
Performance characterization and acceleration

of genome-mapping tools on HPC environments

Christos Konstantinos Matzoros

Facultat d’Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Master in Innovation and Research in Informatics (MIRI:HPC)

October, 2022

Advisor: Santiago Marco-Solá

Tutor: Miquel Moretó Planas

mailto:christos.matzoros@bsc.es
http://www.fib.upc.edu
http://www.upc.edu

To my family

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor,

Professor Santiago Marco-Solá, for his continuous support during the years of

my master’s degree. His guidance and excellent feedback were pivotal for the

completion of this work. I learned a lot from him, and he inspired me to become

a more competent engineer. His trust, continuous support, and inspiration, even

when seeing me struggling at times, are some of the qualities I will forever be

grateful for. I would also like to show my warmest appreciation to my tutor,

Professor Miquel Moretó Planas, for his significant and constructive suggestions

during the planning and development of this work. I will always be grateful to

both of them for allowing me to work under their wing in a great working envi-

ronment parallel with my studies. They allowed me to contribute to additional

research projects and collaborate with great people in Barcelona Supercomputing

Center (BSC). I would also wish to express my gratitude to my co-worker and

friend Quim Aguado for contributing with his ideas and engaging in a part of my

thesis.

Finally, I would like to thank my family for their everlasting love and encourage-

ment throughout my studies. This endeavor would not be possible without their

unconditional support. To my friends, who stood with me during my darkest

times and offered me unforgettable moments, I consider them part of my family

too.

ii

Abstract

Nowadays, the efficient analysis and exploitation of genomic information is para-

mount to future advancements in the healthcare sector, such as better diag-

nosis techniques and the development of improved disease treatments. In the

past decades, the exponential increase in the biological data production has fos-

tered the development of more efficient genomic pipelines. For that, modern

genome analysis requires better and more scalable algorithms, and improved

high-performance implementations that can exploit current hardware accelera-

tors. For most genome analysis pipelines, sequence mapping is one of the most

computationally intensive and time-consuming processing stages. The ultimate

goal of this work is to propose techniques to accelerate read mapping, leveraging

novel algorithms and hardware vector extensions.

In this thesis, we present a thorough performance characterization of the most

widely-used genome-mapping tools and propose acceleration techniques that can

effectively improve the performance of these tools. To that end, first, we identify

the most time-consuming kernels, their performance bottlenecks, and the under-

lying causes of inefficiency. Afterwards, we design and implement an accelerated

version of one of the most time-consuming steps: pairwise sequence alignment.

For that, we propose to replace the classical dynamic-programming algorithm,

used within these tools, with the recently proposed wavefront alignment algo-

rithm (WFA). Moreover, we design and implement the first fully-vectorized ver-

sion of the WFA, leveraging Intel’s AVX2 and AVX-512 instructions, to further

accelerate sequence-to-sequence alignment. As a result, we demonstrate that

our vectorized WFA implementation outperforms the original scalar WFA im-

plementation between 1.1×-2.4×. In turn, this renders speedups from 2.4× up

iii

to 826.7× compared to the most widely-used alignment algorithm, KSW2 (used

within Minimap2 and Bwa-Mem2). We conclude that these tools can be signifi-

cantly accelerated by selecting better algorithms (like the WFA) and leveraging

fine-tuned implementations that can exploit hardware resources available in cur-

rent high performance computing (HPC) processors.

iv

Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 3

1.3 Goals and Contributions . 3

1.4 Outline . 4

2 Background 5

2.1 Basic Biology . 5

2.2 Sequencing . 7

2.3 Genome Analysis Pipelines . 9

2.4 Mapping Stages . 12

2.4.1 Indexing . 12

2.4.2 Seeding and Filtering . 13

2.4.3 Seed Chaining and Extension 14

2.4.4 Pairwise Alignment . 15

2.5 Genome Mappers . 16

2.5.1 Minimap2 . 16

2.5.2 Bwa-Mem2 . 18

2.5.3 Bowtie2 . 19

v

CONTENTS

3 Experimental Evaluation of Genome Mappers 20

3.1 Experimental Setup . 20

3.1.1 Machines . 20

3.1.2 Tools . 22

3.1.3 Datasets . 23

3.2 Scalability Analysis . 24

3.3 Bottleneck Analysis . 30

3.4 Microarchitecture Exploration . 32

3.5 Summary . 35

4 Accelerating Sequence Alignment 37

4.1 Classical Sequence Alignment Algorithms 37

4.2 Wavefront Alignment Algorithm (WFA) 39

4.2.1 Wavefront Furthest-Reaching Diagonals 39

4.2.2 Alignment Algorithm using Wavefronts 41

4.3 Exploiting SIMD Paralellism in WFA 43

4.4 Vectorization Using AVX-512 Intrinsics 48

4.4.1 Initial Approach . 49

4.4.2 Implementation . 50

4.4.3 Optimizations . 54

4.4.3.1 Hybrid Implementation 54

4.4.3.2 Loop Unrolling of Remaining Diagonals 56

4.4.3.3 Other Code Improvements 57

4.4.4 Performance Evaluation 58

4.5 Vectorization using AVX2 Intrinsics 61

4.5.1 Implementation . 61

4.5.2 Unrolling a Second Iteration of Vectorized Code 63

4.5.3 Performance Evaluation 66

4.6 Comparison of Vectorized WFA Implementations 67

4.7 Comparison of Sequence Alignment Implementations 68

5 Conclusions 71

5.0.1 Publications . 72

5.1 Future work . 72

vi

CONTENTS

5.2 Financial and Technical Support 73

6 Appendices 74

vii

List of Figures

2.1 DNA double helix and nucleotides [49] 6

2.2 Major stages of genome analysis pipelines 11

2.3 Minimap2 main components . 17

3.1 Marenostrum 4 node [11] . 21

3.2 Scalability plot of Bowtie2 using Illumina real dataset 25

3.3 Scalability plot of Bowtie2 using Mason2 simulated dataset 26

3.4 Scalability plot of Bwa-Mem2 using Illumina real dataset 27

3.5 Scalability plot of Bwa-Mem2 using Mason2 simulated dataset . . 28

3.6 Scalability plot of Minimap2 using real Oxford Nanopore dataset . 29

3.7 Scalability plot of Minimap2 using real PacBio dataset 29

3.8 Scalability plot of Minimap2 using simulated Pbsim2 dataset . . . 30

3.9 Bottleneck analysis of genomic tools executions 31

3.10 Chart of VTune’s high-level metrics in Microarchitecture Explo-

ration Analysis . 33

3.11 Microarchitecture exploration analysis chart of the executions . . 34

4.1 Dependencies between wavefronts as to compute one element of

the next wavefront . 41

4.2 Evolution of register space . 48

4.3 AVX-512 Data Types . 49

4.4 Abstract of AVX-512 vectorization strategy 50

4.5 AVX2 Data Types . 61

4.6 Execution trace of vectorized part with AVX2 64

4.7 Execution trace of vectorized part with AVX2 using loop unrolling 66

viii

LIST OF FIGURES

4.8 Theoretical percentage decrease based on the initial bottlenecks

characterization and potential overall speedup of genome-mapping

tools using the vectorized WFA algorithm 70

ix

List of Tables

2.1 Principal characteristics of major sequencing methods [6] 9

3.1 Real Datasets . 24

3.2 Simulated Datasets . 24

4.1 Performance metrics for the different stages of optimizations (In-

structions and Clocktics are expressed in Billions) 60

4.2 Performance evaluation of the first version (optimized) with AVX2

(Instructions and Clocktics are expressed in Billions, CPI) 63

4.3 Performance evaluation of the loop-unrolling version of AVX2 (In-

structions and Clocktics are expressed in Billions) 67

4.4 Comparison of AVX implementations (Instructions and Clocktics

are expressed in Billions) . 68

4.5 Execution Time of KSW and WFA implementations 69

4.6 Speedups of WFA versions with respect to KSW2 69

x

Chapter 1

Introduction

1.1 Context

Genomic sequencing [14] is the method of deciphering the genetic material found

in individual organisms (humans, plants, animals) or viruses. Sequencing ge-

nomic molecules enable research and development in bio-medicine and other life

sciences through its rapidly growing presence in medicine, outbreak tracing, and

understanding of pathogens [6]. The successful sequencing of the human genome

[40] is propelling these advancements further.

In bioinformatics, sequence analysis [61] is the term that describes the computa-

tional analysis of a DNA, RNA, or peptide sequence in order to understand its

features, biological function, structure, or evolution. The outcomes of investigat-

ing the sequences information can provide us with valuable insights. It unlocks

the mysteries of how the genes, and eventually, how the cells of all known or-

ganisms behave under various conditions. Using an efficient way to process that

information through the genomic pipelines, could lead to advancements in the

health sector, e.g., by improving the therapies or the prescribed medications. We

define a bioinformatics pipeline [63] as the set of bioinformatics algorithms we

execute in a predefined sequence to process sequence data. Clinical laboratories

rely on resource-intensive data processing pipelines to analyze sequencing data

[63].

1

1.1 Context

The developments we previously mentioned, are also driven by the introduction of

High-Throughput Sequencing (HTS) analysis technologies that have dramatically

reduced the cost of DNA sequencing [6]. In the past decade, they have become

crucial in studies of genomics [16]. Sequencing information was traditionally be-

ing elucidated using a low throughput technique called Sanger sequencing. In

2008, the National Human Genome Research Institute (NGHRI) created a DNA

sequencing technology initiative [62] aimed at achieving a 1000 dollars human

genome for the following decade [67]. That started the high-throughput sequenc-

ing era, which led to the successful sequencing of a large part of the human

genome [26] and the standardization of a reference genome that is still in use.

HTS technologies can sequence multiple DNA molecules in parallel, sequencing

hundreds of millions of DNA molecules at a time [16]. A general feature of all

HTS technologies is the generation of a substantial amount of data that need to

be processed efficiently. For example, the Illumina [32] platforms generate up to

100 gigabases of sequence data per lane (HiSeq 4000) or up to 15Gb (MiSeq) [20],

using a parallel sequencing approach.

An essential step in most genomic analysis pipelines [63] is sequence alignment,

which refers to the alignment (a.k.a. mapping) of the generated reads to a ref-

erence sequence, such as the human genome. Sequence alignment is a process of

finding for each base pair in each sequencing read, the precise or approximate

location in the reference genome [18]. The alignment step is the bottleneck in

the genomic analysis pipelines [4]. This becomes more evident as the amount of

data created from HTS technologies increases at a greater rate and needs to be

processed as fast as possible.

We now need more than ever to make genome analysis more efficient. We need to

read and analyze genomes accurately and efficiently enough to scale the analysis

to population level [6]. There currently exist major computational bottlenecks

that we need to tackle. This thesis attempts to identify some of these bottlenecks

as well as to contribute to the acceleration of the sequence analysis process.

2

1.2 Motivation

1.2 Motivation

Nowadays, the main challenge is to reconstruct the complete genome of an indi-

vidual using the relatively short sequences that current HTS machines produce

[74]. We need to efficiently find the actual location of each read in a potentially

large reference while distinguishing between technical sequencing errors and true

genetic variation within the sample. The outstanding amount of data produced

by HTS technologies demand acceleration of the alignment process.

The available general processing resources are insufficient as they cannot process

the sequencing information in a viable way. It is necessary to take advantage

of high-performance computing machines [66]. For that, we need to ensure that

these aligners are properly exploiting the available resources in high-performance

computing machines.

