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On the Todd class of the permutohedral
variety

Federico Castillo & Fu Liu

Abstract In the special case of braid fans, we give a combinatorial formula for the Berline–
Vergne’s construction for an Euler–Maclaurin type formula that computes the number of lattice
points in polytopes. Our formula is obtained by computing a symmetric expression for the Todd
class of the permutohedral variety. By showing that this formula does not always have positive
values, we prove that the Todd class of the permutohedral variety Xd is not effective for d > 24.

Additionally, we prove that the linear coefficient in the Ehrhart polynomial of any lattice
generalized permutohedron is positive.

1. Introduction
Let Λ be a lattice of finite rank and V = Λ ⊗ R be the corresponding real finite-
dimensional vector space. A lattice polytope in V is a polytope such that all of its
vertices lie in Λ. A classical problem in the crossroads between enumerative combi-
natorics and discrete geometry is that of counting lattice points in lattice polytopes.
For any polytope P ⊂ V we define Lat(P ) := |P ∩ Λ|. One of the earliest results in
the area is Pick’s theorem, which says that for any lattice polygon P ⊂ R2 we have

Lat(P ) = a(P ) + 1
2b(P ) + 1,

where a(P ) is the area of P and b(P ) is the number of lattice points on the boundary
of P . One way to obtain a higher dimensional analog of Pick’s formula is to find
a formula relating the number of lattice points of P with the different normalized
volumes of the faces F of P . We want a real-valued function α on pairs (F, P ), where
F is a face of a lattice polytope P , such that

(1) Lat(P ) =
∑

F : a face of P
α(F, P ) nvol(F ),

where nvol(F ) is the normalized volume of F . It is clear that for a given lattice
polytope P one can always find many functions α satisfying (1). What we want is a
function that works simultaneously for all lattice polytopes. We can do this by re-
quiring the function α to be local, i.e. the value of α(F, P ) only depends on the local
geometry of P around F , or more specifically, the value only depends on ncone(F, P ),
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the normal cone of P at F. Any local function α that satisfies Equation (1) for all lat-
tice polytopes P is called a McMullen function, since McMullen was the first to prove
their existence [17]. His proof is nonconstructive and shows that there are infinitely
many McMullen functions. In the present paper we compute the values for a partic-
ular McMullen function on a special family of polytopes: generalized permutohedra,
originally defined by Postnikov as deformations of usual permutohedra. An alterna-
tive and equivalent definition can be given in terms of normal fans: The braid fan Σd
is the complete fan in the quotient space Wd := Rd+1/(1, 1, . . . , 1) obtained from the
hyperplane arrangement Hi,j := {x ∈ Rd+1 : xi − xj = 0} for 1 6 i < j 6 d + 1.
A generalized permutohedron is a polytope whose normal fan is a coarsening of the
braid fan Σd.

Our methods for computing a McMullen function for generalized permutohedra
are based on the theory of toric varieties.

1.1. Todd classes of toric varieties. Let P be a lattice polytope with normal
fan Σ and XΣ be the associated toric variety. The Todd class Td(XΣ) is an element
in the Chow ring of XΣ. As such it can be written as a Q-linear combination of the
toric invariant cycles [V (σ)]:

(2) Td(XΣ) =
∑
σ∈Σ

rΣ(σ) [V (σ)], rΣ(σ) ∈ Q.

Since the cycles [V (σ)] satisfy algebraic relations, the values rΣ(σ) satisfying (2) are
not uniquely determined. An amazing connection with lattice polytopes is given by
the fact that any function rΣ(·) satisfying (2) defines a function α satisfying (1) for
P by setting

α(F, P ) = rΣ(ncone(F, P )).
A proof of this fact can be found in Danilov’s 1978 survey [6] where he further asked if
there exists a function r that depends only on the cone σ and not on Σ, in other words,
if there exists a local function r satisfying Equation (2) for all fans Σ. Accordingly,
we call such a function r on pointed cones a Danilov function. By setting

α(F, P ) = r(ncone(F, P )),

any Danilov function gives a McMullen function.
We want to briefly remark on two constructions of Danilov functions from the

last two decades. Pommersheim and Thomas [18] gave a construction of a Danilov
function r(σ) that depends on choosing a complement map for subspaces. Originally
they do this by choosing a complete flag of subspaces, which has a technical issue that
their construction of r(·) is only defined for cones that are “generic” with respect to
the chosen flag. Hence strictly speaking, their function r is only an “almost” Danilov
function.

A couple of years later Berline and Vergne [2] constructed a McMullen function
with the property that it is computable in polynomial time fixing the dimension and
it is a valuation on cones. We call this construction the BV-function, and denote it
by αbv.

Later in [1], they showed that if a function r on pointed cones is defined by

r(σ) = αbv (F, P ) as long as σ = ncone(F, P ),

then it is a Danilov function. For convenience, we abuse the notation, and consider
αbv to be both a function on pairs (F, P ) and a function on cones with the connection
that

αbv(F, P ) = αbv(ncone(F, P )).
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Thus, αbv is both a McMullen function and a Danilov function. In [13] Pommersheim
and Garoufalidis proved that using an inner product for a complement map in the
methods of [18] results in the Danilov function αbv, which in turn gives an alternative
way of computing it.

Both constructions, Berline–Vergne’s and Pommersheim–Thomas’, are algorithmic.
A priori it is very hard to get formulas for general cones. There are very few examples
of fans Σ for which αbv(σ) (or any other Danilov function) have been computed for
all σ ∈ Σ. In this paper, we focus on computing the BV-function on all cones in braid
fans using tools developed in previous work of the authors. (See Section 2.1 for the
definition of braid fans.)

In [3] we exploited an extra symmetry property satisfied by the function αbv, and
used this symmetry to study the values on cones in braid fans. A main result in [3] is
the uniqueness theorem, which in the context of the present paper states that, for the
specific example of braid fans, αbv is the unique function satisfying Equation (2) and
being invariant under the permutation action of the symmetric group on the ambient
space.

Using this, we obtain the main result of this paper (Theorem 5.4) which gives a
combinatorial formula for αbv on all cones in braid fans.

1.2. Connection to Ehrhart theory. In [8] Ehrhart proved that for every lattice
polytope P the function Lat(tP ) for t ∈ N is a polynomial in t of dimension d = dimP.
More precisely, there exist a0, a1, . . . , ad ∈ Q such that for all t ∈ N

Lat(tP ) = a0 + a1t
1 + a2t

2 + · · ·+ adt
d.

The right hand side is called the Ehrhart polynomial of P . Given a McMullen
formula α one can deduce that
(3) ak =

∑
F :a face of P

dimF=k

α(F, P ) nvol(F ).

The first, second, and the last coefficients in the Ehrhart polynomial of a lat-
tice polytope are well-understood. In particular, they are all positive. However, Hibi,
Higashitani, Tsuchiya, and Yoshida, proved in [14] that any of the remaining “mid-
dle coefficients” ad−2, ad−3, . . . , a1 can be negative. They asked in [14, Question 3.1]
whether any subset of the middle coefficients can be negative simultaneously and
answer affirmatively in some cases.

