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Higher discrete homotopy groups of graphs

Bob Lutz

Abstract This paper studies a discrete homotopy theory for graphs introduced by Barcelo et
al. We prove two main results. First we show that if G is a graph containing no 3- or 4-cycles,
then the nth discrete homotopy group An(G) is trivial for all n > 2. Second we exhibit for each
n > 1 a natural homomorphism ψ : An(G) → Hn(G), where Hn(G) is the nth discrete cubical
singular homology group, and an infinite family of graphs G for which Hn(G) is nontrivial and
ψ is surjective. It follows that for each n > 1 there are graphs G for which An(G) is nontrivial.

1. Introduction
In [6] a new homotopy theory for simplicial complexes was introduced, motivated by
a search for qualitative invariants in the study of complex systems and their dynam-
ics [7]. Given a simplicial complex K, an integer 0 6 q 6 dimK and a simplex σ0 ∈ K
of dimension at least q, one defines a family of groups
(1) Aqn(K,σ0), n > 1,
called the discrete homotopy groups of K. In contrast to classical homotopy theory,
the groups (1) are defined combinatorially.

For n = 1, the group (1) is called the discrete fundamental group, and is well
understood. There is a discrete analog of the Seifert-van Kampen theorem, and in
fact one can construct a cell complex X such that
(2) Aq1(K,σ0) ∼= π1(X,x0),
where π1(X,x0) is the classical fundamental group for some x0 ∈ X. Results like
these have enabled computations of Aq1(K,σ0) for interesting simplicial complexes,
including Coxeter complexes of finite Coxeter groups [8, 9].

For n > 1, the situation is less clear. The basic tools for computing classical higher
homotopy groups, already a difficult problem in general, have no known discrete
analogs. In [1] a higher-dimensional version of (2) was obtained, assuming a “plausi-
ble” cubical analog of the simplicial approximation theorem. Despite its plausibility,
however, the proposed approximation theorem has resisted all attempts at a proof.

This paper studies the problem of computing higher discrete homotopy groups. To
begin, we reduce this problem to considering only graphs instead of general simplicial
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complexes. Given a graph G and a vertex v0 ∈ G, one can define a family of groups
An(G, v0) similarly to (1). For any triple (K, q, σ0) as above, there is a pair (G, v0)
such that

Aqn(K,σ0) ∼= An(G, v0).

Namely, G is the graph whose vertices correspond to the maximal simplices of K of
dimension at least q, and whose edges correspond to the pairs of such simplices sharing
a q-face. We can therefore restrict our attention to the groups An(G, v0) without loss
of generality. In particular, we will consider only connected graphs, so we can ignore
the base vertex and simply write An(G) = An(G, v0).

We prove two main results. The first is motivated by a singular homology the-
ory for graphs, introduced in [3] as a companion to the discrete homotopy theory
described above. The relevant groups Hn(G), called the discrete singular cubical ho-
mology groups of G, are defined combinatorially. It can be shown that if G contains
no 3- or 4-cycles, then Hn(G) is trivial for all n > 2. This was the main result of [5].
We prove a similar theorem for discrete homotopy.

Theorem 1.1. If G contains no 3- or 4-cycles, then An(G) is trivial for all n > 2.

If G contains no 3- or 4-cycles, then it can be shown that A1(G) ∼= π1(G), where we
regard G as both a graph and a topological space. Thus Theorem 1.1 gives a complete
picture of the discrete homotopy of such graphs.

Our second result makes progress toward a discrete Hurewicz theorem. Recall that
the classical Hurewicz theorem [12] describes, for any path-connected topological space
X, a map from πn(X) to the nth homology group of X. If n = 1, then this map is
surjective, and its kernel is the commutator subgroup [π1(X), π1(X)]. If n > 1 and
πk(X) is trivial for all k < n, then the map is an isomorphism.

In [3] it was shown that there is a surjective map

(3) A1(G)→ H1(G)

with kernel [A1(G), A1(G)], giving a discrete Hurewicz theorem in dimension 1. We
generalize the map (3) to higher dimensions and show that it is surjective in a large
number of cases.

Theorem 1.2. For any graph G and positive integer n, there is a natural homomor-
phism

(4) ψ : An(G)→ Hn(G).

For each n > 1, there is an infinite family of graphs G for which ψ is surjective and
Hn(G) is nontrivial.

An important consequence of Theorem 1.2 is the existence of graphs G with non-
trivial groups An(G) for n > 2. To date, no examples of such graphs have appeared
in the literature.

Corollary 1.3. For each n > 1 there are graphs G for which An(G) is nontrivial.

The paper is organized as follows. In Section 2 we give preliminary definitions and
results concerning discrete homotopy theory. In Section 3 we prove Theorem 1.1. In
Section 4 we describe the basic constructions needed for Theorem 1.2. In Section 5
we recall the definition of discrete cubical singular homology groups and prove The-
orem 1.2. In Section 6 we suggest directions for future work.
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2. Basic definitions
2.1. Discrete homotopy. In this paper, the term homotopy refers to the discrete
homotopy theory for graphs introduced in [6]. By a graph we will mean one that is
simple, connected and undirected. We write v ∈ G if v is a vertex of a graph G. If G1
and G2 are graphs, then we write f : G1 → G2 when f is a function from the vertex
set of G1 to the vertex set of G2. If two vertices u, v ∈ G are adjacent or equal, then
we write u ' v.

Definition 2.1. A function f : G1 → G2 is a graph map if f(u) ' f(v) whenever
u ' v.

Let Z denote the graph with vertex set {. . . ,−1, 0, 1, . . .} and an edge ij if and only
if |i− j| = 1. Given an integer m > 0, we write Im for the subgraph of Z induced by
{0, . . . ,m}. We let G1 ×G2 denote the Cartesian product of graphs G1 and G2. The
following notion of homotopy defines an equivalence relation on graph maps G1 → G2.

Definition 2.2. Two graph maps f, g : G1 → G2 are homotopic if for some m there
is a graph map h : G1 × Im → G2 such that h(−, 0) = f and h(−,m) = g. The map
h is a homotopy from f to g. We write hi = h(−, i) for all i, so h0 = f and hm = g.

Let Zn denote the n-fold Cartesian product of Z, whose vertices are n-tuples of
integers. For any r > 0, let Zn>r ⊆ Zn be the subgraph induced by all vertices x ∈ Zn
with |xi| > r for some i.

Given a function f : G1 → G2, and subgraphs H1 ⊆ G1 and H2 ⊆ G2, we write
(5) f : (G1, H1)→ (G2, H2)
if v ∈ H1 implies that f(v) ∈ H2. We will abuse this notation by writing
(6) f : (Zn, ∂Zn)→ (G, v0)
if there exists an r > 0 such that f is a function (Zn,Zn>r)→ (G, v0). The minimum
such r is called the radius of f . We emphasize that ∂Zn is not defined by itself, but
is shorthand for some Zn>r. The following notion of homotopy, more restrictive than
the last, defines an equivalence relation on graph maps (Zn, ∂Zn)→ (G, v0).

