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On a curious variant of the S,-module Lie,

Sheila Sundaram

ABSTRACT We introduce a variant of the much-studied Lie representation of the symmetric

(2)

group Sp, which we denote by Lie,, . Our variant gives rise to a decomposition of the regular

representation as a sum of exterior powers of the modules Lieﬁ?). This is in contrast to the

theorems of Poincaré-Birkhoff-Witt and Thrall which decompose the regular representation
into a sum of symmetrised Lie modules. We show that nearly every known property of Lie,, has
a counterpart for the module LieEL2>7 suggesting connections to the cohomology of configuration
spaces via the character formulas of Sundaram and Welker, to the Eulerian idempotents of
Gerstenhaber and Schack, and to the Hodge decomposition of the complex of injective words
arising from Hochschild homology, due to Hanlon and Hersh.

1. INTRODUCTION

In this paper we present the unexpected discovery, announced in [20], of a curious
variant of the S,-module Lie, afforded by the multilinear component of the free Lie
algebra with n generators. The theorems of Poincaré-Birkhoff-Witt and Thrall (see,
e.g. [14]) state that the universal enveloping algebra of the free Lie algebra is the
symmetric algebra over the free Lie algebra, and hence coincides with the full tensor
algebra. This is equivalent, via Schur—Weyl duality, to Thrall’s decomposition of the
regular representation into a sum of symmetric powers of the representations Lie, .
By contrast, here we obtain a decomposition of the regular representation as a sum
of exterior powers of modules (Theorem 2.5). The key ingredient is our variant of
Lie,, an S,,-module that we denote by Lief)7 which turns out to possess remarkable
properties akin to those of Lie,, . Our results (see Theorems 2.3, 2.8, 2.12) bear a strik-
ing resemblance to properties of the Whitney homology of the partition lattice (and
hence the Orlik—Solomon algebra for the root system A, ), and to the computation
of the cohomology of the configuration space for the braid arrangement found in [22,
Theorem 4.4]. In particular these properties indicate the possibility of an underlying
algebra structure for Lie,(f) involving an acyclic complex. Theorem 2.12 furthers this
analogy; we show that Lief) admits a filtration close to the one arising from the
derived series of the free Lie algebra. There is an interesting action on derangements
arising from Lieg) as well (Theorem 2.18); we prove that Lieg) gives rise to a new
decomposition of the homology of the complex of injective words studied by Reiner
and Webb [13], one that is different from the Hodge decomposition of Hanlon and
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Hersh [6]. These results are collected in Section 2, showing that for every well-known
property of Lie,, the representation Lieg) offers an interesting counterpart.

A characteristic feature of the complement of the A, _i-hyperplane arrangement
in complex space, and hence the configuration spaces associated to the braid arrange-
ment, is that the cohomology ring has the structure of a symmetric or exterior algebra
over the top cohomology as an S,,-module (see Theorem 2.2 and Theorem 2.3). More-
over this top cohomology is Lie,, or its sign-tensored version, and thus its character
values are supported on a specific class of permutations: those whose cycles all have
the same length.

The higher Lie modules, first defined in [23], figure prominently in all the situations
mentioned above, and hence the language of symmetric functions and plethysm is
ideal for describing the results. This is precisely the framework of the symmetric
function identities developed in [19]; these crucial identities are described in Section 4,
where we state the key result from [19], Theorem 4.2, and compile a toolkit that
has proved useful in manipulating plethysms arising from homology representations.
One interesting consequence is a fact that does not appear to have been previously
observed, namely the equivalence of all the known representation-theoretic properties
of Lie (the formulas of Thrall and Cadogan, the filtration arising from the derived
series, the appearance of the Lie character in the action on derangements). This is
explained in Theorem 4.8.

The module Lieg) is a special case of a family of variations of Lie,,, whose discovery
arose from the investigation begun in [19] on the positivity of row sums in the character
table of S,,. Indeed, the symmetrised powers of Lief) itself give the representation
obtained by taking row sums for the subset of conjugacy classes corresponding to
cycles whose lengths are a power of 2 (Theorem 2.3). The more general results were
announced in [20] and [21], and will be the subject of a separate paper.

1.1. PRELIMINARIES. We follow [12] and [17] for notation regarding symmetric func-
tions. In particular, h,, e, and p, denote respectively the complete homogeneous,
elementary and power sum symmetric functions. If ch is the Frobenius characteristic
map from the representation ring of the symmetric group S, to the ring of symmetric
functions with real coefficients, then h,, = ch(1lg, ) is the characteristic of the trivial
representation, and e, = ch(sgng ) is the characteristic of the sign representation
of Sp. If p is a partition of n then define p, = [[, pu,; hy and e, are defined in
similar multiplicative fashion. The Schur function s, indexed by the partition p is the
Frobenius characteristic of the Sj,-irreducible indexed by . Finally, the involution w
takes h, to e, corresponding to tensoring with the sign representation.

If ¢ and r are characteristics of representations of S,, and S,, respectively, they
yield a representation of the wreath product S,,[S,] in a natural way, with the prop-
erty that when this representation is induced up to Sy, its Frobenius characteristic
is the plethysm g[r]. For more background about this operation, see [12]. We will
make extensive use of the properties of this operation, in particular the fact that
plethysm with a symmetric function r is an endomorphism on the ring of symmetric
functions [12, (8.3)]. See also [17, Chapter 7, Appendix 2, A2.6].

Define
(1) HB=> th=cpd t'p: E(t) = te; = exp Z(—I)H@’
>0 i>1 =0 =1
2) H=)> h, E=) e; H*=) (-1)'h,, EF=> (-1)e,.
120 120 r=0 =0
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Now let {g;}:>1 be a sequence of symmetric functions, each ¢; homogeneous of degree
i.Let Q = Zl>1 iy Q(t) = 3,51 t"qn. For each partition A of n > 1 with m;(\) =m;
parts equal to i > 1, let [A\[ =n = 7, im; be the size of A, and £(A) = 3_,5, mi(A) =
>_i>1 M be the length (total number of parts) of A.

Define

(3) Q= [ Pmlal, EQl= [ emlal

im; (A) =1 img (A) =1

For the empty partition (of zero) we define Hy[Q] = 1 = Ex[Q] = HZ[Q] = EZ[Q).

Consider the generating functions H|[Q](t) and E[Q](t). With the convention that
Par, the set of all partitions of nonnegative integers, includes the unique empty par-
tition of zero, by the preceding observations and standard properties of plethysm [12]
we have

(4) |degn: Z H)\ and Er |degn: Z E)\

l(i;lr Z(;Slr
HQIM = Y NH\Q,  and  EQIH) = ) tMNEQ]
AePar AePar

Also write Q'*(t) for the alternating sum Y-, -, (=1)""'t'q; = tq —t*qa +t°g3 —- - -
Let 1(n) be any real-valued function defined on the positive integers. Define sym-
metric functions fn by

(5) Zw pd, so that w(f,) = Zw ) %pg.

d|n

Note that, when (1) is a positive integer, this makes f, the Frobenius characteristic
of a possibly virtual S,-module whose dimension is (n — 1)l(1).
Finally, define the associated polynomial in one variable, t, by

(6) falt) = = S w(d)r

dln

2. A COMPARISON OF Lie,, and the variant Lieg)

In this section we define the S,,-module Lle(2 and describe some of its remarkable

properties. The goal here is to analyse this module by interpreting the plethystic iden-
tities it satisfies in an interesting representation-theoretic and homological context.
The properties are established using plethystic symmetric function techniques applied
to the Frobenius characteristic of Lief); we have relegated the technical details of the
proofs to the next section. The present section has been written to be self-contained.

Recall [14] that the S,-module Lie, is the action of S, on the multilinear
component of the free Lie algebra, and coincides with the induced representation
exp(Q”T) ng, where C,, is the cyclic group generated by an n-cycle in S,. Its
Frobenius characteristic is obtained by taking t(d) = u(d) (the number-theoretic
Mébius function) in equation (5).

Another module that will be of interest is the .S,,-module Conj,, afforded by the
conjugacy action of S, on the class of n-cycles. Clearly we have Conj,, ~ 1 Tg’; . Its
Frobenius characteristic is obtained by taking ¢(d) = ¢(d) (Euler’s totient function)
in equation (5).

