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Differential posets and restriction in critical
groups

Ayush Agarwal & Christian Gaetz

Abstract In recent work, Benkart, Klivans, and Reiner defined the critical group of a faithful
representation of a finite group G, which is analogous to the critical group of a graph. In this
paper we study maps between critical groups induced by injective group homomorphisms and
in particular the map induced by restriction of the representation to a subgroup. We show that
in the abelian group case the critical groups are isomorphic to the critical groups of a certain
Cayley graph and that the restriction map corresponds to a graph covering map. We also show
that when G is an element in a differential tower of groups, as introduced by Miller and Reiner,
critical groups of certain representations are closely related to words of up-down maps in the
associated differential poset. We use this to generalize an explicit formula for the critical group
of the permutation representation of Sn given by the second author, and to enumerate the
factors in such critical groups.

1. Introduction
The critical group K(Γ) is a well-studied abelian group invariant of a finite graph
Γ which encodes information about the dynamics of a process called chip firing on
the graph (see [7] where critical groups are called sandpile groups). Recent work of
Benkart, Klivans, and Reiner defined analogous abelian group invariants K(V ), also
called critical groups, associated to a faithful representation V of a finite group G [2].
It is known (see, for example, [18]) that graph covering maps induce surjective maps
between graph critical groups. This paper investigates maps on critical groups of
group representations which are induced by group homomorphisms(1).

Differential posets, introduced by Stanley [15], generalize many of the combinatorial
and enumerative properties of Young’s lattice. In [10], Miller and Reiner introduced
a very strong conjecture about the Smith normal form of UD+ tI where U,D are the
up and down maps in a differential poset, and t is a variable. We investigate how this
conjecture, which was proven for powers of Young’s lattice by Shah [14], can be used
to determine the structure of critical groups in certain differential towers of groups.

Section 2 defines critical groups for graphs and group representations and gives
background results. It also discusses background on differential posets and differential
towers of groups which will be used throughout the later sections.
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In Section 3 we study maps between critical groups which are induced by group
homomorphisms. In particular, restriction of representations to a subgroup H ⊂ G
induces a map Res : K(V )→ K(ResGH V ). When G is abelian, Theorem 3.6 shows that
K(V ) can be identified with the critical group of a certain Cayley graph Cay(Ĝ,SV ),
and that the restriction map Res agrees with a map on graph critical groups induced
by a natural graph covering.

In [3], the second author determined the exact structure of the critical group for
the permutation representation of the symmetric group Sn. This result depended on
a relationship between tensor products with the permutation representation and the
up and down maps in Young’s lattice of integer partitions. Section 4 formalizes this
connection and generalizes it to the context of differential towers of groups, allowing
us to explicitly compute the critical group for a generalized permutation representa-
tion of the wreath product A oSn in Theorem 4.5. It also investigates properties of
the critical groups associated to representations V (w) which occur by repeatedly ap-
plying restriction and induction to the trivial representation in a differential tower of
groups. The pattern of restriction and induction is specified by a word w ∈ {U,D}∗,
where U,D are the up and down operators in the corresponding differential poset.
In Theorem 4.9 we show that the structure of the critical group K(V (w)) is closely
related to combinatorial properties of the up and down operators, as studied in [15].

Finally, in Section 5, Theorem 5.1 gives an enumeration of the factors in the el-
ementary divisor form of K(V (w)) in terms of the rank sizes of the corresponding
differential tower of groups. We conclude by presenting a conjecture for the size and
multiplicity of the smallest nontrivial factor inK(V (UkDk)) in AoSn. This conjecture
also relates the larger factors in this critical group to the factors in a critical group
for the subgroup A oSn−k.

2. Background and definitions
2.1. Critical groups of graphs. This section gives some background on critical
groups of graphs; see [7] for a thorough survey. We will be interested in critical groups
of graphs primarily as motivation for our study of critical groups of group representa-
tions, however Section 3.1 below gives a close relationship between the two concepts
when G is abelian.

Let Γ be a finite directed graph with a unique sink s, we sometimes designate
a vertex as a sink and therefore ignore its outgoing edges. Fix some ordering s =
v0, v1, . . . , v` of the vertices of Γ, and let di be the out-degree of vi and aij be the
number of edges from vi to vj . Then the Laplacian matrix L̃(Γ) has entries

L̃(Γ)ij =
{
di − aii for i = j,
−aij for i 6= j.

The reduced Laplacian matrix L(Γ) is the `×`matrix obtained from L̃(Γ) by removing
the row and column corresponding to the sink.

The critical group K(Γ) (also called the sandpile group in the literature), defined as

K(Γ) = coker(L(Γ) : Z` → Z`),

is a finite abelian group whose order is the number of spanning trees of Γ which are
directed towards the sink. There are two sets of distinguished coset representatives
for K(Γ), the superstable and recurrent configurations, which encode the dynamics
of a process called chip-firing on Γ. In the remainder of the paper we will primarily
be interested in the group structure of K(Γ), and not in these particular coset
representatives or the chip-firing process.
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Given two directed multigraphs Γ,Γ′, a graph map is a continuous map ϕ : Γ→ Γ′
of the underlying topological spaces which maps the interior of each edge homeomor-
phically to the interior of another edge, preserving orientation; by continuity this also
defines a map from the vertices of Γ to the vertices of Γ′. A graph map is a graph
covering if in addition each vertex of Γ has a neighborhood on which the restriction
of ϕ is a homeomorphism.

The following proposition is well-known, see for example [18]:

Proposition 2.1. The underlying map on vertices of a graph covering ϕ : Γ → Γ′
induces a surjective group homomorphism ϕ : K(Γ)� K(Γ′).