Definition 2.3. Two graph maps f, g : (Zn, ∂Zn) → (G, v0), are based homotopic
if there is a homotopy h : Zn × Im → G from f to g such that hi is a graph map
(Zn, ∂Zn)→ (G, v0) for all i. The function h is a based homotopy from f to g.

Definition 2.4. Fix v0 ∈ G. Let An(G) denote the set of based homotopy classes
[f ] of graph maps f : (Zn, ∂Zn) → (G, v0). We endow An(G) with a group structure
as follows. If f and g are graph maps (Zn, ∂Zn) → (G, v0) of radii rf and rg, re-
spectively, then the product [f ] · [g] in An(G) is the based homotopy class of the map
p : (Zn, ∂Zn)→ (G, v0) given by

(7) p(x1, . . . , xn) =
{
f(x1, . . . , xn) if x1 6 rf ,

g(x1 − (rf + rg), x2, . . . , xn) if x1 > rf .

The identity of this operation is the based homotopy class of the constant map Zn →
v0. We call An(G) the nth discrete homotopy group of G.

Remark 2.5. In [6], working in the more general setting of simplicial complexes, it is
shown that the operation in An(G) is well defined, that it satisfies the group axioms,
and that the definition of An(G) is independent of the base vertex v0 when G is
connected. It is also shown that the groups An(G) are abelian for all n > 2. We will
not prove these facts here.
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f g

Figure 1. Illustrating the group operation in A2(G).

Proposition 2.6 ([6, Proposition 5.12]). Let G be a graph, and let XG be the cell
complex obtained by regarding G as a 1-complex and attaching a 2-cell along the
boundary of each 3- and 4-cycle. We have A1(G) ∼= π1(XG).

Example 2.7. Let G be a cycle graph of length m, i.e. G = Zm. If m = 3 or 4,
then XG is simply connected, so A1(G) is trivial by Proposition 2.6. If m > 5, then
XG ≈ S1, so A1(G) ∼= Z. Label the vertices of G in a cycle as v0, . . . , vm−1. An explicit
generator of A1(G) is [f ], where f is given by f(i) = vi if 0 6 i < m and f(i) = v0
otherwise.

More generally, suppose that G contains no 3- or 4-cycles. For each cycle Z of G
we obtain a generator [fZ ] of A1(Z) as above. A set of generators of A1(G), although
not necessarily a minimal one, is the set of [fZ ] for all Z.

Example 2.8. Let K be a finite simplicial 2-complex. Suppose, for any vertices i, j
and k, that if the edges ij, ik and jk all belong to K, then so does the triangle ijk.
Suppose also that the 1-skeleton K1 is a chordal graph, i.e. that if a cycle of G is an
induced subgraph, then it contains exactly 3 vertices. These conditions ensure that
if G = K1, then XG = K in the notation of Proposition 2.6, so A1(G) ∼= π1(K).
For example, if K is the triangulation of the real projective plane in Figure 2, then
A1(G) ∼= Z/2Z. This example generalizes the remark following [6, Proposition 5.12].

Figure 2. A triangulation of the projective plane.

2.2. Contractibility. We define a notion of a contractible graph as a discrete
analog of a contractible topological space. We show that all discrete homotopy groups
of a contractible graph are trivial. This fact will be used in proving the main results.

Definition 2.9. A contraction of G is a homotopy from the identity map G→ G to
a constant map. A graph G is contractible if it admits a contraction.

By our definition, infinite graphs are not contractible. We caution that this notion of
contractibility does not imply that π1(G) is trivial when G is regarded as a topological
space. For instance, the next example shows that the square graph Z4 is contractible,
but π1(Z4) ∼= Z.
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Example 2.10 (Grid graphs). A grid graph is any subgraph L of Zn induced by a
vertex set of the form

{a1, . . . , b1} × · · · × {an, . . . , bn}
for some ai, bi ∈ Z with ai 6 bi for all i. The boundary of L is the subgraph ∂L induced
by all vertices x ∈ L with xi ∈ {ai, bi} for some i. Its complement L◦ = Lr ∂L is the
interior of L. Let m = maxi bi − ai, and let c : L× Im → L be given by

c(v, i) = (max{v1 − i, 0}, . . . ,max{vn − i, 0})
for all (v, i) ∈ L × Im. It is routine to check that c is a homotopy. In particular, c0
is the identity map L → L, and cm is the constant map L → (0, . . . , 0). Hence L is
contractible.

Example 2.11 (Finite trees). Suppose that T is a finite tree, and let v0 ∈ T . For
every v ∈ T r v0, let ρ(v) denote the unique neighbor of v that lies on the simple
path from v0 to v. Set ρ(v0) = v0. This defines a graph map ρ : G→ G. Let m be the
diameter of G. We define a function c : G× Im → G by setting

c(v, i) =
{
v if i = 0
ρ(c(v, i− 1)) if 1 6 i 6 m

for all v ∈ T . It is routine to check that c is a homotopy. In particular, c0 is the
identity map T → T and cm = v0, so G is contractible.

Proposition 2.12. If G is contractible, then An(G) is trivial for all n.

Proof. Let c : G×Im → G be a contraction ofG to a vertex v0, and let f : (Zn, ∂Zn)→
(G, v0) be a graph map of radius r. If c(v0,−) is constant, then there is an obvious
based homotopy Zn × Im → G from f to the constant map v0, given by
(8) (x, i) 7→ c(f(x), i)
for all (x, i) ∈ Zn × Im. However, it need not be the case that c(v0,−) is constant. In
general, the map (8) is a homotopy but not a based homotopy, and hence does not
preserve the equivalence class [f ] ∈ An(G).

To get around this, we define a based homotopy h : Zn × I2m → G from f to v0
in two steps. We first define hi for i = 0, . . . ,m, and then for i = m+ 1, . . . , 2m. Let
Zn6r ⊆ Zn denote the grid graph

Zn6r = {−r, . . . , r} × · · · × {−r, . . . , r}.
Let B0 = ∂Zn6r. For k > 1, let Bk denote the boundary of the grid graph whose
interior is Zn6r ∪ B0 ∪ · · · ∪ Bk−1. Note that {Zn6r, B1, B2, . . .} partitions Zn. Let
h0 = f . For i = 1, . . . ,m let hi(x) = c(f(x), i) for all x ∈ Zn6r, and let hi be constant
on Bk for each k > 1, taking the same value that hi−1 takes on Bk−1. The result is
that hm is constant on Zn6r and each Bk.

0 1 2 3 4i
v

Figure 3. A graph G and a table of values of a contraction c :
G× I4 → G.

