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Semi-inverted linear spaces and an analogue
of the broken circuit complex

Georgy Scholten & Cynthia Vinzant

Abstract The image of a linear space under inversion of some coordinates is an affine variety
whose structure is governed by an underlying hyperplane arrangement. In this paper, we gener-
alize work by Proudfoot and Speyer to show that circuit polynomials form a universal Gröbner
basis for the ideal of polynomials vanishing on this variety. The proof relies on degenerations to
the Stanley–Reisner ideal of a simplicial complex determined by the underlying matroid, which
is closely related to the external activity complex defined by Ardila and Boocher. If the linear
space is real, then the semi-inverted linear space is also an example of a hyperbolic variety,
meaning that all of its intersection points with a large family of linear spaces are real.

1. Introduction
In 2006, Proudfoot and Speyer showed that the coordinate ring of a reciprocal linear
space (i.e. the closure of the image of a linear space under coordinate-wise inversion)
has a flat degeneration into the Stanley–Reisner ring of the broken circuit complex
of a matroid [12]. This completely characterizes the combinatorial data of these im-
portant varieties, which appear across many areas of mathematics, including in the
study of matroids and hyperplane arrangements [18], interior point methods for linear
programming [4], and entropy maximization for log-linear models in statistics [9].

In this paper we extend the results of Proudfoot and Speyer to the image of a
linear space L ⊂ Cn under inversion of some subset of coordinates. For I ⊆ {1, . . . , n},
consider the rational map invI : Cn 99K Cn defined by

(invI(x))i =
{

1/xi if i ∈ I
xi if i 6∈ I.

Let invI(L) denote the Zariski-closure of the image of L under this map, which is an
affine variety in Cn. One can interpret invI(L) as an affine chart of the closure of L
in the product of projective spaces (P1)n, as studied in [1], or as the projection of the
graph of L under the map x 799K inv[n](x), studied in [5], onto complementary subsets
of the 2n coordinates. We give a degeneration of the coordinate ring of invI(L) to the
Stanley–Reisner ring of a simplicial complex generalizing the broken circuit complex
of a matroid. This involves constructing a universal Gröbner basis for the ideal of
polynomials vanishing on invI(L).
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Let C[x] denote the polynomial ring C[x1, . . . , xn] and for any α ∈ (Z>0)n, let xα
denote

∏n
i=1 x

αi
i . For a subset S ⊆ [n], we will also use xS to denote

∏
i∈S xi. As

in [12], the circuits of the matroid M(L) corresponding to L give rise to a universal
Gröbner basis for the ideal of polynomials vanishing on invI(L). We say that a linear
form `(x) =

∑
i∈[n] aixi vanishes on L if `(x) = 0 for all x ∈ L. The support of `,

supp(`), is {i ∈ [n] : ai 6= 0}. The minimal supports of nonzero linear forms vanishing
on L are called circuits of the matroid M(L) and for every circuit C ⊂ [n], there is
a unique (up to scaling) linear form `C =

∑
i∈C aixi vanishing on L with support C.

To each circuit, we associate the polynomial

(1) fC(x) = xC∩I · `C(invI(x)) =
∑
i∈C∩I

aixC∩I\{i} +
∑
i∈C\I

aixC∩I∪{i}.

Theorem 1.1. Let L ⊆ Cn be a d-dimensional linear space and let I ⊆ C[x] be
the ideal of polynomials vanishing on invI(L). Then {fC : C is a circuit of M(L)}
is a universal Gröbner basis for I. For w ∈ (R+)n with distinct coordinates, the
initial ideal inw(I) is the Stanley–Reisner ideal of the semi-broken circuit complex
∆w(M(L), I).

The simplicial complex ∆w(M(L), I) will be defined in Section 3. For real linear
spaces L, the variety invI(L) relates to the regions of a hyperplane arrangement.

Theorem 1.2. Let L ⊆ Cn be a linear space that is invariant under complex conjuga-
tion. Then the following numbers are equal:

(1) the degree of the affine variety invI(L),
(2) the number of facets of the semi-broken circuit complex ∆w(M(L), I), and
(3) for generic u ∈ Rn, the number of regions in (L⊥ + u)\{xi = 0}i∈I whose

recession cones trivially intersect RI = {x ∈ Rn : xj = 0 for j 6∈ I}.

The paper is organized as follows. The necessary definitions and background on
matroid theory and Stanley–Reisner ideals are in Section 2. In Section 3 we define the
simplicial complex ∆w(M(L), I), show that it satisfies a deletion-contraction relation
analogous to that of the broken circuit complex of a matroid, and describe its rela-
tionship to the external activity complex of a matroid. Section 4 contains the proof
of Theorem 1.1. We characterize the strata of invI(L) given by its intersection with
coordinate subspaces in Section 5. Finally, in Section 6, we show that for a real linear
space L, invI(L) is a hyperbolic variety, in the sense of [7, 15], and prove Theorem 1.2.

2. Background
In this section, we review the necessary background on Gröbner bases, simplicial com-
plexes, Stanley–Reisner ideals, matroids, and previous research on reciprocal linear
spaces.

2.1. Gröbner bases and degenerations. A finite subset F of an ideal I ⊂ C[x] is
a universal Gröbner basis for I if it is a Gröbner basis with respect to every monomial
order on C[x]. An equivalent definition using weight vectors is given as follows. For
w ∈ (R>0)n and f =

∑
α cαxα ∈ C[x], define the degree and initial form of f with

respect to w to be

degw(f) = max{wTα : cα 6= 0} and inw(f) =
∑

α:wTα=degw(f)

cαxα.

The initial ideal inw(I) of an ideal I is the ideal generated by initial forms of poly-
nomials in I, i.e. inw(I) = 〈inw(f) : f ∈ I〉. Then F ⊂ I is a universal Gröbner basis
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for I if and only if for every w ∈ (R>0)n, the polynomials inw(F ) generate inw(I).
See [17, Chapter 1].

For homogeneous I, inw(I) is a flat degeneration of I. For f ∈ C[x] and an integer
vector w ∈ (Z>0)n, define

tw ·f = tdegw(f)f(t−w1x1, . . . , t
−wnxn) ∈ C[t,x] and Iw = 〈tw ·f : f ∈ I〉 ⊂ C[t,x].

The ideal Iw defines a variety in A1(C)× Pn−1(C), namely the Zariski-closure

V(Iw) =
{

(t, [tw1x1 : . . . : twnxn]) such that t ∈ C∗, x ∈ V(I)
}Zar

.

Letting t vary from 1 to 0 gives a flat deformation from V(I) to the variety V(inw(I)).
Formally, for any γ ∈ C, let Iw(γ) denote the ideal in C[x] obtained by substituting
t = γ. Then Iw(1) equals I, Iw(0) equals inw(I), and for γ ∈ C∗, the variety of Iw(γ)
consists of the points {[γw1x1 : . . . : γwnxn] : x ∈ V(I)}. We note that the ideal Iw(γ)
is well-defined for any w ∈ Rn. All the ideals Iw(γ) have the same Hilbert series. In
particular, taking γ = 0, 1 shows that I and inw(I) have the same Hilbert series.