Section 3.1 discusses the relationship between maps induced on critical groups of
Cayley graphs by certain graph coverings ϕ and the map Res on critical groups of
group representations.

2.2. Critical groups of group representations. Let G be a finite group
and V a faithful complex (not-necessarily-irreducible) representation of G; let
1G = V0, V1, . . . , V` denote the irreducible complex representations and χi, i = 0, . . . , `
denote their characters. Let R(G) denote the representation ring of G. This is the
commutative Z-algebra of formal integer combinations of representations of G
modulo the relations [W ⊕ W ′] = [W ] + [W ′]; the product structure is defined as
[W ] · [W ′] = [W ⊗CW

′]. As a Z-module, R(G) is isomorphic to Z`+1, since the classes
of irreducible representations [1G], [V1], . . . , [V`] form a basis. We define elements

δ(g) =
∑

W∈Irr(G)

χW (g) · [W ]

of R(G) corresponding to the columns in the character table of G.
The representation ring R(G) is endowed with a Z-algebra homomorphism dim :

R(G) → Z sending representations [W ] to their dimensions as vector spaces (which
we also denote by dim(W )), and extending by linearity to virtual representations.
The kernel of this map, which we denote by R0(G), is the ideal of elements in R(G)
with virtual dimension 0.

Then multiplication by the element dim(V )[1G] − [V ] defines a linear map C̃V :
R(G)→ R(G). Since dim(V )[1G]− [V ] ∈ R0(G), this descends to a linear map

CV : R0(G)→ R0(G).

Definition-Proposition 2.2 ([2, Proposition 5.12]). If V is a faithful finite dimen-
sional representation of G, then the linear map CV is nonsingular, and so coker(CV )
is a finite abelian group. We define the critical group K(V ) to be this cokernel. We
also have that coker(C̃V ) = Z · δ(e) ⊕K(V ).

Remark 2.3. As a quotient of R0(G), the critical groupK(V ) inherits a multiplicative
structure in addition to its (additive) abelian group structure. We are interested here
only in the additive structure of K(V ). See Sections 5 and 6 of [2] for some discussion
of the multiplicative structure.

We will need the following facts about critical groups and the maps C̃V :

Proposition 2.4 ([2], Proposition 5.3). A full set of orthogonal eigenvectors for C̃V
is given by the column vectors δ(g) in the character table for G:

C̃V δ
(g) = (dim(V )− χV (g))δ(g),

where g ranges over a set of conjugacy class representatives for G, and χV denotes
the character of V .

Algebraic Combinatorics, Vol. 2 #6 (2019) 1313



Ayush Agarwal & Christian Gaetz

Remark 2.5. When V is faithful, χV (g) 6= dim(V ) for g 6= e, thus Proposition 2.4
shows that ker(C̃V ) is spanned by δ(e) =

∑`
i=0 dim(Vi)[Vi] = [Vreg], where Vreg is the

regular representation of G.

Theorem 2.6 ([3, Theorem 3]). Let V be a faithful representation of a finite group G,
then:

(a) Let e = c0, . . . , c` be a set of conjugacy class representatives for G. The order
of the critical group is given by:

(1) |K(V )| = 1
|G|

∏̀
i=1

(dim(V )− χV (ci)).

(b) If V is self-dual and a is an integer value of χV achieved on m differ-
ent conjugacy classes of G, then K(V ) contains a subgroup isomorphic to
(Z/(dim(V )− a)Z)m−1.

Example 2.7. Let G = S4 and let V = C4 be the 4-dimensional representation
where G acts by permuting coordinates. Working in the basis {[V0], . . . , [V4]} of R(G)
given by the character table below, we decompose each tensor product V ⊗ Vi into
irreducibles, giving the rows of the matrix C̃V .

e (12) (123) (1234) (12)(34)
χV 4 2 1 0 0
χ0 1 1 1 1 1
χ1 3 1 0 −1 −1
χ2 2 0 −1 0 2
χ3 3 −1 0 1 −1
χ4 1 −1 1 −1 1

C̃V =


3 −1 0 0 0
−1 2 −1 −1 0
0 −1 3 −1 0
0 −1 −1 2 −1
0 0 0 −1 3


To calculate the cokernel of C̃V : R(G) → R(G), we compute the Smith nor-

mal form (see Section 2.5 below) of C̃V to get diag(0, 1, 1, 1, 4). This shows that
coker(C̃V ) ∼= Z⊕ Z/4Z, and so K(V ) ∼= Z/4Z.

Alternatively, we could apply Theorem 2.6(a) to see that

|K(V )| = 1
4!(4− 2)(4− 1)(4− 0)(4− 0) = 4

and apply part (b) to see that K(V ) has a subgroup isomorphic to Z/4Z. This forces
K(V ) ∼= Z/4Z.

The critical groups for the permutation representation of Sn were computed by
the second author in [3]. In Section 4 we generalize this result further.

2.3. Differential posets. Differential posets are a class of partially ordered sets
defined by Stanley in [15]. Differential posets retain many of the striking enumerative
and combinatorial properties of Young’s lattice Y , the lattice of integer partitions
ordered by containment of Young diagrams.

We refer the reader to [16] for basic definitions related to posets in what follows.
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∅

Figure 1. Young’s lattice Y , a 1-differential poset.

Definition 2.8 ([15, Definition 1.1 and Theorem 2.2]). For r ∈ Z>0, a poset P is
called an r-differential poset if the following properties hold:
(DP1) P is a graded locally-finite poset with 0̂.
(DP2) Let ZPn be the free abelian group spanned by elements of the n-th rank of P .

