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Abstract Methodological individualists often claim that any social phenomenon

can ultimately be explained in terms of the actions and interactions of individuals.

Any Nagelian version of methodological individualism requires that there be bridge

laws that translate social statements into individualistic ones. We show that

Nagelian individualism can be put to logical scrutiny by making the relevant social

and individualistic languages fully explicit and mathematically precise. In partic-

ular, we prove that the social statement that a group of (at least two) agents performs

a deontically admissible group action cannot be expressed in a well-established

deontic logic of agency that models every combination of actions, omissions,

abilities, and obligations of finitely many individual agents.
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1 Introduction

Methodological individualists often claim that any social phenomenon can

ultimately be explained in terms of the actions and interactions of individuals.1

This reductionist thesis does not simply follow from the associated ontological

thesis, according to which every social entity ultimately consists of individual

entities and their interrelations. To make a strong case for the problematic character

of methodological individualism, we examine the requirements for individualistic

explanations of social phenomena under the assumption that ontological individ-

ualism is true. To be specific, in this paper we assume that groups are sets of

individual agents and that group actions are sets of individual actions.

An influential version of methodological individualism relies on Ernest Nagel’s

(1961, Ch. 11) classical model of intertheoretical reduction to specify the

requirements for individualistic explanations of social phenomena.2 We use the

term ‘Nagelian individualism’ to refer to any variety of methodological individ-

ualism that uses Nagel’s model to give an account of individualistic explanations of

social phenomena. According to Nagelian individualism, any individualist expla-

nation of a (possibly probabilistic) law about social phenomena must consist in

deriving this social law from a set of (possibly probabilistic) laws about actions and

interactions of individuals plus some bridge laws that translate social statements

containing social terms into individualistic statements that contain only individu-

alistic terms. Therefore, bridge laws that translate social statements into individ-

ualistic ones are essential for Nagelian individualism.3

What characteristics should such a bridge law have? First, a bridge law shows

that a particular social statement can be expressed in a specific individualistic

language. Whether or not there is such a bridge law therefore depends on the

expressive power of the specific individualistic language that is supposed to do the

translating. Secondly, a bridge law cannot be a stipulative definition, because the

social statement that requires translation already has an extension. To specify a

1 Elster (1989, p. 13) concurs: ‘‘The elementary unit of social life is the individual human action. To

explain social institutions and social change is to show how they arise as the result of the action and

interaction of individuals. This view, often referred to as methodological individualism, is in my view

trivially true.’’ According to Elster (1985, p. 5), methodological individualism is ‘‘the doctrine that all

social phenomena—their structure and their change—are in principle explicable in ways that only involve

individuals [...]. Methodological individualism thus conceived is a form of reductionism.’’
2 Although methodological individualism has some precursors in neoclassical economics, the doctrine

was first introduced as a methodological maxim for the social sciences by Max Weber. A first major

philosophical debate on individualism started in the 1950s, with key contributions from Agassi, Jarvie,

Popper, and Watkins; a second one began in the 1980s, with key contributions from Boudon, Coleman,

Elster, and Roemer. These debates generated several distinct versions of methodological individualism.

(See Udehn (2001) for a historical review and detailed references.) More recently, the philosophy of

explanation entered the debate on individualism (see for instance Kincaid (1986), Bhargava (1992),

Sawyer (2002, 2003), List and Spiekermann (2013)). Our paper falls within this last tradition, where

Nagelian individualism is of central importance.
3 The claim that social statements can always be translated into individualistic statements is what List

and Pettit (2011, p. 3) call ‘eliminativism’: ‘‘Anything ascribed to a group […] can be re-expressed by

reference to its members.’’
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bridge law for the social statement, we have to find an individualistic statement such

that the social statement and the individualistic statement are logically or

nomologically co-extensive.4 (Two statements are logically co-extensive if and

only if their extensions are the same in all possible worlds. Two statements are

nomologically co-extensive if and only if their extensions are the same in all

possible worlds where the relevant background laws hold.) A necessary condition

for a bridge law is that the social statement to be translated must be logically or at

least nomologically equivalent to its individualistic translation: they must be true

under exactly the same circumstances, where the range of relevant circumstances

might be restricted by individualistic background laws.5

These philosophical considerations on the expressive power of individualistic

languages in the social sciences can be made precise by adopting a logical point of

view. In formal logic, several techniques have been developed to study the relative

expressive power of formal languages. We therefore use formal logic to investigate

whether or not there is a bridge law that translates particular social statements into a

specific individualistic language Li. Adapting the definition of expressive power

that is standard in modal logic to our current needs, we obtain the following: an

individualistic language Li is at least as expressive as a social language L if and

only if for every statement v in L there is a statement / in Li such that / and v are

logically equivalent.6 Accordingly, if we wish to prove that there is no bridge law

that translates a particular social statement v into a specific individualistic language

Li, it suffices to show the following: there are no individualistic statements / and w
in Li such that the individualistic statement / and the social statement v are

nomologically equivalent modulo the individualistic statement w, where w can be

thought of as a finite conjunction of individualistic background laws. (By

substituting a tautology for w, it follows from this that there is no individualistic

statement / in Li such that the individualistic statement / and the social statement v
are logically equivalent.)

The social statements that we focus on in this paper are collective deontic
admissibility statements of the form ‘‘Group G of agents performs a deontically

admissible group action’’. The notion of collective admissibility is central to formal

studies of forward-looking and backward-looking collective moral responsibility

and of collective rationality.7 It is also an indispensable notion in team-reasoning

4 This requirement is also endorsed by Kincaid (1986, p. 494): ‘‘[R]eduction requires lawlike co-

extensionality between the primitive predicates of social theory and some predicate in the reducing

theory. [...] Reduction does not require equivalence of meaning, but [...] it does require biconditional

bridge laws connecting primitive terminology of social theories with terminology of individualist

theory.’’
5 If methodological individualists are not to compromise their position, they must presuppose that all of

the restricting background laws can be expressed in the individualistic language.
6 This is the definition that is needed to assess Quinton’s (1975, p. 23) claim that ‘‘every statement about

a social object is equivalent to and can be replaced by a statement in which only individuals are referred

to and in which the predicates, whether the same as or different from those of the original statement, are

predicates of individuals’’.
7 Horty (2001, p. 130) relies on collective deontic admissibility to define group obligations, and

Tamminga and Duijf use collective deontic admissibility to analyse collective rationality
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and we-reasoning accounts of cooperation.8 The main technical objective of this

paper is to establish an impossibility result on collective deontic admissibility

statements: there are no bridge laws translating collective deontic admissibility

statements into an individualistic formal language that is widely used to model

actions, omissions, abilities, and obligations of finitely many individual agents.