1.3 Goals and Contributions

This work aims to characterize the performance of the most widely-used mapping

tools in a high-end machine (Marenostrum 4) and propose techniques to accelerate

alignment algorithms and mapping tools. We performed a detailed analysis of

Minimap2 [43], Bwa-Mem2 [76], and Bowtie2 [41], three of the most widely used

genome mappers. This characterization provided us useful insights about the

scalability, the bottlenecks as well as the hardware usage issues of these genome

mappers. The evaluation indicated the need for acceleration of the alignment

process of the genome mappers. For that, we propose employing a more efficient

alignment algorithm (the Wavefront Alignment WFA algorithm [46]), for which

we design and implement a SIMD-accelerated version using Intel’s AVX2 [35], and

AVX-512 [34] intrinsics. As a result, we demonstrate that our vectorized WFA

implementation outperforms the original non-vectorized WFA implementation

between 1.1-2.4x times. That allows speedups for the vectorized WFA from 2.4

up to 826.7 with respect to the alignment algorithm of genome-mapping tools

(KSW2). Finally, the tools have potential speedups from 1.3 to 2.9 if we substitute

the KSW2 algorithm with the vectorized WFA.

3

1.4 Outline

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2 first provides a background on basic biology concepts. We describe

the main stages of genome analysis pipelines, from the sequencing of the DNA up

to the alignment process. We provide information about the main parts of the

genome mapping tools. We explore the various mapping tools that are widely used

and their distinctive characteristics. We finally describe the wavefront algorithm,

a state-of-the-art sequence alignment algorithm.

Chapter 3 introduces the basic setup on which we will conduct our experimen-

tation. It also provides scalability, bottleneck, and microarchitecture analysis of

three widely used genome mappers.

Chapter 4 describes how we were driven to select more efficient algorithms (WFA)

over the traditional dynamic programming method used in the genome-mapping

tools (KSW2). It describes how we achieved to accelerate the wavefront algorithm

using vectorization. We give a detailed analysis of two implementations, one

using AVX2 and the other using AVX-512 intrinsics, as well as the optimizations

that formed the final implementations. We conclude with a comparison of the

implementations.

Chapter 5 concludes with a summary of our main findings and presents directions

for future work.

4

Chapter 2

Background

This chapter provides a background on basic biology concepts and the primary

stages of genome analysis pipelines. We also provide information regarding

the major stages of the genome-mapping tools and their distinctive character-

istics.

2.1 Basic Biology

All living beings, from viruses to humans, seem very diverse at first glance. In

reality, all life forms are driven by the same molecular processes and share many

similarities in their basis [73]. They are all made out of cells except viruses which

also imitate the cell’s functions [75]. Cells are considered the basic building blocks

of all living things and have many parts, each with a different function [50]. They

are made by a group of biological molecules responsible for a cell’s structural and

functional activities.

The primary biological molecules are carbohydrates, proteins, lipids, and nucleic

acids [73]. Proteins and nucleic acids are vital for the survival of organisms.

Nucleotides are the building blocks of nucleic acids. Nucleic acids (found in DNA

and RNA) have the remarkable property of storing an organism’s genetic code.

The genetic code is the sequence of nucleotides that determines the amino acid

sequence of proteins, which are critical to life [9].

5

2.1 Basic Biology

DNA [54] is made up of two strands of nucleotides. Four types of nucleotides are

attached to form a structure called a double helix. The DNA has two strands.

These are anti-parallel and are linked by hydrogen bonding based on comple-

mentary base pairing (Figure 2.1). Adenine (A) pairs with thymine (T), while

guanine (G) pairs with cytosine (C).

Figure 2.1: DNA double helix and nucleotides [49]

Genes [55] are found on chromosomes and they are made of DNA. Different

genes determine the various traits of an organism. A gene has several parts. In

most genes, the protein-making instructions are broken up into sections called

exons. These are interspersed with introns, sections of not useful DNA. A chro-

mosome [53] is a chunk of a genome that contains some of an organism’s genes.

Chromosomes help a cell to keep a large amount of genetic information in a

structured way. An organism’s whole set of nuclear DNA is referred to as the

genome. It contains genes, which are packaged in chromosomes and affect specific

characteristics of the organism.

6

2.2 Sequencing

Investigating the structure and behavior of the DNA, such as the ordering of

its nucleotides, can provide us with valuable insights. It unlocks the mysteries of

how the genes, and eventually, how the cells of all known organisms behave under

various conditions. Using an efficient way to acquire and process that information

could lead to advancements in the health sector, e.g., by improving the therapies

or the prescribed medications.

2.2 Sequencing

We call genomic sequencing [14] the method that scientists use to decipher the

genetic material found in individual organisms (humans, animals and others) or

viruses. We can use this method to find changes in areas of the genome, which can

help scientists understand how specific diseases form. Scientists can use genomic

sequencing results to diagnose and treat various diseases. The first draft of the

human genome was finished in 2001 by the Human Genome Project [33], an inter-

national scientific research project to define the base pairs that make up human

DNA. Whole-genome sequencing technology can analyze entire genomes, reveal-

ing the information in them and exhibiting the complexity and heterogeneity of

the genome.

Over the last decade, there has been a significant shift away from the Sanger se-

quencing technology for genome analysis [25]. The Sanger Method [65] also known

as the “chain termination” method, is a method for determining the nucleotide

sequence of DNA. It had dominated the industry for almost two decades [29].

The limitations of Sanger sequencing showed a need for new and improved tech-

nologies for sequencing large numbers of human genomes. The major limitation

of the Sanger method is the sequencing volume, as it only sequences a single DNA

fragment at a time. Also it can only sequence short pieces of DNA [23].

Newer methods are referred to as High-Throughput Sequencing (HTS) methods.

HTS has several advantages over Sanger sequencing. HTS can produce high-

throughput data from multiple samples in parallel per run [7]. Moreover, HTS

produces more accurate sequencing data than Sanger DNA sequencing. It took

about ten years to sequence the first draft human genome at a cost of several

7

2.2 Sequencing

millions of dollars. In contrast, nowadays, it is possible to sequence the human

genome within a single day at the cost of under one thousand US dollars or even

less [22].

The diversity of HTS characteristics makes it likely that multiple platforms coex-

ist in the marketplace. As a result, some platforms have advantages and disadvan-

tages for particular applications over others. There are many different sequencing

technologies, but we will focus only on the most used. These are the Illumina

sequencing technology [32], the Pacific Biosciences sequencing technology [59],

and the Oxford Nanopore Technologies [58]. Table 2.1 presents the principal

characteristics of each sequencing method.

Illumina sequencing [32] is a second-generation sequencing method. It uses re-

versible dye terminators technology to detect the sequence of DNA molecules.

It has high accuracy (about 99.9%) and creates sort sequences of 100 to 300 bp

(base pairs) [6]. The advantages of this technology are that it is simple, scal-

able, and has a high yield. The main disadvantage is that it requires expensive

equipment.

PacBio’s [59] SMRT (Single Molecule, Real-Time) technology takes advantage of

the natural process of DNA replication, which is a highly efficient and accurate

process. SMRT technology occurs in real time. The average read length starts

from 10KB bases up to 30KB bases. PacBio reads typically have a high error

rate. However, their errors tend to be random, so if the same region is sequenced

several times, the errors average out, resulting in a ”consensus” sequence that

gives an average accuracy rate of 99.9% [6]. Its advantages are that it is fast and

contains informative data, and the main disadvantage is that it has high error

rates.

Nanopore sequencing [58] is a third-generation sequencing technique. It uses a

Nanopore to detect the sequence of DNA molecules. It has 90% to 98% accuracy

and creates the most extended read lengths, from 100 bp to the current record of

2M bp [6]. The advantage of Nanopore sequencing is that it produces ultra-long

reads. The main disadvantage of this technology is that it tends to be error-

prone.

8

2.3 Genome Analysis Pipelines

Principal

Characteristics

Illumina

Technology

Pacific

Biosciences

Oxford Nanopore

Technologies

Instrument cost

(X constant)
3X 1.6X X

Read length 100–300 10K-30K 100–2M

Read length in

a single data file
Fixed Modest Variability Variable

Accuracy 99.9 % 99.9 % 90 %-98 %

Sequencing run time 44 h 30 h 72 h

Table 2.1: Principal characteristics of major sequencing methods [6]

2.3 Genome Analysis Pipelines

There are many challenges associated with selecting and implementing the right

set of tools in basic research or clinical settings. Bioinformatics analyses are

complex, multi-step processes comprised of multiple software applications [21].

Many academic efforts are spent improving the statistical accuracy of particular

approaches leading to constant changes in the most appropriate pipeline that can

be assembled at any given point in time. A genome analysis pipeline [60] com-

prises bioinformatics algorithms and tools executed in a predefined order to pro-

cess genomic sequencing data. A pipeline progressively processes a large amount

of sequence data and their associated metadata through a series of transforma-

tions using various software components, environments, and databases. A typical

clinical implementation of a bioinformatics pipeline is automated and requires

proper quality control to ensure the generated data are accurate, robust, and

reproducible. Each step of a clinical sequencing pipeline emits information that

can be used as metrics for bioinformatics pipeline quality control. We present the

primary pipeline stages in Figure 2.2.

Most genome analysis pipelines start with sequencing data acquisition. After

that, there is software to analyze the sensor data to predict the individual bases.

Base-calling is the process that converts sensor data from the sequencing plat-

form and distinguishes the sequence of nucleotides for each fragment of DNA in

9

2.3 Genome Analysis Pipelines

the sample prepared for analysis. The read sequences are usually stored in a

FASTQ file format [51, 60]. Sequence alignment [43, 45, 70, 76] is the process of

determining the region of the reference genome where the read originated. One,

multiple, or no location can be assigned for each sequence read. This computa-

tionally intensive process outputs a genome location (i.e., chromosome, position,

and strand) and a mapping score. The highest (or lowest depending on the al-

gorithm) score indicated the best alignment for a specific read. The location

can be used to calculate the proportion of mapped reads and the depth of the

sequencing experiment (i.e., coverage). The sequence alignment output data is

usually stored in a sequence alignment map (SAM) file format or a binary, com-

pressed alignment file format (i.e., BAM). BAM files retain the same information

as SAM files. The main difference is that they are in a binary file format. BAM

files are smaller and more efficient than SAM files, saving time and reducing costs

of computation and storage [6].

In many cases, the information of a single sequence is insufficient to derive the

proper alignment of indels into the reference genome. This results in variations

between the reference and the reads near the misaligned parts of the sequence [17].

The realignment step corrects these artifacts. This step refines the initial align-

ments by re-aligning all the sequences in a region together and identifying suspi-

cious regions [60]. Base quality score recalibration (BQSR) uses this information

as a covariate along with other known areas of variation. BQSR adjusts the base

quality scores of sequencing reads using an empirical error model [39]. Realign-

ment of mapped reads and recalibration of base quality scores before SNV calling

proved to be crucial to accurate variant calling [60].

10

2.3 Genome Analysis Pipelines

Figure 2.2: Major stages of genome analysis pipelines

We call variant Calling the differentiation of “true variants” from “noise” for a

given sample [8]. Once we have a pre-processed, analysis-ready bam file using

realignment and recalibration, we can begin the variant discovery process. Tools

such as GATK perform variant calling. They can call SNPs and indels simulta-

neously via local de-novo assembly of haplotypes [27]. In other words, whenever

the program finds a region displaying signs of variation, it discards the current

mapping information and completely reassembles the reads in that region. This

step is designed to maximize sensitivity to minimize false negatives, i.e., fail-

ing to identify actual variants. This brings us to the final stage, called Variant

Annotation.

Variant Annotation [60] aims to identify the function and effect of all identified

11

2.4 Mapping Stages

SNPs. In this phase, the biological information is extracted. Variant identifi-

cation generates a detailed catalog of variations in a genome, and among other

applications, this process allows the diagnosis of known diseases or health condi-

tions.

2.4 Mapping Stages

This thesis’s work focuses on the most computationally intensive step of most

genome analysis pipelines: the mapping stage. The process of sequence map-

ping involves different algorithms and data structures implemented within cur-

rent genome mapping tools. In the following, we present the most widely used

techniques employed within the most widely used mapping tools.

