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Abstract 
The Multiple Imputation of Latent Classes (MILC) method combines multiple imputation and latent class 
analysis to correct for misclassification in combined datasets. Furthermore, MILC generates a multiply 
imputed dataset which can be used to estimate different statistics in a straightforward manner, ensuring that 
uncertainty due to misclassification is incorporated when estimating the total variance. In this paper, it is 
investigated how the MILC method can be adjusted to be applied for census purposes. More specifically, it is 
investigated how the MILC method deals with a finite and complete population register, how the MILC 
method can simultaneously correct misclassification in multiple latent variables and how multiple edit 
restrictions can be incorporated. A simulation study shows that the MILC method is in general able to 
reproduce cell frequencies in both low- and high-dimensional tables with low amounts of bias. In addition, 
variance can also be estimated appropriately, although variance is overestimated when cell frequencies are 
small. 

 
Key Words: Combined survey-register data; Population census; Misclassification; Multiple imputation; Latent Class 

analysis. 
 
 
1. Introduction 
 

Official Statistics are increasingly often compiled from a combination of data sources, including 
surveys and administrative registers. The use of different sources poses multiple challenges. Different 
sources can be overlapping, meaning that more than one observation is obtained for the same person and 
variable. Often, it is observed that data sources are contaminated by errors and missing values. Therefore 
it can happen that two data sources provide two different values for the same unit and variable. Most of 
the data collected by statistical agencies have to be corrected or processed somehow to obtain consistent 
and publishable results. Several strategies are available to deal with multiple, overlapping data sources 
that are each contaminated by erroneous and missing values, see e.g. Pankowska, Pavlopoulos, Bakker 
and Oberski (2020). A first, and in practice often chosen strategy, is to ignore inconsistencies between 
data sources. This happens for instance if one data source is chosen that is believed to have the highest 
quality (de Waal, van Delden and Scholtus, 2020). When such strategies are chosen, the information in all 
available sources is not fully exploited. 

A second strategy is to apply weighting techniques (Särndal, Swensson and Wretman, 2003). When 
weighting is used, survey records are calibrated towards the totals from a register source. Differences 
between data sources are fully explained from the selection effects of the sample. This approach ignores 
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the fact that the register totals, as well as the sample surveys, might be subject to measurement error. An 
additional complication is that weighting does not always lead to fully consistent output, as it only 
achieves consistency with regard to the variables that are incorporated in the weighting model. The 
number of variables that can be included in a weighting model is however limited. 

A third strategy to resolve inconsistencies between multiple sources is macro-integration, an approach 
that reconciles statistical output at aggregate level. This approach usually consists of two steps. First, 
differences with a known cause are resolved (i.e. bias). The remaining, mostly smaller, discrepancies that 
usually arise due to noise are corrected in a second step. Several mathematical methods have been 
developed for this purpose, e.g. Bikker, Daalmans and Mushkudiani (2013), Daalmans (2019), Di Fonzo 
and Martini (2003), Magnus, van Tongeren and de Vos (2000), Sefton and Weale (1995) and Stone, 
Champernowne and Meade (1942). A first drawback of macro integration is that the connection between 
the micro-data and the published results gets lost. The macro-integrated results cannot be computed by 
aggregation of the micro data. A second drawback is that the detailed micro data might not be fully 
exploited, as the corrections are made at the macro level. 

Many of the issues arising when one of the previously discussed strategies is used can be circumvented 
by Multiple Imputation of Latent Class analysis (MILC) by Boeschoten, Oberski and de Waal (2017). 
This method combines multiple measures from different sources (population register and sample survey) 
at micro level. The different observations are considered indicators of a Latent Class (LC) model. The 
MILC-model corrects for misclassification while also taking edit restrictions into account. These are rules 
that identify logically impossible combinations of scores (e.g. pregnant men). After the LC model has 
been estimated, multiple imputed versions of the target variable are created, that are corrected for the 
estimated misclassification. Differences between imputed values reflect the uncertainty due to missing and 
conflicting values. The total variance can be estimated based on these differences. The method can be 
considered a model-based imputation method that requires the Missing At Random (MAR) assumption. A 
simulation study on the performance of this method showed that its performance is strongly related to the 
entropy 2R  value of the LC model; a measure which indicates how well the LC model can predict class 
membership based on the observed variables, or how well classes are separated. 

After MILC was introduced, multiple studies have extended the method to broaden its scope of 
applicability. Boeschoten, de Waal and Vermunt (2019) extended the method to impute values that are 
missing by design, for example because they were not present in the sample, using a quasi-latent variable. 
More specifically, a quasi-latent variable is a latent variable that is restricted to have a perfect relationship 
with an observed variable that contains missing values. In that way, the relationship between the quasi-
latent variable and all other variables specified in the model can be used to estimate the missing values. In 
addition, they investigated the performance of the method when two combined sources follow different 
missingness mechanisms. Furthermore, Boeschoten, Filipponi and Varriale (2021) investigated how the 
method can be extended for longitudinal situations and how unit missingness can be imputed in a situation 
of combined survey and register data. 
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Although these previous studies investigated a number of relevant issues, there are still cases for which 
it is unclear how the MILC-method can be applied. The aim of this paper is to further enhance the 
possibilities of MILC in terms of application and, with that, to further increase the capabilities of 
producing multi-source statistics. 

Currently, the application of MILC has been limited to univariate problems. In practice, however, there 
is often a need to estimate multiple variables at once. The first important extension in this paper is to allow 
the simultaneous imputation of multiple latent variables. As population registers can contain 
misclassification, it is worthwhile to correct for the misclassification if possible. For multivariate 
problems, corrections should be performed simultaneously, which is more difficult than for one variable 
only. 

Second, statistical agencies generally consider finite target populations (e.g. containing all registered 
inhabitants of a country). It is unclear if the MILC method can be applied directly to a finite population, or 
that adaptations to the method should be made. 

The usefulness of the extensions in this paper is illustrated by an application to the Dutch virtual 
census; an application that would otherwise not be possible. For the census, a large number of tables have 
to be estimated from a population register and a sample survey. To the best of our knowledge, this is the 
first time that MILC has been applied to such a large estimation problem. Theoretically, it is already 
known that edit restrictions can be incorporated in an LC model to prevent the occurrence of logically 
impossible combinations of scores (Boeschoten et al., 2017). However, it is not trivial how the MILC 
method performs if edit restrictions are incorporated in such a way that they affect multiple cells in a 
population census table. 

In Section 2, a description of the MILC method is given, tailored to handle the specific extensions 
discussed. In Section 3, a description of the simulation study is given. Simulation results are shown in 
Section 4 and Section 5 provides a discussion. 

 
2. Methodology 
 

When applying the MILC method, the starting point is a unit-linked combined dataset, which can 
consists of combinations of administrative population registries and survey samples. In order to account 
for uncertainty regarding the parameters of the LC model estimated at a later step in MILC, a non-
parametric bootstrap procedure is applied on this dataset first (step 1). This involves creating M  bootstrap 
samples by drawing observations from the observed dataset with replacement. Subsequently, for each 
bootstrap sample, the LC model of interest is estimated (step 2) using Latent GOLD software (Vermunt 
and Magidson, 2013a). Here, model parameters are estimated by Maximum Likelihood using a 
combination of the Expectation-Maximization and Newton-Raphson algorithms. Note that here, by 
explicitly stating which cells should be restricted, constrained estimation is used. Next, M  imputations 
are created using the M  sets of parameter values obtained from the M  latent class models (step 3). If 
imputations would be created based on the maximum-likelihood estimates obtained directly using the 
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original observed data, sampling uncertainty regarding the estimated parameters of the latent class model 
would be ignored. 