More specifically, the social statement that a group performs a deontically

admissible group action cannot be translated into the individualistic language that is

built from a necessity operator, operators for individual agency, and operators for

individual deontic admissibility.

Taking a reflective step back, does our impossibility result refute Nagelian

individualism? Obviously, it does not: there might be individualistic languages

other than the one used in this paper that allow for a bridge law translating collective

deontic admissibility statements. Our contribution to the debate is therefore

methodological. Where the philosophical literature on methodological individual-

ism mainly consists in clarifying its meaning and scope, we show that by making the

social and the individualistic languages fully explicit and mathematically precise,

we can precisely determine those situations in which Nagelian individualism is

tenable and those in which it is not.

Our paper is organized as follows. In Sect. 2 we define the social language L (of

which the individualistic language Li is a sublanguage) and interpret the sentences

of that language by way of deontic game models. The thus defined deontic logic of

agency is then used to specify the problem of finding bridge laws that translate

collective deontic admissibility statements into the individualistic language Li

(Sect. 3). In the next two sections we prove that there are no such bridge laws. In

Sect. 4—a technical section that may be skipped by those who are more interested

in results than proofs—we introduce the notion of individualistic bisimulation and

define two constructions that transform a given deontic game model into deontic

game models that validate exactly the same individualistic formulas as the given

model but give different truth values to collective deontic admissibility statements.

In Sect. 5, we establish our impossibility result: there are no bridge laws that

translate collective deontic admissibility statements into the individualistic language

Li. Lastly, in Sect. 6, we formulate two research questions that are prompted by our

impossibility result.

Footnote 7 continued

(2017, pp. 200–201) and backward-looking collective moral responsibility (2017, § 6). Constants for

collective deontic admissibility were first introduced by Tamminga et al. (forthcoming).
8 Bacharach’s (1999, 2006) and Sugden’s (1993, 2000, 2003) accounts of ‘team-reasoning’ are closely

related to Tuomela’s (2013) study of ‘we-reasoning’. Bacharach (2006, p. 121) writes: ‘‘Roughly,

somebody ‘team-reasons’ if she works out the best feasible combination of actions for all the members of
her team, then does her part in it.’’
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2 Language and semantics

The logic of agency for which we prove our impossibility theorems is a logic in the

tradition of stit (‘sees to it that’) logics of agency.9 These logics—and especially

their semantics—have been central to the formal study of actions, omissions,

abilities, and obligations. We first introduce the social language L and its

individualistic sublanguage Li (Sect. 2.1) and then use what we call deontic game
models to specify truth-conditions for the formulas in these languages (Sect. 2.2).

2.1 A social language and its individualistic sublanguage

The social language L and its individualistic sublanguage Li are built from a

countable set P of atomic formulas and a finite set N of individual agents.

Throughout the paper, we use p and q as variables for atomic formulas, i and j as

variables for individual agents, and F and G as variables for sets of individual

agents. The social language L is the smallest set S (in terms of set-theoretical

inclusion) that satisfies conditions (i) through (vii) below. The individualistic
language Li is the smallest set S that satisfies conditions (i) through (vi).

ðiÞ P � S ðAtomic formulasÞ
ðiiÞ If / 2 S; then :/ 2 S ðNegationÞ
ðiiiÞ If / 2 S and w 2 S; then ð/ ^ wÞ 2 S ðConjunctionÞ
ðivÞ If / 2 S; then h/ 2 S ðNecessityÞ
ðvÞ If i 2 N and / 2 S; then ½i�/ 2 S ðIndividual agencyÞ
ðviÞ If i 2 N ; then Hfig 2 S ðIndividual admissibilityÞ
ðviiÞ If G � N ; then HG 2 S: ðCollective admissibilityÞ

Note that condition (vi) is a special case of condition (vii). The individualistic

language Li is therefore the sublanguage of L that consists of exactly all formulas in

L that do not contain collective admissibility formulas. The operators _, !, $, and

e abbreviate the usual constructions. Parentheses and braces are left out if the

omission does not give rise to ambiguities. Accordingly, the formulas / ^ w and Hi

are shorthand for the formulas ð/ ^ wÞ and Hfig, respectively.

The social language L can be used to express necessity statements like ‘‘It is

settled true that /’’ (formalized as h/), individual agentive statements like ‘‘Agent

i sees to it that /’’ (formalized as ½i�/), individual deontic admissibility statements
like ‘‘Agent i performs a deontically admissible individual action’’ (formalized as

Hi), and collective deontic admissibility statements like ‘‘Group G of agents

performs a deontically admissible group action’’ (formalized as HG).

9 Seminal works include Kanger (1957), Pörn (1970), von Kutschera (1986), Horty and Belnap (1995),

and Horty (1996). See Belnap et al. (2001) and Horty (2001) for textbook presentations of these logics.

Their connections to game theory have been explored by Kooi and Tamminga (2008), Tamminga (2013),

Van De Putte et al. (2017), Duijf (2018, Chs. 1 and 4) and Tamminga and Hindriks (2020).
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The individualistic language Li has been central to formal studies of omissions,

abilities, and obligations of individual agents.10 Individual omission statements like

‘‘Agent i refrains from seeing to it that /’’ can be formalized as ½i�:½i�/, individual
ability statements like ‘‘Agent i is able to see to it that /’’ can be formalized as

e½i�/, and individual obligation statements like ‘‘Agent i ought to see to it that /’’

can be formalized as hðHi ! /Þ.

2.2 Deontic game models

Truth-conditions for the formulas in the social language L (and hence for the

formulas in the individualistic language Li) are specified in terms of deontic game
models (see Tamminga and Hindriks (2020)). These models represent the individual

actions and the group actions that are available to a finite set of individual agents

and evaluate the deontic admissibility of these actions. Deontic game models

combine possible-worlds semantics for standard deontic logic with game forms

from elementary game theory. A model for standard deontic logic consists of a non-

empty set of possible worlds, a non-empty set of deontically ideal possible worlds

(which is a subset of the set of possible worlds), and a valuation function that

assigns to each atomic formula a set of possible worlds where that formula is true. A

game form from elementary game theory specifies which individual actions are

available to which individual agents at a given moment in time. Every possible

combination of individual actions (one for each individual agent) is a possible

action profile. Basically, a deontic game model is a possible-worlds model for

standard deontic logic where the possible worlds are replaced by possible action

profiles. Hence, a deontic game model consists of a non-empty set of possible action

profiles, a non-empty set of deontically ideal possible action profiles (which is a

subset of the set of possible action profiles), and a valuation function that assigns to

each atomic formula a set of possible action profiles where that formula is true.

Formally, a deontic game model involves a finite set N of individual agents.