We call a lattice polytope P Ehrhart positive if all the (middle) coefficients of its
Ehrhart polynomial are positive (see [16] for a recent survey on Ehrhart positivity).

One of the main motivations for [3] was to prove a conjecture of De Loera et
al. asserting that matroid polytopes are Ehrhart positive [7]. Noticing that matroid
polytopes belong to the family of generalized permutohedra, we focus on the latter
larger family of polytopes.

Conjecture 1.1 ([3, Conjecture 1.2]). Lattice generalized permutohedra are Ehrhart
positive.

One observes that a consequence of Equation (3) is that if we have a McMullen
function α such that α(F, P ) is positive for all faces F ⊂ P then P is Ehrhart positive.
(The converse is not true as shown in Section 3.4 of [5].) Using the fact that the BV-
function αbv is a McMullen function and it has certain valuation properties, we showed
in [3] that the following conjecture (if true) implies Conjecture 1.1.

Conjecture 1.2 (Conjecture 1.3 of [3]). Let P be a generalized permutohedron and
F ⊂ P a face, then αbv(F, P ) is positive. Equivalently, αbv(σ) is positive for every
cone σ in the braid fan.
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In [3], we were able to prove that the third and fourth coefficients of the Ehrhart
polynomial of any lattice generalized permutohedron are positive by showing that
αbv(F, P ) is positive for any pair (F, P ) in which P is a lattice generalized permu-
tohedron and F is a face of P of codimension at most 3, which is equivalent to that
αbv(σ) is positive for any cone σ of dimension at most 3 in a braid fan.

Despite of these positive results we’ve obtained in our previous work towards Con-
jecture 1.2, in the present paper we use our main result (the combinatorial formula
described in Theorem 5.4) to find negative values for αbv on some cones in braid fans,
hence disproving Conjecture 1.2. Note that this does not imply that Conjecture 1.1 is
false, and in fact we present a proof, independent of the rest of the paper, that the lin-
ear coefficient of the Ehrhart polynomial of any lattice generalized permutohedron is
positive, providing further evidence to Conjecture 1.1. This positivity result of linear
Ehrhart coefficient was proved independently by Jochemko and Ravichandran in [15]
using different techniques from ours. More recent evidence for Conjecture 1.1 was
found recently by Ferroni in [11] where it is proved that hypersimplices are Ehrhart
positive. So even though we disproved our Conjecture 1.2 we still believe Conjec-
ture 1.1 is true, but its resolution requires a different approach.

Finally, as a consequence of these negative αbv-values we also obtained the following
result about the permutohedral variety of independent interest.
Theorem 1.3. The Todd class of the permutohedral variety Xd is not effective for
d > 24. That is, there is no way of expressing it as a nonnegative combination of
cycles.
1.3. Organization. This paper is organized as follows. In Section 2 we set the pre-
liminaries about toric varieties in an elementary way. In Section 3 we define combi-
natorial diagrams that will be used to express formulas asserted in our main result
Theorem 5.4. In Section 4 we do some computations in the Chow ring that lead
to our explicit general formula in Section 5. Section 6 contains applications of our
main theorem. Finally in Section 7 we prove that the linear coefficient in the Ehrhart
polynomial of any lattice generalized polyhedron is positive.

2. Preliminaries and notation.
We assume familiarity with the concepts of polytopes, normal fans, and toric varieties.
A good reference is [10]. Here we review concepts and notation that we are going to
use. As standard we denote [d + 1] := {1, 2, 3, · · · , d, d + 1}. The set of all subsets
of [d + 1] form a poset Bd+1 called the boolean algebra and we define the truncated
boolean algebra, denoted by Bd+1, to be the poset obtained from Bd+1 by removing
[d + 1] and ∅. Two elements T, T ′ ∈ Bd+1 are incomparable if neither T ⊆ T ′ nor
T ⊇ T ′.
Notation 2.1. From here on we use the symbol ⊂ to denote proper subset, instead
of (.

A k-chain T• = (T1, · · · , Tk) is a sequence of k totally ordered elements of Bd+1.
The set of all k-chains in Bd+1 is denoted Ckd+1 and let Cd+1 =

⋃
k Ckd+1.

2.1. Braid fan and Permutohedral variety. Let Vd be the d-dimensional real
vector space 1⊥ ⊂ Rd+1, where 1 is the all one vector. Its dual is Wd = Rd+1/(1).
Definition 2.2.Given a point v = (v1, v2, · · · , vd+1) ∈ Rd+1, we define the usual
permutohedron

Perm(v) = Perm(v1, v2, · · · , vd+1)
:= ConvexHull

((
vσ(1), vσ(2), · · · , vσ(d+1)

)
: σ ∈ Sd+1

)
.
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In particular, if v = (1, 2, . . . , d+ 1), we obtain the well-known regular permutohedron.
Note that as long as there are two different entries in v, we have dim(Perm(v)) = d.
A generic permutohedron is any polytope of the form Perm(v) where all the entries
of v are distinct.

Recall that we have defined the braid fan Σd in the introduction. Here we give a
more combinatorial description of it in Lemma 2.3 below.

Let e1, · · · , ed+1 be the standard basis of Rd+1 and for each T ∈ Bd+1 we define
eT :=

∑
i∈T ei as an element in Wd. For any k-chain T• of Bd+1, we define the

corresponding braid cone

σT• := Cone(eT : T ∈ T•),

which is k-dimensional. The following is well known (for a proof see [4, Proposi-
tion 3.5]).

Lemma 2.3. The map T• 7→ σT• gives a one-to-one correspondence between chains in
Cd+1 and cones in the braid fan Σd. Moreover, k-chains in Cd+1 are in bijection with
k-dimensional cones in Σd.

Lemma 2.4. The normal fan of any generic permutohedron is the braid fan Σd.

2.2. Permutohedral variety. For toric varieties we follow the notation and ter-
minology of [12]. The permutohedral variety Xd is the toric variety associated to Σd
over an algebraically closed field of characteristic zero k. For each T• ∈ Cd+1, its cor-
responding braid cone σT• is associated with a subvariety V (σT•). These subvarieties
are the torus invariant cycles.

For any d ∈ N we define the following ring

Rd := Q[xT ∈ Bd+1].

For any element i ∈ [d+ 1] we define the linear form `i :=
∑
T3i xT .

Definition 2.5. The Chow ring of the permutohedral variety Xd can be presented as

(4) Ad := Rd/(I1 + I2)

where

I1 = 〈xTxT ′ : for T, T ′ incomparable〉, I2 = 〈`a − `b : for all a, b ∈ [d+ 1]〉.

We are interested in computing the Todd class of Xd in Ad. The following definition
follows [12, Section 5].

Definition 2.6. The Todd class of Xd is the element of Ad defined as

(5) Td(Xd) :=
∏

T∈Bd+1

(
xT

1− e−xT

)
,

which is an element of Ad by expanding each parenthesis on the right hand side as

(6) xT
1− e−xT

= 1 + xT
2 +

∞∑
i=1

(−1)i−1Bi
(2i)! x2i

T = 1 + xT
2 + x2

T

12 −
x4
T

720 + x6
T

30240 + · · · .

