and Babak Miraftab, Canonical trees of tree-
decompositions, https://arxiv.org/pdf/2002.12030.pdf, 2020.

[5] Reinhard Diestel, Locally finite graphs with ends: a topological approach, II. Applications, Dis-
crete Math. 310 (2010), no. 20, 2750–2765.

[6] , Locally finite graphs with ends: a topological approach, Discrete Math. 310–312 (2010–
11), 2750–2765 (310); 1423–1447 (311); 21–29 (312), arXiv:0912.4213.

[7] , Graph theory, fifth ed., Graduate Texts in Mathematics, vol. 173, Springer, Berlin,
2017.

[8] Carl Droms, Brigitte Servatius, and Herman Servatius, Connectivity and planarity of Cayley
graphs, Beiträge Algebra Geom. 39 (1998), no. 2, 269–282.

[9] Agelos Georgakopoulos, Characterising planar Cayley graphs and Cayley complexes in terms
of group presentations, European J. Combin. 36 (2014), 282–293.

[10] , The planar cubic Cayley graphs of connectivity 2, European J. Combin. 64 (2017),
152–169.

[11] Matthias Hamann, Planar transitive graphs, Electron. J. Combin. 25 (2018), no. 4, Paper no. Pa-
per No. 4.8 (18 pages).

[12] Matthias Hamann, Florian Lehner, Babak Miraftab, and Tim Rühmann, A Stallings’ type the-
orem for quasi-transitive graphs, https://arxiv.org/pdf/1812.06312.pdf, 2018.

[13] Heinz A. Jung and Mark E. Watkins, On the structure of infinite vertex-transitive graphs,
Discrete Math. 18 (1977), no. 1, 45–53.

[14] H. Maschke, The Representation of Finite Groups, Especially of the Rotation Groups of the
Regular Bodies of Three-and Four-Dimensional Space, by Cayley’s Color Diagrams, Amer. J.
Math. 18 (1896), no. 2, 156–194.

[15] R. Bruce Richter, Decomposing infinite 2-connected graphs into 3-connected components, Elec-
tron. J. Combin. 11 (2004), no. 1, Paper no. Research Paper 25 (10 pages).

[16] Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980.
[17] William T. Tutte, Connectivity in graphs, Mathematical Expositions, no. 15, University of

Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966.
[18] Mark E. Watkins, Les graphes de Cayley de connectivité un, in Problèmes combinatoires et

théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS,
vol. 260, CNRS, Paris, 1978, pp. 419–422.

[19] Heiner Zieschang, Elmar Vogt, and Hans-Dieter Coldewey, Surfaces and planar discontinuous
groups, Lecture Notes in Mathematics, vol. 835, Springer, Berlin, 1980.

Babak Miraftab, Universität Hamburg, Department of Mathematics, Bundesstraße 55, Hamburg,
Germany
E-mail : babak.miraftab@uni-hamburg.de

Konstantinos Stavropoulos, Universität Hamburg, Department of Mathematics, Bundesstraße
55, Hamburg, Germany
E-mail : konstantinos.stavropoulos@uni-hamburg.de

Algebraic Combinatorics, Vol. 4 #6 (2021) 987

https://arxiv.org/pdf/2002.12030.pdf
https://arxiv.org/pdf/1812.06312.pdf
mailto:babak.miraftab@uni-hamburg.de
mailto:konstantinos.stavropoulos@uni-hamburg.de

	1. Introduction
	2. Preliminaries
	2.1. Graphs
	2.2. Groups

	3. General structure of the tree decomposition
	4. Tree decomposition of Type I
	4.1. Two Generators
	4.2. Three Generators

	5. Tree decomposition of Type II
	5.1. Two generators
	5.2. Three generators

	6. Open Questions
	References