Each agent i in N is assigned a non-empty and finite set Ai of available individual

actions. We use ai, bi, and ci as variables for actions in the set Ai of actions that are

available to agent i. The set A of possible action profiles is given by the Cartesian

product �i2N Ai of all the individual agents’ sets of actions. Note that A is non-

empty, because all the Ai’s are non-empty. We use a, b, and c as variables for action

profiles in A.11 The set of deontically ideal action profiles is defined by a deontic

ideality function d that assigns to each action profile a in A a value d(a) that is either

1 (if a is deontically ideal) or 0 (if a is not deontically ideal).12 We require that there

10 Horty and Belnap (1995) present formal analyses of omissions and abilities, including more refined

versions of the ones we present here. Horty’s (2001) analysis of what an individual agent ought to do is

the same as the one we present here. Tamminga et al. (forthcoming) note that Horty’s formalization of

individual obligations can be given an Andersonian-Kangerian definition in terms of necessity and

individual deontic admissibility.
11 We adopt the notational conventions of Osborne and Rubinstein (1994, Sect. 1.7).
12 The deontic ideality function represents a given moral code. Our binary ordering of the action profiles

in terms of deontic ideality can also be seen to reflect a simple preference ordering of agents who classify
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be at least one deontically ideal action profile in A. Finally, a valuation function v
assigns to each atomic formula p in P a (possibly empty) set v(p) of action

profiles:13

Definition 1 (Deontic Game Model) A deontic game model M is a quadruple

hN ; ðAiÞ; d; vi, where N is a finite set of individual agents, for each agent i in N it

holds that Ai is a non-empty and finite set of actions available to agent i, d : A !
f0; 1g is a deontic ideality function such that there is at least one a in A with

dðaÞ ¼ 1, and v : P ! }ðAÞ is a valuation function.

As an illustration, consider the two-agent deontic game model M1 with individual

agents i and j. Let Ai ¼ fai; bi; cig and Aj ¼ faj; bj; cjg. The set A of action profiles

is Ai � Aj. Let dðai; bjÞ ¼ dðai; cjÞ ¼ dðbi; ajÞ ¼ dðbi; bjÞ ¼ dðci; ajÞ ¼ 1 and let

dðai; ajÞ ¼ dðbi; cjÞ ¼ dðci; bjÞ ¼ dðci; cjÞ ¼ 0. Lastly, let vðpÞ ¼ fðai; ajÞg and

vðqÞ ¼ fðbi; ajÞ; ðbi; bjÞ; ðbi; cjÞg (the valuations of the other atomic formulas are left

unspecified). M1 can be pictured as in Fig. 1.

Let us now turn to group actions and their admissibility. As stated in the

introduction, we make the simplifying ontological assumption that groups are sets of

individual agents and that group actions are sets of individual actions.14 Accordingly,

for each setG � N of individual agents, the set AG of group actions that are available to

G is defined as the Cartesian product �i2GAi. We use aG and bG as variables for group

actions in AG. Moreover, if aG is a group action of group G and if F � G, we use aF to

denote the subgroup action that is F ’s component subgroup action of the group action

aG. Finally, we use �G to denote the relative complement N � G.

To specify truth-conditions for individual and collective deontic admissibility

statements, we order the group actions that are available to a group G by way of a

dominance relation. Intuitively, group action aG weakly dominates group action bG
in deontic game model M (notation: aG �M bG) if and only if aG promotes deontic

ideality in M at least as well as bG, regardless of what the group’s non-members do:

Definition 2 (Dominance) Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model. Let

G � N be a set of individual agents. Let aG; bG 2 AG. Then

aG �M bG iff for all c�G 2 A�G it holds that dðaG; c�GÞ� dðbG; c�GÞ:

Footnote 12 continued

action profiles unanimously as ‘morally acceptable’ or ‘morally unacceptable’ (McNamara,

1996, p. 163).
13 Deontic game models closely resemble Schelling’s (1960, p. 84) pure-collaboration games and

Bacharach’s (2006, p. 122) coordination contexts. As a counterpart to zero-sum games, Schelling

(1960, p. 84) examines cooperation with pure-collaboration games ‘‘in which the players win or lose

together, having identical preferences regarding the outcome.’’
14 Collective intentionality is therefore missing in our account of group actions. In a formal framework

that is comparable to the one used in the current paper, Tamminga and Duijf (2017, § 3) introduce ‘group

plans’ to model Bratman’s (2014) plan-based collective intentions.

An impossibility result on methodological individualism 4171

123



Strong dominance is defined in terms of weak dominance: aG	M bG if and only if

aG �M bG and bG 6�M aG.

We use this dominance relation to define the sets of deontically admissible

actions that are available to individual agents and groups of agents. (Individual

agents are here thought of as singleton groups.) A group action is deontically
admissible in deontic game model M if there is no other available group action in

M that strongly dominates it:15

Definition 3 (Deontic Admissibility) Let M ¼ hN ; ðAiÞ; d; vi be a deontic game

model. Let G � N be a set of individual agents. Then the set of G’s deontically
admissible actions in M, denoted by AdmMðGÞ, is given by

AdmMðGÞ ¼faG 2 AG : there is no bG 2 AG such that bG	M aGg:

To illustrate deontic admissibility, consider the deontic game model M1 of Fig. 1

and note that for M1 it holds that AdmM1
ðiÞ ¼ fai; big, AdmM1

ðjÞ ¼ faj; bjg, and

AdmM1
ði; jÞ ¼ fðai; bjÞ; ðai; cjÞ; ðbi; ajÞ; ðbi; bjÞ; ðci; ajÞg.

For every deontic game model M, it holds that AdmMðGÞ is non-empty if G is

non-empty.16 Given a deontic game model and an action profile, a group of agents

performs a deontically admissible group action if and only if the group’s

contribution to the action profile is a deontically admissible group action. To be

precise, given a deontic game model M and an action profile a, a group G performs a

deontically admissible action if and only if aG is one of G’s deontically admissible

group actions in M.

Lastly, how does this formal framework model individual agency? According to

the stit theory of agency, by performing an action an individual agent restricts the

total set of possible situations at a given moment in time to those possible situations

that are consistent with her action. An individual agent sees to it that a particular

statement is true if this statement is true in every possible situation that is consistent

with her action. To transpose these ideas to the current framework, we identify the

total set of possible situations at a given moment in time with the set A of possible

Fig. 1 Deontic game model M1

15 On admissibility, see Arrow (1951, p. 429), Luce & Raiffa (1957, pp. 287 and 307), Savage

(1972, p. 21) and Kohlberg & Mertens (1986, § 2.7.A). Admissibility sets are central to Horty’s (2001,

Ch. 4) formalization of what he calls dominance act utilitarianism.
16 Note that for the grand coalition N we always have AdmMðN Þ ¼ fa 2 A : dðaÞ ¼ 1g.
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action profiles in a deontic game model. Given a deontic game model and an action

profile, an individual agent sees to it that a particular statement is true if and only if

the agent’s contribution to the action profile suffices to ensure the truth of this

statement, regardless of the actions of the other individual agents. To be precise,

given a deontic game model M and an action profile a in A, an individual agent i
sees to it that / if and only if for all action profiles b with bi ¼ ai it holds that / is

true at b.