Algebraic Combinatorics, Vol. 3 #4 (2020) 987
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DEFINITION 2.1. Let k,, be the highest power of 2 dividing n. Define Lieff) to be the
induced module
2im
. an Sn .
exp ( - > e

The first two of the following facts are now immediate. Lief) is Sp,-isomorphic to
e Lie, if n is odd;
e Conj,, if n is a power of 2;
e Lie, ®sgng if n is twice an odd number.
The third fact follows, for example, by first establishing the isomorphism
Sy — Sn
sgng, @ x T~ (sgng, " @ x) 12" -
A different proof is given in Theorem 3.6.

Since it is most convenient to use the language of symmetric functions, we will often
abuse notation and use Lie,, and Lieff) to mean both the module and its Frobenius
characteristic.

We write Lie for the sum of symmetric functions }_ -, Lie, and Lie® for the

sum Zn>1Lieg). Recall from Section 1.1 that we define, for each partition A of
n > 1 with m;(X) = m; parts equal to i, HA[Q] = [[,.,,,(n)>1 hom:[as] and EX[Q] =
[Lin.(0>1 €mslails see also equation (4). Finally, recall that py = hi = e} is the
Frobenius characteristic of the regular representation 1 Tg;’ of S,.

The H,[Lie] are the (Frobenius characteristics of) the higher Lie modules appearing
in Thrall’s decomposition of the regular representation (see below for more details).
We denote the wreath product of S, with a copies of S, by S,[Ss]; explicitly it is
the normaliser of the direct product Sp X --- x Sy in Sgp. Given representations V,

—_———

a
and V, of S,, Sy, respectively, there is an obvious associated representation V,[V;] of
the wreath product S,[Ss], whose Frobenius characteristic is given by the plethysm
ch V,[ch V3]. The higher Lie module H) [Lie], for a partition A of n with m; parts equal
to i, is the characteristic of the induced representation

®ilg,,, [Lieihﬁ‘ o [S1]"

If X is any topological space, then the ordered configuration space Conf,, X of n
distinct points in X is defined to be the set {(z1,...,2,) : ¢ # j = =; # z;}. The
symmetric group S, acts on Conf,, X by permuting coordinates, and hence induces
an action on the cohomology H*(Conf,, X,Q),k > 0.

THEOREM 2.2 ([22, Theorem 4.4, Corollary 4.5]). For alld > 1, and 0 < k < n —1,
the Frobenius characteristic of
e H*(Conf, R? Q) ~ H2=Vk(Conf,, R?** Q) is w (en_r[Lie]|degn) -
e H?!(Conf, R? Q) ~ H2¥*(Conf,, R+ Q) is hy,—k[Lie]|deg n-
The cohomology vanishes in all other degrees.
When d = 1, H°(Conf,, R, Q) carries the regular representation of S, .

We will use the cohomology of Conf,, R? as the prototype for the configuration
spaces of even-dimensional Euclidean space, and Conf,, R? as the prototype for the
configuration spaces of odd-dimensional Euclidean space. Note that cohomology is
concentrated in all degrees in the former (more generally in all multiples of (2d — 1)
for 2d-dimensional space), and only in even degrees in the latter.

The results of this section will show that the representation Lief) has properties
curiously parallelling those of Lie,, . Theorem 2.2 above states the “Lie” identities of
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Theorem 2.3 below in the context of the configuration spaces of X = R? and X = R3.
The module Lie,, arises as the highest nonvanishing cohomology for the configuration
space of R%, d odd, and when tensored with the sign, as the highest nonvanishing
cohomology for the configuration space of R?, d even. This is the classically known
prototype; the variant Liegf) will be shown to closely follow its example. The higher
Lie module H) [Lie] dates back to [23], and has been studied by several authors in the
recent literature. Note the appearance of the “higher Lie®® modules” below. See also
Theorem 4.8 for the list of Lie identities.

(2

THEOREM 2.3. The symmetric function Lie ) satisfies the following plethystic iden-

tities, analogous to Lie,,.

(7)Y Hi[Lie] = pi; S B [Lie®)] = pi;
AFn AFn
(8) H Z(fl)”*lw(Lien) =1+pq; E Z(fl)"*lw(Lief)) 14y
n>=1 n>1
(9) Ifn>2, Z(—l)”—f(’\)E,\[Lie] = 0; Z(—l)"_Z(A)HA[Lie(Q)] —0:
AbEn AFn
(10) Ifn=2, ZE)\[Lie] = 2e9p} 2 ZH,\[Lie(2)] _ Z .
AFn AFn AbFn )\ =2%

Moreover, the Lie identities are all equivalent, and the Lie® identities are also equiv-
alent.

We now discuss the implications of Theorem 2.3.

EQUATION (7). The first equation in (7) is simply Thrall’s classical theorem [23],
rederived in Theorem 3.2, stating that the regular representation of S,, decomposes
into a sum of symmetrised modules induced from the centralisers of S,,, the Lie
modules. Thrall’s theorem in this context is equivalent to the Poincaré-Birkhoff-Witt
Theorem, which states that the universal enveloping algebra of the free Lie algebra
is its symmetric algebra [14]. Recall that the Lefschetz module of a complex is the
alternating sum by degree of the homology modules. In view of Theorem 2.2, since
cohomology is nonzero only in even degrees, the Lefschetz module is in fact a sum of
homology modules, and this can in turn be reinterpreted as saying that:

PROPOSITION 2.4. The regular representation of S, is carried by the Lefschetz mod-
ule of Conf, R3, and more generally Conf, R? for odd d, which coincides with its
cohomology ring and is isomorphic to the symmetric algebra over the top cohomology.

The second equation in (7) is our new result. It gives a new decomposition of the
regular representation:

THEOREM 2.5. The regular representation decomposes into a sum of exterior powers
of modules induced from the centralisers of S,,, namely the modules Lief).

EqQuaTiON (8).In (8), the second equation is new, giving the plethystic inverse of
the elementary symmetric functions Zn>1 en, while the first equation contains the
known result of Cadogan [1] (see Theorem 3.2) giving the plethystic inverse of the
homogeneous symmetric functions Zn>1 hy,.

EQUATION (9). The equations in (9) and (10) are particularly significant. It is well
known that the degree n term in the plethysm e,,_,[Lie] is the Frobenius character-
istic of the rth-Whitney homology WH,.(IL,) of the partition lattice II,, tensored
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with the sign (see [18, Remark 1.8.1]), and hence of the sign-tensored rth cohomology
H"(Conf,, R?) of Theorem 2.2. The rth Whitney homology also coincides as an S,,-
module with the rth cohomology of the pure braid group, see [8]. The first equation
in (9) therefore restates the acyclicity of Whitney homology for the partition lat-
tice [18], and hence also says (in contrast to the odd case Conf,, R? of Proposition 2.4
above) that :

PROPOSITION 2.6. The Lefschetz module of Conf,, R? (and more generally Conf, R??
for even d) vanishes identically.

Writing WH oqa(I1,) for @72 WHay 41 (11,), and WH eyen (I1,,) for @72 WH g (11,,),
we have the isomorphism of S,,-modules

(11) WHodd(Hn) = WHeven(Hn)a n = 2.

EQUATION (10). Denote by WH (II,,) the sum of all the graded pieces of the Whitney
homology of II,,.

The first equation in (10) says (recall that we have tensored with the sign represen-
tation) that WH (II,,) = 2(1 Tg;), n > 2, a result originally due to Lehrer, who proved
that this is the S,-representation on the cohomology ring H*(Conf, R?) (Lehrer ac-
tually considers the cohomology of the complement of the braid arrangement of type
Ap—1 [10, Proposition 5.6 (i)]). We may rewrite this in our notation as

(12) H*(Conf,, R?) = WH(IL,) = ch™' (2hap} %) =2 (1137), n>2.

Note that the first equation in (10) also confirms the following theorem of Orlik
and Solomon.

PROPOSITION 2.7 ([11]). H*(Conf,, R?) has the structure of an exterior algebra over
the top cohomology.

By combining equation (12) with (11), we obtain
(13) H°Y(Conf,, R?) ~ H®"*"(Conf, R?) ~1 Tg;‘, n =2,

yielding the decomposition of the regular representation noticed by Hyde and La-
garias [8]:

(14) H°%(Conf,, R?) & sgng, ® H"(Conf,, R?) ~ 1 13" .
From (12) it also follows that
(15) H*(Conf, 1 R?) ~ H*(Cont, R?) 3" .