Here Bi is the i-th Bernoulli number. A basic fact about Chow rings is that monomials
of Rd of degree greater than d are zero in Ad. Hence, the sum in (6) is finite, and
thus (5) is well-defined in Ad. In order to be self-contained, we will state the basic
fact used above in Corollary 4.6 and give an elementary proof using our computations
in Section 4.
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For each T• ∈ Cd+1, the class of the subvariety V (σT•) in Ad is denoted by [V (σT•)],
and it can be represented as a square-free element in Ad :

(7) [V (σT•)] = xT• :=
∏
T∈T•

xT .

We are interested in expressions for Td(Xd) in terms of classes of the torus invariant
cycles. In other words, we are looking for r(T•) ∈ Q such that

(8) Td(Xd) =
∑

T•∈Cd+1

rd(T•)xT• =
∑

T•∈Cd+1

rd(T•) [V (σT•)].

We call such an expression a square-free expression for the Todd class Td(Xd) of Xd.

Remark 2.7. By Equation (7) an expression of the form (8) can be obtained by
finding a square-free representation in Ad.

Our interest in such an expression lies in the following theorem originally attributed
to Danilov which is already mentioned in § 1.1. Here we only state it in the particular
case of braid fans.

Theorem 2.8 ([12, Section 5]). Let P be a d-dimensional lattice generalized permu-
tohedron with normal fan Σd. Suppose that rd is a function defined on Cd+1 such that
Equation (8) holds. Using the one-to-one correspondence between chains in Cd+1 and
cones in Σd described in Lemma 2.3, we can consider rd to be a function on braid
cones by letting

rd(σT•) := rd(T•).
Then we have that
(9) Lat(P ) =

∑
F⊂P

rd(ncone(F, P )) nvol(F ).

Therefore, an equation of the form (8) gives a solution to (1) for lattice generalized
permutohedra by setting α(F, P ) = rd(ncone(F, P )).

We are focusing on the particular case of braid fans instead of on all possible fans
at the same time, so a priori we are not looking for a Danilov function. However, we
are going to require one more special property for our expressions of the form (8).

Definition 2.9. The symmetric group Sd+1 acts on elements of Bd+1 hence on the
generators of the ring Rd. Notice that this action fixes both ideals I1 and I2 so that
Sd+1 acts naturally on Ad too. We say an element f ∈ Ad is symmetric if π · f = f
for all π ∈ Sd+1.

For any f ∈ Ad, we define its symmetrization to be

(10) f ] := 1
(d+ 1)!

∑
π∈Sd+1

π · f.

(It is easy to see that f ] is symmetric.)

Remark 2.10. In the ring Ad, any square-free element is of the form
∑
T•∈Cd+1

r(T•)xT•
where r(T•) ∈ Q, and it is symmetric if the r(T•) depends only on the size vector of
T•, i.e. the sequence of integers |T1|, |T2|, . . . , |Tk| for each T• = (T1, · · · , Tk) ∈ Cd+1.

Recall that the BV-function αbv is both a McMullen function and a Danilov func-
tion. In the case of the braid fan, we abuse notation again and consider αbv a function
on Cd+1 by letting

αbv(T•) := αbv(σT•), ∀T• ∈ Cd+1.

Then using results from [3] we prove the following.
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Theorem 2.11 ([3, Theorem 5.5]). There is a unique symmetric square-free expression
for Td(Xd). It is given by the Berline–Vergne function:

(11) Td(Xd) =
∑

T•∈Cd+1

αbv(T•)[V (σT•)].

We call the right hand side of Equation (11) the Berline–Vergne expression for the
Todd class of Xd.

Proof. By Theorem 2.8, any expression for Equation (8) yields an expression in the
form of (9) for any lattice polytope with the braid fan being its normal fan. In
particular, by Lemma 2.4, this applies to all lattice generic permutohedra. Also, one
checks that an expression is symmetric in the sense of Definition 2.9 if and only if it is
symmetric in the sense of [3, Definition 3.13]. Hence, the conditions of [3, Setup 4.1]
are met, and thus by [3, Theorem 5.5], the conclusion of the theorem follows. �

Combining the theorem with the symmetrization described in Equation (10) we
get the following

Proposition 2.12. Let f be any square-free expression for Td(Xd) (as in Equa-
tion (8)), then its symmetrization f ] is the Berline–Vergne expression for Td(Xd).

3. Combinatorial Tools: Spider diagrams
In this section we develop the necessary combinatorial language that will be used to
express our main formulas in Section 4.

Definition 3.1. Let T• ∈ Cd+1 and S ∈ T• (so S is a subset of [d+ 1]).
A spider Sp = Sp(T•, S) on T• with head S is a graph on the vertex set T• with

edge set {S, T} for every T ∈ T•\{S}.
We call S the head and every non-head vertex a leg. Legs are partitioned into two

subsets L and R. The set L consists of the left legs, the elements T ∈ T• such that
T ⊂ S, and the set R consists of the right legs, the elements T ∈ T• such that T ⊃ S.

The size of a spider is |Sp(T•, S)| := |T•|, the size of its vertex set. A spider of
size one is called a trivial spider. It has no legs. (Note that the number of edges in a
spider Sp is |Sp | − 1.)

Example 3.2.We draw spiders by aligning the vertices and circling the head. In this
way the sets L and R are visually on the left and right respectively. To save space we
avoid commas, for instance {12} := {1, 2}. See Figure 1 for an example where

T• = {2} ⊂ {12} ⊂ {123} ⊂ {123456} ⊂ {12345678}

and S = {123}.

{2} {12} {123} {123456} {12345678}
2 3 4 5 6

Figure 1. A drawn spider.
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Given a spider Sp = Sp(T•, S), an edge labeling ω of Sp is a bijection from the set
of edges of Sp to the [|Sp | − 1] = {1, 2, . . . , |Sp | − 1}. We say an edge labeling ω of
Sp is natural if ω({S, T}) > ω({S, T ′}) whenever S ⊂ T ⊂ T ′ or T ′ ⊂ T ⊂ S. We use
notation (Sp, ω) to indicate a spider Sp with a natural edge labeling ω.

Example 3.3.We draw a natural edge labeling on the spider of Figure 1.

{2} {12} {123} {123456} {12345678}

1

4 3

2

2 3 4 5 6

Figure 2. A drawn spider with a natural edge labeling.

Notation 3.4.A left leg will be labeled as TLi if it is the i-th smallest vertex among
all left legs, and a right leg will be labeled by TRj if it is the j-th largest vertex among
all right legs. If there are no left legs, we give the head vertex S an additional label
TL1 similarly, if there are no right legs, we give the head vertex S an additional label
TR1 .

Example 3.5. Consider the spider with chain T• = {12} ⊂ {123} ⊂ {123456} ⊂
{12345678} and head S = {12}. In Figure 3 we have labeled the spider according to
Notation 3.4. Note that the head S also receives the label TL1 .