In line with the above considerations, the truth-conditions for the formulas in the

language L are the following:

Definition 4 (Truth-Conditions) Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model.

Let i 2 N be an individual agent and let G � N be a set of individual agents. Let

a 2 A be an action profile. Let p 2 P be an atomic formula and /;w 2 L be

arbitrary formulas. Then

ðM; aÞ 
 p iff a 2 vðpÞ
ðM; aÞ 
 HG iff aG 2 AdmMðGÞ
ðM; aÞ 
 :/ iff ðM; aÞ 6
 /

ðM; aÞ 
 / ^ w iff ðM; aÞ 
 / and ðM; aÞ 
 w

ðM; aÞ 
 h/ iff for all b 2 A it holds that ðM; bÞ 
 /

ðM; aÞ 
 ½i�/ iff for all b 2 A with bi ¼ ai it holds that ðM; bÞ 
 /:

To illustrate these truth-conditions, consider the deontic game model M1 of

Fig. 1 and note that at action profile ðai; ajÞ of M1 it holds that p, although neither

agent i nor agent j sees to it that p: we have ðM1; ðai; ajÞÞ 
 p ^ :½i�p ^ :½j�p.

Moreover, agent i is able to see to it that q, although agent j is not: we have

ðM1; ðai; ajÞÞ 
 e½i�q ^ :e½j�q. Lastly, because ai 2 AdmM1
ðiÞ, aj 2 AdmM1

ðjÞ,
and ðai; ajÞ 62 AdmM1

ði; jÞ, at action profile ðai; ajÞ of M1 it holds that agent i and

agent j both perform a deontically optimal individual action, although the group

fi; jg of agents does not do so: we have ðM1; ðai; ajÞÞ 
 Hi ^Hj ^ :Hfi;jg.

In general, given a deontic game model M, we write M 
 / if for all action

profiles a in A it holds that ðM; aÞ 
 /. A formula / is valid (notation: 
 /) if for

all deontic game models M it holds that M 
 /. Any ordered pair (M, a) that

consists of a deontic game model M and one of its action profiles a is a pointed
deontic game model.

3 When are there no bridge laws?

In the introduction, we saw that Nagelian individualism requires that there be bridge

laws that translate social statements into individualistic ones. Recall that to specify a

bridge law for a particular social statement, we have to find an individualistic

statement such that the social statement and the individualistic statement are
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logically or nomologically equivalent: they must be true under exactly the same

circumstances, where the range of relevant circumstances might be restricted by

individualistic background laws.

The social statements we focus on in this paper are collective deontic

admissibility statements of the form ‘‘Group G of agents performs a deontically

admissible group action’’ (formalized as HG). Are there bridge laws that translate

collective deontic admissibilty statements into the individualistic language Li? That

is, is there an individualistic statement / in Li and a finite conjunction w of

individualistic background laws in Li such that / and HG are equivalent in all

circumstances where the background laws w hold?17 More precisely, are there

individualistic statements / and w in Li such that / and HG are equivalent modulo

w, that is, such that 
 w ! ð/ $ HGÞ?
Let us illustrate the depth of the problem by returning to the individualistic

statement Hi ^Hj and the social statement Hfi;jg. It is easy to see that they are not

equivalent: in deontic game model M1 we have ðM1; ðai; ajÞÞ 
 Hi ^Hj ^ :Hfi;jg.

This does not suffice, however, to prove that there is no bridge law that translates

Hfi;jg into Li. Although this simple observation does show that Hi ^Hj and Hfi;jg
are not logically equivalent, it does not show that they are not nomologically
equivalent. After all, there might still be a (non-contradictory) individualistic

statement w such that Hi ^Hj and Hfi;jg are equivalent modulo w, that is, such that


 w ! ððHi ^HjÞ $ Hfi;jgÞ.18 To rule out this possibility, we must show that for

every non-contradictory individualistic statement w in Li it holds that

6
 w ! ððHi ^HjÞ $ Hfi;jgÞ. And even if we were to show that Hi ^Hj and

Hfi;jg are not nomologically equivalent, we would not have proved that there is no

bridge law that translates Hfi;jg into Li. To prove that there is no such bridge law, we

would also have to show that every individualistic statement that differs from

Hi ^Hj is not nomologically equivalent to Hfi;jg either. How can we prove that

there is no such bridge law without surveying all conceivable candidates?

In the next two sections, we adapt the notion of bisimulation from modal logic

and use it to prove that for every group G of two or more members, it holds that (i)

there are no individualistic statements / and w in Li such that / and HG are

equivalent modulo w, unless w is a contradiction (Theorem 4), and (ii) there is no

individualistic statement / in Li such that / and HG are equivalent (Corollary 1).

Consequently, there are no bridge laws that translate collective deontic admissibility

statements into the individualistic language Li. This is our impossibility result on

Nagelian individualism.

17 Our impossibility result can easily be generalized to infinite sets of individualistic background laws.

We stick to the finite case for expository reasons only.
18 We exclude the trivial case where the finite conjunction w of background laws is a contradiction,

because from a contradiction anything follows.
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4 Individualistic bisimilarity and two constructions

To prove our impossibility result, we rely on a notion of similarity between deontic

game models. The central consideration is that if two deontic game models are

similar in the relevant sense, then they validate exactly the same individualistic

formulas, or equivalently, then there is no individualistic formula that is true in the

one model and false in the other. All lemmas and theorems in this section are proved

in the ‘‘Appendix’’.

4.1 Individualistic bisimilarity

In modal logic several notions of model similarity have been developed to capture

the structural conditions models must satisfy to validate exactly the same formulas.

One prominent such notion is bisimulation.19 We adapt the standard notion of

bisimulation and introduce the notion of individualistic bisimulation (Definition 5).

After having done so, we prove that pointed deontic game models that are

individualistically bisimilar validate exactly the same individualistic formulas

(Theorem 1).