In the following subsections, we explain each of the steps of MILC in more detail and present the 
extension for the estimation of multiple latent variables for a finite population from register and sample 
survey data. 
 

2.1 Step 1: Creating bootstrap samples 
 

We propose to use the “classical” bootstrap procedure here, which consists of repeatedly drawing 
samples with replacement from the original dataset, of the same size as the original dataset. A motivation 
for using this classical with-replacement bootstrap here, as opposed to an adapted bootstrap procedure for 
a finite population, is provided in Section 2.5 below. 

The bootstrap should be applied to the dataset that is used to estimate the LC models. When register 
data and survey data are combined, the indicator variables from the survey will typically be missing for a 
large part (e.g., 90% or more) of the population. The LC models could then be estimated by two different 
approaches: 

• using only the subset of persons observed in both the survey and the register (complete cases);  

• using all available data, including cases with missing indicators.  
 

Under the second approach, full information maximum likelihood can be used to handle missing 
values when estimating the LC models. This has the advantage of using all available information. Since 
this amounts to estimating the LC model on M  datasets with the size of the target population, a practical 
drawback of this approach is that it may be computationally demanding in terms of time and memory. 
Therefore, the first approach may be more attractive, in particular when the associations among the 
covariates and target variables are relatively weak. In the latter approach, the cases with missing survey 
data will contain relatively little information about the parameters of the LC model. Note that under both 
approaches, the estimated LC models are used to impute predictions of the latent classes throughout the 
population. Depending on which approach is chosen to estimate the LC models, bootstrapping is applied 
either to the subset of complete cases or to the target population. In the simulation study in this paper, the 
complete-case approach will be used. 
 

2.2 Step 2: Estimating the latent class model 
 

The second step performed is the estimation of the LC model. It is explained below how this is done 
for multiple latent variables. As described in the previous section, the LC model is typically estimated M  
times using the M  bootstrapped datasets. In the situation under evaluation in this paper, the LC model is 
estimated M  times on M  subsets of complete observations coming from the M  bootstrap samples. An 
extensive discussion of the model and the assumptions made when using the model to correct for 
measurement error can be found in Boeschoten et al. (2017). Multiple latent variables can be estimated 
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simultaneously in one model, which yields the following model structure for the joint probability of the 
response variables given covariate values, denoted by ( )P .= =Y y Q q  The number of latent variables is 
denoted as v  and hK  is the number of classes of latent variable hX  (scalar), where ( )1, , .h v=  
Furthermore, Y  are the observed target variables, i.e. the indicator variables, hL  is the number of 
indicator variables for hX  and Q  are the (also observed) covariate variables:  
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(2.1)

 

Here, local independence is assumed as well as independence of covariates. 

Constrained parameter estimation is used when certain cells within ( )1 1P , , v vX x X x= = =Q q  are 
restricted. This can be used to specify that certain combinations of scores between covariates and latent 
variables are logically impossible, or when a “quasi-latent” variable is used to create imputations for 
missing values in a variable (Vermunt and Magidson, 2013b). 

 
2.3 Step 3: Multiple imputation 
 

To be able to create multiple imputations, joint posterior membership probabilities are calculated for 
every person in the original dataset. They represent the probability that a unit is part of a combination of 
latent classes from the different latent variables, given its combination of scores on the indicators and 
covariates used in the LC model. These probabilities can be used to create multiple imputations of the 
latent variables which contain their “true scores”. 

The joint posterior membership probabilities can be calculated by applying Bayes’ rule to the 
conditional response probabilities obtained from the M  LC models:  
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and ( )P = =Y y Q q  is defined in equation 2.1. For one profile (so one set of scores on all indicator and 
covariate variables), the joint posterior membership probabilities sum up to one. 
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To be able to include parameter uncertainty in our variance estimates, we perform the model 
estimation on M  bootstrap samples of the dataset, resulting in M  different LC models. We generate 
imputations in the original dataset accounting for the parameter uncertainty by using the resulting M  sets 
of bootstrap parameter estimates. More specifically, with each of these M  parameter sets we compute the 
posterior class membership probabilities for the original sample, and use these to generate the imputations. 
In other words, the M  imputations are based of M  different sets of posterior probabilities. 

 
2.4 Step 4: Pooling 
 

The next step is to obtain estimates of interest for every imputation, and to pool them using Rubin’s 
Rules (Rubin, 1987, page 76). For this research, the main interest is producing a frequency table. 
Therefore, the frequency table of interest is obtained for the M  imputations and they are pooled, which 
means taking the average over the imputations for every cell in the frequency table: 

 
=1
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M

j ij

iM
   (2.4) 

where j  refers to a specific cell in the frequency table. 

Next, an estimate of the uncertainty around these frequencies is of interest. In general, the variance of 
the pooled estimate j  can be estimated by Rubin’s total variance formula for multiple imputation (Rubin, 
1987, page 76): 
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The within variance withinVAR
j
 reflects the average sampling variance of ij  when the imputed values 

are treated as observed. In our application, as the population is finite and imputations are generated for the 
complete population, this within variance component is zero and can be mitigated (Vink and van Buuren, 
2014). Note that this is a property of multiple imputation and is due to the fact that the complete 
population is imputed. This should not be confused with the decision to only use a sample for LC model 
estimation. Hence, formula (2.5) is reduced in this case to:  

 between
total between

VAR
VAR VAR .j

j j M
= +  (2.7) 

 

2.5 A note on bootstrapping for multiple imputation in finite populations 
 

The aim of a census is to estimate certain target parameters of a finite population (e.g., all persons 
currently living in the Netherlands). Hence, a natural idea might be to apply a finite-population bootstrap 
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procedure in this context; see Mashreghi, Haziza and Léger (2016) for an overview of bootstrap methods 
for finite populations. However, when determining the appropriate bootstrap approach, it should be noted 
that the bootstrap in MILC is specifically implemented to account for the between imputation variance 
component of formula (2.5) in Section 2.4. In general, variability in the target parameters due to the fact 
that a sample was drawn from a finite population is incorporated in the within variance component of 
formula (2.5). As we use mass imputation here, the within variance component in fact reduces to zero; cf. 
formula (2.7). More generally, this component would be estimated separately from the bootstrap method 
at hand; see Boeschoten et al. (2017) for an example. 

Furthermore, the reason for incorporating the bootstrap in the MILC approach is to account for 
uncertainty in the estimated parameters of the latent class model. Note that these parameters are not 
associated with a finite population, but with a model. Even if we had observed the entire finite population, 
there would still be uncertainty about the true parameter values of the latent class model. This uncertainty 
can be considered as drawing from an infinite distribution. Therefore, we select the classical with-
replacement bootstrap. We argue that bootstrap methods for finite populations should not be used in this 
context. For large samples, such methods would result in a substantial underestimation of the variance 
when combined with the usual approach to multiple imputation. We also checked this empirically in the 
simulation study to be discussed in Section 3. As an example, when a pseudo-population bootstrap method 
for finite populations was used, the resulting se/sd ratios in Table 4.7 for the condition MAR, 5M =  were 
0.7217, 0.7887, 0.7536 and 0.8607, respectively, all pointing to a non-negligible underestimation of the 
true variance. 