2.2. Simplicial complexes and Stanley–Reisner ideals. A Stanley–Reisner
ideal is a square-free monomial ideal. Its combinatorial properties are governed by a
simplicial complex. A simplicial complex ∆ on vertices {1, . . . , n} is a collection of
subsets of {1, . . . , n}, called faces, that is closed under taking subsets. If S ∈ ∆ has car-
dinality k+1, we call it a face of dimension k. A facet of ∆ is a face maximal in ∆ under
inclusion. Given a simplicial complex ∆ on [n]\{i}, define the cone of ∆ over i to be

cone(∆, i) = ∆ ∪ {S ∪ {i} : S ∈ ∆},
which is a simplicial complex on [n] whose facets are in bijection with the facets of ∆.

Definition 2.1 (See e.g. [16, Chapter II]). Let ∆ be a simplicial complex on vertices
{1, . . . , n}. The Stanley–Reisner ideal of ∆ is the square-free monomial ideal

I∆ =
〈
xS : S ⊆ [n], S 6∈ ∆

〉
generated by monomials corresponding to the non-faces of ∆. The Stanley–Reisner
ring of ∆ is the quotient ring C[x]/I∆.

The ideal I∆ is radical and it equals the intersection of prime ideals
I∆ =

⋂
F a facet of ∆

〈xi : i 6∈ F 〉.

This writes the variety V(I∆) as the union of coordinate subspaces span{ei : i ∈ F}
where F is a facet of ∆. In particular, if ∆ has k facets of dimension d − 1, then
V(I∆) ⊆ Pn−1(C) is a variety of dimension d− 1 and degree k. See [16, Chapter II].

2.3. Matroids. Matroids are a combinatorial model for many types of independence
relations. See [11] for general background on matroid theory. We can associate a
matroid M(L) to a linear space L ⊂ Cn as follows. Write a d-dimensional linear
space L ⊂ Cn as the rowspan of a d × n matrix A = (a1, . . . , an). A set I ⊆ [n] is
independent inM(L) if the vectors {ai : i ∈ I} are linearly independent in Cd. For any
invertible matrix U ∈ Cd×d, the vectors {ai : i ∈ I} are linearly independent if and
only if the vectors {Uai : i ∈ I} are also independent, implying that this condition
is independent of the choice of basis for L. Indeed, I ⊆ [n] is independent in M(L)
if and only if the coordinate linear forms {xi : i ∈ I} are linearly independent when
restricted to L.

Maximal independent sets are called bases and minimal dependent sets are called
circuits. We use B(M) and C(M) to denote the set of bases and circuits of a matroid
M , respectively. An element i ∈ [n] is called a loop if {i} is a circuit, and a co-loop if i
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is contained in every basis of M . The rank of a subset S ⊆ [n] is the largest size of
an independent set in S. A flat is a set F ⊆ [n] that is maximal for its rank, meaning
that rank(F ) < rank(F ∪ {i}) for any i 6∈ F .

Let M be a matroid on [n] and i ∈ [n]. The deletion of M by i, denoted M\i, is
the matroid on the ground set [n]\i whose independent sets are subsets I ⊂ [n]\i that
are independent in M . If i is not a co-loop of M , then

B(M\i) = {B ∈ B(M) : i /∈ B} and C(M\i) = {C ∈ C(M) : i /∈ C}.
More generally, the deletion of M by a subset S ⊂ [n], denoted M\S, is the matroid
obtained from M by successive deletion of the elements of S. The restriction of M to
a subset S, denoted M |S , is the deletion of M by [n]\S.

If i is not a loop of M , then the contraction of M by i, denoted M/i, is the
matroid on the ground set [n]\{i} whose independent sets are subsets I ⊂ [n]\i for
which I ∪ {i} is independent in M . Then

B(M/i) = {B\i : B ∈ B(M), i ∈ B}, and
C(M/i) = inclusion minimal elements of {C\i : C ∈ C(M)}.

If i is a loop of M , then we define the contraction of M/i to be the deletion M\i.
The contraction of M by a subset S ⊂ [n], denoted M/S, is obtained from M by
successive contractions by the elements of S.

For linear matroids, deletion and contraction correspond to projection and intersec-
tion in the following sense. For S ⊂ [n], let L\S denote the linear subspace of C[n]\S

obtained by projecting L away from the coordinate space CS = span{ei : i ∈ S}. Let
L/S denote the intersection of L with C[n]\S . Then

M(L)\S = M(L\S) and M(L)/S = M(L/S).
Many interesting combinatorial properties of a matroid can be extracted from a

simplicial complex called the broken circuit complex. Given a matroid M and the
usual ordering 1 < 2 < · · · < n on [n], a broken-circuit of M is a subset of the
form C\min(C) where C ∈ C(M). The broken-circuit complex of M is the simplicial
complex on [n] whose faces are the subsets of [n] not containing any broken circuit.

2.4. Reciprocal linear spaces. For I = [n], the variety invI(L) is well-studied in
the literature. Proudfoot and Speyer study the coordinate ring of the variety inv[n](L)
and relate it to the broken circuit complex of a matroid [12]. One of their motivations
is connections with the cohomology of the complement of a hyperplane arrangement.
These varieties also appear in the algebraic study of interior point methods for linear
programming [4] and entropy maximization for log-linear models in statistics [9].

If the linear space L is invariant under complex conjugation, the variety inv[n](L)
also has a special real-rootedness property. Specifically, if L⊥ denotes the orthogonal
complement of L, then for any u ∈ Rn, all the intersection points of inv[n](L) and the
affine space L⊥ + u are real. This was first shown in different language by Varchenko
[19] and used extensively in [4]. One implication of this real-rootedness is that the
discriminant of the projection away from L⊥ is a nonnegative polynomial [14]. An-
other is that inv[n](L) is a hyperbolic variety, in the sense of [15]. In fact, the Chow
form of the variety inv[n](L) has a definite determinantal representation, certifying
its hyperbolicity [7]. We generalize some of these results to invI(L).

In closely related work [1], Ardila and Boocher study the closure of a linear space L
inside of (P1)n. For any I ⊆ [n], invI(L) can be considered as an affine chart of this
projective closure. Specifically, let X ⊆ (P1)n denote the closure of the image of L
under (x1, . . . , xn) 7→ ([x1 : y1], [x2 : y2], . . . , [xn : yn]), with y1 = · · · = yn = 1.
The restriction of X to the affine chart xi = 1 for i ∈ I and yj = 1 for j ∈ [n]\I is

Algebraic Combinatorics, Vol. 2 #4 (2019) 648



Semi-inverted linear spaces

isomorphic to invI(L). The cohomology and intersection cohomology of the projective
variety X have been studied to great effect in [6] and [13]. The precise relationship
between the external activity complex of a matroid used in [1] and the semi-broken
circuit complex is described at the end of Section 3.

3. A semi-broken circuit complex
Let M be a matroid on elements [n] and suppose I ⊆ [n]. A vector w ∈ Rn with
distinct coordinates gives an ordering on [n], where i < j whenever wi < wj . Without
loss of generality, we can assume w1 < · · · < wn, which induces the usual order
1 < · · · < n. Given a circuit C of M we define an I-broken circuit of M to be

bI(C) =
{
C\min(C) if C ⊆ I
(C ∩ I) ∪max(C\I) if C 6⊆ I.

Now we define the I-broken circuit complex of M to be

(2) ∆w(M, I) = {τ ⊆ [n] : τ does not contain an I-broken circuit of M}.

Note that an [n]-broken circuit is a broken circuit in the usual sense and ∆w(M, [n])
is the well-studied broken circuit complex of M .