Definition 5 (Individualistic Bisimulation) Let M ¼ hN ; ðAiÞ; d; vi and M0 ¼
hN ; ðA0

iÞ; d0; v0i be deontic game models. Let A ¼ �i2N Ai and A0 ¼ �i2N A0
i. A

relation R � A � A0 is an i-bisimulation between M and M0 if for all a 2 A and

a0 2 A0 with ða; a0Þ 2 R it holds that

(i) for all p 2 P it holds that a 2 vðpÞ iff a0 2 v0ðpÞ
(ii) for all i 2 N it holds that ai 2 AdmMðiÞ iff a0

i 2 AdmM0 ðiÞ
(iii) for all b 2 A there is a b0 2 A0 such that ðb; b0Þ 2 R
(iv) for all b0 2 A0 there is a b 2 A such that ðb; b0Þ 2 R
(v) for all i 2 N and b 2 A: if ai ¼ bi, then there is a b0 2 A0 such that a0

i ¼ b0
i

and ðb; b0Þ 2 R
(vi) for all i 2 N and b0 2 A0: if a0

i ¼ b0
i, then there is a b 2 A such that ai ¼ bi

and ðb; b0Þ 2 R.

We write ðM; aÞ� iðM0; a0Þ if there is an i-bisimulation relation R between M
and M0 such that ða; a0Þ 2 R. Moreover, we write ðM; aÞ �Li ðM0; a0Þ if (M, a) and

ðM0; a0Þ validate exactly the same individualistic formulas, that is, if for all / 2 Li it

holds that ðM; aÞ 
 / iff ðM0; a0Þ 
 /.

We can now state our first theorem: if two pointed deontic game models are i-
bisimilar, they validate exactly the same individualistic formulas.

Theorem 1 (i-Bisimulation Theorem) For all pointed deontic game models (M, a)

and ðM0; a0Þ: if ðM; aÞ� iðM0; a0Þ, then ðM; aÞ �Li ðM0; a0Þ.

19 Blackburn et al. (2001, § 2.2) provide a textbook presentation of bisimulation in modal logic.
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4.2 Two constructions

Given a deontic action model M and a set G � N of individual agents, we construct

two deontic action models, M0
G and M00

G, and prove that they are i-bisimilar to M.

Consequently, they validate exactly the same individualistic formulas. The models

M0
G and M00

G take center stage in the proof of our impossibility result.

To specify the models M0
G and M00

G, we need some additional notation. We use x

and y as variables for the elements of fþ;�gN . Following the notational

conventions for action profiles, we use xi to denote the projection of x onto i, and we

use xG to denote the projection of x onto G. Accordingly, we can write the 2n-tuple

ða1; x1; . . .; an; xnÞ as an ordered pair (a, x) of two n-tuples, where a ¼ ða1; . . .; anÞ
and x ¼ ðx1; . . .; xnÞ. Given a set G � N of agents and an x 2 fþ;�gN , we say that

xG is constant if for every i; j 2 G it holds that xi ¼ xj.

4.2.1 The unit transform

Given a set G of agents, we unit-transform any given deontic game model M into a

new deontic game model M0
G by first duplicating the individual actions that are

available to the individual agents in the given model. This results in new sets A0
i of

available individual actions, one for each individual agent i. The new set A0 of action

profiles is defined as the Cartesian product �i2N A0
i. The new deontic ideality

function d0 copies the 0s of the given model but tinkers with its 1s (depending on

whether xG is constant). The new valuation function v0 copies the valuation function

of the given model.

Given a deontic game model M and a set G of agents, we first give a precise

definition of the unit G-transformation of the deontic game model M into the deontic

game model M0
G. Secondly, we prove that M and M0

G are i-bisimilar.

Definition 6 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model and let G � N .

Then the unit G-transform of M, denoted by M0
G ¼ hN ; ðA0

iÞ; d0; v0i, is given by

A0
i ¼ Ai � fþ;�g for every individual agent i 2 N

d0ða; xÞ ¼
dðaÞ; if xG is constant

0; otherwise:

�

ða; xÞ 2 v0ðpÞ iff a 2 vðpÞ:

It is easy to check that M0
G is a deontic game model.

As an illustration of this transformation, we consider the unit fi; jg-transform of

deontic game model M1 from Fig. 1. The resulting deontic game model ðM1Þ0fi;jg is

pictured in Fig. 2. To prove that a deontic game model and its unit G-transform are
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i-bisimilar, it is essential that the i-bisimulation relation connect the admissible

individual actions of both models appropriately. It may therefore be helpful to note

that AdmðM1Þ0fi;jg
ðiÞ ¼ fðai;þÞ; ðai;�Þ; ðbi;þÞ; ðbi;�Þg and AdmðM1Þ0fi;jg

ðjÞ ¼
fðaj;þÞ; ðaj;�Þ; ðbj;þÞ; ðbj;�Þg.

The transformation of M into M0
G preserves dominance relations between

individual actions in the following way:

Lemma 1 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M0

G ¼ hN ; ðA0
iÞ; d0; v0i be the unit G-transform of M. Let ai; bi 2 Ai and

xi; yi 2 fþ;�g. Then

(i) ai �M bi iff ðai; xiÞ �M0
G
ðbi; xiÞ

(ii) If ðai; xiÞ	M0
G
ðbi; yiÞ, then ai	M bi.

With Lemma 1 in hand, we can prove that M and its unit G-transform M0
G are

individualistically bisimilar:

Theorem 2 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M0

G ¼ hN ; ðA0
iÞ; d0; v0i be the unit G-transform of M. Let R1 � A � A0 be given by

fða; ða; xÞÞ : a 2 A and x 2 fþ;�gN g. Then R1 is an i-bisimulation between M and

M0
G.

4.2.2 The zero transform

The second operation on deontic game models we define is identical to the previous

one, except for its definition of the deontic ideality function. Given a set G of agents,

we zero-transform any given deontic game model M into a new deontic game model

M00
G by first duplicating the individual actions that are available to the individual

agents in the given model. This results in new sets A00
i of available individual

actions, one for each individual agent i. The new set A00 of action profiles is defined

as the Cartesian product �i2N A00
i . The new deontic ideality function d00 copies the 1s

Fig. 2 Deontic game model ðM1Þ0fi;jg
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of the given model but tinkers with its 0s (depending on whether xG is constant). The

new valuation function v00 copies the valuation function of the given model.

Given a deontic game model M and a set G of agents, we first give a precise

definition of the zero G-transformation of the deontic game model M into the deontic

game model M00
G. Secondly, we prove that M and M00

G are i-bisimilar.

Definition 7 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model and let G � N .

Then the zero G-transform of M, denoted by M00
G ¼ hN ; ðA00

i Þ; d00; v00i, is given by

A00
i ¼ Ai � fþ;�g for every individual agent i 2 N

d00ða; xÞ ¼
dðaÞ; if xG is constant

1; otherwise:

�

ða; xÞ 2 v00ðpÞ iff a 2 vðpÞ:

It is easy to check that M00
G is a deontic game model.