For example, let G be the graph on the left side of Figure 3, whose vertices are
labeled by colors. Let c : G× I4 → v0 be the contraction of G with values c(v, i) given
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in the table on the right side of Figure 3, so that m = 4. We can represent a graph
map Z2 → G as an infinite 2-dimensional array of colored dots, where the color of the
dot at x ∈ Z2 corresponds to the value of the map at x. Several such maps appear
in Figure 4, where we have restricted our attention to the domain Z2

65. We assume
that each of these maps takes the color blue everywhere outside the pictured region.
Let f be the map on the top left of Figure 4, and note that r = 2 is the radius of
f . Thus Zn6r is outlined by dashes. The figure illustrates the maps hi from above for
i = 0, . . . , 4.

h0 = f h1 h2

h3 h4 = hm h5

h6 h7 h8

Figure 4. The stages of a homotopy h : Z2 × I8 → G.

Returning to the general case, we define hi for the remaining values of i. Suppose
that i ∈ {m+ 1, . . . , 2m}. Let hi be constant on Zn6r ∪Bm+1 ∪ · · · ∪Bi−m, taking the
same value that hm takes on Bi−m. For k > i−m, let hi equal hm on Bk. Continuing
the example from Figure 3, these maps hi are illustrated in Figure 4 for i = 5, . . . , 8.
In the general case, it is routine to verify that h : Zn× I2m → G is a based homotopy;
in particular, we have h0 = f and h2m = v0. Hence [f ] = 0 in An(G), as desired. �
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If there exists a contraction c of G to v0 such that c(v0,−) is constant, then we
say that G deformation retracts onto v0. In classical topology, there are examples of
contractible spaces that do not deformation retract onto a point (see e.g. [11, Chap-
ter 0, Exercise 6] and [2, Section 2]). However, these examples rely on behaviors that
have no analogs in the discrete theory. We are led to ask the following.

Question 2.13. Suppose that G is contractible. Does G deformation retract onto a
vertex?

3. Triangle- and square-free graphs
We prove Theorem 1.1. If G contains no 3- or 4-cycles, then A1(G) ∼= π1(G) by
Proposition 2.6, so we obtain a complete description of the discrete homotopy groups
in this case.

Definition 3.1. A path in G is a sequence (p1, . . . , pk) of vertices of G such that
pi ' pi+1 for all i = 1, . . . , k − 1.

Proof of Theorem 1.1. Suppose that G contains no 3- or 4-cycles, and set n > 2. Let
f : (Zn, ∂Zn)→ (G, v0) be a graph map of radius r. We show that [f ] = 0 in An(G).
For this proof only, consider G as directed with edge set E, so that if (u, v) ∈ E, then
(v, u) /∈ E. Let FE be the free group on E, whose elements are the identity 1 and
reduced words in the letters e and e−1 for all e ∈ E.

We define a function τ from the set of paths in Zn of length at least 2 to FE as
follows. Given adjacent vertices x ans y of Zn, define an element τ(x, y) of FE by

τ(x, y) =


(f(x), f(y)) if (f(x), f(y)) ∈ E,
(f(y), f(x))−1 if (f(y), f(x)) ∈ E,
1 if f(x) = f(y).

Given a path P = (p0, . . . , p`) in Zn with ` > 1, let
τ(P ) = τ(p0, p1)τ(p1, p2) · · · τ(p`−1, p`).

Let g : Zn → FE be given by
(9) g(x) = τ(P ),
where P is any path in Zn beginning in Zn>r and ending with x. For example, consider
the graph G and the graph map f : (Z2, ∂Z2)→ (G, a) illustrated in Figure 5, where
r = 4 and Zn>r consists of all vertices outside the dashed line. Let x = (0,−2), so
that f(x) = c. The three highlighted paths from Zn>r to x give three ways to compute
g(x), all resulting in the same value. Using the green path, clearly g(x) = (a, b)(b, c).
For the blue path, we have

g(x) = (a, b)(b, c)(c, d)(c, d)−1(b, c)−1(b, c) = (a, b)(b, c).
A similar computation with the red path gives the same result. Returning to the
general case, it is not clear a priori that g is well defined. We will briefly assume
that g is well defined in order to finish the proof. We will then prove our assumption.

Assume that g is well defined, and consider the Cayley graph Γ(FE , E) of FE with
generating set E. Let GE be the subgraph of Γ(FE , E) induced by

{τ(P ) : P is a path in Zn beginning in Zn>r}.
Note that GE is a finite tree, since it is a finite connected subgraph of the tree FE . The
distance between any two vertices u and v in GE is given by |u−1v|, where if w ∈ FE ,
then |w| denotes the length of the reduced word representing w. If x ' y in Zn, then
|g(x)−1g(y)| = |τ(x, y)| 6 1, so g(x) ' g(y) in GE . Hence g : (Zn, ∂Zn)→ (GE , 1) is a
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Figure 5. A graph G = Z5 and a graph map f : (Z2, ∂Z2)→ (G, a).

graph map. Since finite trees are contractible by Example 2.11, Proposition 2.12 gives
a based homotopy h from g to the constant map 1. Every vertex of GE corresponds to
a path in G from v0 to some vertex; denote this vertex by π(v). Clearly π : (GE , 1)→
(G, v0) is a graph map and π ◦ g = f , so the composition π ◦ h is a based homotopy
from f to the constant map v0. Hence [f ] is the identity element in An(G), proving
that An(G) is trivial.

We now prove that g is well defined. Let P = (p0, . . . , p`) be a path in Zn. Suppose
for some 0 < j < ` that the vertices pj−1, pj and pj+1 are three corners of a square in
Zn. Let qj denote the fourth corner of this square. Consider the operation of replacing
the term pj in P with qj . We call this operation a corner swap. Next suppose that
pk−1 = pk+1 for some 0 < k < `. Consider the operation of removing the terms pk−1
and pk from P . We call this operation a backtrack deletion.

We show that τ(P ) is invariant under corner swaps and backtrack deletions. Let
pj and qj be as above. The vertices pj−1, pj , pj+1 and qj form a square in Zn. Since
f is a graph map and G contains no squares, the image of this square under f is a
path in G consisting of at most 3 vertices. The nontrivial possibilities are illustrated
on the right side of Figure 6 up to relabeling. If the top case holds, then by using the
definition of τ , we see that

τ(pj−1, pj , pj+1) = τ(pj , pj+1) = τ(pj , qj , pj+1) = τ(pj−1, qj , pj+1).
If the middle case holds, then

τ(pj−1, pj , pj+1) = 1 = τ(pj−1, qj , pj+1).
If the bottom case holds, then τ(pj−1, pj , pj+1) = τ(pj−1, qj , pj+1) immediately. Hence
in any case, we have

τ(P ) = τ(p0, . . . , pj−1)τ(pj−1, pj , pj+1)τ(pj+1, . . . , p`)
= τ(p0, . . . , pj−1)τ(pj−1, qj , pj+1)τ(pj+1, . . . , p`)
= τ(p0, . . . , pj−1, qj , pj+1, . . . , p`),

proving that τ(P ) is invariant under corner swaps. To prove that τ(P ) is invariant
under backtrack deletions, let pk be as in the previous paragraph, so that pk−1 = pk+1.
We have τ(pk−1, pk, pk+1) = 1, so

τ(P ) = τ(p0, . . . , pk−1)τ(pk−1, pk, pk+1)τ(pk+1, . . . , p`)
= τ(p0, . . . , pk−1)τ(pk+1, . . . , p`)
= τ(p0, . . . , pk−2, pk+1)τ(pk+1, . . . , p`)
= τ(p0, . . . , pk−2, pk+1, . . . , p`),

as desired.
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qj pj−1

pjpj+1
f(qj) = f(pj+1) f(pj−1) = f(pj)

f(pj+1) f(pj) = f(qj) f(pj−1)

f(qj) f(pj−1) = f(pj+1) f(pj)

Figure 6. A square in Zn and three possibilities for its image under f .