2.4.1 Indexing

The majority of genome mapping tools follow similar stages throughout their

execution. Nevertheless, these stages have many differences between them in how

they are implemented most of the time. Mappers can use different algorithms

or data structures to implement the same concept. Most genome mapping tools

use a computational procedure known as ‘indexing’ to accelerate their mapping

algorithms. Indexing aims to quickly locate genomic subsequences in the reference

genome [5].

In the indexing step, the mapper builds an extensive index database from a

reference genome or a set of reads. After extracting the seeds from the reference

genome sequence, the mapper stores them in a data structure along with their

occurrence locations in the reference genome. Most prominent data-structured

used for genome indexing include hash tables, suffix trees, suffix arrays, and FM-

indexes.

Recent reports [5] show that hashing is the most popular indexing technique used

by alignment tools. In hashing, large keys are transformed into short keys by

applying hash functions. Then, the values are stored in a data structure called

a hash table. The idea of hashing is to distribute entries of (key, value) form

12

2.4 Mapping Stages

uniformly across an array. Each element is assigned a key. We can access the

element in O(1) time using that key. The algorithm (hash function) computes an

index that indicates where an entry can be found or inserted using the key.

In our case, the hash table is a data structure that stores the seeds and their

corresponding locations in the reference genome. These regions are also known

as k-mers. After receiving genomic reads from the sequencing process, the mapper

extracts read-seeds from each read. Then it uses these read-seeds as a key to query

the hash table index. The hash table returns a list of all occurrence locations

of the read-seed in the reference genome. The simplicity and the short indexing

time explain its popularity.

The second most popular type of indexing is the one that uses suffix-tree-based

techniques. We define a suffix tree as a representation of a trie corresponding to

the suffixes of a given string where all nodes with one child are merged with their

parents [68]. In our case, a suffix tree is a tree-like data structure where each

branch represents different genome suffixes. When two suffixes of the genome

share the same prefix, the prefix needs to be stored only once. The leaf nodes of

the suffix tree store all the locations of the specific unique suffix in the reference

genome. Contrary to a hash table, a suffix tree supports searching for exact

and inexact match seeds by traversing the tree branches from the root to a leaf

node.

2.4.2 Seeding and Filtering

The second step in genome mapping is finding each read’s potential positions in

the reference sequence. This method is known as seeding. During seeding, the

aligner first finds sub-strings of a DNA read that are exactly matching (or with

a small error) in the genome at one or more than one place [77]. The genome

mapper first extracts the read-seeds from each read sequence. Then by querying

the index database, it determines the occurrences of each extracted read-seed in

the reference sequence and their locations.

The determined seed locations are used to reduce the search space from the whole

reference sequence to only the nearby region of each seed location. Filtering

13

2.4 Mapping Stages

is the method of identifying and extracting only the regions of the reference

genome that are likely to be similar to each of the read sequences. This method

is applied before pairwise alignment, and the goal is to discard seed locations that

pairwise alignment would consider a poor match [38]. Many mapping tools try

this technique to avoid wasting computation on unnecessary alignments.

2.4.3 Seed Chaining and Extension

For each read-seed, the algorithm can also select only a small number of seeds

that are apart from each other rather than selecting a large number of them.

Most algorithms that support this approach attempt to restrict the number of

differences at the gaps to avoid aligning a read to highly different regions in the

reference genome [3]. The mapper performs this approach using seed extension

followed by seed chaining. After locating an exact match between a read and the

reference genome, the read alignment algorithm tries to extend the matching seed

in both directions to the point where there are no more exact matches. These

are called maximal exact matches (MEMs). Second, the algorithm explores the

gaps between neighboring extended seeds in the reference genome and applies a

pairwise alignment, a process to build a longer chain of these adjacent extended

seeds.

The seed length and the seed type can affect the number of possible seed locations

in the reference sequence [5]. For short seeds, the number of such locations is

vast when considering the human genome’s magnitude. The repetitive nature of

genome sequences has, as a result, the high frequency of appearances of the same

seeds on the reference. Many possible locations for short seeds impose a significant

computational load. Thus, most read alignment algorithms apply heuristics to

bypass searching all the seed locations in the reference genome [12, 13, 15]. Longer

seed lengths reduce the number of possible seed locations in the reference genome

and the number of chosen seeds from each read. These advantages come at the

cost of a possible reduction in alignment sensitivity. To increase the seed length

without reducing the alignment sensitivity, seeds can be generated as spaced

seeds.

14

2.4 Mapping Stages

2.4.4 Pairwise Alignment

The last step is called pairwise alignment. This method identifies the similarity/d-

ifferences and other relationships between pieces (local or global) of all extracted

reads and each of the corresponding regions of the reference sequence [1, 2, 30, 47].

It can be used in the seed-extension part that we explained earlier. The algorithm

should find the best possible alignment and determine the minimum number of

differences between the two sequences and their locations. The algorithm also

tries to determine the type of these differences. Each pairwise sequence align-

ment problem is solved by maximizing (or minimizing) an alignment score.

The alignment score uses a function called gap-penalty. Introducing gaps can

allow an alignment algorithm to match additional terms compared to zero gap

alignment. However, minimizing gaps in an alignment is vital to create a proper

alignment. Too many gaps can make an alignment to become pointless. Gap

penalties are used to adapt alignment scores based on the number and length of

gaps.

The three main gap penalty types are the constant (edit distance), linear, and

affine [6]. In the constant, a fixed negative score is given to every gap. The linear

gap penalty considers the length ’L’ of each insertion or deletion in the gap. If the

penalty for each inserted or deleted element is ’P’ and the length of the gap ’L’,

the total gap penalty would be the product of the two PL. The gap-affine model

is the most widely used and combines the components in both the constant and

linear gap penalty, taking the form O + E · L. ’O’ is known as the gap opening

penalty, ’E’ the gap extension penalty, and ’L’ the length of the gap. Gap opening

represents the cost required to open a gap of any length, and gap extension is the

cost to extend the length of an existing gap by one. Affine gap scores are more

general than linear and the edit distance costs, but are more costly to compute

by a constant factor [6].

There are three main classifications of pairwise alignment [19]. First, we have

global alignment. Here, the algorithm attempts to align two sequences entirely,

from beginning to end, aligning every character in each sequence only once. The

global alignment will contain all the characters from the query and the target

15

2.5 Genome Mappers

sequences. This option is suitable if the two sequences are similar and have ap-

proximately the same length. The second is called local alignment. This method

determines the best alignment between a subsequence of the query and a sub-

sequence of the target sequences. This option is suitable for aligning more di-

verging sequences. Lastly, we have semi-global alignment, which is a variant of

global alignment. This option allows for gaps to exist at the edges of one of the

sequences.

Pairwise alignment algorithms can be categorized as dynamic programming (DP)

and non-DP-based algorithms. The DP-based algorithms can be implemented

as local alignment via Smith-Waterman [69] , global alignment via Needleman-

Wunsch [52], Gotoh [28], or variations of them [24]. In that case, the entirety

of one sequence is aligned to one of the ends of the other sequence. The non-

DP algorithms include Hamming distance and the Rabin-Karp algorithm [37].

DP-based algorithms are favored over non-DP algorithms when one is interested

in finding genetic substitutions, insertions, and deletions. The local alignment

algorithm is generally preferred over global alignment when only a fraction of the

read is expected to match some reference genome regions.

Lastly, the alignment process generates the alignment file, which contains align-

ment information such as the exact number of differences, the location of each

difference, and their type.

2.5 Genome Mappers

The following sections describe the main characteristics of the investigated genome-

mapping tools: Minimap2, Bwa-Mem2, and Bowtie2.

2.5.1 Minimap2

Minimap2 (mm2) [43] is a state-of-the-art sequence mapper and aligner. The

mapper is used mostly for long-read sequencing platforms like Oxford Nanopore

Technologies (ONT) and Pacific Biosciences (PacBio). Figure 2.3 depicts the

main components of mm2. Like most full genome aligners, its algorithm is based

16

2.5 Genome Mappers

on the classic seed-chain-align model. It has an offline pre-processing step to

build an index from a reference sequence. The reference genome is indexed in the

offline pre-processing step. It uses a hash table with the popular k-mer samples

called minimizers. These minimizers are used as the key and minimizer locations

on the reference as the values.

The next step is seeding. This step identifies short fixed-length exact matches

(minimizers) between a read and a reference sequence. When mm2 processes a

read, the extracted minimizers from the read are used to search the index for

exact matches. These exact matches (anchors) are then sorted based on position

in the reference.

Chaining takes the sorted anchors as the input and identifies collinear ordered sub-

sets of anchors called chains such that no anchor is used in more than one chain.

Minimap2 implements chaining using 1-dimensional dynamic programming where

a complex problem is recursively broken down into simpler sub-problems. Chain-

ing sub-selects a few regions (chains) on the target reference and reduces the work

for the next step of base-level alignment.

Figure 2.3: Minimap2 main components

Further, if base-level alignment is requested, the mapper applies 2-dimensional

dynamic programming (Smith-Waterman [69], Suzuki-Kazahara[71]) to extend

17

2.5 Genome Mappers

from the ends of chains to close the gaps between neighboring anchors in the

chains. Minimap2 can map long noisy DNA/cDNA/mRNA reads, short, accurate

genomics reads, find overlaps between long reads, and align to a whole reference

genome or genome assembly.

2.5.2 Bwa-Mem2

Bwa-Mem2 [76] is another well-known tool for mapping short reads to larger

reference sequences. The algorithm is composed of five main kernels. First is

the SMEM kernel, which is responsible for the seeding. It searches for super

maximal exact matches (SMEMs) between the read and the reference using FM-

Index. Then it outputs SA intervals of the SMEMs. Maximal exact matches,

called MEMs, are the exact matches between substrings of two different sequences

that cannot be further extended in either of their directions. By extension, we

call SMEM the MEM that is not contained in any other MEM on the read

sequence.

The SAL kernel is next, where a suffix array lookup is carried out using the SA

intervals to get the coordinates in the reference sequence. Following that, we

have the CHAIN kernel, which chains collinear seeds close to each other. Chain

filtering attempts to decrease the unsuccessful seed extension at the later step

by filtering out short chains primarily contained in a long chain and much worse

than the long chain.

BSW kernel is responsible for extending the seeds we filtered in the previous step.

It uses a banded Smith-Waterman (BSW) alignment algorithm that computes

only a diagonal band of the dynamic programming matrix. The last kernel,

SAM-FORM, is responsible for formatting the output in the SAM format.

Bwa-mem2 is an improved version of Bwa-Mem [42], where they use architecture-

aware optimizations to speed up the three main kernels (SMEM, SAL, and BSW).

BSW and SMEM are instruction bound, and SMEM is also partially memory

latency bound [76]. Bwa-Mem2 makes SAL kernel an insignificant contributor to

the overall execution time.

18

2.5 Genome Mappers

2.5.3 Bowtie2

Bowtie 2 [41] is also a tool for aligning sequencing reads to long reference se-

quences. It is mainly used to align short reads of about 50 up to 300s of characters

to relatively long genomes. Bowtie 2 extends the FM-Index method of Bowtie

to allow gapped alignment by splitting the algorithm into two stages. First is

the ungapped seed-finding stage, which benefits from the speed and memory ef-

ficiency of the FM-Index, and a gapped extension stage that utilizes dynamic

programming and takes advantage of the efficiency of SIMD parallel processing

available on processors.

Bowtie 2 is performed in four steps. For every read, we need to align; first, it

extracts exact matches (seeds) from the read and its reverse complement. Then,

the extracted substrings are aligned exactly to the reference using the FM-Index.

Third, seed alignments are prioritized, and their positions in the reference genome

are calculated from the index. Finally, the exact matches are extended into full

alignments using an accelerated Smith-Waterman implementation [24].

19

Chapter 3

Experimental Evaluation of

Genome Mappers

This chapter introduces the basic setup on which we conducted our characteri-

zation analysis. It also provides a scalability, bottleneck, and microarchitecture

analysis using the Intel VTune profiler, for of three widely used genome mappers

(Minimap2 [43], Bowtie2 [41], and Bwa-Mem2 [76]).