Define the up and down maps Un : ZPn → ZPn+1 and Dn : ZPn → ZPn−1 by

Unx :=
∑
xly

y, Dny :=
∑
xly

x,

where xl y means that y covers x. Then we require that for all n we have
Dn+1Un − Un−1Dn = rI.

When the context is clear we omit the subscripts from the up and down maps.
When P is a differential poset, we let pn = |Pn| denote the size of the n-th rank,

and we let ∆pn = pn−pn−1 denote the difference in the sizes of consecutive ranks. We
make the convention that pi = 0 for i < 0. In the case of Young’s lattice, pn = p(n)
where p(n) denotes the number of integer partitions of n. If λ is a partition, we let
λ′ denote the conjugate partition obtained by reflecting the Young diagram across
the diagonal. The following results of Stanley characterize the eigenspaces of UD in
terms of the rank sizes.

Theorem 2.9 ([15, Theorem 4.1]). Let P be an r-differential poset and let n ∈ N.
Then UDn is semisimple and has characteristic polynomial:

ch(UDn) =
n∏
i=0

(x− ri)∆pn−i .

Theorem 2.10 ([15, Proposition 4.6]). Let En(ri) denote the eigenspace of UDn be-
longing to the eigenvalue ri, then

En(0) = ker(Dn) = (UPn−1)⊥

and
En(ri) = U iEn−i(0)

for 1 6 i 6 n.
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2.4. Differential towers of groups.

Definition 2.11 ([10, Definition 6.1]). For r ∈ Z>0 define an r-differential tower of
groups G to be an infinite tower of finite groups

G : {e} = G0 ⊆ G1 ⊆ G2 ⊆ · · ·

such that for all n:
(DTG1) The branching rules for restricting irreducibles from Gn to Gn−1 are

multiplicity-free, and
(DTG2) ResGn+1

Gn
IndGn+1

Gn
− IndGnGn−1

ResGnGn−1
= r · id where both sides are regarded as

linear operators on R(Gn).

An r-differential tower of groups G corresponds to an r-differential poset P = P (G)
whose n-th rank Pn is in bijection with the set Irr(Gn) of irreducible representations of
Gn. We will use Greek letters like λ to denote elements of P (G) and Vλ to denote the
corresponding irreducible representation. We write |λ| = n if λ ∈ Pn, or equivalently
if Vλ is a representation of Gn. For λ ∈ Pn and µ ∈ Pn+1, λ l µ in P if and only
if ResGn+1

Gn
Vµ contains Vλ in its irreducible decomposition, thus condition (DTG2)

becomes condition (DP2).

Example 2.12. Let Y denote Young’s lattice of integer partitions (see Figure 1 above).
It is well known that irreducible representations of the symmetric group Sn are in-
dexed by partitions λ = (λ1, λ2, . . .) with |λ| =

∑
i λi = n; we refer the reader to [8] for

background on the representation theory of the symmetric group. Young’s rule says
that ResSnSn−1

Vλ decomposes as a direct sum of Vν where ν ranges over all possible
ways to remove a single box from the Young diagram for λ. It is well known [15] that
Y is a 1-differential poset, so (DP2) holds, and by the above identification (DTG2)
also holds. Thus

S : {e} ⊂ S1 ⊂ S2 ⊂ · · ·
is a 1-differential tower of groups, with P (S) = Y .

More generally, if A is an abelian group of size r, then Okada [12] showed that the
tower of wreath products A oS : {e} ⊂ A ⊂ A oS2 ⊂ A oS3 ⊂ · · · is an r-differential
tower of groups with P (A oS) = Y r.

In the following result we show that the groups in any differential tower of groups
have the same order as those in A oS.

Proposition 2.13. Let G : {e} = G0 ⊂ G1 ⊂ · · · be an r-differential tower of groups,
then |Gn| = rn · n! for all n > 0.

Proof. Let P = P (G) be the corresponding r-differential poset. Since restriction of
representations does not change dimension, we have

dim(Vλ) =
∑
µlPλ

dim(Vµ).

It follows by induction that dim(Vλ) = e(λ), where e(λ) denotes the number of upward
paths from 0̂ to λ in the Hasse diagram of P . Stanley showed in Corollary 3.9 of [15]
that for any r-differential poset Q we have

∑
x∈Qn e(x)2 = rn ·n!. Applying this to P ,

and recalling that
∑
V ∈Irr(G) dim(V )2 = |G| for any finite group G gives the desired

result. �

Remark 2.14. Recent work [5] of the second author shows that the tower S of sym-
metric groups is the only 1-differential tower of groups.
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2.5. Smith normal form and cokernels of linear maps. The cokernel of a
linear map over a PID is described by the Smith normal form of the corresponding
matrix. In this section we review basic facts about Smith normal form, and state a
conjecture about the Smith normal form of the map UD in a differential poset.
Definition 2.15. Let M ∈ Rn×n be an n×n matrix with entries in some ring R. We
say that S is a Smith normal form for M if:

• S = PMQ for some P,Q ∈ GLn(R), and
• S is a diagonal matrix S = diag(s1, . . . , sn) such that successive diagonal
entries divide one another: si|si+1 for all i = 1, . . . , n− 1.

The following facts are well-known (see, for example [17]).
Proposition 2.16.

(a) If M has a Smith normal form, then it is unique up to multiplication of the
si by units in R.

(b) If R is a PID, then all matrices M have a Smith normal form.
(c) If M has a Smith normal form S = diag(s1, . . . , sn), then

coker(M) ∼=
n⊕
i=1

R/(si).

Proposition 2.17. Let R be a PID, and suppose that the n×n matrix M over R has
Smith normal form diag(s1, . . . , sn). Then for 1 6 k 6 n we have that s1s2 · · · sk is
equal to the greatest common divisor of all k × k minors of M , with the convention
that if all k × k minors are 0, then their greatest common divisor is 0.