As an illustration of this transformation, we consider the zero fi; jg-transform of

deontic game model M1 from Fig. 1. The resulting deontic game model ðM1Þ00fi;jg is

pictured in Fig. 3. To prove that a deontic game model and its zero G-transform are

i-bisimilar, it is essential that the i-bisimulation relation connect the admissible

individual actions of both models appropriately. It may therefore be helpful to note

that AdmðM1Þ00fi;jg
ðiÞ ¼ fðai;þÞ; ðai;�Þ; ðbi;þÞ; ðbi;�Þg and AdmðM1Þ00fi;jg

ðjÞ ¼
fðaj;þÞ; ðaj;�Þ; ðbj;þÞ; ðbj;�Þg.

The transformation of M into M00
G preserves dominance relations between

individual actions in the same way as in Lemma 1:

Lemma 2 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M00

G ¼ hN ; ðA00
i Þ; d00; v00i be the zero G-transform of M. Let ai; bi 2 Ai and

xi; yi 2 fþ;�g. Then

(i) ai �M bi iff ðai; xiÞ �M00
G
ðbi; xiÞ

Fig. 3 Deontic game model ðM1Þ00fi;jg
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(ii) If ðai; xiÞ	M00
G
ðbi; yiÞ, then ai	M bi.

Finally, using Lemma 2, we show that M and its zero G-transform M00
G are

individualistically bisimilar:

Theorem 3 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M00

G ¼ hN ; ðA00
i Þ; d00; v00i be the zero G-transform of M. Let R2 � A � A00 be given by

fða; ða; xÞÞ : a 2 A and x 2 fþ;�gN g. Then R2 is an i-bisimulation between M and
M00

G.

5 An impossibility result

We now establish our impossibility result: there are no individualistic statements /
and w in Li such that / and HG are equivalent modulo w, unless w is a contradiction

(Theorem 4). As a consequence, there is no / in Li such that / and HG are

equivalent (Corollary 1).

Theorem 4 Let G � N be a non-empty and non-singleton group of agents. Then
there are no /;w 2 Li such that 6
 :w and 
 w ! ð/ $ HGÞ.

Proof We argue by contradiction. Suppose there are /;w 2 Li such that 6
 :w and


 w ! ð/ $ HGÞ. Because 6
 :w, there is a deontic game model M ¼
hN ; ðAiÞ; d; vi and an action profile a 2 A such that ðM; aÞ 
 w. Because


 w ! ð/ $ HGÞ, it holds that ðM; aÞ 
 / $ HG. Then either (i) ðM; aÞ 
 /
and ðM; aÞ 
 HG, or (ii) ðM; aÞ 6
 / and ðM; aÞ 6
 HG. We show that each of these

cases leads to a contradiction.

(i) Suppose ðM; aÞ 
 / and ðM; aÞ 
 HG. Let M0
G ¼ hN ; ðA0

iÞ; d0; v0i be the unit

G-transform of M. Let x 2 fþ;�gN and i; j 2 G be such that xi 6¼ xj. By

Theorem 2, it holds that ðM; aÞ� iðM0
G; ða; xÞÞ. By Theorem 1, we have

ðM0
G; ða; xÞÞ 
 w and ðM0

G; ða; xÞÞ 
 /. Because 
 w ! ð/ $ HGÞ, it holds

that ðM0
G; ða; xÞÞ 
 HG. By definition of d0 and because xG is not constant,

for all c0�G 2 A0 it holds that d0ðaG; xG; c0�GÞ ¼ 0. Because M0
G is a deontic

game model, there is a b0 2 A0 such that d0ðb0Þ ¼ 1. Hence,

ðaG; xGÞ 62 AdmM0
G
ðGÞ. Hence, ðM0

G; ða; xÞÞ 6
 HG. Contradiction.

(ii) Suppose ðM; aÞ 6
 / and ðM; aÞ 6
 HG. Let M00
G ¼ hN ; ðA00

i Þ; d00; v00i be the

zero G-transform of M. Let x 2 fþ;�gN and i; j 2 G such that xi 6¼ xj. By

Theorem 3, it holds that ðM; aÞ� iðM00
G; ða; xÞÞ. By Theorem 1, we have

ðM00
G; ða; xÞÞ 
 w and ðM00

G; ða; xÞÞ 6
 /. Because 
 w ! ð/ $ HGÞ, it holds

that ðM00
G; ða; xÞÞ 6
 HG. By definition of d00 and because xG is not constant,

for all c00�G 2 A00
G it holds that d00ðaG; xG; c00�GÞ ¼ 1. Hence,

ðaG; xGÞ 2 AdmM00
G
ðGÞ. Hence, ðM00

G; ða; xÞÞ 
 HG. Contradiction.
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Because each of these cases leads to a contradiction, we conclude that there

are no /;w 2 Li such that 6
 :w and 
 w ! ð/ $ HGÞ. h

By substituting a tautology for w, it follows from Theorem 4 that there is no / in

Li such that / and HG are equivalent:

Corollary 1 Let G � N be a non-empty and non-singleton group of agents. Then
there is no / 2 Li such that 
 / $ HG.

Therefore, there are no bridge laws that translate collective deontic admissibility

statements into the individualistic language Li.

6 Future research

Impossibility results trigger new research questions. We address two of them. The

first one is: are there individualistic languages more expressive than Li that do allow

for a translation of collective deontic admissibility? To vindicate methodological

individualism (that is, to answer this question positively), it would be necessary to

define a new individualistic language and a model theory to give truth-conditions for

the formulas of this language, and to show that there are bridge laws that translate

collective deontic admissibility statements into this new individualistic language. Of

course, collective deontic admissibility statements are not the only social statements

that can be studied formally.

To formulate the second research question, note first that Theorem 4 entails that

there are deontic game models in which the formula ð
V

i2G HiÞ ! HG is false.20

Accordingly, for any group of individual agents there are situations in which each

group member performs a deontically admissible individual action even though the

combination of these individual actions does not amount to a deontically admissible

group action.21 Nonetheless, there are deontic game models in which the formula

ð
V

i2G HiÞ ! HG is true: consider, for instance, deontic game models with exactly

one deontically ideal action profile (there are also other instances). In such models

the relation between individual deontic admissibility and collective deontic

admissibility is straightforward: if every group member performs a deontically

admissible individual action, then the group itself performs a deontically admissible

group action. The second research question can now be formulated as follows: do all

the deontic game models that validate this implication have a specific structural

property in common? More specifically, is there a model-theoretic property that

20 Suppose 
 ð
V

i2G HiÞ ! HG. Let / ¼ p _ :p and w ¼
V

i2G Hi. It is easy to see that /;w 2 Li and

6
 :w and 
 w ! ð/ $ HGÞ. This contradicts Theorem 4. Therefore, 6
 ð
V

i2G HiÞ ! HG.