3.1 Experimental Setup

In the subsequent subsections, we present the characteristics of the machine we

utilized for this thesis’s experimentation. We document the tools that we used

and their versions. These include, among others, profilers as well as simulators

for creating the datasets. Finally, we provide the specifications of the datasets

we use and how we acquired them. These datasets were used as input for the

various analysis throughout this thesis.

3.1.1 Machines

For the experimentation part, we used the processing power of Marenostrum4

nodes that belongs to the Barcelona Supercomputing Center. MareNostrum4 is a

20

3.1 Experimental Setup

supercomputer composed of Intel Xeon Platinum processors (Skylake). This sys-

tem is composed of SD530 Compute Racks, an Intel Omni-Path high-performance

network interconnect, and a SuSE Linux Enterprise Server operating system [10].

Its current Linpack Rmax Performance is 6.4708 Petaflops. This general-purpose

block consists of 48 racks housing 3456 nodes. We will focus on the characteristics

of one compute node as we use only a few for our experiments.

Figure 3.1: Marenostrum 4 node [11]

Figure 3.1 illustrates a mn4 compute node. Each one is equipped with 2 x Intel

Xeon Platinum 8160 CPUs with 24 cores each at 2.10GHz for a total of 48 cores

per node. The cache hierarchy consists of L1d and L1i caches of 32K, L2 cache of

size 1024K, and L3 cache of 33792K. It contains a 96GB main memory with 1.88

GB available per core. The available interconnection networks are a 100 Gbit/s

Intel Omni-Path HFI Silicon 100 Series PCI-E adapter or a 10 Gbit Ethernet.

There is also available a 200 GB local SSD for temporary storage during jobs.

21

3.1 Experimental Setup

The processors support well-known vectorization instructions such as SSE, AVX

up to AVX–512.

3.1.2 Tools

We use several tools for this thesis, such as genome mappers, profilers, and

dataset simulators. We will now introduce each of them and the exact versions

we used.

Starting with the genome mappers, we used Minimap2 [43], Bowtie2 [41], and

Bwa-Mem2 [76]. Minimap2 is a versatile sequence alignment program that aligns

DNA or mRNA sequences to a large reference database. The usual use case is

mapping PacBio or Oxford Nanopore genomic reads to the human genome, but

it is not limited to that. It offers many other functions, such as finding overlaps

between long reads with error rates up to 15% or aligning Illumina single- or

paired-end reads. For Minimap2, we use the Minimap2-2.24 release.

We continue with Bowtie2 mapper, a tool for aligning sequencing reads to long ref-

erence sequences. Contrary to Minimap2, which specializes in long reads, Bowtie2

is particularly good at aligning reads of about 50 up to 1000s of bases to relatively

long genomes. We use version 2.4.5 for that tool. Next is Bwa-Mem2 genome

tool, which, similarly to Bwa-Mem2, is also suitable for sequence reads up to

100 base pairs. The primary use case is mapping DNA sequences against a large

reference genome. We use version 0.7.17 for our research.

In our experiments, we need sequence reads as input for the genome mappers. To

feed them with sequences, we rely on real datasets that are open to the public.

To better control the input data, we also used sequence simulators to produce

simulated sequences, particularly pbsim2 [56, 57] and mason2 [31, 44]. For long

reads, we use pbsim2. It is a long reads simulator that implements sampling-based

or model-based simulations. It specializes in producing Continuous Long Reads

(CLRs) of PacBio, and Nanopore reads. We also use Mason2, which simulates

HTS reads given a genome, and optionally, a VCF file with variants for a given

donor to use as the source. We used Version 2.0.0-beta1.

22

3.1 Experimental Setup

For the performance analysis of the genome-mapping tools, we mainly use the

Intel® VTune™ Profiler [36]. It is a well-known profiler used for various types of

analysis, such as hotspots analysis, microarchitecture exploration, memory access

analysis, and others. We used version 2021.7.1, which is provided with Intel®
oneAPI Base Toolkit.

3.1.3 Datasets

For our experimentation, we use both real datasets and simulated ones. The real

datasets belong to three well-known technologies, which can also be grouped based

on the length of their reads. For short reads, we use Illumina technology, while for

long reads, we use PacBio and Oxford Nanopore technologies. Table 3.1 describes

the characteristics of the real datasets used for our experimentation.

Furthermore, we used two read simulators to create simulated datasets. First,

we have pbsim2, which simulates Continuous Long Reads (CLRs) of PacBio,

and Nanopore reads. In our case, we simulated PacBio reads. Then we also

used mason2, a read simulator software for Illumina, 454, and Sanger reads. For

mason2, we decided to simulate Illumina reads. We have four more datasets,

D1, D2, D3 and D4 which are created using the dataset generator offered from

the WFA library. D1 and D2 both contain a number of 10K sequences with an

average of 10K bases length each. The difference is that D1 has an error of 5%

while D2 has an error of 15%. D3 and D4 both contain a number of 1M sequences

with an average of 150 bases length each. The difference is that D3 has an error

of 5% while D4 has an error of 15%. Table 3.2 describes the characteristics of the

specific simulated datasets used for our experimentation. We use the Genome

Reference Consortium Human Build 38 (GRCh38) as the reference dataset. It is

composed of genomic sequences, primarily finished clones that were sequenced as

part of the Human Genome Project.

23

3.2 Scalability Analysis

Technology
Number of

Sequences

Length

min/max/average

Number

of Bases

Input

Size

Illumina 10M 148/148/148 148M 3.3G

PacBio 100K 24/55495/6779.23 678M 1.3G

Oxford Nanopore 100K 1/353743/9270 927M 1.8G

Table 3.1: Real Datasets

Simulated

Technology

(or Name)

Number of

Sequences

Length

min/max/average

Sampled

From

Number

of Bases

Input

Size

pbsim2 100K 10K/10K/10K PacBio 1000M 1.9G

mason2 10M 150/150/150 Illumina 150M 3.1G

D1 10K 9913/10K/10074 - 100M 0.2G

D2 10K 9867/10K/10128 - 100M 0.2G

D3 1M 143/150/159 - 150M 0.3G

D4 1M 133/150/169 - 150M 0.3G

Table 3.2: Simulated Datasets

3.2 Scalability Analysis

We start our analysis by exploring the scalability of the genomic-mapping tools.

We use scalability to indicate the ability of hardware and software to handle larger

amounts of work by enabling the usage more resources, in this case, processors.

The scalability can be analyzed by estimating how its performance varies as a

function of the input size growth and the number of processors. We attempt

to measure how the genome mappers scale using the available datasets. We

measure strong scalability which indicates how the solution time varies with the

number of processors for a fixed total problem size. To extract this information

we compare the ideal speedup to the actual speedup that is computed by the

elapsed time of executions in the Marenostrum 4 node starting with one thread

up to 48 threads.

24

3.2 Scalability Analysis

We start with Bowtie2 using the two available datasets of short reads, the real

Illumina data and the simulated dataset from mason2. As we see from the scala-

bility plots in Figure 3.2 and Figure 3.3, we get similar speedups for both datasets.

The application scales very good up the maximum available number of threads.

For 48 threads, we get a speedup of 44.13 with the ideal being 48. This difference

indicate that is a small room for improvements to improve the scalability.

Figure 3.2: Scalability plot of Bowtie2 using Illumina real dataset

25

3.2 Scalability Analysis

Figure 3.3: Scalability plot of Bowtie2 using Mason2 simulated dataset

Next, we use the same datasets to measure the scalability of Bwa-Mem2. From

Figures 3.4 and 3.5, we can detect a scalability problem that is evident early

on after using twelve of the available threads. The divergence between the ideal

Speedup and the actual Speedup increases dramatically as we approach the max-

imum number of available threads.

26

3.2 Scalability Analysis

Figure 3.4: Scalability plot of Bwa-Mem2 using Illumina real dataset

The application is inefficient for the maximum number of threads as the actual

Speedup is far from ideal, resulting in a parallel efficiency as small as 0.61 for

the Illumina dataset and 0.66 for the simulated dataset. Parallel efficiency is

a metric of the utilization of the resources of the improved system defined as

E =
Speedup

Number of Processors
. The ideal value for efficiency is equal to one. The

result indicates that parts of the application do not scale well.

27

3.2 Scalability Analysis

Figure 3.5: Scalability plot of Bwa-Mem2 using Mason2 simulated dataset

We continue with Minimap2, using the long read datasets, the real PacBio and

Oxford Nanopore datasets, and the simulated dataset created using pbsim2. Fig-

ures 3.6, 3.7 and 3.8 show the results of the scalability analysis for the three

different datasets in the prior mentioned order. All of the cases appear to have a

scalability problem. This seems to happen for the first two datasets when using

over twelve threads, while for the Pbsim2 dataset, this seems to appear earlier

just by using over six threads. Also, the Pbsim2 dataset gives us a speedup for

the maximum number of threads equal to 21.66, which is the worst compared to

all the previous cases for this number of threads.

28

3.2 Scalability Analysis

Figure 3.6: Scalability plot of Minimap2 using real Oxford Nanopore dataset

Figure 3.7: Scalability plot of Minimap2 using real PacBio dataset

29

3.3 Bottleneck Analysis

Figure 3.8: Scalability plot of Minimap2 using simulated Pbsim2 dataset

3.3 Bottleneck Analysis

In Bottleneck Analysis, we identify the most time-consuming functions of our

genomic tools. We used the Hotspots Analysis option that is offered by the

Intel VTune profiler to identify these functions. For our experiments, we used

all the available threads (i.e., 48) on the node. We run the analysis for Bowtie2,

Bwa-Mem2, and Minimap2 with the combinations of our previously defined input

sequences. We grouped the most time-consuming function of each tool into three

groups attending to the main three steps of genome mapping tools: seeding,

chaining/filtering, and alignment/extension.

30

3.3 Bottleneck Analysis

Figure 3.9: Bottleneck analysis of genomic tools executions

Figure 3.9 contains the results of the bottleneck analysis. For Bowtie2, both

the real and the simulated datasets provide similar results. We can see that the

alignment part is the most time-consuming. With Bwa-Mem2, we see that for

both datasets, the seeding and the alignment parts share a similar percentage of

execution time with the alignment stage being slightly larger. Interestingly, in

Minimap2, the time distribution of the three modules varied across all the input

data types. For instance, the chaining was the most time-consuming step for the

ONT datasets, whereas PacBio CLR datasets required spending the majority of

the time in the alignment phase. In that case of ONT reads, the chaining part is

the most consuming and is attributed to the irregularity of workload of the ONT

reads, which vary in read lengths [64]. The results obtained for Minimap2 and

the datasets we have tested agree with previous research [64] published.

31

3.4 Microarchitecture Exploration

3.4 Microarchitecture Exploration

Microarchitecture exploration analysis of VTune collects a complete list of profil-

ing events for analyzing a typical application. It calculates a collection of prede-

fined ratios used for the metrics and identifies hardware-level performance prob-

lems. Roughly speaking, we divide superscalar processors into the front-end and

back-end parts. In front-end the instructions are fetched and decoded into the

operations. In back-end the required computation is performed. Each cycle, the

front-end generates these operations (Uops) and places them into pipeline slots

that then move through the back-end. For some time interval, vtune determines

the maximum number of pipeline slots that could have been filled and issued

during that time interval. This analysis splits all pipeline slots into four main

categories: Front-End bound, Bad Speculation, Retired, and Back-End Bound.

Figure 3.10 presents a two-fold chart that ends up with the four leaf categories

used as high-level performance metrics.

In more detail, Front-End represents the first part of the processor core respon-

sible for fetching operations that the Back-End part will later execute. Basically,

the Front-End fetches instructions from the memory subsystem and decodes them

into micro-ops (uOps). Front-End Bound metric defines a slots fraction where

the processor’s Front-End undersupplies its Back-End when there is no Back-

End stall. For instance, we can categorize stalls due to instruction-cache misses

as Front-End Bound.