TL1 = S TRmax = TR3 TR2 TR1

{12} {123} {123456} {12345678}
3 4 5 6

Figure 3. A spider with the head having two different labels.

Definition 3.6. Let T• ∈ Cd+1 be a chain. A spider diagram Γ on T• consists of a
partition of T• into k-disjoint intervals T1,•, · · · , Tk,• together with a spider Spi :=
Sp(Ti,•, Si) on each interval. The set of heads Si is called the head set of Γ. Note
that the head set is always a chain S• ∈ Cd+1. For each i, let mi = |Spi |, and Li and
Ri be the set of left and right legs respectively. The vector m := (m1, · · · ,mk) is the
length vector of Γ. The size of Γ is |Γ| :=

∑
mi, the size of its vertex set. An ordered

spider diagram Γ is a spider diagram in which additionally we have a natural edge
labeling ωi on each spider Spi.

A pair (S•,m) is admissible if S• ∈ Ckd+1, m ∈ Zk. Such a pair is d-admissible if
furthermore

∑k
i=1mi 6 d. Let F(S•,m) (respectively O(S•,m)) be the set of spider

diagrams (respectively ordered spider diagrams) with head set S• and length vector m.

Remark 3.7.Notice that if (S•,m) is not d-admissible, that is,
∑k
i=1mi > d, then

F(S•,m) and O(S•,m) are empty.
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Notation 3.8. In a spider diagram Γ the legs are now triply indexed: the element
TPi,j with P ∈ {L,R} is the j-th smallest/largest on the side L/R of the i-th spider
Spi.

We also let li be the number of left legs of Spi and ri be the number of right legs of
Spi . Hence, TLi,li is the largest vertex among all left legs and TRi,ri

is the largest vertex
among all right legs.

Example 3.9. In Figure 4 we show an ordered spider diagram of two spiders where
vertices are labeled according to Notation 3.8. This diagram has size 10 and length
vector (6, 4). We have also included a natural edge labeling ω.

TL1,1 TL1,2 S1 TR1,3 TR1,2 TR1,1 TL2,1 TL2,2 S2 TR2,1

1

3 5

4
2

1

3 2
1 2 3 4 5 6 7 8 9 1

Figure 4. A spider diagram of two spiders together with a natural
edge labeling.

For our formulas in the next section we need to define the weight of a spider
diagram.

Definition 3.10. Let T• ∈ Cd+1 be a chain and Γ a spider diagram on T• with k
spiders. We define the internal weight of a single spider Spi as

(12) intwt(Spi) :=

∏
j>1

|TLi,j − TLi,j−1|
|Si − TLi,j−1|

∏
j>1

|TRi,j−1 − TRi,j |
|TRi,j−1 − Si|

 ,

(note that the internal weights of a spider is 1) and the boundary weight of the
diagram Γ as

(13) bdwt(Γ) :=
|TL1,1 −∅|
|S1 −∅|

(
k∏
i=2

|TLi,1 − TRi−1,1|
|Si − Si−1|

)
|[d+ 1]− TRk,1|
|[d+ 1]− Sk|

.

The weight of a spider diagram Γ is defined as

wt(Γ) := bdwt(Γ)
k∏
i=1

intwt(Spi).

Example 3.11. The weight of the spider diagram Γ depicted in Figure 4 is(
|TL1,1 −∅|
|S1 −∅|

·
|TL2,1 − TR1,1|
|S2 − S1|

·
|[d+ 1]− TR2,1|
|[d+ 1]− S2|

)
︸ ︷︷ ︸

bdwt(Γ)(
|TL1,2 − TL1,1|
|S1 − TL1,1|

)(
|TR1,1 − TR1,2|
|TR1,1 − S1|

·
|TR1,2 − TR1,3|
|TR1,2 − S1|

)
︸ ︷︷ ︸

intwt(Sp1)

×

(
|TL2,2 − TL2,1|
|S2 − TL2,1|

)
· 1︸ ︷︷ ︸

intwt(Sp2)

.
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4. Computations in the Chow ring Ad

The main goal of this section is to express any element in Ad as a sum of square-free
monomials. We start by treating squares.

Lemma 4.1. Let S ∈ Bd+1. Choose a ∈ S, b /∈ S then we have the following equality
in the ring Ad:

(14) x2
S = −

∑
T⊂S
a∈T

xTxS −
∑
S⊂T
b/∈T

xSxT .

Proof. Using the relation `a − `b ∈ I2, we get xS(`a − `b) = 0 in Ad. Hence,

(15) xS

(∑
a∈T

xT −
∑
b∈T

xT

)
= 0.

The relations in I1 imply that xSxT = 0 for any T that is neither T ⊆ S nor S ⊆ T .
Thus we expand the above equation to get

(16) x2
S +

∑
T⊂S
a∈T

xTxS +
∑
S⊂T
a∈T

xSxT −
∑
T⊂S
b∈T

xTxS −
∑
S⊂T
b∈T

xSxT = 0.

The fourth term is zero since the condition is vacuous. In the third term notice that
the condition a ∈ T is redundant. After canceling terms from the second and fourth
sums, everything reduces to

x2
S +

∑
T⊂S
a∈T

xTxS +
∑
S⊂T
b/∈T

xSxT = 0.

By solving for x2
S we get Equation (14). �

The square-free expression obtained in Lemma 4.1 is not symmetric. To adjust
this, we average over all possibilities.

Lemma 4.2. Let S1, · · · , Sk be a k-chain in Bd+1 and Sl a set in the chain. We have
the following equality in Ad:

xS1 · · ·xSl−1x
2
Sl
xSl+1 · · ·xSk

=−
∑

Sl−1⊂T⊂Sl

|T − Sl−1|
|Sl − Sl−1|

xS1 · · ·xSl−1xTxSl
xSl+1 · · ·xSk

(17)

−
∑

Sl⊂T⊂Sl+1

|Sl+1 − T |
|Sl+1 − Sl|

xS1 · · ·xSl
xTxSl+1xSl+2 · · ·xSk

.

By convention, we let S0 = ∅ and Sk+1 = [d+ 1].
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Proof. We expand x2
Sl

as in Lemma 4.1 using all possible pairs (a, b) ∈ (Sl − Sl−1)×
(Sl+1 − Sl) and take the average. We obtain

xS1 · · ·xSl−1x
2
Sl
xSl+1 · · ·xSk

=− 1
|Sl − Sl−1| · |Sl+1 − Sl|

 ∑
a∈Sl−Sl−1
b∈Sl+1−Sl

∑
Sl−1⊂T⊂Sl

a∈T

xS1 · · ·xSl−1xTxSl
xSl+1 · · ·xSk



− 1
|Sl − Sl−1| · |Sl+1 − Sl|

 ∑
a∈Sl−Sl−1
b∈Sl+1−Sl

∑
Sl⊂T⊂Sl+1

b/∈T

xS1 · · ·xSl
xTxSl+1xSl+2 · · ·xSk

.
For the first term in the above expression, one sees that a set T contributes to the
summation if and only if Sl−1 ⊂ T ⊂ Sl, and for any T such that Sl−1 ⊂ T ⊂ Sl, it
appears if and only if a ∈ T − Sl−1 which can be paired with any b ∈ Sl+1 − Sl, and
thus it appears exactly |T −Sl−1| · |Sl+1−Sl| times. Hence, the first term above agrees
with the first term on the right hand side of (17). Similarly, we can show that the
second term above coincides with the second term on the right hand side of (17). �

Remark 4.3. The two sums on the right hand side of Equation (17) can be over empty
index sets simultaneously, in which case the monomial on the left hand side of (17) is
equal to zero. In particular, notice that this happens when (Sl − Sl−1)× (Sl+1 − Sl)
is a singleton.