If P = (p0, . . . , p`) is a closed path in Zn, then it is not hard to see that P can be
transformed into the path (p0, p1, p0) by a sequence of corner swaps and backtrack
deletions. Since τ(P ) is invariant under these operations, we must have

τ(P ) = τ(p0, p1, p0) = 1

whenever P is closed. Let x ∈ Zn, and let p, q ∈ Zn>r. Let P be a path in Zn from
p to x and Q a path from q to x. Let R be a path from q to p with all vertices
in Zn>r. Since f is constant on Zn>r, we have τ(R) = 1. Write PQ−1R for the path
obtained by concatenating P , the reverse of Q and R. Since PQ−1R is closed, we
have τ(PQ−1R) = 1. Thus

1 = τ(PQ−1R) = τ(P )τ(Q)−1τ(R) = τ(P )τ(Q)−1,

giving τ(P ) = τ(Q). It follows that if a path begins in Zn>r, its value under τ depends
only on its endpoint. In other words, the function g from (9) is well defined. �

4. Cones and suspensions
We define discrete analogs of the cone and suspension functors from classical topology.
This material plays a crucial role in the proof of Theorem 1.2.

Definition 4.1. For s > 1, let CsG denote the graph obtained from G × Is by con-
tracting the subgraph G× {0}. We call CsG a cone on G.

Proposition 4.2. The cone CsG on G is contractible for any s > 1.

Proof. Write CG = CsG. For each v ∈ G and i = 1, . . . , s, there is a corresponding
vertex vi of CG contained in G×{i}. We let v0 denote the lone vertex in the image of
G×{0} in CG. Thus the vertices of CG are indexed by vi for v ∈ G and i = 0, . . . , n,
with the understanding that v0 = w0 for all vertices v and w of G. This labeling
scheme is illustrated in Figure 7. Let h : CG× Is be given by

c(vi, j) =
{
vs−j if i > s− j,
vi if i 6 s− j.

It is routine to check that c is a graph map. In addition, c(−, 0) is the identity map
on CG and c(−, s) = v0. Hence c is a contraction of CG. �

Definition 4.3. For t > 2, let StG be the graph obtained from G× It by contracting
G× {0} and G× {t} to single vertices. We call StG a suspension of G.

Proposition 4.4. If t = 2 or G is contractible, then StG is contractible.
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a

b

c

d

e

a0
a1

b1

c1

d1

e1

a2

b2

c2

d2

e2

Figure 7. The pentagon G = Z5, left; and the cone C2G, right, with
labeling scheme as in the proof of Proposition 4.2.

Proof. We will need a labeling scheme for the vertices of StG. For each v ∈ G and
i = 0, . . . , t, we let vi denote the corresponding vertex in the image of G × {i} in
SG. Thus, for example, u0 = v0 and ut = vt for all u, v ∈ G. This labeling scheme is
illustrated in Figure 8, where the pentagon G = Z5 is labeled as in Figure 7.

a0 a4
a1

b1

c1

d1

e1

a2

b2

c2

d2

e2

a3

b3

c3

d3

e3

Figure 8. The labeling scheme of S4Z5.

Suppose that t = 2, and fix w ∈ G. There is contraction c : StG × I2 → StG of
StG to v0 given by

c(vi, 1) =
{
v0 if i < 2,
w1 if i = 2.

It is routine to verify that c is a graph map.
Suppose now that t is arbitrary and G is contractible. Let C : G × Im → G be a

contraction of G to w ∈ G. Define a function κ : StG× Im+t → StG as follows:

κ(vi, j) =


C(v, j)i if 0 6 j 6 m,
wi+m−j if m < j 6 i+m,

v0 if i+m < j 6 m+ t.

It is routine to verify that C is a contraction of StG to v0. �

5. Toward a discrete Hurewicz theorem
We prove Theorem 5.10 below, which implies Theorem 1.2 from the introduction. We
first recall the definition of discrete singular cubical homology groups of graphs and
define the map ψ : An(G)→ Hn(G) from (4).
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5.1. Discrete singular cubical homology of graphs. Let Inm denote the n-
fold Cartesian product of Im, regarded as a subgraph of Zn. For each n > 0, let Qn
be the graph given by

Qn =
{
I0 if n = 0,
In1 if n > 1.

An n-cube of G is a graph map σ : Qn → G. For 1 6 i 6 n, let D−i σ and D+
i σ be the

(n− 1)-cubes of G given by

D−i σ(a1, . . . , an−1) = σ(a1, . . . , ai−1, 0, ai, . . . , an−1)
D+
i σ(a1, . . . , an−1) = σ(a1, . . . , ai−1, 1, ai, . . . , an−1).

We say that σ is degenerate if D−i σ = D+
i σ for some i. Let Ln(G) denote the free Z-

module generated by all n-cubes of G, and let Dn(G) denote the submodule generated
by the degenerate n-cubes of G. Let

Cn(G) = Ln(G)/Dn(G).

The elements of Cn(G) are called n-chains of G.
Given an n-cube σ of G with n > 1, let

∂n(σ) =
n∑
i=1

(−1)i(D−i σ −D
+
i σ).

Extend linearly to obtain a map ∂n : Cn(G) → Cn−1(G). It is routine to check that
(C•(G), ∂•) is a chain complex. Let

Hn(G) = ker(∂n)/ im(∂n+1).

The group Hn(G) is called the nth discrete singular cubical homology group of G. If
z ∈ ker(∂n), then we write z for the equivalence class of z in Hn(G).

There is a discrete Hurewicz theorem in dimension 1:

Theorem 5.1 ([3, Theorem 4.1]). For any graph G, there is a surjective map

(10) ψ : A1(G)→ H1(G)

whose kernel is [A1(G), A1(G)].

The map ψ can be described explicitly. For this, and for the remainder of this
section, we will represent based homotopy classes [f ] ∈ An(G) as graph maps

(Inm, ∂Inm)→ (G, v0).