32

3.4 Microarchitecture Exploration

Figure 3.10: Chart of VTune’s high-level metrics in Microarchitecture Exploration

Analysis

The ’Bad Speculation’ metric represents the percentage of pipeline slots wasted

due to incorrect speculations. These can be slots used to issue uOps that do not

eventually get retired. Also, it may be slots for which the recovery from earlier in-

correct speculation has blocked the issue pipeline. For instance, we can categorize

the wasted work due to mispredicted branches as Bad Speculation.

The ’Retiring’ metric expresses the percentage of pipeline slots utilized by useful

work, which describes the number of issued uOps that eventually retire. Maxi-

mizing Retiring typically increases the instructions per cycle. When we achieve

the maximum possible number of uOps retired per cycle, the Retiring metric

equals 100%.

Back-End represents the portion of the processor where an out-of-order scheduler

dispatches uOps into execution units. Once completed, these uOps get retired

according to program order. Back-End Bound metric expresses the percentage

of pipeline slots where no uOps are being delivered due to a lack of required

resources in the Back-End. For instance, we can classify as Back-End Bound the

stalls due to data-cache misses.

33

3.4 Microarchitecture Exploration

Back-End Bound is further divided into two main categories: Memory Bound

and Core Bound. Memory Bound measures the percentage of slots where the

pipeline could be stalled due to demand load or store instructions. Core Bound

represents how much Core non-memory issues were a bottleneck. Shortages in

hardware compute resources or dependencies of software’s instructions are cate-

gorized under Core Bound.

We applied this type of analysis for Bowtie2, Bwa-Mem2 and Minimap2, with the

combinations of some of our predefined inputs sequences. Figure 3.11 depicts the

fractions of slots that we ascribe to one of the five metric categories: Front-End

Bound, Memory-Bound, Core-Bound, Bad Speculation, and Retiring.

Figure 3.11: Microarchitecture exploration analysis chart of the executions

Again, the Bowtie2 executions follow the same behavior for both of the datasets.

It is apparent that the retiring slot constitutes the most significant percentage

of all. From VTune, we found that in Bowtie2, the functions that constitute the

alignment part have a large value for the retiring metric. As we found that the

34

3.5 Summary

majority of time is spent on the alignment part, it makes sense to have a larger

value for the retiring metric for the total execution.

We see similar results for Bwa-Mem2. Note that the percentage of time spent on

the seeding part for Bwa-Mem2 is similar to the one with Bowtie2. For Minimap2,

we can see some differences. We know that the execution of the PacBio dataset

spends most of the time during the alignment step in comparison with the other

two datasets. For that dataset, we see a larger value on the retiring metric for

the whole execution. We can see that there is a correlation where the alignment

part, in general, has a higher Retiring metric value. From our exploration, we

have concluded that the seeding part is more memory bound in comparison with

the alignment part. This can be explained as the mapper needs to query the

index data structure, which results in a sizeable memory footprint and irregular

memory accesses.

3.5 Summary

In this chapter we performed a detailed performance analysis of widely used

genome-mapping tools (Minimap2, Bwa-Mem2, and Bowtie2). This analysis of-

fered insights into the mapping tools’ scalability, bottlenecks, and microarchitec-

ture behavior, in a Marenostrum 4 node. We also tested with datasets from dif-

ferent sequencing technologies. The result was that Bowtie2 scales very well up to

the maximum of 48 threads tried in total. On the other hand, Bwa-Mem2, as well

as Minimap2, starts having scalability problems after the use of 12 threads.

The bottleneck analysis indicated that most of the time, the alignment step, is the

most consuming part of the execution. The only exception is when we use ONT

reads in Minimap2. In that case, the chaining part is the most consuming and is

attributed to the irregularity of workload of the ONT reads, which vary in read

lengths [64]. The microarchitecture exploration indicated that the percentage of

pipeline slots utilized by useful work (which describes the number of issued uOps

that eventually retire) is very high in the alignment step. This can is attributed

to the large number of computations during that step. On the other hand, the

percentage of slots where the pipeline could be stalled due to demand load or

35

3.5 Summary

store instructions (memory bound) is higher in the seeding part. This is usually

due to the fact that, during the seeding stage, accesses to the genome’s index

(having a large memory footprint) often put pressure on the memory hierarchy

and lead to memory inefficiencies.

36

Chapter 4

Accelerating Sequence

Alignment

In the previous chapter, we discussed the results of the experimental evaluation for

the genome-mapping tools. These results indicate that the alignment step (i.e.,

pairwise alignment or sequence to sequence alignment) is one of the most time-

consuming step during most executions. In the following sections, we propose

strategies for the acceleration of the alignment step.

4.1 Classical Sequence Alignment Algorithms

In most cases, the pairwise alignment problem is solved using some variation of the

Needleman–Wunsch (NW) algorithm [52] (i.e., using gap-linear penalties) or the

Smith–Waterman–Gotoh (SWG) algorithm [28] (i.e., using gap-affine penalties).

These solutions are based on dynamic programming (DP) and require computing

some recurrence equations on a DP matrix and, then, perform a traceback on the

matrix to retrieve the optimal alignment.

Let us assume that we have two sequences consisting of characters A,T,G,C. The

query q = q0q1q2...qn−1 which is a string of length |q| = n and the text t =

t0t1t2...tm−1 of length |t| = m. We define the pairwise global alignment problem

as the computation of the alignment from (0, 0) to (n,m) of a DP matrix, with

37

4.1 Classical Sequence Alignment Algorithms

minimum penalty score, allowing matching bases, substitutions, insertions and

deletions. Under the gap-affine model, the alignment penalty score is computed

based on the values of {a, x, o, e}, where a and x correspond to the penalty of

matching or mismatching two bases, respectively, and the gap-penalty function is

expressed as the linear function g(n) = o+n · e, where o is the open-gap penalty,

n is the length of the gap and e is the extend-gap penalty. Eq. 4.1 shows the

recurrence relations of the DP matrix used in the SWG algorithm. Note that

the majority of applications use strictly positive penalties (x, o, e > 0) and the

mismatch penalty x stays the same throughout the whole alignment.


Iv,h = min{Mv,h−1 + o + e, Iv,h−1 + e}
Dv,h = min{Mv−1,h + o + e,Dv−1,h + e}
Mv,h = min{Iv,h, Dv,h,Mv−1,h−1 + s(qv−1, th−1)}

(4.1)

where,

s(v, h) =

{
a, qv = th
x, qv 6= th

}
for 0 ≤ v < n and 0 ≤ h < m

As a result, DP-based algorithms require quadratic time and memory on the

length of the sequences to compute the optimal alignment. The quadratic execu-

tion time of these classical approaches quickly becomes the execution bottleneck,

and these methods fail to scale with longer read lengths [47]. Moreover, intrin-

sic dependencies on the DP recurrences limit the effectiveness of vectorization

approaches.

Both the KSW2 [72] algorithm (found at the heart of Minimap2 and Bwa-Mem)

and Farrar’s Smith-Waterman implementation [24] (found within Bowtie2) are

based on traditional DP algorithms. These algorithms have limited capabilities

for vectorization. For that reason, we are interested in a more flexible algorithm

that not only accelerates the alignment process, but also enables the usage of

SIMD instructions.

We propose to replace the classical DP-based algorithm with the recently pro-

posed wavefront alignment algorithm (WFA) [47, 48]. WFA is an alignment

38

4.2 Wavefront Alignment Algorithm (WFA)

algorithm that computes the exact alignment (i.e., computes the optimal align-

ment) between two sequences using gap-affine penalties. Unlike the traditional

DP-based algorithms, this algorithm can be vectorized, enabling the efficient ex-

ploitation of SIMD instructions found on modern processors. In the following, we

present the WFA, we propose a fully vectorized implementation, and we evaluate

its performance compared to the scalar WFA implementation and other classical

DP-based algorithms.

4.2 Wavefront Alignment Algorithm (WFA)

In short, WFA computes partial alignments of increasing score s until the optimal

alignment is found. The WFA algorithm takes advantage of homologous regions

between sequences to accelerate the alignment process. As a result, the WFA

algorithm largely outperforms other state-of-the-art methods, requiring O(ns)

time and O(s2) memory (where n is the length of the sequence and s is the optimal

alignment score). In the following, we explain in more detail the algorithm and

its properties.

4.2.1 Wavefront Furthest-Reaching Diagonals

WFA algorithm is based on the observation that diagonals on the DP-matrix

have monotonically increasing scores. Intuitively, to compute the minimum score

on a given cell of the DP-matrix, it is sufficient to compute the cells with a

smaller score, as the values along each diagonal always increase. More formally,

∀s (scores) and ∀k (diagonals) we define as further reaching point Fs,k, the DP-

cell, on diagonal k and with score s, that is more far-off from the beginning of

the diagonal. Also, a point p = (v, h), in the diagonal k = h− v, is further than

other p′ = (v − 1, h − 1) (p′ < p) in the same diagonal. For a given score s we

define Ĩs,k, D̃s,k, and M̃s,k as the offsets in the diagonal to the f.r. point Fs,k for

each of the three SWG matrices I, D, and M .

For a given score s, we define the s-wavefront (WFs) as the set of all the further

reaching points with score s, which is the set of offsets Ĩs,k, D̃s,k, and M̃s,k,

∀k. Likewise, we call Ĩs, D̃s, and M̃s, the components of the wavefront WFs.

39

4.2 Wavefront Alignment Algorithm (WFA)

Assuming each component of a wavefront s (Ĩs, D̃s, M̃s) is a vector of offsets

centered over the main diagonal (k = 0), let M̃hi denote the index of the rightmost

diagonal in the component, and M̃ lo the index of the lowest.

The goal is to find the minimum score s, so as any of the f.r. points of WFs

reaches the point (n,m) in the DP matrix. We observe that for any s, the f.r.

points of WFs can only be originated from points whose score is s−o, s−e, s−x

or from a previous point with the same score s followed by matches along the

diagonal. Essentially we can compute the set of f.r. points of WFs using WFs−o,

WFs−e, and WFs−x. Considering only insertions, deletions, and mismatches; we

can redefine Eq. 4.1 in terms of offsets to f.r. points (Eq. 4.2). Derived from

Eq. 4.2, Figure 4.1 denotes the dependencies between wavefronts as to compute

one element of the next wavefront.

Ĩs,k = max

{
M̃s−o−e,k−1 (Open insertion)

Ĩs−e,k−1 (Extend insertion)

}
+ 1

D̃s,k = max

{
M̃s−o−e,k+1 (Open deletion)

D̃s−e,k+1 (Extend deletion)

}

M̃s,k = max


M̃s−x,k + 1 (Substitution)

Ĩs,k (Insertion)

D̃s,k (Deletion)


(4.2)

with initial condition M̃0,0 = 0

40

4.2 Wavefront Alignment Algorithm (WFA)

Figure 4.1: Dependencies between wavefronts as to compute one element of the

next wavefront

4.2.2 Alignment Algorithm using Wavefronts

The WFA algorithm (Algorithm 1) progressively computes wavefronts of increas-

ing score until the cell (n,m) is reached. Ak denotes the diagonal that the cell

(n,m) belongs to. Aoffset is initialized with the offset of cell (n,m) from the start.

WFA starts by initializing M̃0,0 = 0 and the best score s to 0.

Iteratively, for each score s, the algorithm extends the points M̃s,k following

matching characters along the diagonals, using WF EXTEND(M̃s, q, t) (Algo-

rithm 2). Then, it checks whether any of the resulting f.r. points of wavefront

WFs reaches (n,m). If not, the algorithm proceeds to compute the next wavefront

WFs+1 using WF NEXT(D̃, Ĩ, M̃ , q, t, s) (Algorithm 3, which applies Eq. 4.2),

and iterates again.

Each new wavefront grows to span over one more diagonal on each end (i.e., M̃hi
s

and M̃ lo
s) compared to the wavefronts it depends on. As a result, the size of each

subsequent wavefront increases proportional to the alignment score between the

sequences. Hence, the algorithm requires O(s2) memory to store all wavefronts.