We now describe results of a similar flavour for the new representation Lieg).
Define a new module Vh,(n) whose Frobenius characteristic is the degree n term
in hn,T[Lie@)]; this is a true S,-module. The second equation of (9) can now be
interpreted as an acylicity statement:

Vha(n) = Vhy_1(n) + Vhp_on)—---+(=1)"Vh(n)+---=0, n=2

and hence, in analogy with (11), letting Vheqa(n) = @ZfOVthH and Vheyen =
@Zizo‘/hgk :

(16) Vhodd(n) = Vheyen(n), n = 2.
The second equation in (10) gives, similarly,
(17) ch(Vhoaa(n) ® Vheven(n)) = Y pa.
AFng A =2%

Hence we have established the following results, analogous to (12)—(15):

Algebraic Combinatorics, Vol. 3 #4 (2020) 990
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THEOREM 2.8. The following S, -equivariant isomorphisms hold for the modules
Vhy(n) = ch™! hn_r[Lie@)Hdegn, giving Schur-positive functions with integer coeffi-
cients.

1
(18) Vhodd(”) =~ Vheven(”) = Ch_l = Z Px-
A\ =2%
(19) Vh(n) = Vhodd (’I’L) ) Vheven (n) - Chil Z DPx-
AbFng A =2%
(20) Vhoaa (n) Dsgng & Vhodd(n) —ch! Z Da.
Abn;n—~2(X) even;A;=2%
(21) Vh(2n+1) =~ Vh(2n) 13" .

We now have at least four decompositions of the regular representation, namely
the two in (7) and two from (14) (tensoring the latter with the sign representation
gives two), into sums of modules indexed by the conjugacy classes, each module
obtained by inducing a linear character from a centraliser of S,,. We write these
out for S; and S5 to show that they are indeed all distinct. In the two tables below,

each column adds up to the regular representation. Note that Lief)

Conj,, while Lie?) is just Lies . Hence these modules appear in the last row of each
table. The first two decompositions are from equation (7) of Theorem 2.3; the third
is from equation (14). In all cases, of course, the four pieces for Sy (respectively,
the five pieces for S5) each have the same dimension, equal to the sum of the sizes
of the constituent conjugacy classes, namely, 1,6,11,6 (respectively 1,10, 35,50, 24).
Note that the conjugacy classes are grouped together by number of disjoint cycles,
i.e. by length £ of the corresponding partition. That these four decompositions are all
distinct is clear, since each has a distinguishing feature. E.g. for Sy, both copies of the
irreducible for the partition (22) appear only in one graded piece for [PBW], while
the reflection representation is a submodule of one graded piece only in the third.

coincides with

TABLE 1. The regular representation of Sy (Poincaré polynomial 1+
6t + 112 + 6t3)

Conjugacy PBW (ConfR?) Ext Whitney (Conf R?)
classes irreducibles irreducibles irreducibles
(1%) ha[Li€]|deg 4 eaLie™®][geg 4 w(WHo)
=4 (4) (1) (1%)
(2,12) h[Lie]|deg 4 e3[Lie™®]|deg 4 WH;
=3 (3,1) +(2,1%) (3,1) +(2,1%) () +3,1)+(2?)
(3,1) and (22) ho[Li€]|deg 4 ea[Lie™®]]qeg4 w(WH>)
(=2 (3,1) +2(22) + (2,12) + (14) | 2(3, 1)+ (22) + (2,12) | (3,1) +2(2,1%) + (2?)
(4) hi[Lie]| deg 4 e1[Lie™®]]qega WH 3 = w(Liey)
(=1 (3,1) + (2,1%) (4) + (22 + (2,12) (3,1) + (2,12)

Note from the above example that the two identities in equation (7) of Theorem 2.3,

corresponding respectively to (22) and (24

) below, themselves yield the following

four distinct decompositions of the regular representation, obtained by tensoring each
graded piece with the sign representation. The decomposition in equation (23) below is
precisely that obtained from the Eulerian idempotents of Gerstenhaber and Schack [3];
this fact was proved by Hanlon [5, Theorem 5.1 and Definition 3.6]. Curiously it also
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TABLE 2. The regular representation of S5 (Poincaré polynomial 1+
10t + 35t + 50t% + 24¢%)

Conjugacy PBW (ConfR?) Ext Whitney (Conf R?)
classes irreducibles irreducibles irreducibles
(1%) hs[Lie]|qeg 5 es[Lie™®])qegs w(WH,)
=5 (5) (1°) (1%)
(2,13) R [Li€]|deg 5 es[Lie®])qegs WH,
(=4 (4,1) + (3,12) (3,12) + (2,1%) (5) + (4,1) + (3,2)
(3,12) and (22,1) hs[Lie€]|deg 5 e3 [Lle Hdcg5 w(WH3)
=3 (4,1) +2(3,2) + (3,1?) (4,1) +2(3,2) 4+ 2(3,1?) (3,2) +2(3,1?)
+2(22,1) + (2,13) + (15) +(22,1) + (2,1%) +2(2%,1) +2(2,13)
(4,1) and (3,2) ha[Li€]|deg 5 ea[Lie@]degs WHS
(=2 (4,1) +2(3,2) +3(3,1?) (5) +2(4,1) +2(3,2) 2(4,1) +2(3,2) + 3(3,12)
+2(22,1) +2(2,1%) +2(3,12) + 3(22,1) + (2,1%) +2(22,1) + (2,1%)
(5) R [Li€]|deg 5 e1[Lie™®])degs WWH, = Lies
=1 (4,1) 4+ (3,2) + (3,1?) (4,1) 4+ (3,2) + (3,1?) (4,1) 4+ (3,2) + (3,1?)
+(22,1) + (2,1%) +(22,1) + (2,1%) +(22,1) + (2,1%)

appears in a paper of Gessel, Restivo and Reutenauer [4, Lemma 5.3, Theorem 5.1],
where the authors give a combinatorial decomposition of the full tensor algebra as the
enveloping algebra of the oddly generated free Lie superalgebra; they call equation (23)
below a “super” version of the Poincaré-Birkhoff-Witt theorem.

We have, forn > 1 :

(220 =33 HilLi (PBW)
k=1 Arn
)=k
(23) = Z Z (Hy[Lie]) (Eulerian idempotents)

k=1 Arn
L(N)=k

(24) =3 > E\[Lie®] (Ext)

k=1 Arn
L(N)=k

(25) =3 > w(BE[Lie®))

k=21 Xkn
£(N)=k
The discussion preceding the tables shows that these four decompositions are them-
selves distinct, and also distinct from the two decompositions arising from the Whitney
homology of the partition lattice.

We point out one more analogy between WH(II,,) ~ H*(Conf R?) and the mod-
ules Vi(n) arising from the identities of Theorem 2.3. In [18], it was shown that
the Whitney homology of the partition lattice (and more generally of any Cohen—
Macaulay poset) has the following important property:

THEOREM 2.9 ([18, Proposition 1.9]). For 0 < k < n — 1, the truncated alternating
sum

WH(I,) — WH_1(IL,) + - - - + (=1)*WH(11,,)

s a true Sy -module, and is isomorphic as an S,-module to the unique nonvanishing
homology of the rank-selected subposet of 11, obtained by selecting the first k ranks.

Algebraic Combinatorics, Vol. 3 #4 (2020) 992
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FEquivalently, the degree n term in the plethysm
(en—k — en—ky1 + -+ (=1)%e,) [Lie]

1s Schur-positive. In particular, the kth Whitney homology decomposes into a sum of
two Sy -modules as follows:

ch WH (IL,) =  (€n—[Licl laegn) = B (L, K]) + Ba[L, & — 1]),

where B ([1,k]) denotes the Frobenius characteristic of the rank-selected homology of
the first k ranks of I1,, as in [18, Proposition 1.9].

We conjecture that a similar decomposition exists for the S,-modules Vhg(n).
More precisely, we have

CONJECTURE 2.10. Let Vhy(n) be the S, module whose Frobenius characteristic is

the degree n term in the plethysm h,_ k[Lle } for k = 0,1,...,n — 1. Then for
0 < k < n—1, the truncated alternating sum

Vhi(n) — Vhg_1(n) + -+ (=1)*Vho(n) = Ux(n)
is a true Sy,-module, and hence one has the S,,-module decomposition
Vhy(n) = ch ™ hy_g[Lie®]|qegn = Ug(n) + Up_1(n).