Example 3.1. Consider the rank-3 matroid on [5] with circuits C = {124, 135, 2345}.
Let I = {1, 2, 3} and suppose w ∈ (R+)5 with w1 < · · · < w5. Then its I-broken
circuits are bI(124) = 124, bI(135) = 135, and bI(2345) = 235. The simplicial complex
∆w(M, I) is a pure 2-dimensional simplicial complex with facets:

facets(∆w(M, I)) = {123, 125, 134, 145, 234, 245, 345}.

The I-broken circuit complex shares many properties with the classical one, which
will imply that it is always pure of dimension rank(M)− 1.

Theorem 3.2. Let ∆w(M, I) be the I-broken circuit complex defined in (2).
(a) If i ∈ I is a loop of M , then ∆w(M, I) = ∅.
(b) If i ∈ I is a coloop of M , then ∆w(M, I) = cone(∆w(M/i, I\i), i).
(c) If i = max(I) is neither a loop nor a coloop of M , then

∆w(M, I) = ∆w(M\i, I\i) ∪ cone(∆w(M/i, I\i), i).

Proof. (a) If i ∈ I is a loop, then C = {i} is a circuit of M with bI(C) = ∅.
(b) If i ∈ I is a coloop, then no circuit ofM , and hence no I-broken circuit, contains

i. The circuits of M are exactly the circuits of the contraction M/i and the I-broken
circuits of M are the (I\i)-broken circuits of M/i. Therefore τ is a face of ∆w(M, I)
if any only if τ\i is a face of ∆w(M/i, I\i).

(c) (⊆) Let τ be a face of ∆w(M, I). We will show that if i 6∈ τ , then τ is a face of
∆w(M\i, I\i) and if i ∈ τ , then τ\i is a face of ∆w(M/i, I\i).

If i 6∈ τ and C is a circuit of the deletion M\i, then C is a circuit of M , and
bI(C) = bI\i(C) is an I-broken circuit of M and therefore is not contained in τ . If
i ∈ τ and C is a circuit of the contraction M/i, then either C or C ∪ {i} is a circuit
of M . In the first case, we again have that bI(C) = bI\i(C) is not contained in τ
and thus not contained in τ\i. Secondly, suppose that C ∪ {i} is a circuit of M . If
C ⊆ I, then bI(C ∪ {i}) is equal to C ∪ {i}\min(C ∪ {i}). Since i is the maximum
element of I, this equals C\min(C) ∪ {i}. This set is not contained in τ . Therefore
bI\i(C) = C\min(C) is not contained in τ\i. If C 6⊆ I, then the I-broken circuit of
C∪{i} is (C∩I)∪{i}∪max(C\I), which equals bI\i(C)∪{i}. Since τ cannot contain
an I-broken circuit of M , τ\i does not contain bI\i(C).
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(⊇) Let τ be a face of ∆w(M\i, I\i) and suppose C is a circuit of M . If i 6∈ C,
then C is also a circuit of M\i, implying that bI(C) is not contained in τ . If i ∈ C
and C ⊆ I, then i = max(C). Since i is not a loop, this implies that i ∈ bI(C), which
cannot be contained in τ . Similarly, if i ∈ C and C 6⊂ I, then i ∈ bI(C) and bI(C) 6⊂ τ .

Finally, let τ be a face of ∆w(M/i, I\i) and let C be a circuit of M . If i ∈ C, then
C\i is a circuit of M/i. Then bI(C) equals bI\i(C\i) ∪ {i}. Since τ cannot contain
bI\i(C\i), τ∪{i} does not contain bI(C). If i 6∈ C, then C is a union of circuits ofM/i,
see [11, § 3.1, Exercise 2]. If C ⊆ I, then there is a circuit C ′ ⊆ C of M/i containing
min(C). Then C ′ ⊆ I\i and bI\i(C ′) is a subset of bI(C). Similarly, if C 6⊆ I, then
there is a circuit C ′ ⊆ C of M/i containing max(C\I), giving bI\i(C ′) ⊆ bI(C). In
either case, τ is a face of ∆w(M/i, I\i) and cannot contain the broken circuit bI\i(C ′)
and therefore τ ∪ {i} cannot contain bI(C). �

Corollary 3.3. If M is a matroid of rank d with no loops in I, then ∆w(M, I) is a
pure simplicial complex of dimension d− 1.

Proof. We induct on the size of I. If I = ∅, then for every circuit C, the broken
circuit bI(C) is the maximum element max(C). In this case, the simplicial complex
∆w(M, I) consists of one maximal face B, where B is the lexicographically smallest
basis of M(L). Here B consists of the elements i ∈ [n] for which the rank of [i] in
M(L) is strictly larger than the rank of [i − 1]. Every other element is the maximal
element of some circuit of M .

Now suppose |I| > 0 and consider i = max(I). If i is a coloop of M , then the
contraction M/i is a matroid of rank d − 1 with no loops in I\i. Then by induction
and Theorem 3.2(b) , ∆w(M, I) = cone(∆w(M/i, I\i), i) is a pure simplicial complex
of dimension d− 1. Finally, suppose i is neither a loop nor a coloop of M . Then the
deletion M\i is a matroid of rank d and no element of I\i is a loop of M\i. It follows
that ∆w(M\i, I\i) is a pure simplicial complex of dimension d − 1. The contraction
M/i is a matroid of rank d − 1, implying that ∆w(M/i, I\i) is either empty (if I\i
contains a loop of M/i), or a pure simplicial complex of dimension d − 2. In either
case the decomposition in Theorem 3.2 finishes the proof. �

We can also see this via connections with the external activity complex defined by
Ardila and Boocher [1]. Following their convention, for subsets S, T ⊆ [n], we use
xSyT to denote the set {xi : i ∈ S} ∪ {yj : j ∈ T}.

Definition 3.4 ([1, Theorem 1.9]). Let M be a matroid and suppose u ∈ Rn has
distinct coordinates. Then u induces an order on [n] where i < j if and only if ui < uj.
The external activity complex Bu(M) is the simplicial complex on the ground set
{xi, yi : i ∈ [n]} whose minimal non-faces are {xmin<u (C)yC\min<u (C) : C ∈ C}.

Given a weight vector w ∈ (R>0)n with distinct coordinates, define u ∈ Rn

ui = wi for i ∈ I and uj = −wj for j 6∈ I.

With this translation of weights, we can realize the semi-broken circuit complex
∆w(M, I) as the link of a face in the external activity complex Bu(M). Formally,
the link of a face σ in the simplicial complex ∆ is the simplicial complex

link∆(σ) = {τ ∈ ∆ : τ ∪ σ ∈ ∆ and τ ∩ σ = ∅}.

It is the set of faces that are disjoint from σ but whose unions with σ lie in ∆.

Proposition 3.5.Define weight vectors u,w ∈ Rn as above. If the matroid M has no
loops in I, then the semi-broken circuit complex ∆w(M, I) is isomorphic to the link
of the face xIy[n]\I in the external activity complex Bu(M).
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Proof. First we show that σ = xIy[n]\I is actually a face of Bu(M) by arguing that
σ does not contain the minimal non-face xmin<u (C)yC\min<u (C) for any circuit C of
M . If C is contained in I, then so is C\min<u

(C). Since M has no loops in I, this
is nonempty and we can take i ∈ C\min<u

(C). Then yi belongs to the non-face
xmin<u (C)yC\min<u (C), but not σ. On the other hand, if C is not contained in I, we
know min<u

(C) is contained in the complement of I, since the weight vector entries
satisfy uj < ui for all i ∈ I and j 6∈ I. Hence xmin<u (C), an element of the minimal
non-face associated to C, does not belong to σ.