Also, note that extending a wavefront (WF EXTEND function) is bounded by

the number of diagonal matching characters (max{n,m}) and the length of the

wavefront. Similarly, the function WF NEXT computes each next wavefront in

41

4.2 Wavefront Alignment Algorithm (WFA)

Algorithm 1: Gap-affine WFA algorithm algorithm
Input: q, t strings, p = {x, o, e} gap-affine penalties

Output: Gap-affine alignment A between q and t under p penalties

Function WF ALIGN(q, t, P) begin

// Diagonal and offset to (n,m)

Ak ← (m− n) ;

Aoffset ← m ;

// Initial conditions

M̃0,0 ← 0 ;

// Incremental computation of wavefronts

s← 0 ;

while true do

// Exact extend s-wavefront

WF EXTEND(M̃s, q, t) ;

// Check exit condition

if (M̃s,Ak
≥ Aoffset) then break ;

// Compute wavefront for the next score

s← s + 1 ;

WF NEXT(M̃, Ĩ, D̃, q, t, s)

// Backtrace alignment

A←WF BACKTRACE(M̃, Ĩ, D̃, q, t, s) return A

time proportional to the wavefront length. Therefore, the running time of the

WFA algorithm, to compute an alignment of score s, is bounded in the worst

case by O(max{n,m} · s), or O(ns) assuming that the sequences have the same

length.

Algorithm 3: Compute next wavefront

Input: M̃, Ĩ, D̃ wavefronts, q, t strings, s score

Function WF NEXT(M̃, Ĩ, D̃, q, t, s) begin

hi← max{M̃hi
s−x, M̃

hi
s−o−e, Ĩ

hi
s−e, D̃

hi
s−e}+ 1 ;

lo← min{M̃ lo
s−x, M̃

lo
s−o−e, Ĩ

lo
s−e, D̃

lo
s−e} − 1 ;

for k ← lo to hi do

Ĩs,k ← max{M̃s−o−e,k−1, Ĩs−e,k−1}+ 1 ;

D̃s,k ← max{M̃s−o−e,k+1, D̃s−e,k+1} ;

M̃s,k ← max{M̃s−x,k + 1, Ĩs,k, D̃s,k} ;

Once the algorithm computes a wavefront that reaches (n,m), and therefore, it

42

4.3 Exploiting SIMD Paralellism in WFA

Algorithm 2: Wavefront extend

Input: M̃s wavefront, q, t strings

Function WF EXTEND(M̃, q, t) begin

for k ← M̃ lo to M̃hi do

v ← M̃s,k − k ;

h← M̃s,k ;

while p[v] == t[h] do

M̃s,k ← M̃s,k + 1 ;

v ← v + 1 ;

h← h + 1 ;

can retrieve back the path that leads from (0, 0) to (n,m) (backtracing). WFA’s

backtrace is performed across the wavefronts’ offsets instead of using the DP ma-

trix scores. On each step of the backtrace, the function determines which f.r.

point, from the previous wavefronts, originated the current offset. The differ-

ence between the actual offset and the source is the total amount of matching

characters between the two positions.

4.3 Exploiting SIMD Paralellism in WFA

As described previously, the wavefront algorithm splits its operation into two

steps. The algorithm uses the wavefront-extend kernel when it needs to extend

the offsets along the diagonal to the f.r. points based on the matching characters

for each score s. The second part of the computation is the wavefront-compute

kernel, which computes the next wavefront anytime it is needed.

First, we examine the option of vectorizing the code of the compute wavefront

kernel as depicted in Listing 4.1. First, the code fetches the offsets and performs

a loop peeling. After the two steps mentioned above, an opportunity appears

to exploit parallelism. That is because all the code’s diagonals (from lo to hi)

have to compute the subsequent offsets. There is no loop-carried dependency

as we always read from previous offsets arrays and store it to the next offsets

array. Two MAX operations comprise the body of the loop. This type of loops

43

4.3 Exploiting SIMD Paralellism in WFA

can even be auto-vectorized by the compiler if the user instructs the compiler

to do so and assess that there are no dependencies between iterations. With

#pragma GCC ivdep, the programmer we can assert that there are no loop-

carried dependencies that would prevent consecutive iterations of the following

loop from being executed concurrently with SIMD instructions. Note that, if

the compiler could not prove that vectorizing is safe due to data dependency, we

could do assert so by using this directive.

1 void edit_wavefronts_compute_wavefront(

2 edit_wavefront_t* const wavefront ,

3 edit_wavefront_t* const next_wavefront ,

4 const int pattern_length , const int text_length , const int

distance) {

5

6 // Fetch wavefronts

7 const int hi = wavefront ->hi, lo = wavefront ->lo;

8 next_wavefront ->hi = hi+1;

9 next_wavefront ->lo = lo -1;

10 // Fetch offsets

11 ewf_offset_t* const offsets = wavefront ->offsets;

12 ewf_offset_t* const next_offsets = next_wavefront ->offsets;

13 // Loop peeling (k=lo -1)

14 next_offsets[lo -1] = offsets[lo];

15 // Loop peeling (k=lo)

16 const ewf_offset_t bottom_upper_del =

17 ((lo+1) <= hi) ? offsets[lo+1] : -1;

18 next_offsets[lo] = MAX(offsets[lo]+1, bottom_upper_del);

19 // Compute next wavefront starting point

20 int k;

21 #pragma GCC ivdep

22 for (k=lo+1;k<=hi -1;++k) {

23 // const int del = offsets[k+1]; // Upper

24 // const int sub = offsets[k] + 1; // Mid

25 // const int ins = offsets[k-1] + 1; // Lower

26 // next_offsets[k] = MAX(sub ,ins ,del); // MAX

27 const ewf_offset_t max_ins_sub =

28 MAX(offsets[k],offsets[k-1]) + 1;

29 next_offsets[k] = MAX(max_ins_sub ,offsets[k+1]);

30 }

31 // Loop peeling

44

4.3 Exploiting SIMD Paralellism in WFA

32 const ewf_offset_t top_lower_ins =

33 (lo <= (hi -1)) ? offsets[hi -1] : -1;

34 next_offsets[hi] = MAX(offsets[hi],top_lower_ins) + 1;

35 next_offsets[hi+1] = offsets[hi] + 1;

36 }

Listing 4.1: Compute Wavefront (Edit Distance)

Using the ivdep directive enables the compiler to proceed without considering

loop-carried dependencies. That way, we do not need to use SIMD intrinsics

or other vectorization technique that would be much more time-consuming and

error-prone. Alas, this is not quite the same for extend step of the WFA. The

wavefront-extend kernel can not leverage the auto-vectorization features as its

operation is more complex.

Listing 4.2 contains the sequential code of wavefront extend. For every diagonal k,

the algorithm first fetches the offset on the current offset on the specific position.

Then it acquires the pointers to the pattern and text blocks specified in the

current diagonal. The next step is to compare 64-bit blocks (i.e., 8 characters) of

both sequences: pattern and text. If all of them are the equal, the code compares

the next chunk of the sequences. Each iteration increases the value of the offset

on that diagonal by four. The algorithm repeats this process iteratively using a

while-loop until the algorithm detects the first difference in the comparison. That

will mean that the algorithm will exit the while loop and, after that, it will have

to determine the actual number of equal characters in the chunk before the first

difference. The algorithm repeats the same process for each of the diagonals in

the wavefront.

For every diagonal k, the number of 64-bit blocks of sequences the algorithm

needs to compare is unknown and, in most cases, irregular across diagonals. This

irregularity is the main obstacle preventing the automatic vectorization by the

compiler. Another problem is that the algorithm performs a gather operation in

each iteration to bring from memory the chunks of the sequences that need to be

compared. The compiler will attempt to gather and scatter memory positions,

but this operations can be very inefficient in many processors. The only way

45

4.3 Exploiting SIMD Paralellism in WFA

around this issue is to explicitly use vector intrinsics, template classes, or assembly

language. In this case, we have opted for doing it manually using intrinsics.

1 void wavefront_extend(

2 wavefront_aligner_t* const wf_aligner ,

3 wavefront_t* const mwavefront ,

4 const int lo,

5 const int hi) {

6

7 wf_offset_t* const offsets = mwavefront ->offsets;

8 int k;

9

10 for (k=lo;k<=hi;++k) {

11 // Fetch offset

12 const wf_offset_t offset = offsets[k];

13 if (offset == WAVEFRONT_OFFSET_NULL) continue;

14

15 // Fetch pattern/text blocks

16 uint64_t* pattern_blocks =

17 (uint64_t *)(wf_aligner ->pattern+WAVEFRONT_V(k,offsets[k])

);

18 uint64_t* text_blocks =

19 (uint64_t *)(wf_aligner ->text+WAVEFRONT_H(k,offsets[k]));

20

21 // Compare 64-bits blocks

22 uint64_t cmp = *pattern_blocks ^ *text_blocks;

23 while (__builtin_expect(cmp==0,0)) {

24 // Increment offset (full block)

25 offsets[k] += 8;

26 // Next blocks

27 ++ pattern_blocks;

28 ++ text_blocks;

29 // Compare

30 cmp = *pattern_blocks ^ *text_blocks;

31 }

32

33 // Count equal characters

34 const int equal_right_bits = __builtin_ctzl(cmp);

35 const int equal_chars = DIV_FLOOR(equal_right_bits ,8);

36 offsets[k] += equal_chars;

37 }

46

4.3 Exploiting SIMD Paralellism in WFA

38 }

Listing 4.2: Wavefront Extend Initial Code

Vectorization is a vital tool for improving the performance of code running on

modern CPUs. It is the process of transforming an algorithm from performing

on a single value at a time to operating on a larger set of values at once. Modern

CPUs provide explicit support for vector operations where a single instruction is

applied to multiple data (i.e., SIMD). There is a range of alternatives and tools

for implementing vectorization. An established way to perform vectorization is

using vector intrinsics. As for Intel’s processors, vector registers appeared in 1997

with MMX instruction set, having 80-bit registers. After that, SSE instruction

sets were released with 128-bit registers. In 2011, Intel released the Sandy Bridge

architecture with the AVX instruction set with 256-bit registers. In 2016 the first

AVX-512 CPU was released, with 512-bit registers.

Figure 4.2 depicts the evolution of register space. As a part of SSE, Intel intro-

duced the 128-bit XMM [0,15] space in the 64-bit execution mode. In 2011 Intel

extended the register space with YMM[0, 15] registers in the 64-bit mode to sup-

port the 256-bit AVX and AVX2 extensions. The lower 128 bits that belong to

the YMM registers are aliased to the respective 128-bit XMM registers. Intel ex-

tended the register space with ZMM[0,31] AVX-512 register space in 64-bit mode.

This ISA extension provides 32 512-bit wide registers [zmm0,zmm31]. Similarly,

the lower 256 bits of the ZMM registers are aliased to the respective 256-bit YMM

registers and the lower128 bits to the respective 128-bit XMM registers.

47

4.4 Vectorization Using AVX-512 Intrinsics

Figure 4.2: Evolution of register space

In this work, we decided to study the case of using Advanced Vector Extensions

(AVX) to vectorize and accelerate the wavefront algorithm. In particular, we

explore the use of AVX2 and AVX-512. The folling chapters contain the steps we

took to achieve the final versions bot for AVX2 and AVX-512, as well as a final

performance assessment.

4.4 Vectorization Using AVX-512 Intrinsics

Intel AVX-512 is a vectorization extension to the Intel x86 instruction set that

can perform single instruction multiple data (SIMD) instructions over vectors of

512 bits. Intel AVX-512 doubles the width of the vector register in comparison

to its predecessor AVX2, doubling the number of registers to decrease latency

further. It also contains additional optimizations to accelerate tasks for modern

workloads further. Three primary vector data types are specified, as shown in

Figure 4.3. First is m512, which accounts for a 512-bit vector containing 16

floats. Then we have m512d, which describes a 512-bit vector containing eight

doubles. Finally, we have m512i 512-bit vector containing integers. An integer

vector type can contain any type of integer, from chars to shorts to unsigned long

longs. An m512i may contain sixty-four chars, thirty-two shorts, Sixteen ints, or

eight longs. These integers can be signed or unsigned.