Here we define U_1(n) to be the zero module and Uy(n) to be the trivial S,-module.
FEquivalently, the degree n term in the plethysm

(Ank = hn—gi1 + -+ (=1)Fhp) [Lie®)]
s Schur-positive for 0 < k < n —1.

This conjecture is easily verified for 0 < k£ < 3; in the latter case there are relatively
simple formulas for ch Vhy(n), giving the following clearly Schur positive expressions
for Ui (n), (for n > 4). Tables 3 and 4 contain data for for n =6 and n = 7.

chUy(n) = ch Vho(n) = hy;
ch U1 (n) = (hno1 — hy)[Lie®]]n = hohy_o — hy = S(n_1,1) + S(n—2,2);
chUs(n) = ch Vhg(n) — chUi(n)
= hn-28(2,1) = S(n—1,1) — S(n—2,2) + "n—a(ha + 5(2,2));
ch Us(n) = chVhz(n) — chUy(n)
= hn_48(2,12) + 82,1)(hn—s5h2 — hy_3)
+ hn—6(he + S(4,2) + 5(23)) + S(n—1,1) + S(n—2,2)-

TABLE 3. Alternating sums Uy (n) of hy[Lie®] for n = 6

k| Ux(6)

0| (6)

1| (5,1) + (4,2)

2| (6)+(5,1)+2(4,2) + (4,1%) +2(3,2,1) + (23)

31 (6)+ (5,1) +3(4,2) + 2(4,1%) + (3%) + 3(3,2,1) + 2(3,13) + 2(2%,1?)

4| Lie” = (5,1) +2(4,2) + (4,12) + 3(3,2, 1) + 2(3, 13) + (2%) + (22,12) + (2, 1%)
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TABLE 4. Alternating sums Uy (n) of hy[Lie®] for n =7

k| Uk(7)

0l (7)

1] (6,1)+(5,2)

21 ()4 (6,1) +2(5,2) + (5,12) + (4,3) +2(4,2,1) + (3,2%)

31 (7)+2(6,1)+3(5,2) +2(5,12) +3(4,3) +5(4,2,1) +2(4,13) +2(32,1) + 3(3,2?)
+3(3,2,1%) +2(23,1)

412(6,1) +4(5,2) +3(5,1%) + 3(4,3) + 8(4,2,1) + 3(4,13) + 4(32,1) + 5(3, 2?)
+7(3,2,12) + 3(3, 1) + 3(23,1) 4 2(22,13)

5 | Liel® = Lier = (6,1) 4+ 2(5,2) + 2(5,12) + 2(4,3) + 5(4,2,1) + 3(4,1%)
+3(3%,1) +3(3,2%) + 5(3,2,12) + 2(3,1%) +2(22,1) + 2(2%,13) + (2, 1°)

Recent work of Hyde and Lagarias [8] rediscovers the representations 3, ([1, k]) of
Theorem 2.9 in a cohomological setting. Our results suggest the existence of a similar
topological context in which the modules Vhy(n) and U (n) appear.

QUESTION 2.11. Is there a cohomological context for the “Lie® 7 identities of Theo-
rem 2.3, as there is for the Lie identities in the context of conﬁgumtwn spaces (The-
orem 2.2), or as in [8]?

Recall from Section 2 and Theorem 4.8 the following facts. The free Lie al-
gebra has a filtration arising from its derived series [14, Section 8.6.12], which
in our notation may be described as follows. Let x = Zn>2 S(n—1,1)- Then
Liess =  + k[ + w[s[s]) + -

Theorem 2.3 allows us to deduce a similar decomposition for Lle(2) In fact we
have the following exact analogue of Theorem 4.8:

THEOREM 2.12. The following identities hold, and are equivalent:

(26) (E —1)[Lie®] = Z er | [Lie®] = Zp’f
r>1 n>1
(27) (1 - HH[Lie®] = | Y (-=1)""h, | [Lie®] = p,
(28) (1= H¥)[Lie%) = ( D(=1) Ay | [Lied)) = w(x)
(29) The degree n term in Z(fl)"frhn_r[Lie(;;] is (—=1)" " Ts(g,1n-2).
r=0
(30) Lie%) = Lie® [w(r)]
(31) Lie$) = w(r) + w(r)[w(r)] + wlr)w(r)w(@)]] + -
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(Analogue of the derived series filtration of the free Lie algebra)

(32) (BE-DLiel) =Y e [Liel)) =1 -p) - HE-1=)" zn:(q)kp;l—khk.

r>1 n>=2 k=0
We offer two more contrasting results for Lie,, and Lief) :

PROPOSITION 2.13. Let DPar denote the set of partitions with distinct parts.

(1) Zr>1(_1)r—1hr[Lie]|degn = {

plpé', n=2k+1 is odd
—pk, n =2k is even

(2) ZT?l(_l)rileT[Lie(z)]|deg" = ZA»—n,:Ai:2ki,ki>o(_1)l()\)71p>\-
AeDPar

Next we examine more closely the action on derangements, i.e. fixed-point-free per-
mutations. Reiner and Webb study the Cohen—Macaulay complex of injective words,
and compute the S,-action on its top homology [13]. Theorem 2.12 shows that the

representations Lieg) make an appearance here as well:

THEOREM 2.14. Let n > 2. For k > 1 let AE denote the degree n term in ek[Lieg)}.
Define A, = Zk>1 AF forn > 2 and Ay =0,Aq = 1. Then
(1) A =0 *hy = prAL_1 + (—1)"hy; and hence
(2) For n > 2, A, coincides with the Frobenius characteristic of the homology
representation on the complex of injective words in the alphabet {1,2,... n}.

Proof. Clearly A,, is the degree n term in E[Lieg], so this is nothing but a restate-
ment of equation (32) above. O

Hanlon and Hersh showed that this homology representation has a Hodge decom-
position [6, Theorem 2.3], by showing that the complex itself splits into a direct sum
of Sy,-invariant subcomplexes. Writing D¥ for the degree n term in hg[Liess], in our
terminology their result may be stated as follows:

A, =Y w(Df).
k>1
In fact the identity Y, DE = S"1_ (=1)*p7Fe, is simply a restatement of equa-
tion (65) in Theorem 4.8.
Surprisingly, the decomposition of A,, given in Theorem 2.14 is different from the
Hodge decomposition, i.e. the summands A* and w(DF) do not coincide. The first
nontrivial example appears below.

EXAMPLE 2.15. For n = 4, we have Ay = pha —p1hs+hy = (4)+(3,1)+(22)+(2,1?).
Also A2 = egfhs] = (3,1), AL = Liel? = (4) + (22) + (2,12). The two Hodge pieces,
however, each consist of two irreducibles: w(hz[Lies]) = (22) + (4) and w(hq[Liey]) =
(3,1) + (2,1%).

This prompts the following:

QUESTION 2.16. Is there an algebraic complex explaining the representation-theoretic

decomposition
. (2
A, = Z Ak = Z ek[Lle;%Hdegn,
k>0 k>0
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just as the Hodge complex explains the decomposition

Ap=w | hfLiessllacgn | »
k>0

noting (from the preceding example) that ek[Lie(;%Hdcgn is mot in general equal to
w(h[Liex2]|degn) ?

It is a well-known fact (see [11], [19]) that the exterior power of Lie, when tensored
with the sign representation, coincides with the Whitney homology of the lattice of
set partitions. Thus equation (62) (from the fundamental theorem of equivalences,
Theorem 4.8), when tensored with the sign, can be rewritten as a formula for the
alternating sum of Whitney homology modules of II,,, when restricted to partitions
with no blocks of size 1. Define WH;Q(Hn) to be the sum of all the homology

modules H (6, x) where z ranges over all partitions into n — ¢ blocks, with no blocks
of size 1. Then ch WHY 5 (I1,,) = w(en—i[Liexa]|aegn) and so equation (62) (and hence
the Poincaré—Birkhoff-Witt theorem), is equivalent to

(33) > (1) ch WHL,(IL,) = (—1)" sz, 1n-2).
i>0

In the notation of [7], W;L =WH ;2(1_[") (see Corollary 2.11). Hersh and Reiner con-
struct an S,-cochain complex F,,(A*) with nonvanishing cohomology only in degree
n — 1, whose S,,-character is the irreducible indexed by (2,1772), explicitly proving
a conjecture of Wiltshire-Gordon ([7 Conjecture 1.5, Theorem 1.6, Theorem 1.7]).