In the simulation study in this paper, we will restrict attention to surveys based on simple random 
sampling and stratified simple random sampling. For more complex survey designs, e.g. involving cluster 
sampling or sampling with unequal probabilities, it is unclear whether the proposed bootstrap approach is 
always appropriate. It is possible that in some cases such complex design features could indirectly affect 
the uncertainty of estimated parameters of the latent class model and therefore become relevant for 
variance estimation. We will return to this point in the discussion section. 

 
3. Simulation study 
 

In this section, we describe a simulation study that is performed to evaluate the extensions of the MILC 
method in Section 2. The topic of this study is the estimation of a table from the Dutch Population and 
Housing Census. 
 

3.1 The Dutch Census 
 

Population and housing censuses provide a picture about the socio-demographic and socio-economic 
situation of a country and it is ubiquitous that a census should cover the entire population of people and 
dwellings that are present in a country. Every ten years the United Nations Economic and Social Council 
(ECOSOC) adopts a resolution, urging Member States to carry out a population and housing census and to 
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disseminate census results as an essential source of information, see e.g. The Economic and Social 
Council (2005). In the EU, explicit agreements have been made about which variables should be listed in 
the census, and also which cross-tables should be produced (European Commission, 2008, 2009 and 
2010). 

The vast majority of countries produce census data by conducting a traditional census, which entails 
interviewing inhabitants in a complete enumeration, reaching every single household. An increasing 
number of countries however have adopted a different, innovative approach, in the form of a so-called 
virtual census. With a virtual census, census tables are compiled using data sources that are already 
available at the statistical agency. These are data sources that have not been primary collected for the 
census, but for other purposes. Statistics Netherlands can rely on population registers as the main source 
for most census tables. These registers are of relatively good quality, including a very broad coverage 
(Geerdinck, Goedhuys-van der Linden, Hoogbruin, De Rijk, Sluiter and Verkleij, 2014). All register 
variables are available from Statistics Netherlands’ system of social statistical data-sets (Bakker, 
Van Rooijen and Van Toor, 2014). The backbone is the Central Population Register which combines the 
population registers from municipalities. The population registers are supplemented with variables 
originating from sample surveys, because not all variables that are necessary according to the EU 
regulations can be found in the population registers. 

For the 2001 and 2011 Dutch censuses, only two variables could not be measured from registers: 
Occupation and Educational Attainment (Schulte Nordholt, Van Zeijl and Hoeksma, 2014). These two 
variables were observed from combined Labour Force Surveys (LFSs). To obtain the required cross-tables 
for the 2011 Dutch census, a procedure was used where all data sources were matched on the unit level. 
Then, a micro-integration process was carried out. Micro-integration brings together records from 
different micro-datasets and subsequently resolves data inconsistencies. The goal is to improve the quality, 
compatibility and scope of the data sets. The techniques that are used in micro integration are: completing, 
harmonising and correcting for measurement errors. Completing means that corrections are made for an 
under- or overcoverage of a target population. Harmonisation refers to transformations such that data sets 
fit to the concept that is supposed to be measured. Measurement correction means that inconsistencies 
between sources are resolved (Bakker, 2011; van Rooijen, Bloemendal and Krol, 2016). Also, 
inconsistencies between sources are removed, by using formal rules that make clear what happens in case 
of inconsistencies, e.g. which source is used (Bakker, 2010; de Waal, Pannekoek and Scholtus, 2011). 

After micro-integration, two combined data sources were obtained: one based on a combination of 
registers and the other one based on a combination of sample surveys. All census tables that do not contain 
occupation and educational attainment were entirely compiled from the combined registers. The values in 
the cells of these tables were obtained by counting the occurrence of the categories in the matched 
registers. The other census tables, those with educational attainment and/or occupation, were estimated 
from the combined sample surveys. To establish consistent results, a procedure was applied based on 
weighting followed by macro integration (Daalmans, 2018; Schulte Nordholt et al., 2014). In the first step, 



Survey Methodology, June 2022 127 

 

 

Statistics Canada, Catalogue No. 12-001-X 

weights were derived, such that the marginal totals of the weighted survey data comply with the known 
totals from the registers. The different tables that are obtained in this way are not necessarily consistent 
with each other, because different weighting schemes apply to each table. To resolve this problem, macro-
integration is used. This step starts with initial estimates for each census table, derived from the weighted 
survey data or from the integrally counted register data. These initial estimates are adjusted, to arrive at 
fully consistent census tables, that comply with the known register totals. 

MILC has a couple of advantages over the current estimation method. First, the assumption is often 
made that the population registers are free of error. If a variable is measured both in the population register 
and in a sample survey and the scores on these variables contradict each other, the register score usually 
overrides the survey score because of this assumption. In other words, sample survey data are ignored for 
the part that is also observed in a register. Second, for the current procedure, it is not easy to compute 
uncertainty measures that capture all steps of the estimation process, including the uncertainty due to the 
missing and conflicting values in the linked data-sets. For MILC on the other hand it is well-established 
how variances can be properly estimated. Third, the data processing procedure that is currently used 
contains a specific sequence of steps, where decisions made at one step are influenced by decisions made 
at previous steps. For instance, if there are two conflicting values for the same person, then one of these is 
chosen in the “micro-integration” step. In the subsequent weighting and macro integration steps only one 
value is used. Thus, the availability of the different values is ignored in the final estimation of the census 
tables. Basically, MILC exploits information provided by all observed values in contrast to the current 
procedure. 
 

3.2 The census table under investigation 
 

The starting point of this simulation study is an existing census table, which can be downloaded from 
Census Hub (Census Hub, 2017). This table comprises 2,691,477 persons who where living in the region 
“Noord-Holland” in the Netherlands in 2011. This census table is a cross-table between the following six 
variables:  

1. Age in 21 categories: under 5 years; 5 to 9 years; 10 to 14 years; 15 to 19 years; 20 to 24 years; 
25 to 29 years; 30 to 34 years; 35 to 39 years; 40 to 44 years; 45 to 49 years; 50 to 54 years; 55 
to 59 years; 60 to 64 years; 65 to 69 years; 70 to 74 years; 75 to 79 years; 80 to 84 years; 85 to 
89 years; 90 to 94 years; 95 to 99 years; 100 years and over.  

2. Marital status in eight categories: never married; married; widowed; divorced; registered 
partnership; widow of registered partner; divorced from registered partner; not stated.  

3. Gender in two categories: male; female.  

4. Place of birth in five categories: the Netherlands; a country within the European Union; a 
country outside the European Union; other; not stated.  

5. Type of family nucleus in which a person lives in five categories: partners; lone parents; 
sons/daughters; not stated; not applicable.  
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6. Country of citizenship in five categories: Dutch citizen; citizen of a country within the 
European Union; citizen of a country outside the European Union; stateless; not stated.  

 

Thus, the census table consists of 42,000 cells. 
 

3.3 Simulation setup 
 

The goal of this simulation study is to replicate the frequencies of the 42,000 cells in the cross-table 
using multiple indicators contaminated with misclassification and missing values. Therefore, this 
misclassification should be induced first. 

We generate two indicator variables for three different latent variables, all containing 5% random 
misclassification, which can be considered a very high amount, especially for Dutch population registers. 
The indicator variables are generated for the variables “Gender”, “Type of family nucleus” and “Country 
of citizenship”. Misclassification is generated in such a way that first, 5% of the cases are randomly 
selected. Second, their original score is identified and third, a different score is assigned by sampling from 
the observed frequency distribution of the other categories. 