48

4.4 Vectorization Using AVX-512 Intrinsics

Figure 4.3: AVX-512 Data Types

4.4.1 Initial Approach

Figure 4.4 depicts the first attempt to vectorize the extend-wavefront kernel. The

idea is to take blocks of sixteen wavefront elements, representing the diagonals’

offsets, and try to parallelize the computation using vectorization intrinsics. We

can fit the values of the offsets of the diagonals into a vector register that can

represent sixteen integer values (a total of 512 bits) for sixteen of the diagonals.

For each diagonal k, the code fetches the correct part of text and pattern in order

to compare them using vectors.

We can compare a maximum of four characters each time by fetching only 32

bits (4 characters) to fill in the vector register for all sixteen diagonals. The

comparison for all diagonals returns a vector of integers representing the position

of the first difference of the strings compared for each diagonal. For example, if

we have a difference between the first characters of the sub-strings, we will give

the zero value, but if the sub-strings are identical, it will get the value four (which

represents that there is no difference).

Using that vector, we update the offsets of the wavefront and deactivate the

lanes for which we have already found a difference. The algorithm repeats the

process for the lanes (diagonals) in which the comparison returns the value four.

When the algorithm reaches a point where no diagonal can extend more, it stores

the new offsets and continues with the successive 16 (or fewer) diagonals. The

following section explains the AVX-512 intrinsics used to vectorize the code.

49

4.4 Vectorization Using AVX-512 Intrinsics

Figure 4.4: Abstract of AVX-512 vectorization strategy

4.4.2 Implementation

Listing 4.3 presents the first stage of the AVX-512 vectorized code implementa-

tion. After the initialization of the necessary parameters (offsets,k min,k max),

there is a need to declare and initialize some important helping vectors that are

used later in the code. We have, for example, the vector ”fours”, which contains

a vector with just the value of four in each lane. The intrinsic mm512 set1 epi32

broadcasts 32-bit integer a to all elements of a vector. One of these vectors is also

the vecShuffle vector. We need to store 64 integers that will be used as indexes

to a shuffle operation. In this scenario, we can use mm512 set epi8, which sets

packed 8-bit integers in the vectors with the supplied values.

50

4.4 Vectorization Using AVX-512 Intrinsics

We continue with the for-loop, which acts on packs of sixteen diagonals each

time to parallelize their computation using vectorization. Having initialized ”k”

with the minimum diagonal of the current repetition, we first initialize a vector

ks that contains the indexes of consecutive diagonals. We also initialize a new

vector kmax vector that contains in each element the value of k max. Using

the intrinsic mm512 cmple epi32 mask we then compare the elements of vector

ks that contains the indexes of the diagonals, with the elements of kmax vector

that contain the k max value, for less-than-or-equal, and store the results in mask

vector mask. We use the mask vector to deactivate the lanes where the index is

over k max.

Using the intrinsic mm512 maskz loadu epi32 we can then load from memory

the offsets of the wavefront that corresponds to the current diagonals into the

new vector called offsets vector, using the vector mask of the previous step.

The algorithm will use the offsets vector to find the correct h and v values for

each offset, which indicate the starting position in the strings of text and pattern

accordingly.

The next step is to iteratively compare parts of the pattern and the text, as

described in the previous section. We use a while-loop where in each iteration,

we check if all the lanes are deactivated, which means that there is no diagonal

left that needs to be extended. We check using the mm512 mask2int function,

which converts the bit mask vector into an integer. The transformation to an

integer happens after performing first a zero extend computation on the 16-bit

mask. When the value zero is returned, all the diagonals have finished with their

computation, and we need to exit the while-loop.

Inside the while-loop, we first need each diagonal to fetch the parts of the pattern

and text to compare them. As described in the previous section, each iteration

of the while-loop compares four characters of pattern and text for each diagonal.

These chunks of four characters equal 32 bits. Different indices for each diagonal,

from where we need to fetch, force us to use a gather paradigm. We achieve that

using the mm512 mask i32gather epi32 intrinsic, which gathers 32-bit integers

from memory using 32-bit indices. These 32-bit integers represent a chunk of four

51

4.4 Vectorization Using AVX-512 Intrinsics

consecutive characters of the pattern or text. It also uses the mask in order to

perform this operation only for the lanes that are still activated.

After extracting the parts of pattern and text, a problem arises when we need

to compare them: the intrinsic for the gather stores the integers with the re-

versed endianness of what we need to represent the four characters accurately.

In order to change the endianness of each element of the vector, we use the

mm512 shuffle epi8 intrinsic, which shuffles packed 8-bit integers in the vec-

tor according to the shuffle control mask. Using the correct indices can allow

us to virtually change the order of the represented characters by changing the

endianness of the integer.

In order to compare the text and the pattern, we can perform an XOR operation

using the intrinsic mm512 maskz xor epi32. That produces a 1 in the charac-

ter’s position that differs between the two strings. Then by counting the zeros

before we encounter the first ’1’, we can see how far the extension reached for

each diagonal and also to which diagonals will need to continue the extension or

be deactivated. We use the intrinsic mm512 maskz lzcnt epi32, which counts

the number of leading zero bits in each packed 32-bit integer in the vector. This

information is stored in the vector called clzvector.

With the clz vector, we will need to divide each element by eight to get the number

of equal characters. We store these numbers in the equal chars vector. We use

the intrinsic mm512 maskz srli epi32, which shifts packed 32-bit integers in

the vector right by a specified number (here by three). This vector contains the

number of positions where each diagonal extended its offset for that iteration.

We can then add these values to the corresponding elements of offsets vector to

update the offsets. To prepare the computation for the next iteration of the while-

loop, we also update the h and v vectors. At the end of the while-loop, we have

to update the mask and deactivate the lanes where the elements in equal chars

are smaller or equal to four.

After we finally exit the while-loop, we store the offsets from the vector register

back in the memory. The forenamed procedure will be repeated for the next

chunk of diagonals until we reach k max.

52

4.4 Vectorization Using AVX-512 Intrinsics

1 void ex t end wave f r on t vec to r i z ed (

2 ed i t wav e f r on t t ∗ const wavefront ,

3 const char ∗ const pattern ,

4 const i n t pat t e rn l ength ,

5 const char ∗ const text ,

6 const i n t t ex t l eng th ,

7 const i n t d i s t anc e) {
8

9 // Parameters

10 e w f o f f s e t t ∗ const o f f s e t s = wavefront−>o f f s e t s ;

11 const i n t k min = wavefront−>l o ;

12 const i n t k max = wavefront−>hi ;

13

14 // Extend d i agona l l y each wavefront po int

15 i n t k ;

16

17 // Helping ve c to r s

18 const m512i f ou r s = mm512 set1 epi32 (4) ;

19 const m512i p a t t e r n l e ng th v e c t o r = mm512 set1 epi32 (pa t t e rn l eng th) ;

20 const m512i t e x t l e n g t h v e c t o r = mm512 set1 epi32 (t e x t l e n g th) ;

21 const m512i z e r o v e c t o r = mm512 setzero ep i32 () ;

22 const m512i v e cShu f f l e =

23 mm512 set epi8 (60 ,61 ,62 ,63 , 56 ,57 ,58 ,59 , 52 ,53 ,54 ,55 , 48 ,49 ,50 ,51 ,

24 44 ,45 ,46 ,47 , 40 ,41 ,42 ,43 , 36 ,37 ,38 ,39 , 32 ,33 ,34 ,35 ,

25 28 ,29 ,30 ,31 , 24 ,25 ,26 ,27 , 20 ,21 ,22 ,23 , 16 ,17 ,18 ,19 ,

26 12 ,13 ,14 ,15 , 8 ,9 ,10 ,11 , 4 , 5 , 6 , 7 , 0 , 1 , 2 , 3) ;

27

28 // Compute 16 e lements at the same time , increment the k acco rd ing ly

29 // Assume 32 b i t s e lements

30 const i n t e l em s p e r r e g i s t e r = 16 ;

31 f o r (k=k min ; k<=k max ; k+=e l em s p e r r e g i s t e r) {
32 // Create a vec to r r e g i s t e r ho ld ing the d iagona l numbers

33 m512i ks = mm512 set epi32 (k+15,k+14,k+13,k+12,k+11,k+10,k+9,k+8,

34 k+7,k+6,k+5,k+4,k+3,k+2,k+1,k) ;

35

36 // Create the mask used f o r comparing which e lements are <= k max

37 m512i kmax vector = mm512 set1 epi32 (k max) ;

38 mmask16 mask = mm512 cmple epi32 mask (ks , kmax vector) ;

39

40 // Compute h and v

41 // load 16 e lements s t a r t i n g from o f f s e t s [k]

42 m512i o f f s e t s v e c t o r = mm512 maskz loadu epi32 (mask , &o f f s e t s [k]) ;

43 m512i h vec to r = o f f s e t s v e c t o r ;

44 m512i v vec to r = mm512 maskz sub epi32 (mask , o f f s e t s v e c t o r , ks) ;

45

46 // I n s t r i n s i c to check i f the r e ’ s any b i t s e t in the mask

47 whi le (mm512 mask2int (mask) != 0) {
48 // Gather 32 b i t s o f t ex t / pattern f o r each k

49 m512i pa t t e rn ve c t o r = mm512 mask i32gather epi32 (z e ro vec to r , mask ,

50 v vector , &pattern [0] , 1) ;

51

53

4.4 Vectorization Using AVX-512 Intrinsics

52 m512i t e x t v e c t o r = mm512 mask i32gather epi32 (z e ro vec to r , mask ,

53 h vector , &text [0] , 1) ;

54

55 // Change end ianes s to make the xor + c l z cha rac t e r comparison

56 pa t t e rn ve c t o r = mm512 shu f f l e ep i8 (pa t t e rn vec to r , v e cShu f f l e) ;

57 t e x t v e c t o r = mm512 shu f f l e ep i8 (t ex t ve c t o r , v e cShu f f l e) ;

58

59 // Compare bases on each lane and get l e ad ing z e ro s on each lane

60 m512i x o r r e s u l t v e c t o r = mm512 maskz xor epi32 (mask , pa t t e rn vec to r ,

61 t e x t v e c t o r) ;

62 m512i c l z v e c t o r = mm512 maskz lzcnt epi32 (mask , x o r r e s u l t v e c t o r) ;

63

64 // Divide c l z by 8 (1 cha rac t e r) to get the number o f equal cha ra c t e r s

65 m512i equa l cha r s = mm512 maskz sr l i ep i32 (mask , c l z v e c t o r , 3) ;

66

67 //update o f f s e t s us ing equa l cha r s

68 o f f s e t s v e c t o r = mm512 mask add epi32 (o f f s e t s v e c t o r , mask ,

69 o f f s e t s v e c t o r , equa l cha r s) ;

70

71 // v+4 h+4

72 v vec to r = mm512 maskz add epi32 (mask , v vector , f ou r s) ;

73 h vec to r = mm512 maskz add epi32 (mask , h vector , f ou r s) ;

74

75 // Only l ane s with equa l cha r s == 4 cont inue (no mismatch found yet)

76 mask = mm512 mask cmpeq epi32 mask (mask , equa l char s , f ou r s) ;

77 }
78

79 mm512 storeu epi32 (& o f f s e t s [k] , o f f s e t s v e c t o r) ;

80

81 }
82 }

Listing 4.3: First Attempt of AVX-512 Implementation

4.4.3 Optimizations

In this section, we present the optimizations that improved the efficiency of our

implementation. We implemented specific techniques and minor code alternations

that helped us reach the final version of the AVX-512 implementation for the

extension part of the wavefront algorithm.