Repeated use of this lemma allows us to expand any monomial in Ad as a sum of
squarefree monomials. First we need more notation.

Definition 4.4. For a spider diagram Γ we define sgn(Γ) := (−1)|Γ|−k. The number
|Γ| − k is equal to the total number of legs. Also we let xΓ := xT• , where T• is the
vertex set of Γ.

Proposition 4.5. Let S• ∈ Ckd+1 be a k-chain and m = (m1, · · · ,mk) a vector of
positive integers. Recall from Definition 3.6 that O(S•,m) is the set of ordered spider
diagrams where each spider Spi has head Si, size mi, and an edge labeling ωi. Then
we have the following equality in the ring Ad:

(18) xm
S•

:=
k∏
i=1

xmi

Si
=

∑
Γ∈O(S•,m)

sgn(Γ) wt(Γ)xΓ.

Proof. We prove by induction on |m| =
∑
mi. The base case is |m| = k which

happens exactly when mi = 1 for all i. In this case we have the square-free monomial∏k
i=1 xSi and O(S•,m) consists of a single diagram Γ0 with k trivial spiders. One

sees that sgn(Γ0) = 1 and wt(Γ0) = 1 so Equation (18) is trivially true.
We proceed to the induction step. Suppose that N > k is a positive integer, and

for any m = (m1, . . . ,mk) with |m| =
∑
mi < N, we have the equality (18) holds in

Ad.
Now we assume that m = (m1, . . . ,mk) is a vector of positive integers satisfying

|m| =
∑
mi = N. Let j = max{i : mi > 1} and m′ := (m1, · · · ,mj − 1, · · · ). By the

induction hypothesis, we have the following equality in Ad :

(19) x−1
Sj

k∏
i=1

xmi

Si
=

∑
Γ′∈O(S•,m′)

sgn(Γ′) wt(Γ′)xΓ′ .
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We see that in order to show that (18) holds for m, it is enough to show

(20)
∑

Γ′∈O(S•,m′)

sgn(Γ′) wt(Γ′)xSj
xΓ′ =

∑
Γ∈O(S•,m)

sgn(Γ) wt(Γ)xΓ.

For the rest of the proof, we will use notations developed in Section 3, in particular
recall those given in Notation 3.8. In order to prove (20), we construct a pruning map
Prune from O(S•,m) to O(S•,m′) in the following way: Let Γ ∈ O(S•,m), where
Spj is the j-th spider in Γ together with a natural edge labeling ωj . Suppose T is the
leg in Spj such that ωj ({Sj , T}) has the largest edge label in Spj . (Note that T is
either the closest leg/vertex TLj,lj on the left of Sj or the closest leg/vertex TRj,rj

on
the right of Sj .) Then we define Prune(Γ) to be the ordered spider diagram obtained
from Γ by removing T . For example, if Γ is the ordered spider diagram in Figure 4,
then Prune(Γ) is the one depicted in Figure 5.

TL1,1 TL1,2 S1 TR1,3 TR1,2 TR1,1 TL2,1 S2 TR2,1

1

3 5

4
2

1

2
1 2 3 4 5 6 7 9 1

Figure 5. An example of the pruning function.

As sets we have O(S•,m) =
∐

Γ′∈O(S•,m′) Prune−1(Γ′), so we can rewrite the right
hand side of (20) as∑
Γ′∈O(S•,m′)

∑
Γ∈Prune−1(Γ′)

sgn(Γ) wt(Γ)xΓ or
∑

Γ′∈O(S•,m′)

∑
Γ∈O(S•,m)
Prune(Γ)=Γ′

sgn(Γ) wt(Γ)xΓ.

Hence, we can reduce the problem of proving (20) to proving that for every Γ′ ∈
O(S•,m′),

(21) sgn(Γ′) wt(Γ′)xSjxΓ′ =
∑

Γ∈O(S•,m)
Prune(Γ)=Γ′

sgn(Γ) wt(Γ)xΓ.

We now apply Lemma 4.2 to rewrite xSj
xΓ′ . One notices that the two summations

on the right side of (17) correspond to reversing the “pruning” operation by adding
a left or a right leg back. Hence,

(22) xSj
· xΓ′ = −

∑
Γ∈O(S•,m)
Prune(Γ)=Γ′

cj(Γ)xΓ,

where

cj(Γ) :=


|TLj,lj − T

L
j,lj−1|

|Sj − TLj,lj−1|
, if the left leg TLj,li is removed when pruning Γ;

|TRj,rj−1 − TRj,rj
|

|TRj,rj−1 − Sj |
, if the right leg TRj,ri

is removed when pruning Γ.

Also, if lj = 1 we let TLj,lj−1 = TRj−1,1, and if rj = 1 we let TRj,rj−1 := TLj+1,1.

(Note that if j = 1, we consider TRj−1,1 = S0 = ∅; likewise, if j = k, we consider
TLk+1,1 = Sk+1 = [d+ 1].)
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Plugging (22) into the left hand side of (21), we obtain

(23) sgn(Γ′) wt(Γ′)xSj
xΓ′ =

∑
Γ∈O(S•,m)
Prune(Γ)=Γ′

− sgn(Γ′) wt(Γ′)cj(Γ)xΓ.

Comparing it with the right hand side of (21) and observing that − sgn(Γ′) = sgn(Γ)
when Γ′ = Prune(Γ), one sees that the proof is completed if we can prove that for
any Γ ∈ O(S•,m), if Γ′ = Prune(Γ), then
(24) wt(Γ′)cj(Γ) = wt(Γ).

Suppose T is the leg that is removed when we “prune” Γ to obtain Γ′. We will only
consider the case when T = TLj,lj is a left leg of Spj . (The case when T is a right left
of Spj can be proved analogously.) It is straightforward to check from the definitions
of weights that cj(Γ′) wt(Γ′) = wt(Γ) when lj > 1, i.e. TLj,lj is not the only left leg
of Spj . Indeed, in this case the boundary weights of Γ and Γ′ are the same and the
internal weights of Γ and Γ′ differ exactly by a factor cj(Γ) so (24) holds.