For the register indicators ,1,vl
Y  misclassification is generated only once, as these indicator variables 

represent register variables for the complete and finite population, there should not be any variability in 
misclassification between replications in the simulation study for these variables. For the survey indicators 

, 2 ,
vl

Y  misclassification is newly generated for every replication in the simulation study, followed by 
generating missing values using either a Missing Completely At Random (MCAR) or Missing At Random 
(MAR) missingness mechanism with approximately 90% missingness for both situations. With a MCAR 
mechanism, the response probabilities for the respondents and non-respondents is equal. With a MAR 
mechanism, the response probabilities are related to other observed values (Rubin, 1976). These , 2vl

Y  
indicators represent survey variables for a sample of the population. 

Missingness is generated in such a way that it mimics a situation that 10% of the population is included 
in the survey. Missingness is generated under MCAR and MAR. Under MCAR, the probability of being 
missing (i.e. not being included in the survey) is 90% and equal for every person in the population. Under 
MAR, the probability of being missing depends on a persons’ age and decreases as a person gets older. 
More specifically, the probability of being missing is lowest for persons in the age category “100 years 
and older”, and is 80%. This percentage gradually increases with the highest being 94% for the persons in 
the age category “under five years”. To summarize, for each of the 500 iterations in the simulation study, a 
simple random or stratified sample of the combined data-set is obtained that contains approximately 
269,147 persons (10% of the population), on which the LC model is estimated. 
 

3.4 Applying the MILC method 
 

As discussed in Section 2, M  bootstrap samples are generated from the combined dataset, and in this 
study the LC model is estimated only on the complete set of observations of each bootstrap sample. 
Results are obtained using 5,M = 10M =  and 20.M =  
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In Figure 3.1, the graphical overview of the latent class model can be found. Here, it can be seen that 
the latent variables 1X  “Gender”, 2X  “Family nucleus” and 3X  “Citizen” are all measured by two 
indicators. The restriction on the relationship between 1Q  “Age” and 2X  “Family nucleus” is denoted by 
“a” in Figure 3.1. Here, we restricted that if someone is of age category “under 5 years”, “5 to 9 years” or 
“10 to 14 years”, it is impossible to be assigned to the latent classes “partners” or “lone parents” for the 
latent variable “Family nucleus”. 
  
Figure 3.1 Graphical overview of the LC model specified. Note that edit restrictions are applied between the 

variables “Type of family nucleus” and “age” (denoted in the model by “a”). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To specify the LC model for response pattern ( )P = =Y y Q q  we can fill in at equation 2.1 that 
3,v = 1 2,K = 2 4,K = 3 4,K = 1 2,L = 2 2L =  and 3 2.L =  Note that 2X  here only has four latent classes, 

while the variable “Family Nucleus” in the population census table has five categories. Therefore, it would 
have made sense for 2X  to also have five latent classes. However, there were no observations for the 
category “not applicable”, so therefore we didn’t have to include a latent class for this category. The same 
holds for the category “stateless” of 3.X  

Next, multiple imputations can be created and estimates of interest can be pooled as described in 
Sections 2.3 and 2.4. As the cells of the frequency-tables of interest can become very small, a log-
transformation is used to ensure appropriate confidence intervals around these small cells. Therefore, 

betweenVAR
j
 is not estimated as the variance of ˆ ,ij  as in equation 2.7, but as the variance of ( )ˆlog ,ij  

where 
îj  refers to the number of units in cell j  in imputation .i  
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3.5 Evaluation 
 

To evaluate the performance of the MILC method when trying to construct the census table initially 
used to create the misclassified data, it is useful to make comparisons to results obtained when the variable 
observed in the register is used directly to create cross-tables. We refer to these results as obtained using 

, 1.vY  These results are equal over the 500 simulation iterations and the bias here directly reflects the 
misclassification in this indicator, which becomes more severe as the categories are more imbalanced in 
size due to the misclassification mechanism. Furthermore, it would be difficult to draw general 
conclusions from results obtained by only evaluating every single of the 42,000 cells of the complete 
census table. Therefore, we investigate some specific characteristics of this table separately. First, we 
investigate whether the method is able to reconstruct the univariate marginal cell frequencies of the latent 
variables specified. Second, we investigate if the method is able to reconstruct the joint distribution of the 
three latent variables. Third, we investigate if the method correctly incorporates edit restrictions. At last, 
we investigate some features of the complete census table. 

First, we evaluate the cell-proportions of the previously discussed cross-tables in terms of bias, by 
evaluating the average absolute bias and the root mean squared error (RMSE) over the 500itN =  
replications in the simulation study. More specifically, the bias of a cell frequency j  is calculated as  
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Furthermore, the RMSE is calculated as  
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Second, results are evaluated in terms of variance. Here, it is of interest to evaluate whether MILC 
correctly reflects uncertainty due to missing and conflicting values in between imputation variance for 
both univariate and multivariate cross-tables. Therefore, we investigate if the average of the estimated 
standard errors is approximately equal to the standard deviation over the 500 estimates obtained from the 
500 simulation replications by evaluating its ratio, which is calculated by  
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where SE is the square root of the estimate of the total variance obtained after applying pooling rules 
(Rubin, 1976) and ( )ˆSD

itj  is calculated as  
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To account for small cell frequencies, ˆ
itj  and 

itj  are considered on a log scale in equations 3.2, 3.3 and 
3.4. To summarize, we denote the specific conditions evaluated in this simulation study as , 1,vY  MILC-
MCAR-5, MILC-MCAR-10, MILC-MCAR-20, MILC-MAR-5, MILC-MAR-10 and MILC-MAR-20. 

 
4. Simulation results 
 

First, cell-proportions of univariate and multivariate cross-tables are evaluated in terms of bias and root 
mean squared error (RMSE) over the 500 simulation replications. Second, these cell-proportions are 
evaluated in terms of variance by investigating the average of the estimated standard error divided by the 
standard deviation over the 500 estimates obtained from the 500 simulation replications (SESD). Due to 
the log-transformations we made in equations 3.2, 3.3 and 3.4 to account for small cell frequencies, the 
RMSE and SESD are reported on a log scale. 
 

4.1 Results in terms of bias 
 

4.1.1 Univariate marginal frequencies of imputed variables 
 

In Table 4.1, the simulation results can be found that cover the univariate marginal frequencies of the 
imputed latent variable “Gender” in terms of bias and RMSE. Results from all simulation conditions are 
shown. Here, it can be seen that a smaller amount of bias is obtained if 1,1Y  is used, compared to results 
obtained using MILC under all conditions. In addition, it can be seen that the RMSE is also smaller if 1,1Y  
is used instead of the MILC method. Furthermore, it can be seen that both bias and RMSE slightly 
decrease as M  increases, and that the quality of the results appears to be unrelated to the missingness 
mechanism. 