Now we argue that ∆w(M, I) and the link of σ in Bu(M) are isomorphic by iden-
tifying their non-faces. Note that the link of σ is supported on the vertex set x[n]/IyI .
The bijection of vertices is then just j ↔ xj for j 6∈ I and i↔ yi for i ∈ I. Note that
τ ⊆ x[n]\IyI is a face of the link of σ in Bu(M) if and only if for every circuit C, τ
does not contain the intersection of the non-face xmin<u (C)yC\min<u (C) with x[n]\IyI .
It suffices to check that these intersections are exactly the I-broken circuits of M .

If C is contained in I, then w and u give the same order on elements of C and
bI(C) equals C\min<u(C) = C\min<w (C). Since xmin<u (C) ∈ σ, we find that

bI(C) = C\min<u
(C) ↔ yC\min<u (C) = xmin<u (C)yC\min<u (C)\σ.

If C is not contained in I, then bI(C) equals (C ∩ I)∪max<w (C\I). Since u reverses
the order on [n]\I, this equals (C ∩ I) ∪min<u

(C\I). Then

bI(C) = (C ∩ I) ∪min<u
(C\I) ↔ xmin<u (C\I)yC∩I = xmin<u (C)yC\min<u (C)\σ,

where the equality xmin<u (C\I) = xmin<u (C) holds because uj < ui for all i ∈ I and
j 6∈ I. This shows that under this bijection of the vertices, the semi-broken circuit
complex equals the link of σ in the external activity complex. �

Corollary 3.6. The semi-broken circuit complex is shellable.

Proof. In [2], Ardila, Castillo, and Sampler show that the external activity complex,
Bu(M), is shellable. Then by [3, Prop. 10.14], the link of any face in Bu(M) is also
shellable. �

Example 3.7. Let M be the matroid from Example 3.1, I = {1, 2, 3}, and u be
the weight vector associated to w as described above. It induces the linear order
5 < 4 < 1 < 2 < 3 on the ground set of the matroid M(L).

We outline the connection between the external activity complex Bu(M) and the
semi-broken circuit complex by tracking two bases B1 = {1, 3, 4}, B2 = {2, 3, 5} of
the matroidM(L) in the construction of the two simplicial complexes. For each basis,
we split the complement [5]\Bi into externally active and externally passive elements.
(See [1, § 2.5] for the definitions of externally active and passive.) For B1, {2} is ex-
ternally passive and {5} is externally active. Then by [1, Theorem 5.1], the associated
facet of Bu(M) is F1 = x1x2x3x4y1y3y4y5. By deleting σ = x1x2x3y4y5 from F1, we
obtain the facet x4y1y3 of link∆(σ), corresponding to the facet {1, 3, 4} of ∆w(M, I).
For B2 = {2, 3, 5}, the externally passive elements are the entire complement {1, 4},
hence the associated facet of Bu(M) is F2 = x1x2x3x4x5y2y3y5. Since F2 does not
contain σ, it does not contribute a facet to the link of σ in Bu(M).

The connection between this simplicial complex and the semi-inverted linear space
invI(L) is that when w ∈ (R+)n has distinct coordinates, the ideal generated by
the initial forms {inw(fC) : C is a circuit of M(L)} is the Stanley–Reisner ideal of
∆w(M, I). In fact, the initial form of fC is inw(fC) = xbI(C). The ideal generated
by these initial forms is then the Stanley–Reisner ideal I∆w(M,I) = 〈inw(fC) : C ∈
C(M)〉.
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4. Proof of Theorem 1.1
In this section, we prove Theorem 1.1. To do this, we first use a flat degeneration of
invI(L) to establish a recursion for its degree.

Proposition 4.1. Suppose L is a linear subspace of Cn and I ⊆ [n]. Let D(L, I)
denote the degree of the affine variety invI(L).

(a) If i ∈ I is a loop of M(L), then invI(L) is empty and D(L, I) = 0.
(b) If i ∈ I is a co-loop of M(L), then D(L, I) = D(L/i, I\i).
(c) If i ∈ I is neither a loop nor a coloop of M(L) then

D(L\i, I\i) +D(L/i, I\i) 6 D(L, I).

The proof of Theorem 1.1 will show that there is actually equality in part (c).

Proof. Without loss of generality, take i = 1.
(a) If 1 ∈ I is a loop of M(L) then L is contained in the hyperplane {x1 = 0}.

Therefore the map invI is undefined at every point of L and the image invI(L) is
empty. By convention, we take the degree of the empty variety to be zero.

(b) If 1 is a co-loop of M(L), then L is a direct sum of span(e1) and L/1, meaning
that any element in L can be written as ae1 + b where a ∈ C and b ∈ L/1. For points
at which the map invI is defined, invI(ae1 + b) = a−1e1 + invI\1(b). From this, we
see that invI(L) is the direct sum of span(e1) and invI\1(L/1), implying that invI(L)
and invI\1(L/1) have the same degree.

(c) Let I denote the ideal of polynomials vanishing on invI(L) and J = I denote
its homogenization in C[x0, x1, . . . , xn]. Take w = e1 ∈ Rn+1 and consider inw(J ), as
defined in Section 2.1. We will show that the variety of inw(J ) contains the image
in Pn of both {0} × invI\1(L\1) and A1(C)× invI\1(L/1). Since both these varieties
have dimension equal to dim(L), the degree of the variety of inw(J ) is at least the
sum of their degrees. The claim then follows by the equality of the Hilbert series of
J and inw(J ).

If j ∈ I\1 is a loop of M(L), then j is a loop of M(L\1) and D(L\1, I\1) = 0.
Otherwise the set UI is Zariski-dense in L, where UI denotes the intersection of L
with (C∗)I × C[n]\I .

Let πI denote the coordinate projection Cn → CI . On UI , the maps πI\1 ◦ invI
and invI\1 ◦πI\1 are equal:

πI\1(invI(x)) = invI\1(πI\1(x)) =
∑
j∈I\1

x−1
j ej +

∑
j 6∈I

xjej .

In particular, the points invI\1(πI\1(UI)) are Zariski dense in invI\1(L\1). Now let x
be a point of invI(UI). Then [1 : x] belongs to the variety of J and, for every t ∈ C,
the point (t, te1 · [1 : x]) belongs to the variety of J w, as defined in Section 2.1. Taking
t→ 0, we see that [1 : 0 : πI\1(x)] belongs to the variety of ine1(J ).