Suppose lj = 1. Thus TLj,1 is the only left leg of Spj (which is the j-th spider in
Γ), and the j-th spider in Γ′ has no left legs. Then the internal weights of Γ and Γ′
are the same, whereas the boundary weights are different. Comparing bdwt(Γ′) and
bdwt(Γ), we see all but one factors in their expression are the same. The different
factors bdwt(Γ′) and bdwt(Γ) are

|Sj − TRj−1,1|
|Sj − Sj−1|

and
|TLj,1 − TRj−1,1|
|Sj − Sj−1|

,

respectively. Since

cj(Γ) =
|TLj,lj − T

L
j,lj−1|

|Sj − TLj,lj−1|
=
|TLj,1 − TRj−1,1|
|Sj − TRj−1,1|

.

we conclude that bdwt(Γ′)cj(Γ) = bdwt(Γ). Therefore, (24) follows, completing the
proof. �

Corollary 4.6.Monomials in Rd of degree larger than d vanish in Ad.

Proof. Because of the relations in the ideal I1, we only need to consider monomials
of the form xm

S•
where (S•,m) is an admissible pair. Applying Equation (18) we get

an empty sum on the right if
∑
imi > d, hence a monomial xm

S•
is nonzero only if

(S•,m) is d-admissible. �

The proof of Proposition 4.5 prunes one leg from a spider diagram at the time
until we obtain a spider diagram consisting only of trivial spiders. The natural edge
labelings are used to keep track of the order in which we remove the legs. However,
one notices that if Γ1,Γ2 ∈ O(S•,m) are on the same spider diagram Γ with two
different natural edge labelings, then

sgn(Γ1) wt(Γ1)xΓ1 = sgn(Γ) wt(Γ)xΓ = sgn(Γ2) wt(Γ2)xΓ2 .

We have the following immediate consequence to Proposition 4.5:

Corollary 4.7. Let S• ∈ Ckd+1 be a k-chain and m = (m1, · · · ,mk) a vector of
positive integers. Recall from Definition 3.6 that F(S•,m) is the set of unordered
spider diagrams where each spider Spi has head Si and size mi. Then we have the
following equality in the ring Ad:

(25) xm
S• =

∑
Γ∈F(S•,m)

Binom(Γ) sgn(Γ) wt(Γ)xΓ,
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where

Binom(Γ) :=
k∏
i=1

(
|Spi | − 1
|Li|, |Ri|

)
counts the number of natural edge labelings on Γ.

5. Formulas for the Berline–Vergne function
With Corollary 4.7 in hand, we can now write down square-free expressions of any
element inAd, in particular of the Todd class. First we need one more piece of notation.
Any monomial u ∈ Rd that is non-zero in Ad is of the form xm

S•
for some d-admissible

pair (S•,m).

Definition 5.1. Expand the Todd class by plugging Equation (6) into Equation (5)
to obtain:

(26) Td(Xd) =
∑

(S•,m)

Tdcoeff(S•,m) · xm
S• , Tdcoeff(S•,m) ∈ Q,

where the summation is over all d-admissible pairs (S•,m). For Γ ∈ F(S•,m) define
Tdcoeff(Γ) := Tdcoeff(S•,m).

Example 5.2. Let d > 7, S• = (S1, S2, S3) be any chain of length three and m =
(2, 4, 1). The monomial x2

S1
x4
S2
x1
S3

appears in Equation (6) with coefficient(
1
12

)(
− 1

720

)(
1
2

)
= − 1

17280 ,

hence Tdcoeff(S•, (2, 4, 1)) = −1/17280.

Remark 5.3.Notice that by definition Tdcoeff only depends on the length and entries
of m.

Now we can present our main result.

Theorem 5.4. Let Xd be the permutohedral variety. Its Todd class has the following
representation in terms of toric invariant cycles:

(27) Td(Xd) =
∑

T•∈Cd+1

α(T•)[V (σT•)],

with coefficients α(T•) given by following explicit combinatorial formula

(28) α(T•) =
∑

Γ∈D(T•)

Tdcoeff(Γ) Binom(Γ) sgn(Γ) wt(Γ),

where D(T•) is the set of all spider diagrams on T•. Furthermore, we have that
α(T•) = αbv(T•), where αbv(·) is the Berline–Vergne function.

Proof. We start with the expansion in Equation (26). Then we expand each xm
S•

by
using Corollary 4.7. We obtain

(29) Td(Xd) =
∑

Γ
Tdcoeff(Γ) Binom(Γ) sgn(Γ) wt(Γ)xΓ,

where the sum is over all possible spider diagrams, to be more precise over
⋃
F(S•,m)

where the union is over all d-admissible pairs. We can rearrange the sum as follows

(30) Td(Xd) =
∑

T•∈Cd+1

xT•

 ∑
Γ∈D(T•)

Tdcoeff(Γ) Binom(Γ) sgn(Γ) wt(Γ)

 .
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We proceed to show that the expression obtained in (30) is symmetric. By Remark 2.10
it is enough to prove that two different chains with the same size vector have the same
coefficient.

Consider two chains T• and T ′• with same size vector and fix a bijection φ on [d+1]
that simultaneously bijects Ti with T ′i for all relevant i. The function φ also induces
a natural bijection (which abusing notation we call φ also) φ : D(T•) → D(T ′•). By
Remark 5.3 Tdcoeff(Γ) = Tdcoeff(φ(Γ)). Also sgn(Γ) = sgn(φ(Γ)) since they both
have the same number of legs. Finally (Binom(Γ),wt(Γ)) = (Binom(φ(Γ)),wt(φ(Γ)))
since by definition Binom and wt depend only on the sizes involved.

We have thus proved that (30) is a symmetric square-free expression of Td(Xd). By
Theorem 2.11 there is only one such expression, the one given by the Berline–Vergne
function, hence we obtain the last part of the theorem. �

To end this section we count the number of terms appearing in Equation (28).

Proposition 5.5. The number of terms in Equation (28) is exponential.

Proof. Let h(n) be the number of spider diagrams Γ on [n] such that |Sp | ∈
{1, 2, 4, 6, · · · } for each Sp ∈ Γ. Its generating function is

(31)
∞∑
n=1

h(n)zn =
∞∑
k=1

(
z + 2z2 + 4z4 + 6z6 + · · ·

)k
.

Observe that z+ 2z2 + 4z4 + 6z6 + · · · = z+ 1
2

(
z

(1−z)2 + (−z)
(1−(−z)2)

)
= z(z4−2z2+2z+1)

(z2−1)2 .
Plugging into each term in the right of (31) and using the geometric series formula
we obtain

(32)
∞∑

n=z1
h(n)zn = − z(z4 − 2z2 + 2z + 1)

z5 − z4 − 2z3 + 4z2 + z − 1 = z+3z2+5z3+15z4+29z5+· · · .

The conclusion follows since the coefficients of a rational function are asymptotically
the powers of the largest root of the denominator [20, Theorem 4.1.1], which in this
case is ≈ 1.602. �

6. Examples in low (co)dimension
In this section we explicitly compute Equation (28) for chains of small length.

Proposition 6.1 (Codimension 2 cones.). Let (T1, T2) ∈ C2
d+1 be an arbitrary 2-chain,

then

(33) αbv(T1, T2) = 1
4 −

1
12

(
d+ 1− t2
d+ 1− t1

+ t1
t2

)
,

where ti := |Ti| for i ∈ {1, 2}.