This is justified by the following argument. Let f : (Zn, ∂Zn)→ (G, v0) be any graph
map of radius r. Let h : Zn× Ir → G be given by h(x, i) = f(x1− i, . . . , xn− i) for all
(x, i) ∈ Zn × Ir. It is routine to check that h is a based homotopy from h0 = f to a
graph map hr that is constant outside the interior of Inm. By restricting our attention
to the domain Inm, we obtain a map (Inm, ∂Inm)→ (G, v0) that is based homotopic to f .

Following the above, suppose that f : (Im, ∂Im)→ (G, v0) is a graph map, and for
i = 0, . . . ,m − 1 let f i : Q1 → G be given by f i(0) = f(i) and f i(1) = f(i + 1). We
have

ψ([f ]) =
m−1∑
i=0

f i.

For higher dimensions, we conjecture a direct analog of the classical theorem.

Conjecture 5.2. If n > 2 and Ak(G) is trivial for all k < n, then An(G) ∼= Hn(G).
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Example 5.3. Let G1 be a graph containing no 3- or 4-cycles. It follows from Propo-
sition 2.6 and [11, Proposition 1A.2] that A1(G1) is a free group of rank k, where k
is the number of edges of G1 not contained in a given spanning tree. Theorem 5.1
implies that

H1(G1) ∼= Zk,
where Zk denotes a free abelian group of rank k. An explicit set of generators, although
not always minimal one, is the set of ψ([fZ ]) for cycles Z of G1, where the maps fZ
are defined as in Example 2.7. For each n > 1, let Gn+1 = Sn+3Gn. It will follow
from Proposition 5.12(ii) below that Hn(Gn) ∼= Zk for all n > 1. This result originally
appeared in [5].

5.2. A proposed discrete Hurewicz map. We define a map

ψ : An(G)→ Hn(G)

that generalizes (10). Let Im1,...,mn
⊆ Zn be the grid graph given by

(11) Im1,...,mn
= Im1 × · · · × Imn

.

For the following definitions, let L = Im1,...,mn
and L′ = Im1−1,...,mn−1 for some

mi > 1, and let f : L→ G be a graph map.

Definition 5.4. For each x ∈ L′, let fx : Qn → G be the graph map given by

(12) fx(y) = f(x+ y).

The maps fx are called the n-cubes of f . If x + Qn ⊆ V for some V ⊆ Zn, then we
say that fx is contained in V .

Definition 5.5. Define an element φ(f) of Cn(G) by

(13) φ(f) =
∑
x∈L′

fx.

In other words, φ(f) is the sum of all n-cubes of f .

Lemma 5.6. We have the following:
(i) If [f ] ∈ An(G), then φ(f) ∈ ker(∂n),
(ii) If [f ] = [g] in An(G), then φ(f) = φ(g).

Proof. First we prove (i). Let f : (Inm, ∂Inm)→ (G, v0) be a graph map. For i = 1, . . . , n
let Ωi = {x ∈ Inm−1 : xi = 0}. Let εi ∈ Zn be the ith standard basis vector. We have

∂nφ(f) =
n∑
i=1

(−1)i
∑
x∈Ωi

m−1∑
r=0

D−i f
x+rεi −D+

i f
x+rεi .

For each i and each x ∈ Ωi, the innermost sum telescopes, and the leftover portion

D−i f
x −D+

i f
x+(m−1)εi

is 0, since f is constant on ∂Inm. This proves (i).
To prove (ii), let h be a homotopy from f to g, say h : In+1

m → G. By another
telescoping argument, it is not hard to see that

∂n+1φ(h) = (−1)n+1(φ(f)− φ(g))

in Cn(G), proving (ii). �

Definition 5.7. Let ψ : An(G)→ Hn(G) be the function given by ψ([f ]) = φ(f).

Proposition 5.8. The function ψ : An(G)→ Hn(G) is a group homomorphism.
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Proof. If [f ] and [g] are any two elements of An(G), and p is defined as in (7), then
φ(p) − (φ(f) + φ(g)) is a sum of constant n-cubes Qn → v0, which are degenerate.
Hence ψ([f ] · [g]) = ψ([p]) = ψ([f ]) + ψ([g]) in Hn(G), as desired. �

Remark 5.9. If we regard An (resp. Hn) as a functor from the category of connected
simple graphs with graph maps to the category of groups (resp. abelian groups), then
ψ is a natural transformation from An to Hn.

5.3. Surjectivity in a special case. Given any n > 1, we describe an infinite
family of graphs G for which the map ψ : An(G)→ Hn(G) is surjective. From this we
obtain an infinite class of G for which An(G) is nontrivial. Throughout the section,
we let G1 be a graph and

(14) Gn+1 = Sn+3Gn

for all n > 1, where Sn+3 is the suspension functor from Definition 4.3. We think
of Gn+1 as consisting of n + 2 copies of Gn and two extra vertices, called the north
pole and south pole. We now state the main result of this section, which implies
Theorem 1.2.

Theorem 5.10. If G1 contains no 3- or 4-cycles, then the map

ψ : Ak(Gn)→ Hk(Gn)

is surjective for all 1 6 k 6 n.

Corollary 5.11. If G1 contains a cycle but does not contain any 3- or 4-cycles, then
An(Gn) is infinite for all n > 1.

Proof. This follows from Example 5.3, Theorem 5.10 and Proposition 5.12(ii) below.
�

The proof of Theorem 5.10 will proceed in several steps. We will focus on the
case where G1 is a cycle graph of length 5, i.e. G1 = Z5, and then extend the proof
to the general case. Example 5.3 says that if G1 = Z5, then Hn(Gn) ∼= Z for all
n > 1. The following proposition, which applies to any choice of G1, will allow us to
identify an explicit generator of Hn(Gn) when G1 = Z5. Part (ii) first appeared as [5,
Theorem 5.2].

Proposition 5.12. If n > 2, then
(i) Hk(Gn) = 0 for k = 1, . . . , n− 1,
(ii) there is an explicit isomorphism ∆ : Hn(Gn)→ Hn−1(Gn−1).

Proof. We first prove (ii), adapting our argument from the proof of [5, Theorem 5.2].
Let n > 2. Let X (resp. Y ) be the graph obtained from Gn by deleting the north
(resp. south) pole. From the proof of [5, Theorem 5.2] we have the following exact
sequences for k = 1, . . . , n:

(15) Hk(X)⊕Hk(Y )→ Hk(Gn) ∂∗−−→ Hk−1(X ∩ Y )→ Hk−1(X)⊕Hk−1(Y ).