 
Table 4.1 
Results in terms of bias and root mean squared error for the two categories of the imputed latent variable 
“Gender” 
 

 Gender Frequency 1, 1Y  
MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
Bias F. 1,367,167 -2,126 3,386 3,308 3,325 3,231 3,153 3,109 

M. 1,324,310 2,126 -3,386 -3,308 -3,325 -3,231 -3,153 -3,109 
RMSE F. 1,367,167 2,154 6,008 5,888 5,760 5,914 5,637 5,512 

M. 1,324,310 2,154 6,008 5,888 5,760 5,914 5,637 5,512 
Note: “F.” is “Female” and “M.” is “Male”. 

 
In Table 4.2, the simulation results can be found that cover the univariate marginal frequencies of the 

imputed latent variable “Type of family nucleus” in terms of bias and RMSE. Here, the results are very 
different from the results we found for “Gender”, the bias obtained for 2,1Y  is much higher compared to 
the bias obtained using MILC under all conditions and the same holds for RMSE. In addition, whether the 
results for the MILC method depend on the missingness mechanism differ per category. In terms of bias 
and RMSE, this is the case for the categories “N.A.” and “Partners”. 
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Table 4.2 
Results in terms of bias and root mean squared error for the four observed categories of the imputed latent 
variable “Type of family nucleus” 
 

 Type of family nucleus Frequency 2, 1Y  
MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
Bias Lone parents  97,360 2,670 185 182 176 224 226 220 

N.A.  604,032 8,985 -957 -975 -989 -1,601 -1,612 -1,611 
Partners  1,272,339 -19,686 401 411 427 932 935 932 
Sons/daughters  717,746 8,030 371 381 386 446 451 459 

RMSE Lone parents  97,360 2,672 425 408 395 426 421 414 
N.A.  604,032 8,989 1,337 1,318 1,312 1,837 1,833 1,818 
Partners  1,272,339 19,688 954 914 904 1,256 1,235 1,218 
Sons/daughters  717,746 8,034 630 624 617 715 692 688 

Note: “N.A.” means “Not applicable”. Note that the category “Not stated” is mitigated as it contained zero observations. 
 

 

In Table 4.3, the simulation results can be found that cover the univariate marginal frequencies of the 
imputed latent variable “Citizen” in terms of bias and RMSE. Here, the results are comparable to the 
results we found for “Type of family nucleus”, as the bias obtained when only 3,1Y  is used is again much 
higher compared to the bias obtained using MILC method and the same holds for RMSE. As was also the 
case for “Type of family nucleus”, whether the results for the MILC method depend on the missingness 
mechanism differ per category, although this is more the case for the bias here, and not so much in terms 
of RMSE. 
 
Table 4.3 
Results in terms of bias and root mean squared error for the four observed categories of the imputed latent 
variable “Citizen” 
 

 Citizen Frequency 3, 1Y  
MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
Bias EU  79,212 51,365 -5 -7 -12 -199 -211 -216 

NL  2,511,214 -116,899 -555 -546 -545 117 124 107 
not EU  89,592 58,085 512 502 507 62 69 89 
Not stated  11,459 7,448 49 51 49 21 18 20 

RMSE EU  79,212 51,365 410 398 388 488 486 475 
NL  2,511,214 116,899 925 894 883 767 756 720 
not EU  89,592 58,086 800 770 767 618 611 590 
Not stated  11,459 7,449 201 197 190 204 205 198 

Note: “N.S.” means “Not stated”. Note that the category “Stateless” is mitigated as it contained zero observations. 

 
Boeschoten et al. (2017) concluded that the quality of the output when MILC is applied related to how 

well the latent class model is able to make classifications based on the observed data, which is 
summarized in the entropy 2.R  The entropy 2R  values for “Gender”, “Type of family nucleus” and 
“Citizen” are approximately 0.7352, 0.9191, and 0.8571 respectively under MCAR. So this corresponds to 
the quality of the results for the latent variables in terms of bias and RMSE. An additional explanation for 
“Gender” is that the two categories are of comparable size and the amount of misclassification in both 
categories is approximately equal and behaves symmetrical in our simulation study. This causes that the 
marginal distribution of 1,1Y  is very similar to the marginal distribution of 1X  and not so much affected by 
misclassification. 
 



Survey Methodology, June 2022 133 

 

 

Statistics Canada, Catalogue No. 12-001-X 

4.1.2 Joint frequencies of imputed variables 
 

In Table 4.4, the simulation results can be found that cover the joint marginal frequencies of the three 
imputed latent variables in terms of bias and RMSE. Again, it can be seen here that if only ,1vY  is used, 
severe bias is present in all cells of the joint frequency table. The results obtained when the MILC method 
is applied show much lower amounts of bias and RMSE. Here, the differences between different numbers 
for M  or different missingness mechanism are much smaller compared to the differences between MILC 
and ,1.vY  Furthermore, the differences in the amount of bias for particular cells after applying the MILC 
method seem to be related to imbalances in cell frequencies within particular variables. More specifically, 
the variable “Citizen” knows substantive differences in cell frequencies and within Table 4.4, it can be 
seen that particular the category “not EU” is affected in terms of bias by this imbalance. 

 
Table 4.4 
Results in terms of bias and root mean squared error for the 32 observed categories of the joint distribution of 
the three imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” 
 

 

Gender   Type of family  
nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
Bias F. Lone parents EU 2,091 1,434 8 7 7 1 0 0 

F. Lone parents NL 76,131 -6,620 652 650 646 240 241 234 
F. Lone parents not EU 3,120 1,513 33 32 32 39 39 38 
F. Lone parents N.S. 646 154 -5 -5 -6 -13 -13 -13 
F. N.A. EU 12,436 5,971 433 432 432 431 427 427 
F. N.A. NL 293,960 -11,998 -595 -618 -623 905 891 880 
F. N.A. not EU 9,509 7,317 1,032 1,031 1,032 1,069 1,069 1,071 
F. N.A. N.S. 1,221 982 182 182 182 198 197 197 
F. Partners EU 20,443 11,185 237 236 235 24 19 21 
F. Partners NL 584,547 -34,001 294 262 279 -564 -599 -624 
F. Partners not EU 26,877 12,022 404 402 401 254 255 258 
F. Partners N.S. 1,292 1,837 -19 -18 -18 -23 -24 -24 
F. Sons/daughters EU 4,368 7,541 -778 -779 -780 -851 -853 -854 
F. Sons/daughters NL 321,364 -8,738 2,483 2,471 2,479 2,620 2,601 2,588 
F. Sons/daughters not EU 7,680 8,303 -764 -768 -766 -876 -874 -869 
F. Sons/daughters N.S. 1,482 971 -209 -208 -208 -223 -223 -222 
M. Lone parents EU 389 591 -10 -11 -11 9 9 9 
M. Lone parents NL 14,536 4,791 -553 -552 -554 -134 -131 -130 
M. Lone parents not EU 372 707 35 35 35 53 53 53 
M. Lone parents N.S. 75 100 27 27 27 28 29 29 
M. N.A. EU 16,308 4,444 -306 -304 -305 -349 -349 -350 
M. N.A. NL 253,493 -3,733 -714 -708 -717 -2,730 -2,722 -2,713 
M. N.A. not EU 13,636 5,548 -904 -903 -902 -1,023 -1,023 -1,020 
M. N.A. N.S. 3,469 455 -85 -86 -87 -102 -103 -104 
M. Partners EU 18,444 11,881 793 796 794 905 906 906 
M. Partners NL 599,278 -38,164 -3,170 -3,128 -3,127 -1,528 -1,490 -1,474 
M. Partners not EU 19,776 13,709 1,794 1,793 1,793 1,785 1,790 1,791 
M. Partners N.S. 1,682 1,846 69 69 69 78 78 79 
M. Sons/daughters EU 4,733 8,319 -382 -382 -384 -370 -371 -374 
M. Sons/daughters NL 367,905 -18,435 1,049 1,076 1,072 1,308 1,333 1,346 
M. Sons/daughters not EU 8,622 8,966 -1,118 -1,120 -1,117 -1,240 -1,239 -1,233 
M. Sons/daughters N.S. 1,592 1,103 90 90 91 77 77 78 