Proof. We use Theorem 5.4 to compute αbv(T1, T2). We apply Equation (28) to T• =
(T1, T2). The set D(T•) of all possible spider diagrams is shown in Figure 6. The
leftmost diagram, Γ1, consists of trivial spiders. The only contribution of this diagram
to the right hand side of (28) comes from Tdcoeff(Γ1), since the other statistics are
1. For the other two diagrams, Γ2 and Γ3, we have Tdcoeff(Γi) = 1/12, sgn(Γi) =
−1 (notice that there is only one leg), Binom(Γi) = 1 for i ∈ {2, 3}. Finally the
corresponding weights for Γ2,Γ3 are written in Figure 6. Formula (33) then follows.

�

Formula (33) (and a similar one for three dimensional cones) was already obtained
in [3] relying on some general formulas in the Berline–Vergne constructions. Since
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1
4

T1 T2

Γ1

− 1
12 ·

d+1−t2
d+1−t1

T1 T2

Γ2

− 1
12 ·

t1
t2

T1 T2

Γ3

Figure 6. All spider diagrams on two vertices with the correspond-
ing contribution to Equation (28).

there is no simple closed formula for their construction for unimodular cones of di-
mension larger than three, we were not able to obtain more formulas in [3] using
the same approach. However, by applying Theorem 5.4, we obtain in the proposition
below a formula for the αbv-value of any arbitrary 4-dimensional braid cone, which
could not be obtained with the previously known tools.

Proposition 6.2. Let (T1, T2, T3, T4) ∈ C4
d+1 be an arbitrary 4-chain, then

αbv(T1, T2, T3, T4) = 1
16−

1
48

(
t3− t2
t3− t1

+ t1
t2

+ t4− t3
t4− t2

+ t2− t1
t3− t1

+ d+1− t4
d+1− t3

+ t3− t2
t4− t2

)
+ 1

144

(
t3− t2
t3− t1

· d+1− t4
d+1− t3

+ t3− t2
t4− t1

+ t1
t2
· d+1− t4
d+1− t3

+ t1
t2
· t3− t2
t4− t2

)
+ 1

720

(
t3 − t2
t3 − t1

· t4 − t3
t4 − t1

· d+ 1− t4
d+ 1− t1

+ 3 t1
t2
· t4 − t3
t4 − t2

· d+ 1− t4
d+ 1− t2

)
+ 1

720

(
3 t1
t2
· t2 − t1
t3 − t1

· d+ 1− t4
d+ 1− t3

+ t1
t2
· t2 − t1
t4 − t2

· t3 − t2
t4 − t2

)
where ti := |Ti| for i ∈ {1, 2, 3, 4}.

Proof. We use Theorem 5.4 to compute αbv(T1, T2, T3, T4). We apply Equation (28)
to T• = (T1, T2, T3, T4). The set D(T•) of all possible spider diagrams is shown in
Figure 7. Notice that only for two diagrams Γ we have a nontrivial Binom(Γ) and in
those two cases Binom(Γ) = 3. Since the coefficients for (6) of odd powers bigger than
one are all zero, we do not need to consider spider diagrams with spiders of odd sizes
(other than trivial spiders of size one) since Tdcoeff is zero in that case. �

Example 6.3.Using sage [19] we found negative values for αbvd in four dimen-
sional cones in Σd. The smallest d for which this happens is d + 1 = 25, where
αbv24(T1, T2, T3, T4) = −19/1684800, for any four chain with |T1| = 10, |T2| = 12, |T3| =
13, |T4| = 15.

Example 6.3 disproves Conjecture 1.2. Furthermore, it also enables us to prove
Theorem 1.3, which we restate here.

Theorem 6.4. The Todd class of the permutohedral variety Xd is not effective for
d > 24. That is, there is no way of expressing it as a nonnegative combination of
cycles.

Proof. It is well known that in the Chow ring of a toric variety arbitrary cycles can
be expressed as positive combinations of torus invariant cycles (see Lemma A.1), so
it suffices to show that there is no positive expansion using torus invariant cycles,
i.e. that there is no expression of the form (2) with all coefficients positive.

By Proposition 2.12, if there is any positive square-free expression for the Todd
class of Xd, then αbv(·) is positive for all chains T• in Cd+1, but Example 6.3 shows
that this is false for d = 24. Moreover, Remark 3.6 in [3] implies that there are negative
values for all d > 24. �
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1
16

− 1
48 ·

t3−t2
t3−t1

− 1
48 ·

t1
t2

− 1
48 ·

t4−t3
t4−t2

− 1
48 ·

t2−t1
t3−t1

− 1
48 ·

d+1−t4
d+1−t3

− 1
48 ·

t3−t2
t4−t2

1
144 ·

t3−t2
t3−t1 ·

d+1−t4
d+1−t3

1
144 ·

t3−t2
t4−t1

1
144 ·

t1
t2
· d+1−t4
d+1−t3

1
144 ·

t1
t2
· t3−t2t4−t2

1
720 ·

t3−t2
t3−t1 ·

t4−t3
t4−t1 ·

d+1−t4
d+1−t1

1
7203 t1t2 ·

t4−t3
t4−t2 ·

d+1−t4
d+1−t2

1
7203 t1t2 ·

t2−t1
t3−t1 ·

d+1−t4
d+1−t3

1
720 ·

t1
t2
· t2−t1t4−t2 ·

t3−t2
t4−t2

Figure 7. All spider diagrams on four vertices with the correspond-
ing contribution to Equation (28).

7. Positivity for linear coefficients
As mentioned in the introduction for every lattice polytope P the function Lat(tP ), t ∈
N is a polynomial in t of dimension d = dimP , i.e. Lat(tP ) = a0 + a1t

1 + a2t
2 + · · ·+

adt
d, ai ∈ Q. This is the Ehrhart polynomial of P and will be denoted by Lat(P, t). We

also define Lati(P ) := [ti] Lat(P, t), the coefficient of ti in the Ehrhart polynomial.

7.1. Positivity of Berline–Vergne function. In this section we take a different
argument to show that the αbv values are indeed positive on codimension one cones
of the braid fan and thus the main Conjecture 1.1 is true for Lat1. The arguments in
this section are independent of the rest of the paper. We make use of special polytopes
called hypersimplices.

Definition 7.1. The hypersimplex ∆k,d+1 is defined as

∆k,d+1 = Perm(0, · · · , 0︸ ︷︷ ︸
d+1−k

, 1, · · · , 1︸ ︷︷ ︸
k

).

Proposition 7.2. If Lat1(∆k,d+1) > 0 for all 1 6 k 6 n then αbv is positive on every
codimension one cone, thus Lat1(P ) > 0 for any generalized permutohedra.

Proof. This is a consequence of [3, Theorem 5.5]. In the case of an edge the mixed
valuation is equal to the valuation itself, the rest of the formula is positive hence
the first part follows. The second part is a consequence of the reduction theorem [3,
Theorem 3.5] which shows how the positivity of αbv for all codimension k cones in
Σd implies positivity of Latk for all generalized permutohedra. �

The following result is standard [21, Chapter 4, Ex. 62].