We will primarily be interested in determining Smith normal forms over Z, but we
will use some results about Smith normal forms over Z[t] as a computational tool.
When R = Z we will always assume that the si are nonnegative (this can be achieved
since ±1 are the units in Z). When referring to an abelian group A = coker(M), we
say that A has k factors if exactly k of the si are different from 1; dually, we write
ones(A) = k if exactly k of the si are equal to 1.

In [10] Miller and Reiner make the following remarkable conjecture (note that Z[t]
is not a PID):
Conjecture 2.18 ([10, Conjecture 1.1]). For all differential posets P , and for all n,
the map Un−1Dn + tI : Z[t]pn → Z[t]pn has a Smith normal form over Z[t].

We are interested in Smith normal forms over Z[t] because of the following very
strong consequence:
Proposition 2.19 ([10, Proposition 8.4]). Let M ∈ Zn×n be semisimple and have
integer eigenvalues, and suppose M + tI has a Smith normal form over Z[t]. Then the
Smith normal form S = diag(s1, . . . , sn) of M is given by

sn+1−i =
∏
k

m(k)>i

k,

where m(k) denotes the multiplicity of the eigenvalue k of M .
Since UD is semisimple and has integer eigenvalues for any differential poset by

Theorem 2.9, if Conjecture 2.18 holds for some differential poset P , then Proposi-
tion 2.19 uniquely determines the Smith normal form of UD.

Shah showed that Conjecture 2.18 is true in the cases of interest to us here:
Theorem 2.20 ([14, Corollary 5.2]). For any r > 1:

(a) Conjecture 2.18 holds for Y r.
(b) For all n the down maps Dn : Zpn → Zpn−1 in Y r are surjective.
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3. Maps induced between critical groups
For σ : H → G a group homomorphism and W a representation of G, we let Wσ

denote the representation of H given by h · w := σ(h)w for all h ∈ H,w ∈ W . If σ
is the inclusion of a subgroup, then Wσ = ResGHW . If σ is an automorphism of G,
then Wσ corresponds to the usual notion of twisting by σ. We extend by linearity to
define Wσ for W a virtual representation.
Theorem 3.1. Let σ : H ↪→ G be an injective group homomorphism and V a faithful
representation of G, then σ : [W ] 7→ [Wσ] is a well-defined group homomorphism
K(V )→ K(V σ). If σ is an isomorphism, then so is σ.
Proof. First observe that the following diagram commutes:

R(G) σ−−−−→ R(H)

[V ]·(−)
y y[V σ]·(−)

R(G) σ−−−−→ R(H)
This is because for any genuine representation W , we have

[V σ] · [Wσ] = [V σ ⊗Wσ] = [(V ⊗W )σ],
and extending by linearity gives the desired result. Since σ preserves virtual dimension,
the above diagram restricts to R0(G) and R0(H). The commutativity of the resulting
diagram is exactly the condition needed to ensure that the map of quotient groups
K(V ) → K(V σ) is well-defined, and the injectivity of σ guarantees that V σ is a
faithful representation ofH. If σ is invertible, then it is easy to see that σ−1 = σ−1. �

Example 3.2. Let σ denote the unique outer automorphism of S6 (the map σ is
uninteresting for inner automorphisms since W ∼= Wσ). Indexing the irreducible rep-
resentations of S6 by partitions in the usual way, the action of σ is

V(5,1) ↔ V(2,2,2),

V(2,14) ↔ V(3,3),

V(4,1,1) ↔ V(3,13),

with the remaining irreducible representations fixed [19]. One can calculate that
K(V(5,1)) ∼= K(V(2,2,2)) ∼= (Z/6Z)2 ⊕ Z/120Z,
K(V(2,14)) ∼= K(V(3,3)) ∼= Z/24Z⊕ Z/480Z,
K(V(4,1,1)) ∼= K(V(3,13)) ∼= Z/3Z⊕ Z/90Z⊕ Z/47520Z.

In the case σ : H ↪→ G, one might have hoped that, in analogy with Proposition 2.1,
the map σ : [W ] 7→ [ResGHW ] would be surjective on critical groups; the following
example shows that this is not the case for general groups H ⊂ G.
Example 3.3. Let G = D5 be the dihedral group of order 10, and let V be the
direct sum of a two-dimensional irreducible and the non-trivial one-dimensional irre-
ducible. This is the complexification of the action of G in R3 by rotation of a fixed
plane and reflection across that plane. One can calculate (see [4, Appendix C]) that
K(V ) ∼= Z/2Z. Letting H = C5 be the cyclic subgroup, however, one can show that
K(ResGH V ) ∼= Z/5Z. Thus Res : K(V )→ K(ResGH V ) cannot be surjective.

This is a natural counterexample to pick, since C5 has more conjugacy classes than
D5, and so Res : R(D5)→ R(C5) cannot be surjective.

There are two classes of groups for which Res can be seen to be surjective for all V ,
both of which will be investigated further throughout the paper.
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Proposition 3.4. The map Res : K(V )→ K(ResGH V ) is surjective if:
(i) G is abelian,
(ii) G = A oSn and H = A oSm for A an abelian group and m 6 n.