If j ∈ I\1 is a loop of M(L/1), then invI\1(L/1) is empty and the claim follows.
Otherwise the intersection UI\1 of L/1 with {0} × (C∗)I\1 × C[n]\I is nonempty and
Zariski-dense in L ∩ {x ∈ Cn : x1 = 0} ∼= L/1. Let x ∈ UI\1. Since 1 is not a loop of
M(L), there is a point v ∈ L with v1 = 1. Then for any λ, t ∈ C∗, x+ (t/λ)v belongs
to L and for all but finitely many values of t, y(t) = invI(x + (t/λ)v) is defined and
has first coordinate y1(t) = λ/t. Then [1 : y(t)] ∈ V(J ) and (t, te1 · [1 : y(t)]) belongs
to V

(
J w
)
. Note that the limit of te1 · [1 : y(t)] = [1 : λ : y2(t) : . . . : yn(t)] as t → 0

equals [1 : λ : invI\1(x)]. Therefore for every point (λ, u) ∈ A1(C)× invI\1(L/1), the
point [1 : λ : u] belongs to V (ine1(J )). �
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We also need the following fact from commutative algebra, included here for com-
pleteness, which may be clear to readers familiar with the geometry of schemes.
Recall that for a homogeneous ideal J ⊂ C[x], the Hilbert polynomial of J is the
polynomial h(t) that agrees with dimC(C[x]/J)t for sufficiently large t ∈ N. Then
h(t) =

∑d
i=0 bi

(
t
d−i
)
for some d ∈ Z>0, where bi ∈ Z with b0 > 0. In a slight abuse

of notation, we say that the dimension of J is dim(J) = d and the degree of J is
deg(J) = b0. The ideal J is equidimensional of dimension d if dim(P ) = d for every
minimal associated prime P of J .

Lemma 4.2. Let I ⊆ J ⊆ C[x] be equidimensional homogeneous ideals of dimension
d. If I is radical and deg(I) 6 deg(J), then I and J are equal.

Proof. Let I = P1 ∩ · · · ∩Pr and J = Q1 ∩ · · · ∩Qs be irredundant primary decompo-
sitions of I and J . Without loss of generality, we can assume that dim(Qi) = d
for 1 6 i 6 u, and since V(J) ⊆ V(I), the prime ideals Pi can be reindexed
such that Pi =

√
Qi, implying Qi ⊆ Pi. For all 1 6 i 6 u, there exists an ele-

ment a ∈ (∩j 6=iPj) ∩ (∩j 6=i
√
Qj) with a 6∈ Pi. Then the saturation I : 〈a〉∞ = Pi

is contained in J : 〈a〉∞ = Qi, implying Pi = Qi. This writes the ideal J as
J = P1 ∩ · · · ∩ Pu ∩ Qu+1 ∩ · · · ∩ Qs. The degree of an ideal is equal to the sum
of the degrees of the top dimensional ideals in its primary decomposition, hence

deg(I) =
r∑
i=1

deg(Pi) and deg(J) =
u∑
i=1

deg(Qi) =
u∑
i=1

deg(Pi).

The assumption that deg(I) 6 deg(J) implies that r = u, which gives the reverse
containment I = P1 ∩ · · · ∩ Pu ⊇ J . �

Proof of Theorem 1.1. We proceed by induction on |I|. If |I| = 0, then invI(L) is just
the linear space L. Then Theorem 1.1 reduces to the statement that the linear forms
supported on circuits form a universal Gröbner basis for I(L). See e.g. [17, Prop. 1.6].

Now take |I| > 1, w ∈ (R+)n with distinct coordinates, and let M denote the
matroid M(L). If M has a loop i in I, then for the circuit C = {i}, the circuit
polynomial fC equals 1, which is a Gröbner basis for the ideal of polynomials vanishing
on the empty set invI(L). Therefore we may suppose that M has no loops in I, in
which case invI(L) is a d-dimensional affine variety of degree D(L, I).

Let ∆ denote the I-broken circuit complex ∆w(M, I) defined in Section 3 and let
∆0 denote the simplicial complex on elements {0, . . . , n} obtained from ∆ by coning
over the vertex 0. Let I∆0 denote the Stanley–Reisner ideal of ∆0, as in Section 2.2.

Let I ⊂ C[x] be the ideal of polynomials vanishing on invI(L) and define the ideal
J ⊂ C[x0, x1, . . . , xn] to be its homogenization with respect to x0. Since invI(L) is the
image of an irreducible variety under a rational map, it is also irreducible. It follows
that the ideals I and J are prime. For a circuit polynomial fC , its homogenization
fC belongs to J and since w ∈ (R+)n,

in(0,w)(fC) = inw(fC) =
{
akxC\k if C ⊆ I and k = argmin{wj : j ∈ C}
akxC∩I∪k if C 6⊆ I and k = argmax{wj : j ∈ C\I}.

Up to a scalar multiple, inw(fC) equals the square-free monomial corresponding to
the I-broken circuit of C, namely xbI(C). It follows that

〈inw(fC) : C ∈ C(M)〉 = I∆ and 〈in(0,w)(fC) : C ∈ C(M)〉 = I∆0 .

From this we see that I∆0 ⊆ in(0,w)(J ).
Let i = argmax{wj : j ∈ I}. By the inductive hypothesis, D(L\i, I\i) and

D(L/i, I\i) are the number of facets of ∆w(M\i, I\i) and ∆w(M/i, I\i), respectively.
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Therefore by Theorem 3.2, ∆ and thus ∆0 each have D(L/i, I\i) facets if i is a coloop
of M and D(L\i, I\i) + D(L/i, I\i) facets otherwise. Then by Proposition 4.1, ∆0
has at most D(L, I) facets and the Stanley–Reisner ideal I∆0 has degree 6 D(L, I).

Since ∆0 is a pure simplicial complex of dimension d, I∆0 is an equidimensional
ideal of dimension d. As J is a prime d-dimensional ideal, its initial ideal in(0,w)(J )
is equidimensional of the same dimension, see [8, Lemma 2.4.12].

The ideals I∆0 and in(0,w)(J ) then satisfy the hypotheses of Lemma 4.2, and we
conclude that they are equal. By [8, Prop. 2.6.1], restricting to x0 = 1 gives that

I∆ = 〈inw(fC) : C ∈ C(M)〉 = inw(I).
As this holds for every w ∈ (R+)n with distinct coordinates, it will also hold for
arbitrary w ∈ (R>0)n (see [17, Prop. 1.13]). It follows from [17, Cor. 1.9, 1.10] that
the circuit polynomials {fC : C ∈ C(M)} form a universal Gröbner basis for I. �

Example 4.3. Consider the 3-dimensional linear space in C5:

L = rowspan

1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 .

The circuits of the matroid M(L) are C = {124, 135, 2345}. Take I = {1, 2, 3}. Then
f124 = x1+x2−x1x2x4, f135 = x1+x3−x1x3x5, and f2345 = x2−x3+x2x3x4−x2x3x5.

If w ∈ (R+)5 with w1 < · · · < w5, then the ideal 〈inw(fC) : C ∈ C〉 is
〈x1x2x4, x1x3x5, x2x3x5〉. The simplicial complex ∆w(M, I) is 2-dimensional and has
seven facets:

facets(∆w(M, I)) = {123, 125, 134, 145, 234, 245, 345}.
Indeed, the variety of 〈x1x2x4, x1x3x5, x2x3x5〉 is the union the seven coordinate linear
spaces span{ei, ej , ek} where {i, j, k} is a facet of ∆w(M, I).

Interestingly, it is not true that the homogenizations fC form a universal Gröbner
basis for the homogenization I. Indeed, consider the weight vector (2, 0, 0, 1, 1, 1).
The ideal generated by the initial forms of circuit polynomials 〈inw(fC) : C ∈ C〉 is
〈x2

0x1 +x2
0x2, x

2
0x3〉, whereas inw(I) = 〈x2x3x4−x1x3x5−x2x3x5, x

2
0x1 +x2

0x2, x
2
0x3〉.

Nevertheless, upon restriction to x0 = 1, the two ideals become equal.