Define, in analogy with [7], V;, (k:) to be the module with Frobenius characteristic
hn_k[Lie(;%Hdegn. Then it is natural to ask:

QUESTION 2.17. Is there an Sy, -(co)chain complex for the representations Lie(;% whose
Lefschetz module is given by equation (29) of Theorem 2.12 above, i.e. the analogue of
equation (2.6)? Note that although the nonvanishing (co)homology would occur again
only in degree (n—1), affording the same irreducible indexed by (2,1"~2), the modules
in the alternating sum are now different (although they are once again obtained by
inducing one-dimensional modules from the same centralisers of Sy, and thus have
the same dimensions). More precisely, and curiously,
Wy 2 Va(i),
although in both cases the alternating sums collapse to the irreducible indexed by
(2,1"2). For instance, the calculation for n = 4 gives:
w(er[Lieso]|qega) = w(Lies) = Lies # hq [L1e>2]\deg4 = L16(2)

w(ea[Liesa]laega) = wlealez)) = ealha] # ha[Lie )] qeg 4 = halha].
We summarise these facts in the following:

THEOREM 2.18. We have

(1) (Hodge decomposition for complex of injective words)

n

(34) 3w (he[Liesollacgn) = Y (-1 i " = Y er[Lie)]lacg n:

r>1 k=0 r>1
(2) (Derived series filtration)

(35) 3 (~1)"w (e [Liesollacgn) = sain-2) = 3 (—1) LA [LieS)]lcg -

r>1 r>1
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By applying Part (1) of Theorem 4.9 to F = Lie(Q), we obtain the following ana-
logue of a result of [7]. See the remarks at the end of Section 4.

PROPOSITION 2.19. Let o, = H[Lieggﬂdegn,n > 0 We have ag = 1,7 = 0. Then
ap =p1-0p_1+(—1)"0,, where o, = Zi>0 en_2i92;. Here g, 1s the virtual represen-
tation of dimension zero gien by g, = >, px, the sum running over all partitions A
of n with no part equal to 1, and all parts a power of 2. In particular o, is the charac-
teristic of a one-dimensional virtual representation whose restriction to Sy _1 S 0p_1.

The first few virtual representations o, are o9 = 1,00 = €2 + p2 = 5(2),03 =
ez +ejps = 28(13) + 5(3),04 = 28(4) —5(3,1) + S(22),05 = 28(5) — 5(3,12) + 5(22,1)-

The analogous recurrence for the exterior powers F [Lie(;%] ldegn, 7 = 0, has already
been stated in (1) of Theorem 2.14. See also the remark at the end of Section 4.

We conclude with yet another feature of the Lie, representation which seems to
be shared to some extent by Lief). Recall that Lie,_; ® sgn admits a lifting W,
which is a true S,-module, the Whitehouse module, appearing in many different
contexts [15], [24], whose Frobenius characteristic is given by ch W,, = pyw(Lie,_1) —
w(Liey,). (See also [17, Solution to Exercise 7.88 (d)] for more extensive references.)

One can ask if the same construction for Lieg) yields a true S,-module. Clearly
one obtains a possibly virtual module which restricts to Liefﬂl as an S,_1-module.
We have the following conjecture, verified in Maple (with Stembridge’s SF package)
up ton =32:

CONJECTURE 2.20. The symmetric function p; Liefz1 — Lief) is Schur-positive if and

only if n is NOT a power of 2. Equivalently, Liegf_)l 15 — Lieg) is a true S,-module
which lifts Lie® if and only if n is not a power of 2.

n—1»

One direction of this conjecture is easy to verify. Let n = 2. Then n — 1 is odd,
S0 Liefll = Lie, . Also Lie) =ch1 Tg’;: Conj,,, i.e. Lie®® is just the permutation
module afforded by the conjugacy action on the class of n-cycles of S,,. Consequently
it contains the trivial representation (exactly once). But it is well known that Lie,
never contains the trivial representation, and hence, when n is a power of 2, the trivial

module appears with negative multiplicity (—1) in p; Lief_)1 — Lie!? .

3. THE FROBENIUS CHARACTERISTIC OF Lief)

In this section we will derive the key symmetric function identities satisfied by the
Frobenius characteristic of the module Lie,(f), thereby proving its intriguing paral-
lelism with Lie,, .

We begin with a general theorem of Foulkes on the character values of representa-
tions induced from the cyclic subgroup C,, of S,,, asserting Part (1) of the following
(see also [17, Ex. 7.88]). We refer the reader to [17] for the definition of the major
index statistic on tableaux.

THEOREM 3.1. Let ng) denote the Frobenius characteristic of the induced representa-
tion exp (2% -’I") Tg, 1<r<n. Then

(1) (Foulkes) [2]

K ((d(,ir))
d

a0 =13 o) pi.
" d|n ¢ ((dﬂ’)) ‘

Algebraic Combinatorics, Vol. 3 #4 (2020) 997



SHEILA SUNDARAM

(2) (Stanley; Krdskiewicz and Weyman) (9], [17]; see also [14]) The multiplicity

of the Schur function sy in the Schur function expansion of ésf) s the num-
ber of standard Young tableaux of shape A with major index congruent to r
modulo n.

REMARK. The quantity ¢(d) u(ﬁ) / gb(ﬁ) in Foulkes’ formula is called a Ramanu-
jan sum; it is the sum of the rth powers of the primitive dth roots of unity.

Thus Lie,, and Conj,, are obtained by taking » = 1 and r = n in Foulkes’ theorem,
while our new variant Lieg) is the case r = k,, where k,, is the highest power of 2
dividing n. Note that Part (2) provides a complete combinatorial description of the
decomposition into irreducibles of Lie,, Conj,, and also Lle(2)

Our goal in this section is to describe the symmetric and exterior powers of Lle(2)
the analogues of the higher Lie modules in Section 2. The meta theorem, Theorem 4.2,
of Section 4 allows us to deduce formulas for these higher Liei—modules quickly and
elegantly, avoiding technical plethystic or cycle index calculations. We begin by stating
three well-known results on Lie,, and Conj,, .

THEOREM 3.2 ([23, 1, 16] (See also [17, Ex. 7.71, Ex. 7.88, Ex. 7.89].)). The symmetric
powers of Lie,, and Conj,, satisfy the following:

(Thrall, PBW)  H | Lie, (1—tpy)~"

n>=1

(Decomposition of the reqular representation into a sum of higher Lie modules)
(Cadogan) H Z(—l)"‘lw(Lien) (t) =1+tp:.

(The plethystic inverse of 3, <, hn.)

(Solomon) H Z Conj,, | (t) = H(l —t"p,) 7!

n>1 n>1

PRrROPOSITION 3.3 ([19, Theorem 4.2 and Corollary 5.2]). The exterior powers of Lie
and Conj satisfy the following:

(1) E[Lie](t) = (1 —*p2)(1 — tp1) ™"

(2) Yrepar (DTN H,[Lie](t) = w(Blw(Lie)™)(t) = (1 + tp1)(1 — tps) !
(3) [anl Conj,|(t) = Hn>1,nodd(1 —t"pn) "

(4) B[, (=1)" " w(Conj,)](t) = [T,21, 1 oaa(1 + t"Pn)

Recall that write Lieg) for the Frobenius characteristic of the representation. Also
recall the definition of the polynomial Lie(?) (¢) from (6).

4

LEMMA 3.4. Let n = 2%¢ where ¢ is odd. We have

(36) Lie(? = Z Z P(2 pdl

s=0 d=2%d;
dq1]e

(37) Lie(2)(1) _ {17 n = 2% for some a > 0,

0, otherwise.
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-1 =1
(38) Lie®@(-1)=4 " """
0, otherwise.