21 Likewise, Theorem 4 entails that there are deontic game models in which the formula ð
V

i2G :HiÞ !
:HG is false. Accordingly, for any group of individual agents there are situations in which no group

member performs a deontically admissible individual action even though the combination of these

individual actions does amount to a deontically admissible group action.
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defines the class C of deontic game models for which it holds that M 2 C if and only

if M 
 ð
V

i2G HiÞ ! HG?22 After such a structural property has been specified, we

can also study it from a dynamic perspective: it might be asked which operations

transform an arbitrary deontic game model into a model that has this property.23

These and related questions offer a new take on the systematic study of cooperation

in particular, and of methodological individualism in general.
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Appendix: proofs

Theorem 1 (i-Bisimulation Theorem) For all pointed deontic game models (M, a)

and ðM0; a0Þ: if ðM; aÞ� iðM0; a0Þ, then ðM; aÞ �Li ðM0; a0Þ.

Proof By structural induction on /.

Basis: Suppose ðM; aÞ� iðM0; a0Þ. We check cases p and Hi.

p: By Definition 5(i), for all p 2 P it holds that a 2 vðpÞ iff a0 2 v0ðpÞ. Hence,

for all p 2 P it holds that ðM; aÞ 
 p iff ðM0; a0Þ 
 p.

22 This is closely related to Van Benthem’s (1984) notion of a modal formula that characterizes a frame

property. See also Blackburn et al. (2001, p. 126). Note that Theorem 4 entails that the class C cannot be

characterized by an individualistic formula in Li.
23 Tamminga and Duijf (2017) study how the public adoption of a group plan changes the context in

which agents make a decision about what to do. They show that after a deontic game model is updated

with what they call an ‘‘optimal and interchangeable group plan’’, it holds that if every group member

performs a deontically admissible individual action in the changed decision context, then the group itself

performs a deontically admissible group action.
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Hi: By Definition 5(ii), for all i 2 N it holds that ai 2 AdmMðiÞ iff

a0
i 2 AdmM0 ðiÞ. Hence, for all i 2 N it holds that ðM; aÞ 
 Hi iff

ðM0; a0Þ 
 Hi.

Induction hypothesis For all pointed deontic game models ðM1; a1Þ and ðM0
1; a0

1Þ
and all w 2 Li with fewer operators than /: if ðM1; a1Þ� iðM0

1; a0
1Þ, then ðM1; a1Þ 


w iff ðM0
1; a0

1Þ 
 w.

Induction step Suppose ðM; aÞ� iðM0; a0Þ. We check case [i]. The other cases are

proved analogously.

[i]: Suppose ðM; aÞ 
 ½i�w. Suppose b0 2 A0 such that a0
i ¼ b0

i. By Definition 5(vi),

there is a b 2 A such that ai ¼ bi and ðb; b0Þ 2 R. Then ðM; bÞ� iðM0; b0Þ.
Because ðM; aÞ 
 ½i�w and ai ¼ bi, we have ðM; bÞ 
 w. By the Induction

Hypothesis, ðM0; b0Þ 
 w. Hence, for all b0 2 A0 such that a0
i ¼ b0

i it holds that

ðM0; b0Þ 
 w. Hence, ðM0; a0Þ 
 ½i�w. Suppose ðM0; a0Þ 
 ½i�w. Suppose b 2 A
such that ai ¼ bi. By Definition 5(v), there is a b0 2 A0 such that a0

i ¼ b0
i and

ðb; b0Þ 2 R. Then ðM; bÞ� iðM0; b0Þ. Because ðM0; a0Þ 
 ½i�w and a0
i ¼ b0

i, we

have ðM0; b0Þ 
 w. By the Induction Hypothesis, ðM; bÞ 
 w. Hence, for all

b 2 A such that ai ¼ bi it holds that ðM; bÞ 
 w. Hence, ðM; aÞ 
 ½i�w.

Therefore, ðM; aÞ �Li ðM0; a0Þ. h

Lemma 1 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M0

G ¼ hN ; ðA0
iÞ; d0; v0i be the unit G-transform of M. Let ai; bi 2 Ai and

xi; yi 2 fþ;�g. Then

(i) ai �M bi iff ðai; xiÞ �M0
G
ðbi; xiÞ

(ii) If ðai; xiÞ	M0
G
ðbi; yiÞ, then ai	M bi.

Proof (i) ()) Suppose ai �M bi. Consider an arbitrary c0�i 2 A0
�i. Then c0�i ¼

ðc�i; y�iÞ for a c�i 2 A�i and a y�i 2 fþ;�gN�i
. Consider ðxi; y�iÞ 2 fþ;�gN .

If ðxi; y�iÞG is constant, then, by definition, it holds that d0ðai; xi; c�i; y�iÞ ¼
dðai; c�iÞ and d0ðbi; xi; c�i; y�iÞ ¼ dðbi; c�iÞ. By supposition, it must be that

dðai; c�iÞ� dðbi; c�iÞ. Hence, d0ðai; xi; c�i; y�iÞ� d0ðbi; xi; c�i; y�iÞ.
If ðxi; y�iÞG is not constant, then, by definition, it holds that d0ðai; xi; c�i; y�iÞ ¼ 0

and d0ðbi; xi; c�i; y�iÞ ¼ 0. Hence, d0ðai; xi; c�i; y�iÞ� d0ðbi; xi; c�i; y�iÞ.
Hence, for all c0�i 2 A0

�i it holds that d0ðai; xi; c0�iÞ� d0ðbi; xi; c0�iÞ. Therefore,

ðai; xiÞ �M0
G
ðbi; xiÞ.

(() Suppose ðai; xiÞ �M0
G
ðbi; xiÞ. Consider an arbitrary c�i 2 A�i. Take a y�i 2

fþ;�gN�i
such that ðxi; y�iÞG is constant. Then ðc�i; y�iÞ 2 A0

�i. By definition of d0,

it holds that d0ðai; xi; c�i; y�iÞ ¼ dðai; c�iÞ and d0ðbi; xi; c�i; y�iÞ ¼ dðbi; c�iÞ. By

supposition, it must be that d0ðai; xi; c�i; y�iÞ� d0ðbi; xi; c�i; y�iÞ. Hence,

dðai; c�iÞ� dðbi; c�iÞ. Hence, for all c�i 2 Ai it holds that dðai; c�iÞ� dðbi; c�iÞ.
Therefore, ai �M bi.
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(ii) Suppose ðai; xiÞ	M0
G
ðbi; yiÞ. If xi ¼ yi, then, by part (i) of this lemma, ai	M bi.