Proof. In both cases the map Res : R(G)→ R(H) is already surjective. This is clear
in case (i); in case (ii) this follows from Theorem 2.20 and the fact that A oS is a dif-
ferential tower of groups with corresponding differential poset Y r, where r = |A|. �

For completeness, we also mention that induction induces a map in the opposite
direction:
Proposition 3.5. The map [W ] 7→ [IndGHW ] induces a map on critical groups Ind :
K(ResV )→ K(V ). If Res is a surjection, then Ind is an injection.
Proof. To see that Ind induces a map on critical groups, one easily checks that
(Ind W ) ⊗C V ∼= Ind(W ⊗ Res V ), so that the required diagram commutes. The
second claim follows from the observation that the map Ind : R(H) → R(G) is the
transpose of the map Res : R(G) → R(H) and a standard application of the Snake
Lemma. �

3.1. Cayley graph covering maps. In this section we investigate the relationship
between critical groups of group representations and critical groups of graphs when G
is abelian.

For any finite group G, we let Ĝ = Hom(G,C×) denote the Pontryagin dual group.
When G is abelian, all irreducible representations are 1-dimensional, and so Ĝ is equal
to the group of irreducible characters of G under point-wise multiplication. If V is a
faithful representation of an abelian group G, then the multiset SV of characters of
irreducible components appearing in V generates Ĝ as a group. This follows from the
standard fact that all irreducible representations of a finite group appear as factors
in a sufficiently large tensor power of a fixed faithful representation.

If G is a group with generating multiset S, the Cayley graph Cay(G,S) is the
directed multigraph with vertex set G and directed edges g → gx whenever x ∈ S.
See Figure 2 for an example of this construction.
Theorem 3.6. For V a faithful representation of an abelian group G the critical groups
K(V ) and K(Cay(Ĝ,SV )) can be naturally identified, and the diagram

K(V ) K(Cay(Ĝ,SV ))

Res

y yϕ
K(ResGH V ) K(Cay(Ĥ,SResV ))

commutes, where ϕ is the surjection on critical groups induced by the natural graph
covering map ϕ : Cay(Ĝ,SV )→ Cay(Ĥ,SResV ).

Proof. Define a map ϕ : Ĝ � Ĥ by χ 7→ ResGH χ. Now, Ĝ and Ĥ are the vertex
sets of the Cayley graphs in question, so ϕ induces a graph map ϕ : Cay(Ĝ,SV ) �
Cay(Ĥ,SResV ) by sending each edge χ→ χ ·ψ to the edge Resχ→ (Resχ) · (Resψ).
Now, identifying the basis of irreducibles in R(G) and R(H) with the elements of Ĝ
and Ĥ respectively, it is clear from the definitions that C̃V and L̃(Cay(Ĝ,SV )) define
the same linear maps, and that, under this identification ϕ and Res agree. �

Remark 3.7. For graph covering maps ϕ : Γ → Γ′, Reiner and Tseng [13] give an
interpretation of the kernel of ϕ : K(Γ)� K(Γ′) as a certain “voltage graph critical
group”. Thus the identification in Theorem 3.6 allows one to describe the kernel of
Res in these same terms in the abelian group case.
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1 ζ

ζ2

ζ3ζ4

ζ5 ϕ−→

1

ζ3

2

Figure 2. The Cayley graphs for the case G = 〈g〉 ∼= Z/6Z and
H = 〈g3〉 ∼= Z/2Z with V given by g 7→ diag(ζ, ζ3), where ζ is a
primitive sixth root of unity.

4. Critical groups and differential posets
By a word of length 2k, we mean a sequence w = w1...w2k of U ’s and D’s. A word w is
balanced if the number of U ’s is equal to the number of D’s. When a tower of groups
G0 ⊂ G1 ⊂ · · · is clear from context, we let w(Ind,Res) denote the linear operator⊕

iR(Gi)→
⊕

iR(Gi) defined by replacing the U ’s in w with Ind and the D’s with
Res and viewing the resulting sequence as a composition of linear operators. We always
assume that induction and restriction are between consecutive groups in the sequence
and that Res[V ] = 0 for [V ] ∈ R(G0). Similarly, if P is a differential poset, then we
let the linear map w(U,D) :

⊕
i ZPi →

⊕
i ZPi be defined as the natural composition

of linear operators. When w is balanced, then for each i, w(Ind,Res) (resp. w(U,D))
restricts to a map R(Gi)→ R(Gi) (resp. ZPi → ZPi).
Example 4.1. LetS be the tower of symmetric groups, and Y = P (S) denote Young’s
lattice. Fix i > 1, then w(U,D) = UD is a map ZYi → ZYi and w(Ind,Res) is a
map R(Si) → R(Si) sending [W ] 7→ [IndSi

Si−1
ResSiSi−1

W ]. Thus w(Ind,Res)[1Si ] =
[IndSi

Si−1
1Si−1 ] is the class of the permutation representation of Si. If we identify

ZYi with R(Si) via the differential tower of group structure, then one can check that
w(Ind,Res)[1Si ] · (−) and w(U,D) in fact agree as linear maps. This fact will be
explained below.

The following basic facts follow from ([12, Appendix, Theorem A]).
Lemma 4.2. Let G be a finite group, and let H ⊂ G be a subgroup.

(a) The operator Ind Res on R(G) has a complete system of orthogonal eigenvec-
tors given by

δ(g) :=
∑

V ∈Irr(G)

χV (g) · [V ]

as g ranges through a set of conjugacy class representatives of G.
(b) The associated eigenvalue equation is

Ind Res δ(g) = χInd1H (g) · δ(g).

(c) [Ind1H ] · (−) and Ind Res are equal as linear maps R(G)→ R(G).

When f =
∑
i ciw

(i) is a finite nonnegative sum of balanced words, and a dif-
ferential tower of groups G is understood, write V (f)n for the representation of Gn
given by:

f(Ind,Res)[1Gn ] =
∑
i

ciw
(i)(Ind,Res)[1Gn ].