Note: “N.S.” means “Not stated” and “N.A.” means “Not applicable”. Note that the categories “Stateless” for “Citizen” and “Not 
Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 
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Table 4.4 (continued) 
Results in terms of bias and root mean squared error for the 32 observed categories of the joint distribution of 
the three imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” 
 

 

Gender   Type of family  
nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
RMSE F. Lone parents EU 2,091 1,434 45 42 41 45 42 40 

F. Lone parents NL 76,131 6,621 742 734 724 418 408 394 
F. Lone parents not EU 3,120 1,514 67 64 64 71 68 66 
F. Lone parents N.S. 646 155 22 21 20 26 25 24 
F. N.A. EU 12,436 5,972 449 446 445 447 442 440 
F. N.A. NL 293,960 12,001 1,260 1,245 1,222 1,433 1,374 1,348 
F. N.A. not EU 9,509 7,317 1,038 1,037 1,037 1,075 1,075 1,076 
F. N.A. N.S. 1,221 983 185 185 185 202 201 201 
F. Partners EU 20,443 11,186 291 285 282 173 163 157 
F. Partners NL 584,547 34,003 2,332 2,285 2,204 2,364 2,248 2,197 
F. Partners not EU 26,877 12,023 456 450 447 330 327 327 
F. Partners N.S. 1,292 1,838 46 44 43 48 48 47 
F. Sons/daughters EU 4,368 7,541 787 787 787 860 862 863 
F. Sons/daughters NL 321,364 8,742 2,820 2,796 2,781 2,959 2,903 2,879 
F. Sons/daughters not EU 7,680 8,304 779 782 780 892 889 883 
F. Sons/daughters N.S. 1,482 972 216 214 214 230 230 229 
M. Lone parents EU 389 592 18 17 17 17 17 16 
M. Lone parents NL 14,536 4,792 605 600 600 271 260 257 
M. Lone parents not EU 372 707 38 38 37 55 55 55 
M. Lone parents N.S. 75 101 27 27 27 29 29 29 
M. N.A. EU 16,308 4,445 331 328 327 373 371 370 
M. N.A. NL 253,493 3,742 1,390 1,349 1,314 2,959 2,931 2,911 
M. N.A. not EU 13,636 5,549 913 912 911 1,033 1,031 1,028 
M. N.A. N.S. 3,469 456 107 105 104 121 121 120 
M. Partners EU 18,444 11,881 808 810 807 919 919 917 
M. Partners NL 599,278 38,165 3,898 3,837 3,794 2,755 2,617 2,568 
M. Partners not EU 19,776 13,709 1,804 1,803 1,803 1,797 1,800 1,800 
M. Partners N.S. 1,682 1,846 88 87 85 98 95 95 
M. Sons/daughters EU 4,733 8,319 403 403 403 401 401 402 
M. Sons/daughters NL 367,905 18,437 1,728 1,723 1,687 1,905 1,872 1,854 
M. Sons/daughters not EU 8,622 8,967 1,129 1,130 1,127 1,252 1,250 1,244 
M. Sons/daughters N.S. 1,592 1,104 109 108 107 103 102 101 

Note: “N.S.” means “Not stated” and “N.A.” means “Not applicable”. Note that the categories “Stateless” for “Citizen” and “Not 
Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 

 
4.1.3 Restricted cells 
 

In Table 4.5, the simulation results can be found for the six cells that are restricted in the marginal 
cross-table between “Age” and “Type of family nucleus”. Under “Frequency”, it can be seen that these six 
cells should all contain zero observations. A combination of these scores is logically impossible. 
Furthermore, it can be seen that due to misclassification in 2,1,Y  observations containing these 
combinations of scores are present when 2,1Y  is used to estimate this cross-table directly. In addition, it can 
be seen that if the MILC method is applied, such impossible combinations of scores will never be present, 
regardless of the missingness mechanism or the number of imputations. Furthermore, as the cells in this 
marginal table contain zero observations, all cells of more detailed tables covering these logically 
impossible combinations of scores automatically also contain zero observations. 
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Table 4.5 
Results in terms of bias and root mean squared error for the six restricted categories from cross-table between 
“Type of family nucleus” and the covariate “Age” 
 

 Type of family nucleus Frequency 2, 1Y  
MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
Bias Lone parents under 5 years 0 377 0 0 0 0 0 0 

Lone parents 5 to 9 years 0 386 0 0 0 0 0 0 
Lone parents 10 to 14 years 0 376 0 0 0 0 0 0 
Partners under 5 years 0 4,934 0 0 0 0 0 0 
Partners 5 to 9 years 0 5,041 0 0 0 0 0 0 
Partners 10 to 14 years 0 4,937 0 0 0 0 0 0 

RMSE Lone parents under 5 years 0 377 0 0 0 0 0 0 
Lone parents 5 to 9 years 0 386 0 0 0 0 0 0 
Lone parents 10 to 14 years 0 377 0 0 0 0 0 0 
Partners under 5 years 0 4,934 0 0 0 0 0 0 
Partners 5 to 9 years 0 5,041 0 0 0 0 0 0 
Partners 10 to 14 years 0 4,937 0 0 0 0 0 0 

 
4.1.4 The complete population frequency table 
 

Figures 4.1 and 4.2 show results in terms of bias and root mean squared error (RMSE) when the 
complete census table, so the cross-table between the six variables, is estimated. As these are 42,000 cells 
in total, it is not feasible to evaluate them individually. Figure 4.1 and Figure 4.2 give an overview of how 
size of the cell frequency is related to the quality of the results. Here it can be seen that if ,1vY  are used, 
results in terms of bias and RMSE are related directly to cell frequency. More specifically, the relationship 
between cell frequency and absolute bias is approximately linear where the amount of bias is 
approximately 10% of the cell frequency. 

 
Figure 4.1 Results in terms of bias when the complete cross-table between the latent variables “Gender”, 

“Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital status” and 
“Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis represents the 
bias. Results are shown for , 1 ,

v
Y  MILC-MCAR-20 and MILC-MAR-20. 
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Figure 4.2 Results in terms of root mean squared error (RMSE) when the complete cross-table between the 
latent variables “Gender”, “Type of family nucleus” and “Citizen” and the three covariates 
“Age”, “Marital status” and “Place of birth” is estimated. The X-axis represents cell frequency 
and the Y-axis represents the RMSE. Results are shown for , 1 ,

v
Y  MILC-MCAR-20 and MILC-

MAR-20. 
 

 

 

 

 

 

 

 

 

 

 
4.2 Results in terms of variance 
 

4.2.1 Univariate marginal frequencies of imputed variables 
 

In Table 4.6, the simulation results can be found that cover the univariate marginal frequencies 
“Gender” in terms of se/sd. As this ratio measures whether the average standard error estimated at each 
replication in the simulation correctly describes the uncertainty (standard deviation) that is found over the 
estimates, it should be close to one. In addition, as a completely observed and finite population is 
assumed, variance is not estimated when ,1vY  is used. The results obtained using MILC are generally close 
to one and comparable to the results in terms of bias as only minor differences can be found between 
different values for M  or between the different missingness mechanisms. 