Suppose xi 6¼ yi.

We first prove ai �M bi. Consider an arbitrary c�i 2 A�i. There are two cases: (a)

If i 2 G, then take a z�i 2 fþ;�gN�i
such that ðyi; z�iÞG is constant. Then ðxi; z�iÞG

is not constant. By definition of d0, it holds that d0ðai; xi; c�i; z�iÞ ¼ 0. By suppo-

sition, d0ðbi; yi; c�i; z�iÞ ¼ 0. By definition of d0, it holds that dðbi; c�iÞ ¼ 0. Hence,

dðai; c�iÞ� dðbi; c�iÞ. (b) If i 62 G, then take a z�i 2 fþ;�gN�i
such that ðxi; z�iÞG is

constant. Then ðyi; z�iÞG is also constant. By definition of d0, it holds that

d0ðai; xi; c�i; z�iÞ ¼ dðai; c�iÞ and d0ðbi; yi; c�i; z�iÞ ¼ dðbi; c�iÞ. By supposition, it

holds that d0ðai; xi; c�i; z�iÞ� d0ðbi; yi; c�i; z�iÞ. Hence, dðai; c�iÞ� dðbi; c�iÞ.
Hence, for all c�i 2 Ai it holds that dðai; c�iÞ� dðbi; c�iÞ. Therefore, ai �M bi.

We now prove bi 6�M ai. Because ðbi; yiÞ 6�M0
G
ðai; xiÞ, there is a c��i 2 A�i and a

z��i 2 fþ;�gN�i
such that d0ðai; xi; c��i; z��iÞ ¼ 1 and d0ðbi; yi; c��i; z��iÞ ¼ 0. Then

ðxi; z��iÞG is constant and dðai; c��iÞ ¼ 1. There are two cases: (a) If i 2 G, take a

z���i 2 fþ;�gN�i
such that ðyi; z���iÞG is constant. Then ðxi; z���iÞG is not constant. By

definition of d0, it holds that d0ðai; xi; c��i; z���iÞ ¼ 0. By supposition,

d0ðbi; yi; c��i; z���iÞ ¼ 0. By definition of d0, it holds that dðbi; c��iÞ ¼ 0. (b) If i 62 G,

then ðyi; z��iÞG is constant. Because d0ðbi; yi; c��i; z��iÞ ¼ 0 and by definition of d0, it

must be that dðbi; c��iÞ ¼ 0. Either way, dðbi; c��iÞ ¼ 0. Hence, there is a c��i 2 A�i

such that dðai; c��iÞ ¼ 1 and dðbi; c��iÞ ¼ 0. Therefore, bi 6�M ai. h

Theorem 2 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M0

G ¼ hN ; ðA0
iÞ; d0; v0i be the unit G-transform of M. Let R1 � A � A0 be given by

fða; ða; xÞÞ : a 2 A and x 2 fþ;�gN g. Then R1 is an i-bisimulation between M and

M0
G.

Proof Suppose that ða; a0Þ 2 R1 for a 2 A and a0 2 A0. Then a0 ¼ ða; xÞ for some

x 2 fþ;�gN . Note that a0
i ¼ ðai; xiÞ.

(i) Because a0 ¼ ða; xÞ, for all p 2 P it holds that a 2 vðpÞ iff a0 2 v0ðpÞ.
(ii) Suppose ai 62 AdmMðiÞ. Then there is a bi 2 Ai such that bi	Mai, that is,

bi �M ai and ai 6�M bi. By Lemma 1(i), it holds that ðbi; xiÞ �M0
G
ðai; xiÞ and

ðai; xiÞ 6�M0
G
ðbi; xiÞ, that is, ðbi; xiÞ	M0

G
ðai; xiÞ. Hence, ðai; xiÞ 62 AdmM0

G
ðiÞ and

therefore, a0
i 62 AdmM0

G
ðiÞ.

Suppose a0
i 62 AdmM0

G
ðiÞ. Then ðai; xiÞ 62 AdmM0

G
ðiÞ. Then there is a ðbi; yiÞ 2 A0

i

such that ðbi; yiÞ	M0
G
ðai; xiÞ. By Lemma 1(ii), we have bi	M ai. Therefore,

ai 62 AdmMðiÞ.
(iii) Consider an arbitrary b 2 A. Let b0 ¼ ðb; xÞ. Obviously, b0 2 A0 and

ðb; b0Þ 2 R1. Hence, there is a b0 2 A0 such that ðb; b0Þ 2 R1.

(iv) Consider an arbitrary b0 2 A0. It holds that b0 ¼ ðb; yÞ for some b 2 A and

some y 2 fþ;�gN . Obviously, ðb; b0Þ 2 R1. Hence, there is a b 2 A such that

ðb; b0Þ 2 R1.
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(v) Suppose ai ¼ bi for an arbitrary b 2 A. Let b0 ¼ ðb; xÞ. Obviously, b0 2 A0 and

ðb; b0Þ 2 R1. Because ai ¼ bi and xi ¼ xi, it holds that a0
i ¼ b0

i. Hence, there is a

b0 2 A0 such that a0
i ¼ b0

i and ðb; b0Þ 2 R1.

(vi) Suppose a0
i ¼ b0

i for an arbitrary b0 2 A0. It holds that b0 ¼ ðb; yÞ for some

b 2 A and some y 2 fþ;�gN . Obviously, ðb; b0Þ 2 R1. Because a0
i ¼ ðai; xiÞ and

b0
i ¼ ðbi; yiÞ, it must be that ai ¼ bi and xi ¼ yi. Hence, there is a b 2 A such that

ai ¼ bi and ðb; b0Þ 2 R1.

Therefore, ðM; aÞ� iðM0
G; ða; xÞÞ. h

Lemma 2 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M00

G ¼ hN ; ðA00
i Þ; d00; v00i be the zero G-transform of M. Let ai; bi 2 Ai and

xi; yi 2 fþ;�g. Then

(i) ai �M bi iff ðai; xiÞ �M00
G
ðbi; xiÞ

(ii) If ðai; xiÞ	M00
G
ðbi; yiÞ, then ai	M bi.

Proof Analogous to the proof of Lemma 1. h

Theorem 3 Let M ¼ hN ; ðAiÞ; d; vi be a deontic game model, let G � N , and let
M00

G ¼ hN ; ðA00
i Þ; d00; v00i be the zero G-transform of M. Let R2 � A � A00 be given by

fða; ða; xÞÞ : a 2 A and x 2 fþ;�gN g. Then R2 is an i-bisimulation between M and

M00
G.

Proof Analogous to the proof of Theorem 2. h
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