Corollary 4.4. If dim(L) = d, then the affine Hilbert series of the ideal I ⊆ C[x] of
polynomials vanishing on invI(L) is
∞∑
m=0

dimC(C[x]6m/I6m) tm = 1
(1− t)d+1

d∑
i=0

fi−1t
i(1−t)d−i = h0 + h1t+ · · ·+ hdt

d

(1− t)d+1 .

where (f−1, . . . , fd−1) and (h0, . . . , hd) are the f - and h-vectors of ∆w(M, I). In par-
ticular, its degree is the number of facets fd−1 = h0 + h1 + · · ·+ hd.

Proof. The affine Hilbert series of I equals the classical Hilbert series of its homog-
enization I, which equals the Hilbert series of in(0,w)(I) for any w ∈ Rn. When the
coordinates of w are distinct and positive, in(0,w)(I) is the Stanley–Reisner ideal of
∆0 = cone(∆w(M, I), 0). Since the Stanley–Reisner ideals of ∆ = ∆w(M, I) and ∆0
are generated by the same square-free monomials, their Hilbert series differ by a factor
of 1/(1 − t). The result then follows from well known formulas for the Hilbert series
of I∆, [10, Ch. 1]. �

The proof of Theorem 1.1 shows that there is equality in Proposition 4.1(c), namely
that if i ∈ I is neither a loop nor a coloop of M(L), then the degree D(L, I) satisfies
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D(L, I) = D(L\i, I\i) +D(L/i, I\i). From this we can derive an explicit formula for
the degree of invI(L) in the uniform matroid case.

Corollary 4.5. For a generic d-dimensional linear space L ⊆ Cn and I ⊆ [n] of size
|I| = k, the degree of invI(L) equals

D(L, I) =
d∑

j=k+d−n

(
k

j

)
−
(
k − 1
d

)
,

where we take
(
a
b

)
= 0 whenever a < 0 or b < 0. In particular, for n > k + d, the

degree only depends on d and k.

Proof. By assumption k, d, n satisfy the inequalities 0 6 k 6 n and 0 6 d 6 n. We
proceed by induction on k. In the extremal cases, D(L, I) satisfies

D(L, I) =


1 if k = 0,
1 if d = n,

0 if d = 0 and k > 1.

Indeed, if I = ∅, then invI(L) = L and D(L, I) = 1. If d = n, then invI(L) is all of Cn
and D(L, I) = 1. Finally, if d = 0 and |I| > 1, then n > |I| > 1, and L = {(0, . . . , 0)}
in Cn. The map invI is not defined at this point so invI(L) is empty and thus has
degree 0.

Suppose k > 1 and 0 < d < n. Since any i ∈ I is neither a loop nor a coloop,D(L, I)
equals D(L\i, I\i) +D(L/i, I\i) by Proposition 4.1(c) and the proof of Theorem 1.1.
Recall that L\i and L/i are subspaces in Cn−1 of dimensions d and d−1, respectively.
Since |I\i| = k − 1, by induction we get that

D(L\i, I\i) =
d∑

j=k+d−n

(
k − 1
j

)
−
(
k − 2
d

)
, and

D(L/i, I\i) =
d−1∑

j=k+d−n−1

(
k − 1
j

)
−
(
k − 2
d− 1

)
.

Since
(
k−1
j

)
+
(
k−1
j−1
)

=
(
k
j

)
and

(
k−2
d

)
+
(
k−2
d−1
)

=
(
k−1
d

)
, the sumD(L\i, I\i)+D(L/i, I\i)

is the desired formula for D(L, I). �

Example 4.6. The number of facets of the complex ∆w(M, I) gives the degreeD(L, I)
and if M is the uniform matroid of rank d on [n], we can write out these facets
explicitly. Let w = (1, . . . , n) and consider I = {1, . . . , k}. If k 6 d, no circuit is
contained in the inverted set I, implying that every broken circuit has the form
(C∩I)∪max{C\I}. Then every facet of ∆w(M, I) has the form S∪{k+1, . . . , k+d−j}
where S ⊆ I and |S| = j 6 d. For fixed j, the number of possibilities are

(
k
j

)
, and the

constraints on j are k + d− j 6 n and 0 6 j 6 k 6 d. If k > d, then every subset of
{2, . . . , k} of size d is an I-broken circuit. From the list of facets S∪{k+1, . . . , k+d−j},
we remove those for which S ⊂ {2, . . . , k} and |S| = d, of which there are

(
k−1
d

)
.

5. Supports
In this section, we characterize the intersection of the variety invI(L) with the coor-
dinate hyperplanes. These are exactly the points in the closure of, but not the actual
image of, the map invI . Given a point p ∈ Cn, its support is the set of indices of its
nonzero coordinates: supp(p) = {i : pi 6= 0}. For a subset S ⊆ [n], we will use CS to
denote the set of points p with supp(p) ⊆ S and S to denote the complement [n]\S.
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Theorem 5.1. Suppose that the matroid M = M(L) has no loops in I. For S ⊆ [n],
let T = S ∪ I. If T is a flat of M , then the restriction of invI(L) to CS is given by

invI(L) ∩ CS = invS∩I
(
πT (L) ∩ CS

)
,

where πT denotes the coordinate projection Cn → CT . Moreover, supp(p) = S for
some p ∈ invI(L) if and only if T is a flat of M and T\S is a flat of M |T .

We build up to the proof of Theorem 5.1 by considering the cases I ⊆ S and I ⊆ S.

Lemma 5.2. If S ⊆ [n] is a flat of M with I ⊆ S, then
invI(L) ∩ CS = invS∩I (πS(L)) ,

where πS denotes the coordinate projection Cn → CS.

Proof. Recall that F ⊂ [n] is a flat of M if and only if |F ∩ C| 6= 1 for all circuits
C of M . Suppose that S is a flat of M and consider the restriction of the circuit
polynomials fC to CS . Note that S ⊆ I, so that for any circuit C with |C ∩ S| > 2,
|C ∩ I| > 2 and the circuit polynomial fC is zero at every point of CS .

The circuits for which |C ∩ S| = 0 are exactly the circuits contained in S, which
are the circuits of the matroid restriction M |S . Moreover the projection πS(L) is
cut out by the vanishing of the linear forms {`C : C ∈ C(M), C ⊆ S}, which
are exactly the linear forms {`C′ : C ′ ∈ C(M |S)}. It follows that the circuit poly-
nomials {fC′ : C ′ ∈ C(M |S)} are a subset of the circuit polynomials of L, namely
{fC : C ∈ C(M), C ⊆ S}. By Theorem 1.1, the variety of circuit polynomials is the
variety of the semi-inverted linear space, giving that

invI(L) ∩ CS = V({fC : C ∈ C(M), C ⊆ S}) ∩ CS

= V({fC′ : C ′ ∈ C(M |S)}) = invS∩I(πS(L)). �

Lemma 5.3. If S ⊆ [n] with I ⊆ S, then invI(L) ∩ CS = invI
(
L ∩ CS

)
.

Proof. (⊇) The affine variety invI
(
L ∩ CS

)
is the Zariski-closure of L ∩ CS under

the map invI . Since L ∩ CS is contained in L, invI
(
L ∩ CS

)
is a subset of invI(L).