Proof. Equation (36) follows directly from Foulkes’ formula, by factoring the highest
power of 2 out of each divisor d of n, and using the multiplicativity of ¢ and u. Hence

we have
. 1 S s
Lie() (1) = - Z u(dy) (1 + Z P(2° ))
dl\l s=1
_! > p(dh) |1 Sl d
=5 p(dy) +Z —;ZM( 1)-
dy |l s=1 dy|e
The last sum is nonzero if and only if £ = & = 1. Equation (38) now follows imme-

diately by invoking the meta-result of Proposition 4.3, which says that

. (2 . (2 (2 . . (2
LieS;),1(—1) = — LieSy), 1 (1), Lie) (—1) = Lie() (1) — Lie§2) (1),
(or directly by a more cumbersome case-by-case calculation). O

THEOREM 3.5. Let Liegf) be the Frobenius characteristic of the induced representation
exp(ziT7T - 2k) Tg:, where k is the largest power of 2 which divides n. Then we have
the following generating functions:

(1) (Exterior powers) E Z Liel?) | () = (1 —tp1)~".

n=1

(Alternating symmetric powers) H* Z Lie? | (t) =1 — tps.
n>=1
That is, 5, Lie is the plethystic inverse of Doz (1)
(2) B |Sus(-)" w(Lie?)]| () = 1+ tp1.
That is, the plethystic inverse of Zn>1 en s given by

Zn)l(_l)n_lw(Lieg))'

(3) (Symmetric powers and higher Lie? -modules)

H (Y Lie?| ()= [] @-t'p)' = > tHpy.

n>1 n=2k k>0 AePar
every part is a power of 2

(4) (Alternating Exterior Powers)

Y YN G(ENLIe?)) () = H | Y (-)"w(Liel) | (1)
AePar n>1

= H (1+t"p,) = Z tAlpy.

n=2% k>0 AeDPar
every part is a power of 2

Proof. We apply the meta theorem Theorem 4.2 to the sequence of symmetric func-
tions f, = Liegf). All of these identities follow immediately thanks to the values of

Lief) (t) at t = £1 given by the preceding lemma. For the equivalence of the second
equation in (1) and the equation (2), we invoke Lemma 4.5, which also gives the
equivalence of (3) and (4). O
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REMARK. Observe that Part (3) of the above also gives the description of Lie!®) men-
tioned in the Introduction: If we form the row sums in the character table of S,
corresponding to conjugacy classes of type A, where each part of A is a power of 2,
then those row sums are nonnegative and produce the representation obtained by sym-
metrising Lieg) . The theorems about the variant Lief) in Section 2 now follow easily.

Proof of Theorem 2.3. The Lie®® identities are all restatements of Theorem 3.5
above, using the definition of H) and FE). Likewise the Lie identities are all restate-
ments of known results, Theorem 3.2 and Theorem 4.8. The first equation in (10) is,
for instance, a restatement of the first equation of Proposition 3.3. The statement
about the equivalence of the Lie (respectively, Lie(Z)) identities is a consequence of
Proposition 4.6. ]

Proof of Theorem 2.12. Equation (26) is the identity E[Lie®] = (1—p;)~! of Part (1)
of Theorem 3.5, and hence by Lemma 4.4, we obtain Hi[Lie@)] =1 — py, which is

equation (27) after removing the constant term and adjusting signs.
Now invoke (57) of Theorem 4.7, Section 4. We have

Hi[Lie(;%] =E-(1-p1)=1+ Z(en —en_1p1) =1 —w(k),
n>2
and this is precisely equation (28), again after cancelling the constant term and adjust-
ing signs. The remaining statements follow exactly as in Theorem 4.8, Section 4. O

Proof of Proposition 2.13. Parts (1) and (2) are respectively restatements of Part (2)
of Proposition 3.3, and Part (4) of Theorem 3.5. O

The following observation allows us to compute the character values of Lieff) di-
rectly from those of Lie,, .

THEOREM 3.6. Lic'?) is the degree n term in the plethysm > ko Lie[par], and Liey, is

the degree n term in Lie®® — Lie® [p2]. In particular Lief) = Lie,, if n is odd, and
coincides with the sign tensored with Lie, if n is twice an odd number.

Proof. From (1), it is easy to see that E = H[p; — p2]. By Theorem 2.3, we have
H[Lie] = E[Lie®®]. Putting these two facts together and using associativity of
plethysm immediately gives H[Lie] = H[(p1 — ps)[Lie'®]], and hence, since power
sums commute with plethysm,

(H —1)[Lie] = (H — 1)[Lie® — Lie® [p,]].

But H — 1 is invertible with respect to plethysm (see Cadogan’s formula in Theo-
rem 3.2), so the result follows. It is easy to check that p; — ps has plethystic inverse
Zk>1 par, completing the proof of the first part. (It is also possible to prove this di-
rectly using the Frobenius characteristics, although the computation with Ramanujan
sums is somewhat involved.)

The last statement is clear if n is odd. Now suppose n = 2(2m—1) for m > 1. Then
we have Lief) = Lie,, + Lieg;,—1[p2]. A routine calculation shows that this coincides
with w(Liea(am—1)) (see [4]). O

This yields the following curious S,-module isomorphism, giving a recursive defi-
nition of Lief) :

PROPOSITION 3.7. When n is even:

. . (2 . . (2
Lie, ®1g, [Lle(%)] ng[sg] ~ Lie!? Gsgng, [Lle(%)] TEZ[S%]’

Algebraic Combinatorics, Vol. 3 #4 (2020) 1000



On a curious variant of the Sp-module Lien

where S3[Sz] is the wreath product of Sy with S» (i.e. the normaliser of Sz x S» ). If

n is odd, this identity simply reduces to the known fact that Lie, and Lief) coincide.

The module Lieg) makes an appearance in the decomposition of the module Conj,,
of the conjugacy action on the class of n-cycles as well. Again we have the following
contrasting results between Lie and Lie®.

THEOREM 3.8.

(39) Z Conj,, = Zpk [Lie]; equivalently, Lie = Z 1(k)pg[Conj].
n k>1 k>1

(40) Z Conj,, = Zka_l[Lie@)]; equivalently, Lie® = Z 1(2k — 1)pak—1[Conj].
n k>1 k>1

Proof. The equivalence of the two statements in each case follows by using the fact
(easily verified by direct computation) that Zk>1 pr and Zk>1 w(k)py are plethystic
inverses, as are Z,@lp%_l and Z,@l w(2k — 1)pog—_1. For the first statement, we
combine the theorems of Solomon and Thrall in Theorem 3.2 as follows:

H|[Conj] = H pal(1—p1)~ H pr|H|[Lie]] H H{Lie[p,]] = Z Lie[p,]].

n>1 n>1 n>=1 n>1

Here we have used the fact that plethysm is associative, and the commutative property
pnlf] = flpn] for power sums. Hence (H —1)[Conj] = (H —1)[3_, -, Lie[py]]. Now the
result follows as in Theorem 3.6, which also gives the second part, since it says that

Lie = (p1 — )[Lle ] Clearly Zk>1 Pr[p1 — p2) = Zk>1 P2k—1- O

4. META THEOREMS

In this section we review the meta theorem of [19] giving formulas for symmetric and
exterior powers of modules induced from centralisers, and also further develop these
tools in a general setting. Theorem 4.2 below has wide-ranging applications, as shown
in [20] and [21]. We begin by recalling the following results regarding the sequence of
symmetric functions f, defined in equation (5) of Section 1.

PROPOSITION 4.1 ([19, Proposition 3.1]). Define

i>1

and define
(WF)™(t) =Y (=1 w(f;).
i>1
Then
(41) F(t) =log [T (1 - t'pa) ",
d>1

(42) (WF)*!(t) = log [] (1 + t%pa) “".

d>1

THEOREM 4.2 ([19, Theorem 3.2]). Let F' = 3 -, fn where f, is of the form (5),
H(v)=3,50v"hn and E(v) =, v"en. We have the following plethystic gener-
ating functions:

(Symmetric powers)

(43) H©)[F] = Z UZ(’\)H,\[F} _ H (1 —pm)_fm(”).

AEPar m>1
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(Exterior powers)

(44) E@)[F) = 3 v OB F] = J[ A - pu) /0.

AEPar m>1

(Alternating exterior powers)

(45) Y ()T (B )
AEPar
= Z UZ(A)H/\[OJ(F)alt] _ H(’U)[W(F)alt] _ H (1 +pm)f’“(”).

AEPar m>1

(Alternating symmetric powers)

(d6) Y (~)PT I N (HL[F))
A€Par

= Y v OEW(F)™] = B@)w(F)™] = [T (0 +pn) 0.
AEPar m>1

ProPOSITION 4.3 ([19, Lemma 3.3]). The numbers fn(1) and f,(—1) determine
each other according to the equations fomi1(—1) = —foms1(1) for all m > 0,
and fom(=1) = fi(1) = fom(1) for all m > 1. In fact, the symmetric functions
fn = %de Y(d)pg are determz'nednby the numbers fn(1) = %de ¥(d), or by the
numbers f,(—1) = %de P(d)(=1)4d.