The map ∂∗ can be described explicitly: if z ∈ Hk(Gn), then z = x + y for some
x ∈ Ck(X) and y ∈ Ck(Y ), and ∂∗(z) = ∂k(x). Note that Gn−1 × {1} is a defor-
mation retract of X ∩ Y in the sense of [4, Section 4]. Hence if we identify Gn−1
with Gn−1 × {1}, then the inclusion map ι : Gn−1 → X ∩ Y induces an isomorphism
ι∗ : Hn−1(Gn−1)→ Hn−1(X ∩ Y ). Let

∆ := (ι∗)−1 ◦ ∂∗.
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Proposition 4.2 implies that X and Y are contractible, so Hk(X) = Hk(Y ) = 0 for
all k > 1. The exact sequences (15) now become

0→ Hk(Gn) ∆−−→ Hk−1(Gn−1)→ Hk−1(X)⊕Hk−1(Y ).
For k > 2 we have Hk−1(X)⊕Hk−1(Y ) = 0, so ∆ is an isomorphism, proving (ii).

We now prove (i). If G = (V,E) is any connected graph, then H0(G) ∼= Z has
presentation
(16) H0(G) = 〈v ∈ V | u = v for all u, v ∈ V 〉.

Any x ∈ C1(X) can be written as x =
∑`
i=1mifi for integers mi and graph maps

fi : Q1 → X. We have ∂1(x) =
∑`
i=1mi(fi(1) − fi(0)), so ∂1(x) =

∑`
i=1mi(fi(1) −

fi(1)) = 0 in H0(Gn−1) by (16). Thus when k = 1, we have im ∆ = 0. But also
ker ∆ = 0 by exactness, so H1(Gn) = 0 for all n > 2. Hence if k < n, then by
applying (i) repeatedly we obtain an isomorphism Hk(Gn) → H1(Gn−k+1) = 0,
proving (i). �

We will need a labeling scheme for the vertices of Gn. The graph Gn+1 consists
of n + 2 isomorphic copies of Gn suspended between the north and south poles. For
each i = 0, . . . , n+ 3 we obtain a graph map ιin : Gn → Gn+1 taking each v ∈ Gn to
the corresponding vertex in the ith copy of Gn. Thus ι0n and ιn+3

n are the constant
graph maps taking Gn to the north and south poles of Gn+1, respectively. For v ∈ Gn,
we write vi = ιin(v) for all i, and we say that vi is obtained from v by adding the
subscript i. In general, if v is a vertex of Gk for k < n, then we write

(17) vik,...,in = ιinn · · · ι
ik
k v.

For example, vik,...,in is the south pole of Gn+1 if and only if in = 0.
If G is a graph and L = Im1,...,mn is a grid graph, then we will think of a map

L → G as an n-dimensional array of size (m1 + 1) × · · · × (mn + 1), whose entries
are vertices of G. For example, when n = 1, a map L → G is a single column with
m1 + 1 entries. When n = 2, we get an (m1 + 1)× (m2 + 1) matrix. In both cases, we
consider the top-left entry to be the image of the origin (0, . . . , 0) ∈ L.

Suppose that G1 = Z5. Our task now is to construct a generator of Hn(Gn) ∼= Z
inductively. Define grid graphs Jn by J1 = I5 and
(18) Jn+1 = Jn × In+3

for all n > 1. Label the vertices of G1 as in Figure 7. As just described, we will think
of maps Jn → G as n-dimensional arrays of appropriate size. Let γ1 : J1 → G1 be
given by

(19) γ1 =
(
a b c d e a

)T
,

where T denotes the usual transpose. For n > 1 let γn+1 : Jn+1 → Gn+1 be given by
(20) γn+1(v, i) = γn(v)i
for all (v, i) ∈ Jn × In+3, where we have added the subscript i to γn(v) as defined
in (17). For example, γ2 : I5 × I4 → G is given by

γ2 =


a0 a0 a0 a0 a0 a0
a1 b1 c1 d1 e1 a1
a2 b2 c2 d2 e2 a2
a3 b3 c3 d3 e3 a3
a4 a4 a4 a4 a4 a4


T

.

It is routine to verify that γn : Jn → Gn is a graph map for all n.
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We record some basic properties of γn. First, since g1(0) = g1(5), we have
(21) γn(0, v2, . . . , vn) = γn(5, v2, . . . , vn)
for all v ∈ Jn. We also have
(22) γn(v1, . . . , vi−1, 0, vi+1, . . . , vn) = γn(0, . . . , 0, vi+1, . . . , vn)
for all i = 2, . . . , n, since adding the subscript 0 to any vertex of Gi−1 gives the south
pole of Gi. Similarly, adding the subscript i+ 2 to any vertex of Gi−1 gives the north
pole of Gi, so
(23) γn(v1, . . . , vi−1, i+ 2, vi+1, . . . , vn) = γn(0, . . . , 0, i+ 2, vi+1, . . . , vn).
Finally, note that ∂nφ(γn) = 0 by a telescoping argument, so we can consider the
homology class φ(γn).

Lemma 5.13. If G1 = Z5 and γn is defined as above for n > 1, then
(i) Hn(Gn) = 〈φ(γn)〉
(ii) ∆(φ(γn+1)) = (−1)nφ(γn), where ∆ : Hn+1(Gn+1)→ Hn(Gn) is the isomor-

phism from Proposition 5.12(ii).

Proof. We prove (ii). Example 5.3 implies (i) for n = 1, so the general case of (i)
will follow from (ii). Suppose that n > 2. We retain the definitions of X, Y , ∂∗, ι
and ι∗ from the proof of Proposition 5.12. Thus X (resp. Y ) is obtained from Gn by
removing the north (resp. south) pole. We can write φ(γn) = x+ y, where x ∈ Cn(X)
and y ∈ Cn(Y ). In particular, if U = {u ∈ Jn : 1 6 un 6 n+ 1}, then we can take

y =
∑
u∈U

γun .

Let V = {v ∈ Jn : vn = 1} and W = {w ∈ Jn : wn = n + 1}. The only terms in
the sum ∂n(y) that do not cancel by telescoping are

∂n(y) = (−1)n
(∑
v∈V

D−n γ
v
n −

∑
w∈W

D+
n γ

w
n

)
.

By construction, each D+
n γ

w
n is the constant map Qn−1 → an+2,...,n+2. This is a

degenerate (n− 1)-cube of Gn, so we can ignore it. We are left with the sum

∂n(y) = (−1)n
∑
v∈V

D−n γ
v
n,

but this is precisely φ(ι ◦ γn−1). Hence

∂∗(φ(γn)) = ∂n(x) = −∂n(y) = (−1)n−1φ(ι ◦ γn−1) = (−1)n−1(ι∗(φ(γn−1))),

from which we deduce that ∆(φ(γn)) = (ι∗)−1(∂∗(φ(γn))) = (−1)n−1φ(γn−1),
proving (ii). �

Lemma 5.14. If G1 = Z5, then the image of ψ : An(Gn)→ Hn(Gn) contains φ(γn).

We illustrate the proof of Lemma 5.14 for n = 2 before arguing the general case.
Let L2 = I13,8, and let M2 = (4, 0) + I5,4 ⊆ L2. Let f2 : (L2, ∂L2)→ (G2, a0) be the
graph map in Figure 9. Here f2 is constant on every outlined region.