Moreover invI(p) ∈ CS for any point p ∈ CS . The inclusion follows.
(⊆) For this we show the reverse inclusion of the ideals of polynomials vanishing

on these varieties. Now let C ′ be a circuit of M(L ∩ CS) and `C′ =
∑
i∈C′ aixi its

corresponding linear form. Then for some circuit C of M , C ′ = C ∩ S and `C′ equals
the restriction `C(πS(x)). Applying invI and clearing denominators then gives

fC′(x) = xC
′∩I`C′(invI(x)) = xC∩I`C(invI(πS(x))) = fC(πS(x)).

The middle equation holds because I ⊆ S, which implies that C\C ′ ⊆ S ⊆ I. �

Proof of Theorem 5.1. Suppose that T is a flat of M . Since I ⊆ T , Lemma 5.2 says
that the restriction invI(L)|CT equals invT∩I (πT (L)). Furthermore since T ∩ I =
S ∩ I ⊆ S, we can apply Lemma 5.3 to find the intersection of invT∩I (πT (L)) with
CS . All together this gives that invI(L) ∩ CS equals
(3) (invI(L) ∩ CT ) ∩ CS = invS∩I (πT (L)) ∩ CS = invS∩I

(
πT (L) ∩ CS

)
.

Suppose further that T\S is a flat of the matroid M |T . This implies that the
contraction of M |T by T\S has no loops. This is the matroid of the linear space
πT (L)∩CS , which is therefore not contained in any coordinate subspace {xi = 0} for
i ∈ S. It follows that there is a point p ∈ πT (L) ∩ CS of full support supp(p) = S.
Equation (3) then shows that invS∩I(p) is a point of support S in invI(L).

Conversely, suppose that S = supp(p) for some point p ∈ invI(L). Then T is a flat
of M . To see this, suppose for the sake of contradiction that for some circuit C of M ,
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C ∩ T = {j}. Then j is the unique element of C ∩ I for which pj = 0, and evaluating
the circuit polynomial fC at the point p gives

fC(p) =
∑
i∈C∩I

aipC∩I\{i} +
∑
i∈C\I

aipC∩I∪{i} = ajpC∩I\{j} 6= 0,

contradicting p ∈ invI(L). Therefore T is a flat of M and (3) holds. It follows that
p, or more precisely πT (p), is a point of support S in πT (L). Therefore πT (L) ∩ CS
contains a point of full support, the contraction of the matroid M |T by T\S has no
loops, and T\S is a flat of the matroid M |T . �

Example 5.4. Suppose L is a generic d-dimensional subspace of Cn, and hence that
M = M(L) is the uniform matroid of rank d on [n]. Its flats are the subsets F ⊆ [n]
of size |F | < d, along with the full set [n]. Consider S ⊆ [n] and T = S ∪ I. If T is a
flat of M , then either |T | < d, implying |I| < d, or T = [n], in which case I ⊆ S. If
|T | < d, then M |T is the uniform matroid of rank |T | on the elements T . Then every
subset of T is a flat of M |T and S is the support of a point in invI(L). If T = [n],
then T\S = S is a flat of M |T = M if and only if |S| < d or |S| = n. Since S contains
I, |S| = n only when I = S = ∅. Therefore if I 6= ∅, we have |S| > n − d. Putting
these together gives

S ∈ supp(invI(L)) ⇐⇒


S = ∅ or |S| > n− d if I = ∅
I ⊆ S and |S| > n− d if 0 < |I| 6 n− d
|S ∪ I| < d or I ⊆ S if n− d < |I|.

6. Real points and hyperplane arrangements
Here we explore a slight variation of invI that preserves a real-rootedness
property of certain intersections. Given a polynomial f ∈ R[x1, . . . , xn] with
a real-rootedness property called stability, it is known that the polynomial
x

dege1 (f)
1 · f(−1/x1, x2, . . . , xn) is again stable [20, Lemma 2.4]. Here we extend

that to an action preserving real-rootedness of intersections with a family of affine-
spaces. For I ⊆ [n], define the rational map inv−I : Cn 99K Cn by

(inv−I (x))i =
{
−1/xi if i ∈ I
xi if i 6∈ I.

Equivalently this is the composition of invI with the map that scales coordinates xi
for i ∈ I by −1. Note that the varieties invI(L) and inv−I (L) are isomorphic, and in
particular they have the same degree. For any linear space L ⊂ Cn, let L⊥ denote the
subspace of vectors v for which

∑n
i=1 vixi = 0 for all x ∈ L.

Proposition 6.1. If L ⊂ Cn is invariant under complex conjugation, then for any
u ∈ Rn, all of the intersection points of inv−I (L) with L⊥ + u are real.

Proof. If L is contained in a coordinate hyperplane {xi = 0} where i ∈ I, then
inv−I (L) is empty and the claim trivially follows. Otherwise, the points x ∈ inv−I (L)
with xi 6= 0 for i ∈ I are necessarily Zariski-dense, and for a generic point u ∈ Rn,
the intersection points of inv−I (L) with L⊥ + u belongs to (C∗)I × C[n]\I . Showing
that these intersection points are real for generic u implies it for all.

Suppose that a point a + ib belongs to the intersection of inv−I (L) with L⊥ + u
where a, b ∈ Rn and aj + ibj 6= 0 for every j ∈ I. Then (a − u) + ib belongs to L⊥.
Since L⊥ is conjugation invariant, it follows that b ∈ L⊥. In particular, bTx = 0 for
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all x ∈ L. Since a + ib belongs to inv−I (L), inv−I (a + ib) belongs to L. It follows that
bT inv−I (a+ ib) = 0. Taking imaginary parts gives

0 = Im

∑
j∈I

−bj
aj + ibj

+
∑
j 6∈I

bj(aj + ibj)

 =
∑
j∈I

b2j
a2
j + b2j

+
∑
j 6∈I

b2j .

Since every term is nonnegative and their sum is zero, each term must be zero. Thus
bj = 0 for all j and the point a+ ib is real. �

Remark 6.2. Propostion 6.1 shows that inv−I (L) is hyperbolic with respect to L⊥, in
the sense of [15]. In fact, one can replace L⊥ in this statement by any linear space of
the same dimension whose non-zero Plücker coordinates agree in sign with those of
L⊥. This shows that inv−I (L) is a stable variety. See [7, Section 2] for more.

Proposition 6.3. For generic u ∈ Rn, the intersection points of inv−I (L) with L⊥+u
are the minima of the function

(4) f(x) = 1
2
∑
j 6∈I

x2
j −

∑
j∈I

log |xj |

over the regions in the complement of the (affine) hyperplane arrangement given by
{xi = 0}i∈I in the affine linear space L⊥ + u.

Proof. On (R∗)I ×R[n]\I , f is infinitely differentiable and we examine its behavior on
each orthant. For a sign pattern σ : I → {±1}, let RIσ denote the orthant of points
in (R∗)I with σ(i)xi > 0 for all i ∈ I. Inspecting the Hessian of f shows that it is
also strictly convex on RIσ × R[n]\I . Indeed, the Hessian of f is a diagonal matrix
whose (j, j)th entry is equal to 1/x2

j for j ∈ I and 1 for j 6∈ I and is therefore positive
definite on (R∗)I × R[n]\I .