Recall from Section 1.1 that we define H* = > rso(=1)"h, and E* =
> so(—=1)"€er. Thus H= = 1 — H**, where H** = Y7 _ (=1)""'h,, and likewise
E* = 1 — E** The following identity is well known (see [12, Equation (2.6)], [17,
Section 7.6]).

(47) St | | Y (=t)"en | =1. Equivalently, H* - E=1=H - E*.

n=0 n>=0
This identity is generalised in Lemma 4.4 below.

LEMMA 44. Let F =37 o fn, G=1+3 5,90 and K =1+ 3" -, ky be arbitrary
formal series of symmetric functions, as usual with fy,, gn, k., being of homogeneous
degree n.

(1) HIF)=G < E*f[F]=% < Y, (-1 le [F] = &L

(2) E

Proof. (1) By definition, E* = > rso(=1)"e, = 1/H, and hence the first equality
follows. For the second equality, note that ZT21(—1)T‘1er =1-E*=1-1/H, and

hence 201(—1)“1@ [F] =1—1/H[F] as claimed. The reverse direction is clear.
(2) This follows exactly as above, since H* = Y so(=1)"h. =1/E. O

LEMMA 4.5. Let G = Y7 o, gn, K = 37, 50 kn, where gn, k, are symmetric func-
tions of homogeneous degree n for n > 1, and ky = 1. Let K* denote the sum
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Z7l>0(—1)”kn. Then

(48)  H|) (~D)"wlgn)| =K < H|) ga| = K[ipl] - w(floi
n>1 n>1
(49) < Ei Zgn :w(K)i'
n>1
(50) ER (-1)"'w(gn)] =K < E[Y)_ga]= K[ipl] - w(ll()i
(51) <~ ITZ'i Zgn :W(K)i'
n>1

Proof. We use the fact that for any symmetric functions f1, fo of homogeneous degree,
fil=fo] = (=1)48 f1w(f1)[f2]. In particular this implies K[—p;] = w(K)* whenever
K is a series of symmetric functions k,, of homogeneous degree n. Hence, using asso-
ciativity of plethysm,

K =H[-) (~1)"w(ga)] = H[-Gl-pi]] = (H[-G))[-p1],
n>=1

or equivalently

K[-p1]l= E%G] = | = | [G] = ==
-l = £416] = (31 ) 161 = i
and finally
1 1
HI[G] = = .
A= Ko = w0y
The equivalence of the first two equations is a consequence of the fact that H[G] =
(7£)G] = ﬁ The equivalences of the second pair follow in a similar manner. O

E

Lemma 4.5 explains, in greater generality, the connection between equations (43)
and (45) (resp. (44) and (46)). In fact these lemmas give us the following observation.
Let F, H, and F be as defined in Theorem 4.2. Then

PROPOSITION 4.6. The identities of Theorem 4.2 are all equivalent, and are also equiv-
alent to

(52) EE@)[F] = J] (- pu)=.
(53) HE()[F] = T] (1 = pm) (0.

Now let F' = Zn>1 fn be an arbitrary series of symmetric functions f,, homoge-
neous of degree n. In particular f,, need not be of the form (5). We write Fo for the

series D, f.

THEOREM 4.7 ([19, Proposition 2.3, Corollary 2.4]). Assume that F' = 3 | fy is
any series of symmetric functions f, homogeneous of degree n. Also assume f1 = py.
Then we have the following identities:

(54) H(v)[F>2] = E(—v) - H(v)[F].
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Equivalently,
(55) B0l = E50) | o = et
(56) B()[Fss] = H(—v) - B[P,
Equivalently,

(57) Wl = 140 | | = g

Proof. The equivalence of (54) and (55) follows because of the identity (47). Consider
now equation (54). By standard properties of the skewing operation and the plethysm
operation (see, e.g. [12, (8.8)]), we know that h,[G1 + G2] = Y 1_o hi[G1]hn—k[Ga).
This in turn gives

H[G1 + G2 = H[G1] H[G5].
Taking G; = f1 and Gy = F — f1, we have

n>=2

But H[fi] = H[p1] = 3,5 hn- Hence, using (47),

1 n
T~ 2"

n=0

The equations (56) and (57) are obtained in entirely analogous fashion. O

An important consequence of Theorem 4.7 is worth pointing out. Denote by Lie,
the Frobenius characteristic of the S, -representation afforded by the multilinear com-
ponent of the free Lie algebra on n generators. Let Lie = Zn>1 Lie,, . This special
case of equation (43), Theorem 4.2, obtained by taking 1 (d) = pu(d) in (5), and hence
fn = Lie,, yields

H[Lie] = (1 —p;)~!
This is Thrall’s theorem. See Theorem 3.2 and more generally[14]. Define a symmetric
function Kk = Zn>2 S(n—1,1), Where s(,_1 1) is the Schur function indexed by the
partition (n—1,1). (This is the Frobenius characteristic of the standard representation
of S,,.)

Lemma 4.4 and Theorem 4.7 now imply that Thrall’s theorem is in fact equivalent
to the derived series decomposition of the free Lie algebra [14]. More precisely, the
following identities are equivalent:

THEOREM 4.8. (Equivalence of Thrall’s theorem and derived series for free Lie alge-
bra)

(58) (H —1)[Lie] = | Y h, | [Lie] =) pl.

r=1 n=1

(59) (H=1) [> (1) 'w(lie;) | =p1,

i>1
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(the plethystic inverse of the sum of homogeneous symmetric functions Zr>1 h;.).

(60) (1 - EH)[Lie] = | S(=1)"e, | [Lie] = ps,
r>1

(the plethystic inverse of the sum 3_ -, Lie,).

(61) (1 - E*)[Lieso] = [ > (=1)" e, | [Lieso] = k.
r>1
(62) The degree n term in Z(—l)"*ren,r[Lieﬂ] is (—1)" " s(u_11),s
r>0
(63) Lieso = Lie[x],
(64) Lieso = & + £[k] + &[K[&]] + -

(The derived series filtration of the free Lie algebra)

(65) (H 1 Lle>2 Zh Lle>2 (1—p1)_1.Ei_1:ZZ( 1)kp’iL k: k.

r>1 n>=2 k=0

Proof. We specialise the preceding identities to v = 1. Equation (58) is equivalent to
H[Lie] = (1 — p;)~ !, and hence by Lemma 4.4, we obtain E¥[Lie] = 1 — p;, which is
equation (60) after removing the constant term and adjusting signs.

Now invoke (55) of Theorem 4.7. We have

E*[Lieso] = H-(1—p1) =1+ Y (hy—hn_1p1) =1 -k,
n>2

and this is precisely equation (61), again after cancelling the constant term and ad-
justing signs. Since these steps are clearly reversible, we see that (60) and (61) are in
fact equivalent.

The equivalence of (61) and (62)—(63) follows by applying the plethystic inverse of
ZT>1(—1)T’16,«, which is given by (60).

It is clear by iteration that (63) gives (64). In the reverse direction, we can
rewrite (64) as

Lie = py + & + &[K] + k[k[K]] + -+,

and hence Lie[s] = Lie —p; = Lieso, which is (63). Finally the equivalence of (58)

and (65) follows from equation (54) of Theorem 4.7 and equation (47). O
THEOREM 4.9. Let F, H, E be as in Theorem 4.2, and assume f; =

(1) Let Hmﬂ(lfpm)’fm(l) = Zn)O gn for homogeneous symmetric functions g,

of degree n, go = 1. (Note that g1 = 0.) Also define o, = Zi>0(—1)ien_igi.

Then o,,n > 1, is the characteristic of a one-dimensional, possibly virtual

representation, with the property that its restriction to S,_1 is 0p_1. Let oy,

be the degree n term in H[Fxs],n > 0. (Note that ag =1 and oy = 0. ) Then
we have the recurrence

(66) Qp = P10np—1 + (_1)no'n~
(2) Let Hmﬂ(l—pm)fm(_l) = >0 kn for homogeneous symmetric functions ky,
of degree n, kg = 1. (Note that k1 = 0.) Also define 7, = Z@O(—l)ihn,iki.
Then T,,n = 1, is the characteristic of a one-dimensional, possibly virtual
representation, with the property that its restriction to Sy_1 is T,—1. Let B,
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be the degree n term in E[Fsq],n > 0. (Note that Bo =1 and 1 =0. ) Then
we have the recurrence

(67) ﬂn = plﬁnfl + (_1)717_“.