For example, if f consists of the single word UkDk, and we are working in the
tower S of symmetric groups, then V (f)n = IndSn

Sn−k
1 is a basic object of study in

Algebraic Combinatorics, Vol. 2 #6 (2019) 1320



Differential posets and restriction in critical groups

the representation theory of the symmetric group. Under the standard characteristic
map ch : R(Sn) ∼−→ Λn between the representation ring of Sn and the ring of degree-
n symmetric functions, this representation is sent to the complete homogeneous
symmetric function h(n−k,1k) indexed by a “hook shape”.

Proposition 4.3. Let G : G0 ⊂ G1 ⊂ · · · be an r-differential tower of groups with
corresponding differential poset P = P (G), let f be a finite nonnegative sum of bal-
anced words. Then, identifying ZPn and R(Gn), the maps f(U,D)n and [V (f)n] · (−)
are equal. Furthermore the character values of V (f)n are equal to the eigenvalues of
f(U,D)n.

Proof. We prove the result for a balanced word w, the case for general f then follows
by linearity. By the differential tower of group structure, we have

DU − UD = rI = Res Ind− Ind Res

Therefore we can write

w(U,D) =
∑
i>0

ciU
iDi,

w(Ind,Res) =
∑
i>0

ci Indi Resi,

with the same coefficients ci. For all i, the result for w′ = U iDi follows from
Lemma 4.2, and so the first claim holds by linearity.

After accounting for the copies of the trivial representation which are present in
Proposition 2.4, that Proposition implies that the eigenvalues of [V (w)n] · (−) are
exactly the character values of V (w)n. By the first claim we conclude that these must
agree with the eigenvalues of w(U,D)n. �

Remark 4.4. Any (not-necessarily-differential) tower of groups gives rise to a graded
multigraph in the same way that a differential tower of groups gives rise to the Hasse
diagram of a differential poset. One could write down a statement analogous to Propo-
sition 4.3 in this context, however we are interested in this special case since the com-
binatorial and algebraic properties of the up and down maps in differential posets are
so strong.

4.1. The generalized permutation representation. The representation
IndSn

Sn−1
1 of the symmetric group Sn is easily seen to be isomorphic to the n-

dimensional permutation representation, where Sn acts by permuting coordinates
in Cn. In [3], the second author was able to explicitly compute the critical group
for this representation, generalizing Example 2.7 to arbitrary n. Here we extend that
result to a broader class of differential towers of groups:

Theorem 4.5. Let G = G0 ⊂ G1 ⊂ · · · be an r-differential tower of groups such that
the associated differential poset P = P (G) satisfies Conjecture 2.18 (such as G = AoS
with A abelian of order r). Let V = V (UD)n = IndGnGn−1

1Gn−1 . Then

K(V ) =
pn⊕
i=2

Z/qiZ,

where
qi =

∏
16j6n
∆pj>i

rj.
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Proof. By Proposition 2.13, dim(V ) = |Gn|/|Gn−1| = rn. By Proposition 4.3, the
matrix for the map C̃ of multiplication by rn[1]− [V ] in R(Gn) in the basis {Vλ|λ ∈
Pn} is equal to the matrix for the map rnI − UD in the basis {λ|λ ∈ Pn}. Since P
satisfies Conjecture 2.18 by hypothesis, Proposition 2.19 and Theorem 2.9 together
imply that the Smith normal form of C̃ is diag(s1, . . . , spn) with

spn+1−i =
∏

06j6n
∆pn−j>i

(rn− rj).

Re-indexing with j = n− j we get that

spn+1−i =
∏

06j6n
∆pj>i

rj.

Letting qi = spn+1−i, we see that q1 = 0 since ∆p0 = p0 − p−1 = 1; therefore the
critical group is given by the direct sum beginning at i = 2 as in the statement of the
theorem. �

Results of Miller [11] and Gaetz and Venkataramana [6] show that ∆pn > 2r for
n > 2. In particular, this implies that many of the factors in the products qi do in
fact appear.

Remark 4.6. In [11], Miller has shown that for any differential poset the largest
Smith factor of UD agrees with the form predicted by Conjecture 2.18. Therefore we
can conclude that the largest factor of K(V ) is Z/q2Z, without assuming that P (G)
satisfies Conjecture 2.18.

4.2. The structure of K(V (f)). In this section we investigate the order and sub-
group structure of K(V (f)n) for general finite sums of balanced words f . Although
exact formulas for the critical group, like that given in Theorem 4.5 for the case
f(U,D) = UD remain elusive in general, the results below considerably restrict the
structure of K(V (f)n).

The following proposition of Stanley characterizes eigenspaces for sums of balanced
words in a differential poset:

Proposition 4.7 ([15, Proposition 4.12]). Let P be an r-differential poset and let
f(U,D) be a finite sum of balanced words. Write

f(U,D) =
∑
j>0

βj(UD)j

and define
αi =

∑
j>0

βj(ri)j .

Then the characteristic polynomial of f(U,D)n : ZPn → ZPn is given by

ch f(U,D)n =
n∏
j=0

(x− αi)∆pn−i .

Proposition 4.7 allows us to characterize the order and subgroup structure of critical
groups K(V (f)n). Since it is clear from the definition that K(V ⊕ 1) = K(V ) for all
representations V , we are free to assume in Proposition 4.7 that β0 = 0, and we use
this convention in what follows.

Proposition 4.8. Let f be a nonnegative finite sum of balanced words, and maintain
the notation of Proposition 4.7. Assume further that P = P (G) for G a differential
tower of groups. Then,
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(a) dim(V (f)n) = αn, and
(b) V (f)n is a faithful representation.