Define the (open) polyhedron Pσ to be the intersection of RIσ × R[n]\I with the
affine space L⊥ + u. The function f is strictly convex on Pσ. Therefore any critical
point of f over Pσ is a global minimum. The affine span of Pσ is L⊥+u, so p ∈ Pσ is
a critical point of f when ∇f(p) belongs to (L⊥)⊥ = L. Since ∇f(p) = inv−I (p) and
inv−I is an involution, this implies that p belongs to inv−I (L). Putting this all together,
we find that for a point p ∈ Pσ,

p attains the minimum of f over Pσ ⇔ ∇f(p) ∈ L ⇔ p ∈ inv−I (L). �

We can characterize which connected components of (L⊥+u)\{xi = 0}i∈I contains
a point in inv−I (L) in terms of the recession cone rec(Pσ) = (RIσ × R[n]\I) ∩ L⊥.

Lemma 6.4. The infimum of f over Pσ is attained if and only if the intersection of
RI with the recession cone of Pσ is trivial, i.e. rec(Pσ) ∩ RI = {0}.

Proof. (⇒) Suppose rec(Pσ)∩RI contains v 6= 0. Then for any p ∈ Pσ, the univariate
function f(p + tv) = 1

2
∑
j 6∈I p

2
j −

∑
i∈I log |pi + tvi| is strictly decreasing as t → ∞

and the infimum of f is not attained on Pσ.
(⇐) Suppose that rec(Pσ) ∩ RI = {0}. Then the quadratic form

∑
j 6∈I x

2
j is

positive definite on the recession cone rec(Pσ). We can write Pσ as Q + rec(Pσ),
where Q is a compact polytope. Let S denote the section of the recession cone,
S = {v ∈ rec(Pσ) : ||v||1 = 1}. For any point p ∈ Q and v ∈ S, consider the univariate
function t 7→ f(p+ tv), which is strictly convex and continuous on {t : p+ tv ∈ Pσ}.
Its derivative

d
d tf(p+ tv) =

∑
j 6∈I

vjpj + t
∑
j 6∈I

v2
j −

∑
i∈I

vi
pi + tvi
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has a unique root t ∈ R for p + tv ∈ Pσ. Indeed, by assumption
∑
j 6∈I v

2
j > 0.

Then, since d2

d t2 f(p + tv) > 0 where defined, d
d tf(p + tv) is strictly increasing on

{t : p + tv ∈ Pσ}. If v ∈ R[n]\I , then this set is all of R and d
d tf(p + tv) is linear.

Otherwise, there is a minimum t for which p + tv ∈ Pσ and d
d tf(p + tv) → −∞ as t

approaches this minimum, whereas d
d tf(p+ tv) > 0 for sufficiently large t. Let t∗(p, v)

denote this unique root of d
d tf(p+ tv). This is a continuous function in p and v. Let

T denote the maximum of t∗(p, v) over (p, v) ∈ Q× S.
Now we claim that when minimizing f over Pσ, it suffices to minimize over the

compact set Q + [0, T ]S. Indeed, if y ∈ Pσ, then y = p + tv for some p ∈ Q, v ∈ S
and t ∈ R>0. If t > T , then the point x = p+ Tv ∈ Q+ [0, T ]S satisfies f(x) < f(y).
In particular, the minimum of f is bounded from below and is therefore attained on
the compact set Q+ [0, T ]S. �

Proposition 6.5. For generic u ∈ Rn, there is exactly one point of inv−I (L) in each
region of (L⊥ + u)\{xi = 0}i∈I whose recession cone has trivial intersection with RI .
The degree of inv−I (L) equals the number of these regions.

Proof. First we show that for generic u ∈ Rn, the number of intersection points of
inv−I (L) with L⊥ + u equals the degree of inv−I (L). To do this, we show that the
closure inv−I (L) in Pn(C) has no points in common with L⊥ + x0u with x0 = 0. For
the sake of contradiction suppose that for some a ∈ L⊥, the point [0 : a] belongs to
inv−I (L) and let S = supp(a).

It follows that aTx =
∑
i∈S aixi vanishes on L, g = xS∩I · aT inv−I (x) vanishes

on inv−I (L), and the homogenezation ghom with respect to x0 vanishes on the clo-
sure inv−I (L) ⊆ Pn(C). In particular, ghom(0, a) = 0. If S ⊆ I, this contradicts the
evaluation of ghom = g =

∑
j∈S ajxS\j given by

ghom(0, a) =
∑
j∈S

aS = aS · |S| 6= 0.

Similarly, since inv−I (L) is invariant under complex conjugation, we also have
ghom(0, a) = 0, where a is the complex conjugate of a. If S 6⊆ I, this contradicts the
evaluation of ghom = −x2

0
∑
j∈S∩I ajxS∩I\j + xS∩I

∑
j∈S\I ajxj given by

ghom(0, a) = aS∩I
∑
j∈S\I

ajaj 6= 0.

Therefore all the intersection points of inv−I (L) with L⊥+ x0u have x0 6= 0. Then for
generic u, the number of intersection points of inv−I (L) and L⊥+ u equals the degree
of inv−I (L).

By Propositions 6.1 and 6.3, each of these intersection points is real and thus
is a minimizer of the function f(x) of (4) over some connected component Pσ of
(L⊥ + u)\{xi = 0}i∈I . By Lemma 6.4, the components Pσ contains a minimizer if
and only if rec(Pσ) ∩ RI = {0}. �

This together with Corollary 4.4 constitutes the proof of Theorem 1.2. For special
cases of I, we find a simpler characterization of the regions counted by deg(invI(L)).

Corollary 6.6. Let u ∈ Rn be generic. If I is independent in the matroid M(L),
then the degree of invI(L) equals the total number of regions in (L⊥ + u)\{xi = 0}i∈I .
If I = [n], then the degree of invI(L) equals the number of bounded regions in
(L⊥ + u)\{xi = 0}i∈I .
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Proof. If I is independent in M(L), then I is contained in a basis B of M(L), and
[n]\B is a basis of M(L⊥) contained in [n]\I. In particular, if x ∈ L⊥ has xj = 0
for all j ∈ [n]\I, then x = 0. So RI ∩ L⊥ = {0}. The recession cone of any region of
(L⊥ + u)\{xi = 0}i∈I is contained in L⊥, so its intersection with RI is trivial.

If I = [n], then RI = Rn. The recession cone of a region in (L⊥ + u)\{xi = 0}i∈I
contains a non-zero vector if and only if it is unbounded. Therefore the regions whose
recession cones have trivial intersection with RI are those which are bounded. �

Example 6.7. Consider the 3-dimensional linear space L from Example 4.3 and take
the vector u = (0, 0, 1, 2, 2). The two-dimensional affine space L⊥+u consists of points
of the form (x1, x2, x1−x2+1,−x2+2,−x1+x2+2). Since I = {1, 2, 3} is independent
in M(L), each of the seven regions in the complement of the hyperplane arrangement
{xi = 0}i∈I contains a point of inv−I (L). For I = {1, 2, 3, 4}, there are four regions
whose recession cones intersect {x5 = 0} nontrivially. The remaining six regions each
contain a unique point in inv−I (L). Finally, for I = {1, 2, 3, 4, 5}, RI is all of R5 so the
recession cone of Pσ intersects RI nontrivially if and only if Pσ is unbounded. Thus
the four bounded regions of the hyperplane arrangement {xi = 0}i∈I in L⊥ + u are
precisely those that contain points in inv−I (L). These hyperplane arrangements and
intersection points are shown in Figure 1.

Figure 1. Intersections of L⊥ + u with inv−I (L) from Example 6.7.
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