Proof. (1) The hypothesis that the degree one term f; in F equals p; implies that
f1(1) = 1. From equation (43) of Theorem 4.2 and (54) of Theorem 4.7, we now have

(1= p)H[Fss] = E*- [ (1 = pm) /™
m2>2

=D D" Y gn=3_ Y (D" enigi=» (~1)"on,

r=0 n>=0 n2=0 i=0 n=0

from which the recurrence is clear. It remains to establish the statement about 7,.
First observe that since p; does not appear in the power-sum expansion of g,, for
i > 1, ep—;g; is the Frobenius characteristic of a zero-dimensional (hence virtual)
representation (dimension is computed, for example, by taking the scalar product
with p?). The dimension of o,, is therefore that of e,,, and is thus one. To verify the
statement about the restriction, we use the fact that the Frobenius characteristic of
the restriction is the partial derivative 597". The partial derivative of e,, with respect
to pp is clearly e,_1,n > 1, and that of g, with respect to p; is clearly 0. The claim
follows.

(2) Again, f; = p; implies 1 = —f1(—1). The argument is identical, but now use
equation (44) and equation (56). O

Note that, with F' as in Theorem 4.2, the dimension of the representation whose
characteristic is h;j[F]|qegn (respectively €;[F]|qegrn) is the number ¢(n,j) of permu-
tations in S,, with j disjoint cycles. Similarly the dimension of the representation
whose characteristic is hj[F>2]|degn (respectively €;[F>2]ldegn) is the number d(n, j)
of fixed-point-free permutations, or derangements, in S,, with j disjoint cycles, and
hence the dimension of a,, (respectively ) is the total number of derangements d,,.
Hence, taking dimensions in either of the above recurrences, we recover the well-known
recurrence d,, = nd,—1 + (—1)",n = 2. On the other hand, the recurrence (69) below
is the symmetric function analogue of the recurrence

d(n,j) =n(d(n —1,j) +d(n —2,j — 1)),
while (68) is the analogue of
c(n,j)=cn—1,7) +nc(n—1,5 — 1).

From Theorem 4.7 we can also deduce interesting recurrences for the restrictions of
the symmetric and exterior powers of F' from S, to S,,_1, for an arbitrary formal sum
F' of homogeneous symmetric functions f, having the following key property: each
fn is the Frobenius characteristic of an S,-representation (possibly virtual) which
restricts to the regular representation of S,_;. See also [18, Proposition 3.5].

THEOREM 4.10. Let F = Zn>1 fn. Assume f, is a symmetric function of homoge-
neous degree n with the following property: a%lfn = p?_l, n > 1.
(1) Let G equal either hj[F)|aegn o7 €j[F]|degn. Then forn >1 and 0 < j < n
we have
0

n—j —1—j 0 n—1—(j—
(68) 87}?1Gn J ZGZ_} J +p187plGn_} -1,
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(2) Let G, equal either ho[F>2]ldegn 07 €j[F>2]|degn. Then forn > 2 and 1 <
7 <n—1, we have

0 ~ . 0 Am-1)-(i-1) | An—2-(i-1)
Y an—i — —
(69) o1 Cn b <8p1 Cnt TG '

Proof. The hypothesis about the f,, implies that derivative of F' with respect to p; is
D>t p~t = (1 —p1)~". Also note that

0 0
a—le(v) =vH(v), a—plE(v) =vE(v)
(1) The chain rule gives
(70) %(H(W)[F]):U'H(v)[ﬂ'(1—]91)_1=>U'H(U)[F]=(1—p1)8ip1(H(U)[F]);
() v B[] = (1= p) - (B)[F).

If G4, = h;[F)|degn, then H(v)[F] = 22750 2on>0 GJ . The result follows by extracting
the symmetric function of degree n—1 on each side of (70), and the coefficient of v™ 7.
The recurrence for e;[F] is identical in view of equation (70); now use the expansion

E@)[F] =320 2n20 G-
(2) Now we use the identity (54) of Theorem 4.7. We have

H(v)[Fs2] = E¥(v) - H(v)[F].
Using the fact that

S E*() = —0- E¥(0),
and the chain rule, we obtain
0 0
A= (H(0)[F>2]) = —v- E*(0) - H(v)[Fs2] + B - 2—(H(v)[Fs2])
dp1 Ip1

— v H(0)[Fsa] + B v HO)[F] - (1 - p1) 7,

=

where we have used the computation in (1). It follows that

(11— pl)aim(H(v)[F>2]) = v -p1(H(v)[Fs2]), and hence
o HOFa) =y (;M(H(U)[Fw]) to- Efplm(v)@zn) |

Let H(v)[F>2] = 2250201 vIGI . The recurrence follows by extracting the sym-

metric function of degree n — 1 on each side, and the coefficient of v 7. Similarly, in
view of the identity (56) of Theorem 4.7 and the fact that

ailei(v) = —v-H*(v),
we obtain
G (BWFsa) =1 (o (B)Fsa]) + 0 5 (B@)[F2) ).
op1 - op - op -
Hence it is clear that the same recurrence holds for e;[Fo]. O

In particular, Theorem 4.10 applies to the family of representations whose char-
acteristic f, is defined by equation (5), provided ¢ (1) = 1. The latter condition
guarantees that each f, restricts to the regular representation of S, _1.
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In the recent paper [7], Hersh and Reiner derive several identities and recurrences
for what are essentially the symmetric and exterior powers of Lie. The connection
between the work of [7] and the specialisation of our results to F' = Lie, is the well-
known fact (see [11], [19]) that the exterior power of Lie, when tensored with the sign
representation, coincides with the Whitney homology of the lattice of set partitions.
Here we record the conclusions for the special setting of F' = Lie. In the notation

of [7], we have cthi\ez = hp—;[Lie>2]|degn, While Chw(W,i) = ep—;|Lieso]|degn. Also
let Lie, = it >0 ¢, and W, Z?>01 W

COROLLARY 4.11 (The case F' = Lie).

(1) ([7, Theorem 1.7]) 37,5 ,(=1)" chw(Wl) = (=1)" s, 1n-2).
(2) ([7, Theorem 1.2])

chLie, = (H — 1)[Liess]|aegn = p1 - ch Lie,_1 + (—1)"en,
ch W, = (E — 1)[Liesa]|degn = p1 - ch Wp_1 + (=1)"7,,,

where T, = S(n_2,12) — S(n—2,2)," = 4, and T3 = S(,_2,12).
(3) ([7, Theorem 1.4])
—~ (j—1)

i(:hLle <aChL1e N + ch Lie >
(9]?1 a D1 n—1 n 2 )

ichWJ =p ( 9 chW(] 2 —&-chWU 1)> .
op1 Ip1
Proof. Clearly (1) is just equation (62) tensored with the sign.

For (2), apply Theorem 4.9 to F' = Lie = Zn>1 Lie, . It is clear that in this case
we have g, = 0,n > 2, and ky = —p2,k, = 0,n > 3. Hence Theorem 4.9 gives the
following:

(H — 1)[Liexa]|degn = p1 - (H — 1)[Lieso]|degn—1 + (—1)"en
and

(£ —1)[Liesa]ldegn = p1 - (£ — 1)[Liesa]ldegn—1 + (—=1)" 7,
where 7, = hy, — hp_2p2 = S(n—2,12) — S(n—2,2),7 = 4, and T3 = 5(,_2,12).

Part (3) is immediate from Theorem 4.10, which applies since it is well known thafc
Lie,, restricts to the regular representation of S,,_;. When F' = Lie,,, the functions G,

become ch Iji\ezﬂ when applied to the symmetric powers H, and w(ch /V[Z?_j) when
applied to the exterior powers F. O

Hersh and Reiner use the second recurrence in (2) above to establish a remarkable
formula for the decomposition into irreducibles for (E — 1)[Liexs]|degn, in terms of
certain standard Young tableaux that they call Whitney-generating tableauz [7, Theo-
rem 1.3]. The decomposition into irreducibles of (H — 1)[Liexs]|deg » is similarly given
as a sum of desarrangement tableauz [7, Section 7]. This was established from the first
recurrence in (2) above, for the sign-tensored version, in [13, Proposition 2.3].
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