Proof. We have f(U,D) =
∑
j>0 βj(UD)j and αn =

∑
j>0 βj(rn)j . Part (a) is im-

mediate from the fact that V ((UD)jn) is obtained by applying (Ind Res)j to the rep-
resentation 1Gn , so it has the dimension [Gn : Gn−1]j = (rn)j by Proposition 2.13.
It is clear from the definition that αi < αn for i 6= n, thus, since the αi are the
character values of V (f)n, and since αn has multiplicity ∆p0 = 1, we see that V (f)n
is faithful. �

Theorem 4.9. Let G be an r-differential tower of groups and let f(U,D) be a non-
negative finite sum of balanced words. Then, using the notation of Proposition 4.7, we
have:

(a) The size of the critical group K(V (f)n) is given by:

|K(V (f)n)| = 1
rn · n!

n−1∏
i=0

(αn − αi)∆pn−i .

(b) For each i = 1, . . . , n−1, the critical group K(V (f)n) has a subgroup isomor-
phic to (Z/(αn − αi)Z)∆pn−i−1.

Proof. This follows from applying Theorem 2.6 with the information about character
values given by Proposition 4.8 and Proposition 4.3 and the size of Gn as calculated
in Proposition 2.13. �

5. Enumeration of factors in critical groups
In what follows, when a differential tower of groups and a rank n are understood, we
let ones(w) denote the number of ones in the Smith normal form of C̃V (w)n , where
w is a balanced word. Then the number of nontrivial factors in the critical group
K(V (w)n) is pn − 1 − ones(w), since C̃ is a pn × pn-matrix and there is always a
unique zero in the Smith form, by Definition-Proposition 2.2.

The elements of Y r of rank n are indexed by r-tuples λ = (λ(1), . . . , λ(r)) of parti-
tions such that

∑
i |λ(i)| = n. Define the r-lexicographic order on Y r by first applying

lexicographic order on λ(1), and then on λ(2), and so on; if |λ| > |µ| then we use the
convention that λ is greater than µ in the lexicographic order. We write λ > µ to
denote this order.

Our main tool for proving results in this section will be the the characterization of
Smith normal form in terms of minors of the matrix, as given in Proposition 2.17. If
M is a matrix with rows and columns indexed by sets S, T respectively, we let MS′,T ′

denote the submatrix indexed by rows S′ ⊂ S and columns T ′ ⊂ T .

Theorem 5.1. Let w be any balanced word of length 2k 6 2n. Consider the r-
differential tower of groups A oS, where A is an abelian group of order r > 2, and the
corresponding differential poset Y r. Then

ones(w) = |(Y r)n−k| =
∑

i1+···+ir=n−k
i1,...,ir>0

r∏
j=1

p(ij).

In particular, ones(w) depends only on r and n − k, and not on the particular w
chosen.

We first prove the case w = UkDk; note that, unlike in Theorem 5.1, we do not
require r > 2 in Proposition 5.2.
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

1 2 1 2 2 1 1 0 0 0
2 4 2 4 4 2 2 0 0 0
1 2 1 2 2 1 1 0 0 0
2 4 2 5 5 4 4 1 2 1
2 4 2 5 5 4 4 1 2 1
1 2 1 4 4 5 5 2 4 2
1 2 1 4 4 5 5 2 4 2
0 0 0 1 1 2 2 1 2 1
0 0 0 2 2 4 4 2 4 2
0 0 0 1 1 2 2 1 2 1





1 1 0 1 0 0 0 0 0 0
1 2 1 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
1 1 0 2 1 1 1 0 0 0
0 1 1 1 2 1 1 0 0 0
0 0 0 1 1 2 1 1 1 0
0 0 0 1 1 1 2 0 1 1
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 1 2 1
0 0 0 0 0 0 1 0 1 1


Figure 3. The matrices M (2) and M (1), in the case r = 2, n =
3 with w = UDUD = U2D2 + 2UD. The diagonal entries of the
unitriangular submatrices are shown in bold.

Proposition 5.2. Let w = UkDk with k 6 n. Consider the r-differential tower of
groups AoS, where A is an abelian group of order r, and the corresponding differential
poset P = Y r. Then,

ones(w) = |(Y r)n−k|.

Proof. Consider the matrix M = M (k) for UkDk : ZPn → ZPn in the standard basis,
ordering the rows and columns from least to greatest in the r-lexicographic order, and
note that M is symmetric. We say a partition λ has ` ones if λi = 1 for ` values of i.
Define subsets of the rows and columns, respectively:

Sk = {λ ∈ Pn|λ(r) has at least k ones},

Tk = {λ ∈ Pn|(λ(1))′ has at least k ones}.
Then we claim that MSk,Tk is lower unitriangular (see the example in Figure 3). This
follows since for each λ ∈ Sk, the r-lexicographically greatest µ which can be obtained
from λ by removing and then adding k boxes from the tuple of Young diagrams can
be reached in only one way. Namely, k of the ones from λ(r) are removed, and all of
these boxes are added to the largest part of λ(1). The resulting µ is clearly an element
of Tk. Now, easy bijections show that |Sk| = |Tk| = pn−k. Thus M (k) and C̃V (w)n
have a pn−k × pn−k minor equal to ±1. This forces ones(w) > pn−k.