 
Table 4.6 
Results in terms of average standard error of the estimates divided by standard deviation over the estimates 
(se/sd) for the two categories of the imputed latent variable “Gender”  
 

 Gender Frequency , 1v
Y  

MCAR MAR 
= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

se/sd F. 1,367,167 - 1.0540 1.0317 1.0363 1.0030 1.0235 1.0237 
M. 1,324,310 - 1.0546 1.0317 1.0363 1.0034 1.0236 1.0236 

Note: (“F.” is “Female” and “M.” is “Male”). 

 
In Table 4.7 and 4.8, the simulation results can be found that cover the univariate marginal frequencies 

for “Type of family nucleus” and “Citizen” respectively in terms of se/sd. The results found here have a 
very comparable structure compared to the results we found for “Gender”. 
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Table 4.7 
Results in terms of average standard error of the estimates divided by standard deviation over the estimates 
(se/sd) for the four observed categories of the imputed latent variable “Type of family nucleus” 
 

 Type of family nucleus Frequency , 1v
Y  

MCAR MAR 
= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

se/sd Lone parents 97,360 - 1.0457 1.0510 1.0529 1.0561 1.0337 1.0336 
N.A. 604,032 - 0.9706 0.9874 0.9922 0.9751 0.9829 0.9863 
Partners 1,272,339 - 1.0332 1.0418 1.0456 1.0052 1.0269 1.0298 
Sons/daughters 717,746 - 0.9594 0.9615 0.9606 0.9696 0.9880 0.9938 

Note: “N.A.” means “Not applicable”. Note that the category “Not stated” is mitigated as it contained zero observations. 

 
Table 4.8 
Results in terms of average standard error of the estimates divided by standard deviation over the estimates 
for the four observed categories of the imputed latent variable “Citizen”  
 

 Type of family nucleus Frequency , 1v
Y  

MCAR MAR 
= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

se/sd Citizen EU 79,212 - 1.0417 1.0172 1.0362 1.0768 1.0539 1.0571 
Citizen NL 2,511,214 - 1.0136 1.0113 1.0235 1.0925 1.0645 1.0927 
Citizen not EU 89,592 - 0.9478 0.9632 0.9709 1.0282 0.9916 1.0125 
Not stated 11,459 - 1.0063 1.0208 1.0238 1.1057 1.0861 1.1143 

Note: “N.S.” means “Not stated”. Note that the category “Stateless” is mitigated as it contained zero observations. 

 
4.2.2 Joint frequencies of imputed variables 
 

In Table 4.9, the simulation results can be found that cover the joint marginal frequencies of the 
imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” in terms of absolute se/sd. The 
results found for these joint frequencies are very comparable to the results we found for the marginal 
frequencies. For cells with a relatively low frequency, it can be seen that the ratio is in general larger than 
one, indicating that the variance estimated for these frequencies (and thereby the differences between the 
imputations) incorporate more uncertainty than is actually found over different replications. Summarizing, 
the uncertainty for cells containing low frequencies is overestimated. 

Results in terms for variance are not shown for the restricted cells, as a variance term cannot be 
estimated here. 
 
Table 4.9 
Results in terms of average standard error of the estimates divided by standard deviation over the estimates 
for the 32 observed categories of the joint distribution of the three imputed latent variables “Gender”, “Type 
of family nucleus” and “Citizen” 
 

Gender   Type of family  
nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
F. Lone parents EU 2,091 - 1.1813 1.2097 1.2032 1.1495 1.1654 1.1997 
F. Lone parents NL 76,131 - 1.0371 1.0471 1.0504 1.0270 1.0252 1.0349 
F. Lone parents not EU 3,120 - 1.1659 1.1590 1.1519 1.1607 1.1634 1.1870 

Note: “N.S.” means “Not stated” and “N.A.” means “Not applicable”. Note that the categories “Stateless” for “Citizen” and “Not 
Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 
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Table 4.9 (continued) 
Results in terms of average standard error of the estimates divided by standard deviation over the estimates 
for the 32 observed categories of the joint distribution of the three imputed latent variables “Gender”, “Type 
of family nucleus” and “Citizen” 
 

Gender   Type of family  
nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  
F. Lone parents N.S. 646 - 1.0963 1.1004 1.1272 1.1110 1.1000 1.1054 
F. N.A. EU 12,436 - 1.0850 1.0838 1.1172 1.0888 1.1065 1.1456 
F. N.A. NL 293,960 - 1.0840 1.0652 1.0575 1.0158 1.0406 1.0461 
F. N.A. not EU 9,509 - 1.1636 1.1822 1.1892 1.1574 1.1383 1.1562 
F. N.A. N.S. 1,221 - 1.1789 1.1964 1.2097 1.1959 1.1826 1.2133 
F. Partners EU 20,443 - 1.0508 1.0537 1.0653 1.0689 1.0684 1.0925 
F. Partners NL 584,547 - 1.0313 1.0099 1.0189 1.0035 1.0253 1.0197 
F. Partners not EU 26,877 - 1.0532 1.0766 1.0720 1.0765 1.0725 1.0733 
F. Partners N.S. 1,292 - 1.1471 1.1566 1.1504 1.2157 1.1855 1.1940 
F. Sons/daughters EU 4,368 - 1.0135 1.0147 1.0338 1.0430 1.0518 1.0479 
F. Sons/daughters NL 321,364 - 1.0548 1.0379 1.0527 1.0017 1.0222 1.0221 
F. Sons/daughters not EU 7,680 - 0.9977 0.9966 0.9909 1.0249 1.0132 1.0416 
F. Sons/daughters N.S. 1,482 - 1.0344 1.0325 1.0357 1.0836 1.0688 1.0890 
M. Lone parents EU 389 - 1.3198 1.4136 1.4316 1.2941 1.3575 1.4470 
M. Lone parents NL 14,536 - 1.0784 1.0762 1.0736 1.0755 1.0690 1.0650 
M. Lone parents not EU 372 - 1.4159 1.3857 1.4511 1.4814 1.4481 1.4619 
M. Lone parents N.S. 75 - 1.4330 1.5192 1.5659 1.4598 1.5035 1.5373 
M. N.A. EU 16,308 - 1.0990 1.0908 1.1165 1.0894 1.1022 1.1366 
M. N.A. NL 253,493 - 1.0035 1.0100 1.0193 0.9920 1.0175 1.0238 
M. N.A. not EU 13,636 - 1.1168 1.1100 1.1141 1.0826 1.1054 1.0952 
M. N.A. N.S. 3,469 - 1.0241 1.0818 1.1052 1.1592 1.1478 1.1780 
M. Partners EU 18,444 - 1.1618 1.1593 1.1579 1.1473 1.1335 1.1476 
M. Partners NL 599,278 - 1.0668 1.0444 1.0487 1.0081 1.0329 1.0231 
F. Partners not EU 19,776 - 1.0932 1.0788 1.0816 1.0674 1.0612 1.0911 
F. Partners N.S. 1,682 - 1.1068 1.1411 1.1418 1.1335 1.1719 1.1770 
F. Sons/daughters EU 4,733 - 1.0598 1.0396 1.0548 1.0528 1.0497 1.0414 
F. Sons/daughters NL 367,905 - 1.0549 1.0347 1.0365 1.0098 1.0298 1.0340 
F. Sons/daughters not EU 8,622 - 1.0077 1.0093 1.0100 1.0413 1.0449 1.0471 
F. Sons/daughters N.S. 1,592 - 1.0472 1.0617 1.0699 1.0458 1.0362 1.0627 

Note: (“N.S.” means “Not stated” and “N.A.” means “Not applicable”). Note that the categories “Stateless” for “Citizen” and 
“Not Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 