Let g2 : (L2, ∂L2)→ (G2, a0) be the graph map in Figure 10. HereM2 is the region
outlined in red. Note that f2(x) = g2(x) for all x ∈ L2 rM◦2 . Hence if Ω2 = {x ∈ Z2 :
x+Q2 ⊆M2}, then

φ(g2)− φ(f2) =
∑
x∈Ω2

gx2 −
∑
x∈Ω2

fx2 .
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a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0

a0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a0

a0 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a1 a0

a0 a1 a2 a3 a3 a3 a3 a3 a3 a3 a3 a2 a1 a0

a0 a1 a2 a3 a4 a4 a4 a4 a4 a4 a3 a2 a1 a0

a0 a1 a2 a3 a3 a3 a3 a3 a3 a3 a3 a2 a1 a0

a0 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a1 a0

a0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a0

a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0




Figure 9. The transpose of f2 with its fibers B2,k outlined in blue.

The first sum on the right hand side is easily seen to be φ(γ2) by inspection. Each
term in the second sum is a degenerate 2-cube of f2. Hence φ(g2) − φ(f2) = φ(γ2),
proving that

ψ([g2]− [f2]) = φ(γ2),
as desired.

a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0

a0 a1 a1 a1 a1 b1 c1 d1 e1 a1 a1 a1 a1 a0

a0 a1 a2 a2 a2 b2 c2 d2 e2 a2 a2 a2 a1 a0

a0 a1 a2 a3 a3 b3 c3 d3 e3 a3 a3 a2 a1 a0

a0 a1 a2 a3 a4 a4 a4 a4 a4 a4 a3 a2 a1 a0

a0 a1 a2 a3 a3 a3 a3 a3 a3 a3 a3 a2 a1 a0

a0 a1 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a1 a0

a0 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a1 a0

a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0 a0




Figure 10. The transpose of g2 with M2 outlined in red and each
B2,k rM2 outlined in blue.

Proof of Lemma 5.14. The case n = 1 is trivial; simply note that

ψ([γ1]) = φ(γ1).

Suppose now that n > 2. We will construct an n-dimensional grid graph Ln and graph
maps

fn, gn : (Ln, ∂Ln)→ (Gn, a0,...,0)
such that

(24) ψ([gn]− [fn]) = φ(γn),

proving the result.
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For n > 2 let Ln = Im1,...,mn
, where

mi =
{

(n− i+ 1)(n+ i+ 4)− 1 if i = 1,
(n− i+ 1)(n+ i+ 4) if i > 1.

For example, the first several Ln are
L2 = I13 × I8
L3 = I23 × I18 × I10

L4 = I35 × I30 × I22 × I12.

Also let
Mn = c+ Jn ⊆ Ln,

where c = (n+ 2, . . . , n+ 2, 0) ∈ Zn and Jn is defined as in (18). Let Ln,0 = ∂Ln, and
for k = 1, . . . , n + 2 let Ln,k = L◦n,k−1. For each k = 0, . . . , n + 2, let Bn,k = ∂Ln,k.
For example, the graphs B2,k are outlined in Figure 9, and M2 is the large outlined
region in Figure 10. Note that the Bn,k partition Ln in a particular way; there is a
“central” grid graph Bn,n+2 induced by all vertices of Mn with nth coordinate n+ 2,
and Bn,k is “wrapped around” Bn,k+1 for k = 0, . . . , n+ 1.

Suppose that x ∈ Bn,k. Let fn : (Ln, ∂Ln)→ (Gn, a0,...,0) be given by
fn(x) = γn(0, x∗2, x∗3, . . . , x∗n−1, k),

where for 1 < i < n we set

x∗i =


xi − (n+ 2) if n+ 2 6 xi 6 n+ i+ 4,
0 if xi 6 n+ 2,
i+ 2 if xi > n+ i+ 4.

For example, f2 is illustrated in Figure 9.
We claim that fn is a graph map. Let x, y ∈ Ln with x ' y. We must show that

fn(x) ' fn(x+y). If x = y, then this is immediate. Suppose that x 6= y with x ∈ Bn,k.
The vertices x and y differ in exactly one coordinate; call it j. We must have either
y ∈ Bn,k or y ∈ Bn,k±1. If j ∈ {1, n} and y ∈ Bn,k, then fn(x) = fn(y) by definition.
If j ∈ {1, n} and y ∈ Bn,k±1, then

fn(x) = γn(0, x∗2, . . . , x∗n−1, k) ' γn(0, x∗2, . . . , x∗n−1, k ± 1) = fn(y).
If 1 < j < n and y ∈ Bn,k, then |x∗j − y∗j | 6 1, so
(25)
fn(x) = γn(0, x∗2, . . . , x∗n−1, k) ' γn(0, x∗2, . . . , x∗j−1, y

∗
j , x
∗
j+1, . . . , x

∗
n−1, k) = fn(y).

If 1 < j < n and y ∈ Bn,k±1, then either xj , yj 6 n + 2 or xj , yj > n + j + 4, so
x∗j = y∗j and (25) holds again. Thus in any case we have fn(x) ' fn(y), so fn is a
graph map.

We claim that the following defines a function gn : (Ln, ∂Ln)→ (Gn, a0,...,0):

gn(x) =
{
γn(x− c) if x ∈Mn,

fn(x) if x ∈ Ln rM◦n.

For example, g2 is illustrated in Figure 10 withM2 boxed in red and B2,krM2 boxed
in blue for k = 0, . . . , 3. To prove that gn is well defined in general, we must show
that
(26) γn(x− c) = fn(x)
for all x ∈ ∂Mn. It will follow that gn is a graph map, since γ and fn are graph maps.

We have x ∈Mn if and only if the following hold:
(i) n+ 2 6 x1 6 n+ 7
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(ii) n+ 2 6 xi 6 n+ i+ 4 for i = 2, . . . , n− 1
(iii) 0 6 xn 6 n+ 2.

Thus x ∈ ∂Mn if and only if (i)–(iii) hold with at least one of these inequalities
being an equality. Note that the graphs Bn,k ∩ ∂Mn partition ∂Mn. Suppose that
x ∈ Bn,k ∩ ∂Mn. We have xn = k and x∗i = xi − (n+ 2) for 1 < i < n, so

γn(x− c) = γn(x1 − (n+ 2), x∗2, . . . , x∗n−1, k).