Now, the map UkDk factors through the (n− k)-th rank:

ZPn Dk−−→ ZPn−k Uk−−→ ZPn .
Since we know D is surjective for Y r and U is injective in any differential poset,
we see that in fact dim ker(UkDk) = pn − pn−k. Thus V (UkDk)n has the repeated
character value 0 with multiplicity pn− pn−k, and thus a subgroup (Z/dZ)pn−pn−k−1

where d > 1 is the dimension of V (UkDk)n by Theorem 2.6. Therefore
ones(UkDk) 6 (pn − 1)− (pn − pn−k − 1) = pn−k. �

Example 5.3. Let r = 1 in Proposition 5.2. Then V (UkDk)n = IndSn
Sn−k

1 is the
representation which corresponds to the complete homogeneous symmetric function
h(n−k,1k) under the standard characteristic map (see [9, Chapter 1]). The proposition
implies that the critical group K(V (UkDk)n) has p(n)−p(n−k)−1 nontrivial factors.
Note. When r > 1, Proposition 5.2 still applies, however V (UkDk)n no longer cor-
responds to the wreath-product analog of h(n−k,1k) (see [9, Chapter 1, Appendix B]).
That representation is obtained by inducing from Sn−k×Ak, rather than from Sn−k.
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We now return to the proof of the main Theorem.

Proof of Theorem 5.1. We can write
w(U,D) = UkDk + ck−1U

k−1Dk−1 + · · ·+ c1UD + c0I,

using the relation DU −UD = rI; clearly all coefficients ci are divisible by r. Let Mw

be the matrix for w(U,D) using our standard ordered basis, and letM (i) be the matrix
for U iDi, so Mw =

∑
ciM

(i). Using the notation from the proof of Proposition 5.2,
it is clear that Si ⊂ Si−1 and Ti ⊂ Ti−1 for all i, and that the diagonal of M (i)

Si,Ti
is

above that of M (i−1)
Si−1,Ti−1

for all i. Therefore Mw still contains a pn−k × pn−k lower
unitriangular submatrix corresponding to rows and columns Sk, Tk. Since this gives
a pn−k × pn−k minor equal to 1, we know that ones(w) > pn−k.

For the other inequality, let P,Q be invertible integer matrices which put M (k)

in Smith form: PM (k)Q = S. By Proposition 5.2, all but pn−k of the columns of
PM (k)Q are divisible by r. Therefore, since the ci are divisible by r, all but pn−k
of the columns of PMwQ are divisible by r. The dimension of V (w)n is divisible by
r as well, thus at most pn−k of the columns of PC̃VQ are not divisible by r. Then
any minor of a m × m submatrix with m > pn−k must be divisible by r, and so
ones(w) 6 pn−k by Proposition 2.17. �

Example 5.4. This example shows that the hypothesis r > 2 in Theorem 5.1 is
necessary. Let w = (UD)2, then for n = 7 one can calculate that ones(w) = 9 6=
p(7− 2) = 7.

We can still give some upper and lower bounds in the r = 1 case. For a balanced
word w of length 2k, write

(2) w(U,D) =
k∑
i=0

ciU
iDi.

Then define `(w) = min{i|ci 6= 0}; clearly 0 6 `(w) 6 k, with equality on the right if
and only if w = UkDk.
Proposition 5.5. Let w be a balanced word of length 2k 6 2n. Then, working in the
tower S of symmetric groups, we have

(a) p(n− k) 6 ones(w) 6 p(n− `(w)), and
(b) ones(w) = p(n−k) if gcd(c1, . . . , ck,dim(V (w))) > 1, where the ci are defined

as in Equation 2.
Proof. The argument for the lower bound p(n − k) 6 ones(w) in the proof of Theo-
rem 5.1 still holds in the r = 1 case. For the upper bound, note that

ker(w(U,D)) ⊃ ker(D`(w) : ZYn → ZYn−`(w)).
Thus dim ker(w(U,D)) > p(n) − p(n − `(w)). By Theorem 2.6, this gives the upper
bound, proving part (a).

For part (b), notice that if gcd(c1, . . . , ck,dim(V (w))) = s > 1, then the argument
for the upper bound in the proof of Theorem 5.1 still applies. �

Example 5.6. Continuing Example 5.4, we see that
(UD)2 = UDUD = U(UD + rI)D = U2D2 + rUD,

and so `((UD)2) = 1. Then for n = 7, Proposition 5.5 gives that
7 = p(5) 6 ones(w) 6 p(6) = 11.

In fact we have ones(w) = 9, so that we cannot hope for either bound in Proposi-
tion 5.5 to be an equality in general.
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5.1. Smallest factors. In this section, we give a conjecture on the size and mul-
tiplicity of the smallest nontrivial factor in critical groups K(V (UkDk)n).
Conjecture 5.7. Working in the differential tower of groups A oS with A abelian of
order r, when k 6 n the critical group K(V (UkDk)n) = K(IndAoSnAoSn−k 1) is given, as
a list of elementary divisors, by:(

1pn−k ,
(
rk

n!
(n− k)!

)pn−2pn−k+pn−2k

, rk
n!

(n− k)!ei

)
,

where the exponents involving rank sizes denote multiplicities, and where ei ranges
over the non-unit elementary divisors in the critical group K(V (DkUk)n−k).
Remark 5.8. The claim that the multiplicity of 1 as an elementary divisor is pn−k is
the content of Proposition 5.2. In the case r = 1, we were able to prove Conjecture 5.7
using explicit row and column operations related to the unitriangular submatrices
identified in the proof of Proposition 5.2 and Theorem 5.1 which we were unable to
generalize to the r > 1 case.

In the r = 1 case, letting k = n−2 in Conjecture 5.7 allows us to explicitly compute
that

K(IndSn
S2

1) = K(Un−2Dn−2)

=
(
Z/
n!
2 Z
)p(n)−4

×
(
Z/

1
8n!(n− 2)!(n− 2)(n+ 1)Z

)
,

where the largest factor is determined by the formula for the the size of the critical
group given in Theorem 2.6. In the k = n − 3 case one can again obtain an explicit
formula, but this formula depends on n modulo 36, suggesting that a simple general
formula is unlikely to exist.
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