 
4.2.3 The complete population frequency table 
 

In Figure 4.3, results can be found in terms of average standard error of the cell frequencies divided by 
the standard deviation over the frequencies estimated in the 500 replications in the simulation study 
(se/sd). Here it can be seen that the standard error estimated per cell frequency is especially too large when 
cell frequencies are close to zero, and become closer to the nominal rate of one as the cell frequencies 
become larger. Apparently, variability due to missing and conflicting values is overestimated by MILC for 
cells with a frequency close to zero. In addition, this becomes more apparent when the number of 
imputations increases and it is not influenced by missingness mechanism. 
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Figure 4.3 Results in terms of average standard error of the cell frequencies divided by the standard 
deviation over the frequencies (se/sd) when the complete cross-table between the latent variables 
“Gender”, “Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital 
status” and “Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis 
represents the se/sd ratio. Results are shown for MILC-MCAR-5, MILC-MCAR-10, MILC-
MCAR-20, MILC-MAR-5, MILC-MAR-10 and MILC-MAR-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.3 Sensitivity to violations of assumptions 
 

The simulation study presented in this paper is aimed at investigating the performance of the MILC 
method in a situation of misclassification in a finite population setting. When applying the MILC method 
in practice, a number of assumptions are made and during this simulation study these assumptions were 
met. To further investigate the sensitivity to violations of these assumptions, additional simulation studies 
were performed. 

An important assumption made when applying the MILC method is that the missingness mechanism is 
either MCAR or MAR. Therefore, a first sensitivity analysis involves a Missing Not At Random (MNAR) 
mechanism. More specifically, we generated this mechanism in such a way that the probability of being 
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missing in the survey indicator for “Type of family nucleus” depends on the latent variable “type of family 
nucleus” and is smallest for the first category and largest for the last category. In Table 4.10, it can be seen 
that the bias and RMSE increase when the mechanism is MNAR compared to MAR, while the se/sd is not 
affected. More specifically, it can be seen that the extent of the bias relates to how much the respective 
class is affected by the mechanism. 

A second assumption states that the measurement error present in the indicators is random. To 
investigate sensitivity to the violation of this assumption, we generated a selective measurement error 
mechanism where the probability of measurement error in the register indicator for the variable “type of 
family nucleus” differs per category. Here, again the first category is least affected and the last category 
most. In Table 4.10 it can be seen that the effect of this selective mechanism are limited. The bias 
increases in a similar way as the percentage of measurement error in the respective category increases, but 
these are still relatively low amounts of bias. The se/sd is not affected by the mechanism. 

 
Table 4.10 
Results in terms of bias, root mean squared error and se/sd for the four observed categories of the imputed 
latent variable “Type of family nucleus”  
 

 Type of family nucleus Frequency 2, 1Y  MAR MNAR Selective ME covar 
Bias Lone parents  97,360 2,670 224 6,256 105 1,172,993 

N.A.  604,032 8,985 -1,601 27,002 -1,824 534 
Partners  1,272,339 -19,686 932 -11,341 1,116 -1,174,697 
Sons/daughters  717,746 8,030 446 -21,917 603 1,170 

RMSE Lone parents  97,360 2,672 426 6,268 332 1,172,994 
N.A.  604,032 8,989 1,837 27,017 2,060 1,094 
Partners  1,272,339 19,688 1,256 11,377 1,466 1,174,697 
Sons/daughters  717,746 8,034 715 21,924 819 1,291 

se/sd Lone parents  97,360 - 1.0561 1.01936 1.0634 1.0518 
N.A.  604,032 - 0.9751 1.02491 0.9722 1.0471 
Partners  1,272,339 - 1.0052 0.97456 0.9291 0.9649 
Sons/daughters  717,746 - 0.9696 1.02547 1.0962 1.0181 

Note: “N.A.” means “Not applicable” under different violations of assumptions. Note that the category “Not stated” is mitigated 
as it contained zero observations. 

 
A third assumption is that covariates do not contain measurement error. This assumption is the most 

remarkable, as it is typically often not the case that a coviarate does not contain measurement error. It is 
more likely that these variables will be treated as such because no additional information about their 
measurement error is known. If information was known, for example because additional survey 
information was present, it would have been incorporated by means of a latent variable. As in practice 
however there is always a probability that for some variables such information is not known, we 
investigate the sensitivity of the method to violation of this assumption. More specifically, we generated 
5% misclassification in the covariate “marital status”, which has a relatively strong association with the 
latent variable “type of family nucleus”. Indeed, the bias in some categories is highly affected by this 
misclassification. 
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5. Discussion 
 

In this paper, the performance of the MILC method was investigated in a situation where 
misclassification was induced in a finite population setting. Here, an existing population census table was 
used as a starting point, and for three categorical variables present in this census table, two indicator 
variables were generated with 5% misclassification each, where one indicator also contains approximately 
90% missing values. As a finite population was assumed, the estimated variance only contained a between 
variance component reflecting the differences between the imputations and thereby the uncertainty caused 
by the misclassification and missing values in the indicator variables. 

The simulation results show that the method, regardless of the number of imputations, produces results 
with a low bias for marginal frequency distributions, cross-tables between imputed latent variables and 
covariates and even for the complete six-way cross-table. Striking is the amount of bias that is induced 
when the indicator observed via the register is used to calculate the cross-tables evaluated in comparison 
to when MILC is used. It is also shown that if these indicators are used, it is likely that impossible 
combinations of scores are produced as well, something that can be easily circumvented by specifying edit 
restrictions in the LC model. This simulation study once again shows that misclassification, even if it is 
non-systematic, can seriously bias results. In terms of variance, it was seen that if the MILC method is 
applied, variance estimates are appropriate in general. However, if cell frequencies are relatively small, 
the variance is overestimated. This problem is more severe if the complete frequency table is evaluated, 
because this large table contains many cells with low frequencies. 

The current set-up of this simulation study knows two major limitations. The first is caused by the 
large amount of cells in the cross-table. Because of this, a latent class model containing only main effects 
was used. It was not feasible to use a saturated model as the number of parameters would be very large, 
and it would be likely that not every parameter is estimable in every bootstrap sample. This would limit 
the use of starting values, thereby increasing the computation time for the simulation study to an 
unfeasible amount. 

A second limitation is that in our simulation set-up we only considered relatively simple sampling 
designs for the survey data: simple random sampling (MCAR conditions) and, essentially, stratified 
simple random sampling (MAR conditions). A future study could examine to what extent the MILC 
method can also correct for misclassification error with appropriate variance estimates when survey data 
are obtained by a complex sampling design that involves, for instance, cluster sampling, multistage 
sampling or sampling with unequal probabilities proportional to size. In the context of missing data it has 
been found that, although a generally accepted theory is still lacking, in practice multiple imputation often 
works reasonably well for complex samples, provided that design variables and/or survey weights are 
included in the imputation model; see, e.g., Rässler (2004, page 14) and the references listed there. It 
would be interesting to investigate whether this result also applies to multiple imputation in the context of 
correcting for measurement errors. As an alternative, Zhou, Elliott and Raghunathan (2016) proposed a 
Bayesian approach to incorporate survey design features into a multiple-imputation analysis. 
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The starting point of this simulation study was an existing population census table. A nice property 
here was that we could approach this as a finite and known population. Therefore, we did not have to 
include (within) sampling variance in our estimate of the total variance. It was insightful to evaluate cell 
frequencies of both univariate and multivariate cross-tables as results generally appeared to be related to 
cell-frequency. 
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