If x1 = n+ 2, then

γn(x− c) = γn(0, x∗2, . . . , x∗n−1, k) = fn(x)

by definition. If x1 = n+ 7, then

γn(x− c) = γn(5, x∗2, . . . , x∗n−1, k) = γn(0, x∗2, . . . , x∗n−1, k) = fn(x),

where we have used (21). If xi = n+ 2 for some 1 < i < n, then x∗i = 0, so

γn(x− c) = γn(x1 − (n+ 2), x∗2, . . . , x∗i−1, 0, x∗i+1, . . . , x
∗
n−1, k)

= γn(0, . . . , 0, x∗i+1, . . . , x
∗
n−1, k)

= γn(0, x∗2, . . . , x∗i−1, 0, x∗i+1, . . . , x
∗
n−1, xn)

= γn(0, x∗2, . . . , x∗n−1, k)
= fn(x),

where we have used (22). The argument is similar for xi = n+i+4, using (23) instead.
If xn = 0 (resp. xn = n+ 2), then (22) (resp. (23)) again implies (26). Therefore (26)
holds for all x ∈ ∂Mn, proving the claim that gn is well defined. It follows that gn is
a graph map.

We now prove (24). Let

Ωn = {x ∈ Zn : x+Qn ⊆Mn}.

Since gn(x) = fn(x) for all x ∈ Ln rM◦n, we have

φ([gn]− [fn]) =
∑
x∈Ωn

gxn −
∑
x∈Ωn

fxn .

The first sum on the right hand side is easily seen to be φ(γn). We claim that every
term of the second sum is a degenerate n-cube of fn. If x ∈ Ωn, then n + 2 6 xi <
n+ i+ 4 for all i < n, so for any q ∈ Qn we have

fxn (0, q2, . . . , qn) = γn(0, x2 + q2 − (n+ 2), . . . , xn−1 + qn−1 − (n+ 2), xn + qn)
= fxn (1, q2, . . . , qn).

Hence D−1 fxn = D+
1 f

x
n , proving the claim. It follows that

φ([gn]− [fn]) = φ(γn),

proving (24). �

Remark 5.15. Close inspection reveals that the image of fn is the set of all vertices
of Gn of the form ai1,...,in−1 , where we have added subscripts to the vertex a ∈ G1.
This set induces a subgraph of Gn isomorphic to the graph Un, where U1 consists of
a single vertex and Un+1 = Sn+3Un for all n > 1. Proposition 4.4 implies that Un is
contractible for all n. Hence [fn] = 0 in An(Gn), so in fact ψ([gn]) = φ(γn).

Proof of Theorem 5.10. Let G1 be any graph containing no 3- or 4-cycles. If G1 con-
tains no cycles, then Gn is contractible for all n by Example 2.11 and Proposition 4.4,
so Hn(Gn) is trivial for all n > 1 by [4, Lemma 4.2], and the theorem is immediate.
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Suppose thatG1 contains a cycle. If k < n, thenHk(Gn) = 0 by Proposition 5.12(i),
and the theorem is immediate. We prove the case k = n. Let {Z1,1, . . . , Z1,`} be the
set of cycles of G1, considered as subgraphs of G1. For i = 1, . . . , ` and n > 1, let
Zn+1,i = Sn+3Zn,i, considered as a subgraph of Gn+1. Lemma 5.13 can be easily
generalized to obtain grid graphs Jn,i and graph maps γn,i : Jn,i → Zn,i satisfying
the following for all i and n > 1:

(i) Hn(Zn,i) = 〈φ(γn,i)〉
(ii) ∆(φ(γn+1,i)) = (−1)nφ(γn,i), where ∆ : Hn+1(Gn+1) → Hn(Gn) is the iso-

morphism from Proposition 5.12(ii).
Let

Υn = {φ(γn,i) : i = 1, . . . , `}.
Example 5.3 and item (i) together say that H1(G1) is generated by Υ1. Item (ii) then
implies that Hn(Gn) is generated by Υn for all n > 1. Lemma 5.13 can be easily
generalized to show that the image of ψ : An(Gn) → Hn(Gn) contains Υn. Hence ψ
is surjective. �

6. Final remarks
Our work leaves open several important questions. Let G1 be a cycle graph of length
5, and define the graphs Gn as in (14). Our most immediate goal is to show that
the map ψ : An(Gn)→ Hn(Gn) is an isomorphism for all n. Theorem 5.10 brings us
halfway there; we leave the remaining half as a conjecture.

Conjecture 6.1. The map ψ : An(Gn)→ Hn(Gn) is injective for all n.

The main analogy guiding our intuition is to think of the graphs Gn as playing
the role of the n-sphere Sn in classical topology. An obvious comparison to make
is that Sn+1 ≈ SSn, where S is the usual suspension functor, since this mirrors the
construction of Gn via the discrete suspension functor St. Our analogy is strengthened
by the fact that

Hi(Gn) ∼= Hi(Sn)
for all i 6 n. An important property of Sn, however, is (n− 1)-connectedness. This is
what allows one to apply the Hurewicz theorem and conclude that πn(Sn) ∼= Hn(Sn).
We suspect that Gn is (n− 1)-connected in a discrete sense.

Conjecture 6.2. If i < n, then Ai(Gn) is trivial.

The usual way to prove that Sn is (n − 1)-connected is to invoke the cellular ap-
proximation theorem. A discrete analog of cellular approximation was proposed in [1].
An alternative proof of (n− 1)-connectedness, such as the one in [13, Theorem 6.4.4],
uses the homotopy excision theorem of Blakers and Massey.

Theorem 6.3 (Blakers–Massey [10]). Suppose that a topological space X is the union
of open subspaces A and B with nonempty intersection C = A ∩ B. If (A,C) is
m-connected and (B,C) is n-connected, then the map

πk(B,C)→ πk(X,A),
induced by the inclusion (B,C) → (X,A), is surjective if k 6 m + n and bijective if
k < m+ n.

This result is a powerful means of computing higher classical homotopy groups. In
particular, it is a key ingredient in the proof of the Hurewicz theorem. We therefore
expect some discrete version of Theorem 6.3 to appear in a proof of Conjecture 5.2,
should it hold. At the very least, a discrete homotopy excision theorem would enable
us to perform more elegant computations than are currently possible.
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Question 6.4. Is there a discrete homotopy excision theorem?

A famous corollary of homotopy excision is the Freudenthal suspension theorem,
which states that if X is n-connected, then the map

πk(X)→ πk+1(ΣX),
induced by suspension, is an isomorphism for k < 2n+ 1 and surjective if k = 2n+ 1.
This gives, for example, a sequence of maps

π1(S1)→ π2(S2)→ π3(S3)→ · · ·
in which the first map is surjective and all subsequent maps are isomorphisms. Ideally,
a discrete homotopy excision theorem would give such a sequence for the graphs Gn,
i.e. a sequence of maps

A1(G1)→ A2(G2)→ A3(G3)→ · · ·
in which the first map is surjective and the rest are isomorphisms. Since A1(G1) ∼= Z
and A2(G2) is infinite by Corollary 5.11, the first map must be an isomorphism as
well. Thus it would follow that An(Gn) ∼= Z for all n, confirming Conjecture 6.1 and
further reinforcing the analogy between Gn and Sn.
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