Proposition 7.3. The Ehrhart polynomial for ∆k,d+1 is given by

(34) Lat(∆k,d+1, t) = [zkt]
(

1− zt+1

1− z

)d+1

.
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This formula can be turned into the more explicit

(35) Lat(∆k,d+1, t) =
k∑
i=0

(−1)i
(
d+ 1
i

)(
d+ t(k − i)− i

d

)
.

Lemma 7.4. For any k 6 d, Lat1(∆k,d+1) > 0.

Proof. We are going to keep track of the linear term on each summand on Equa-
tion (35). There are two cases.

For i = 0 we get (−1)0(d+1
0
)(
d+tk
d

)
so

[t1]
(
d+ tk

d

)
= [t1] (tk + d) · · · (tk + 1)

d! =
d∑
i=1

k

i
.

For i > 0 we get (−1)i
(
d+1
i

)(
d+t(k−i)−i

d

)
so we first look for the linear term of

d∏
j=1

(t(k − i)− i+ j) =

i−1∏
j=1

(t(k − i)− i+ j)

 (t(k − i))

 d∏
j=i+1

(t(k − i)− i+ j)

 ,

which is equal to (i− 1)!(−1)i−1(k − i)(d− i)!. Now we can compute

[t1](−1)i
(
d+ 1
i

)(
d+ t(k − i)− i

d

)
= (−1)i

(
d+ 1
i

)
· 1
d! (i− 1)!(−1)i−1(k − i)(d− i)!

=− (d+ 1)(k − i)
i(d+ 1− i) .

Putting these equations together we get that the linear term in (35) is

[t1]
k∑
i=0

(−1)i
(
d+1
i

)(
d+ t(k− i)− i

d

)
=

k∑
i=0

[t1]
(

(−1)i
(
d+ 1
i

)(
d+ t(k − i)− i

d

))

=
n∑
i=1

k

i
−

k∑
i=1

(d+ 1)(k − i)
i(d+ 1− i)

=
k∑
i=1

(
k

i
− (d+ 1)(k − i)

i(d+ 1− i)

)
+

n∑
i=k+1

k

i

> 0,

because each parenthesis is positive since k

k − i
>

d+ 1
d+ 1− i for d+ 1 > k. �

Theorem 7.5. Conjecture 1.1 is true for the linear terms. More precisely, Lat1(P ) > 0
for every lattice generalized permutohedron P .

Proof. It follows from Proposition 7.2 and Lemma 7.4. �

In [15] the authors use their results in Minkowski linear functionals to give an
alternative proof of Theorem 7.5.
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Appendix A. Algebraic cycles in toric varieties
We include a sketch of the following lemma, since it is a crucial reduction in the proof
of Theorem 6.4 and we could not find a reference in the literature.

Lemma A.1. Let X be a smooth projective toric variety of dimension n over an alge-
braically closed field k. Then arbitrary algebraic cycles of X are positive combination
of the torus invariant cycles.

Sketch of proof: Let T ⊂ X be its dense torus and fix an isomorphism T ∼= T1× · · ·×
Tn, where each Ti is isomorphic to k∗.

Let Z be a general cycle. We can assume that Z is an irreducible subvariety. Taking
the flat limit (See [9, Section II.3.4]) of Z over T1 ∼= k∗ we obtain an subvariety
Z1 whose associated algebraic cycle is effective and rationally equivalent to Z, and
furthermore each irreducible component of Z1 is T1-invariant. For every irreducible
component of Z1 we now take the flat limit over T2, taking the union we obtain an
effective cycle Z2 rationally equivalent to Z1 that is T1- and T2-invariant. Continuing
in this way after n iterations we get at an effective cycle Zn rationally equivalent to
each Zi, i < n, and to the original Z, that is Ti-invariant for every i. Then Zn is
rationally equivalent to Z and T -invariant as we wanted to show. �

The intuition is that for each tori Ti ∼= k∗ we have an action on any subvariety
Z ⊂ X, so there exist subvarieties t·Z ⊂ X for any t ∈ k∗ (which are all isomorphic to
Z) and we take the limit as t approaches 0 to obtain a rationally equivalent subvariety
that is now k∗- invariant.

Example A.2. Let X = P3
k be a toric variety with torus T = {(t1 : t2 : t3 : 1) :

(t1, t2, t3) ∈ (k∗)3} acting coordinate-wise. Consider Z = V (xy− z2−w2, xw− yz) ⊂
P3

k to be the surface given by the zero locus of system of equations

xy = z2 + w2,

xw = yz.

One can check that Z is irreducible. We compute Z1, Z2 and Z3 as in the proof of
Lemma A.1.

(1) We have that T1 := {(t1 : 1 : 1 : 1) : t1 ∈ k∗} acts by scaling the first
coordinate. For a fixed nonzero scalar t ∈ k∗, the subvariety (t : 1 : 1 : 1) · Z
is equal to V (xy − tz2 − tw2, xw − tyz). Taking the flat limit as t → 0, we
obtain

Z1 := V (xy, xw, y2z − z2w − w3).
This subvariety decomposes as Z1 = U ∪W , where U = V (y, w) and W =
V (x, y2z − z2w − w3). Notice that both components are T1-invariant. In the
Chow ring we get

[Z1] = [U ] + [W ].
The cycle [Z1] is rationally equivalent to [Z].

(2) Next we have T2 := {(1 : t2 : 1 : 1) : t2 ∈ k∗} and it acts by scaling the second
coordinate.

For a fixed nonzero scalar t ∈ k∗, the subvariety (1 : t : 1 : 1) ·W is equal to
V (x, y2z− t2z2w− t2w3). Taking the flat limit as t→ 0 we obtain V (x, y2z).
This subvariety has two components, U ′ = V (x, y) and U ′′ = V (x, z) where
U ′ has multiplicity two. Hence, in the Chow ring we have

[W ] = [V (x, y2z)] = 2[U ′] + [U ′′].
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The component U is already T2-invariant, so it is equal to its flat limit over
T2. Collecting terms from both components we get Z2 := V (x, y2z)∪ V (y, w)
which can be represented in the Chow ring as

[Z2] = [U ] + 2[U ′] + [U ′′].
The algebraic cycle [Z2] is rationally equivalent to [Z1] and hence to [Z].

(3) Finally we have T3 := {(1 : 1 : t3 : 1) : t3 ∈ k∗} acting by scaling the third
coordinate. Since every irreducible component of Z2 is already T3-invariant,
each one is equal to its flat limit over T3, so nothing changes in this step and
Z3 = Z2 so in the Chow ring

[Z3] := [U ] + 2[U ′] + [U ′′].
We obtained the expression [V (y, w)] + 2[V (x, y)] + [V (x, z)] in the Chow ring A(P3

k)
which is a positive combination of three torus invariant cycles and it is rationally
equivalent to [Z] as we wanted.
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