4.4.3.1 Hybrid Implementation

After a statistical analysis using various input datasets, it was shown that, on

average most of the lanes are deactivated from the first iteration of the while-loop.

54

4.4 Vectorization Using AVX-512 Intrinsics

Specifically, we created four representative datasets, which we used to measure the

average percentage of times we needed more than one iteration on the vectorized

while-loop. We found that the code needs to do a second iteration 5.43% of

the time on average, while it needs to do a third iteration 0.03% of the time on

average. Thus, after the first iteration, there is a big chance that they are only

some (or none) of the offsets that still need to be extended. Using a vectorized

code after the first iteration causes unnecessary overhead, which the remaining

amount of work cannot mitigate. Therefore, we decided to implement another

version where we only do one iteration of the while-loop to be vectorized. After

the first iteration, the remaining diagonals that have not finished the extension

continue to extend their offsets sequentially.

Listing 4.4 shows the altered part of the implementation. We use a while-loop to

iterate through the diagonals. For efficiency reasons, we do not want to iterate

through all the sixteen diagonals, only in the ones that are needed to be extended.

For that reason, we use the following strategy. First, we use the builtin ctz

function, which returns the number of trailing zeros in the 16-bit mask. That

number also indicates the diagonal we need to extend in the current chunk of

16 diagonals. In order to access the correct global diagonal, we have to add this

number (used as an offset) to the current minimum diagonal. Then, we just

sequentially extend for the selected diagonal. After storing the new offsets for

the specific diagonal, we then have to change the bit of the mask to zero for the

diagonal that we investigated. Then we repeat the same procedure. That way,

we only do the necessary repetitions.

1 void ex t end wave f r on t vec to r i z ed (. . .) {
2 . . .

3 f o r (k=k min ; k<=k max ; k+=e l e m s p e r r e g i s t e r) {
4 // Create a vec to r r e g i s t e r ho ld ing the d iagona l numbers

5 // Create the mask f o r comparing which e lements are <= k max

6 //Compute h and v

7 //Load 16 elements s t a r t i n g from o f f s e t s [k]

8

9 // ONE ITERATION OF VECTORIZED CODE

10

11 // Gather 32 b i t s o f t ex t / pattern f o r each

55

4.4 Vectorization Using AVX-512 Intrinsics

12 //Change endianness to make the xor + c l z charac t e r comparison

13 //Compare bases on each lane and get l e ad ing z e ro s on each lane

14 // Divide c l z by 8 to get the number o f equal c h a r a c t e r s

15 //Update o f f s e t s

16 //v=v+4, h=h+4

17 //Update mask

18 // Store the new o f f s e t va lue s back to the memory

19

20 // SEQUENTIALLY

21

22 i n t mask = mm512 mask2int (vector mask) ;

23 whi le (mask != 0) {
24 // tz conta in s the number o f t r a i l i n g 0 s in the 16 b i t mask

25 i n t tz = b u i l t i n c t z (mask) ;

26 // cur r k = current min k + the cur rent s e l e c t e d d iagona l

27 i n t cur r k = k + tz ;

28 . . .

29 // Count equal c h a r a c t e r s

30 const i n t e q u a l r i g h t b i t s = b u i l t i n c t z l (cmp) ;

31 const i n t equa l ch s = DIV FLOOR(e q u a l r i g h t b i t s , 8) ;

32 o f f s e t s [cu r r k] += equa l ch s ;

33 }
34

35 // With t h i s operat i on we change the b i t o f the mask that

36 //we j u s t extended to zero

37 mask &= (0 x f f f e << tz) ;

38 }
39 }
40 }

Listing 4.4: Hybrid Execution Optimization

4.4.3.2 Loop Unrolling of Remaining Diagonals

In general, the number of the diagonals to process can be arbitrarily large. More-

over, there is a good possibility that it will not be a multiple of sixteen, which is

the number of elements that we vectorize for each outer iteration. That means

there is a good possibility that we may create unnecessary overhead for the vec-

torization for the last diagonals that we need to examine. That happens because

56

4.4 Vectorization Using AVX-512 Intrinsics

we will have to execute the intrinsics on the whole vector register even if we have

only one diagonal left to extend, which is only one element in the register.

Loop peeling is the second optimization that was implemented. Listing 4.5

depicts the changes in the code. The idea is to sequentially extend the remaining

diagonals that would not be multiple of sixteen. The remaining diagonals will be

then multiple of sixteen. That way, we ensure that when we use the vectorization

intrinsics, all the lanes will be available for useful work. In our implementation,

we first compute the remaining iterations if we make a modulo of sixteen to the

total number of diagonals. After computing and updating the new offsets for

these diagonals, we add the value of the remaining diagonals to the k min value.

This will be the new initial value used as k min for the vectorized for-loop.

1 void ex t end wave f r on t vec to r i z ed (. . .) {
2 . . .

3 const i n t e l e m s p e r r e g i s t e r = 16 ;

4 i n t num of d iagona l s = k max−k min+1;

5 i n t l o o p p e e l i n g i t e r s = num of d iagona l s %16;

6

7 f o r (i n t i=k min ; i<k min+l o o p p e e l i n g i t e r s ; i++){
8 . . .

9 o f f s e t s [i] += equa l ch s ;

10 }
11 k min+=l o o p p e e l i n g i t e r s ;

12 f o r (k=k min ; k<=k max ; k+=e l e m s p e r r e g i s t e r) {
13 // 1 . ONE ITERATION OF VECTORIZED CODE

14 // 2 . SEQUENTIALLY EXTEND THE REMAINING DIAGONALS

15 }
16 }

Listing 4.5: Loop Peeling Implementation

4.4.3.3 Other Code Improvements

Some other optimizations of the code result in the execution of fewer instruc-

tions. One of them is a change in how we assign the ks vector with the new

diagonals in each iteration of the while loop. The change is depicted in Listing

4.6. Instead of updating all the elements in each iteration with new values using

57

4.4 Vectorization Using AVX-512 Intrinsics

the mm512 set epi32 intrinsic, we now assign only once before the for-loop, and

in every iteration, we just add to each element a step value for the new suc-

cessive indexes of diagonals which is equal to sixteen. We now use the intrinsic

mm512 add epi32, which is very efficient (latency of one cycle). Also, we assign

only once the kmax vector before the for-loop starts.

Another small optimization is for the hybrid version to check the mask before

continuing to the sequential extension of the remaining diagonals. If the mask is

equal to zero, all the diagonals have been extended as much as possible during

the vectorization step, so there is no need to continue.

1 void ex t end wave f r on t vec to r i z ed (. . .) {
2

3 // 1 . SEQUENTIALLY EXTEND THE REMAINING DIAGONALS

4

5 m512i ks = mm512 set epi32 (k−1,k−2,k−3,k−4,k−5,k−6,k−7,k−8,

6 k−9,k−10,k−11,k−12,k−13,k−14,k−15,k−16) ;

7

8 f o r (. . .) {
9 ks = mm512 add epi32 (ks , v e c o f 1 6 s)) ;

10

11 // 2 . ONE ITERATION OF VECTORIZED CODE

12

13 i f (mask == 0) {
14 cont inue ;

15 }
16

17 // 3 . SEQUENTIALLY EXTEND THE REMAINING DIAGONALS

18

19 }
20 }

Listing 4.6: Other Code Optimizations

4.4.4 Performance Evaluation

In this section, we compare the different versions and optimizations used for the

vectorization of the wavefront extend kernel. Table 4.1 contains the essential met-

rics of VTune’s microarchitecture exploration analysis that we need to compare

58

4.4 Vectorization Using AVX-512 Intrinsics

the various implementations of the code. In this analysis as well as the following

ones we use the two simulated datasets D1 and D2. Their specifications can be

found in Table 3.2.

We split the code into three main sections based on the final version of the

code. First, we have the loop-peeling part, then there is the one iteration of the

vectorized code, and finally, the scalar part where the extension of the remaining

diagonals that needs a second iteration of extension takes place. We are more

interested in three metrics acquired from VTune. First, the instructions retired

metric represents how many instructions were completely executed. The second

is called Clockticks, the basic unit of time recognized by each physical processor.

The clockticks here are considered non-sleep. The third metric shown in the table

is the clockticks per instructions retired (CPI) which is calculated by dividing the

number of unhalted processor cycles (Clockticks) by the number of instructions

retired. The smaller the CPI, the better.

Starting from the initial vectorized implementation, it is shown that the number

of instructions decreased significantly with an average percentage decrease equal

to 79.6%. We define percentage decrease as Pd = Starting Value-Final Value
|Starting Value| · 100.

Percentage decrease shows the loss of value from the original, expressed as a

percentage regardless of units. Also, the clockticks were decreased giving us an

average speedup equal to 1.3. In contrast, we observe an increase in the CPI.

With the help of the rest of the optimizations, we decreased the total number

of instructions retired up to an average percentage decrease equal to 89,94%.

The number of clockticks is also reduced. We achieve an average speedup equal

to 2.9 for the final vectorized wavefront-extend function compared to the scalar

one.

59

4.4 Vectorization Using AVX-512 Intrinsics

Versions Sub-Sections Instructions (B) Clockticks (B) CPI

Error (%) D1 D2 D1 D2 D1 D2

Scalar

Loop-Peeling - - - - - -

SIMD - - - - - -

Scalar - - - - - -

Total 167.9 336.5 23.5 31.5 0.140 0.094

Initial

Implementation

Loop-Peeling - - - - - -

SIMD 34.4 68.1 22.6 20.2 0.659 0.297

Scalar - - - - - -

Total 34.4 68.1 22.6 20.2 0.659 0.297

Hybrid

Loop-Peeling - - - - - -

SIMD 30.2 59.9 15.8 10.4 0.539 0.174

Scalar 2.4 4.8 1.8 1.1 0.742 0.237

Total 32.7 65.1 17.6 11.6 0.539 0,178

Loop-Peeling

Loop-Peeling 1.8 2.4 0.3 0.8 0.183 0.034

SIMD 29.4 59.4 13.8 8.4 0.471 0.141

Scalar 3.3 6.0 1.9 1.1 0.557 0.181

Total 34.6 68.3 16.1 9.6 0.466 0.141

Other

Optimizations

Loop-Peeling 1.8 2.6 0.3 0.1 0.216 0.056

SIMD 14.2 28.6 13.0 7.1 0.915 0.247

Scalar 1.0 1.7 1.1 0.5 1.026 0.268

Total 17.1 33.4 14.5 7.7 0.840 0.232

Table 4.1: Performance metrics for the different stages of optimizations (Instruc-

tions and Clocktics are expressed in Billions)

Even if there is a decrease in the execution time, it is not as close to the ideal

achievable speedup using AVX-512. Based on the size of the registers we used,

the maximum achievable speedup is equal to sixteen. In the final version of the

code (Table 4.1) we conclude that the most significant part of the execution time

is spent on the vectorized part (89% of the time). So the scalar parts are not the

bottleneck. In Appendix A, we can see the assembly code for the primary part

that uses AVX-512 intrinsics. The main reason for the latency seems to be the

gather function which has a considerable latency of twenty-five cycles. That seems

to affect the execution the most. The problem here is that the next instruction

60

4.5 Vectorization using AVX2 Intrinsics

depend on the gathers which make the big latency significant. We also have a

move operation that takes eight cycles that we may need to eliminate. In the next

section, we explore the use of AVX2, which is supported by more processors and

can ideally provide us with more negligible latency for the respective intrinsics,

such as the intrinsic for the gather, and probably the use of alternative/different

intrinsics, which can provide us with less overall latency.

4.5 Vectorization using AVX2 Intrinsics

Advanced Vector Extensions 2 (AVX2) is a vectorization extension to the Intel

x86 instruction set that can perform single instruction multiple data (SIMD) in-

structions over vectors of 256 bits. Figure 4.5 depicts the three main vector data

types supported. First is m256, which accounts for a 256-bit vector containing

eight floats. Then we have m256d, which describes a 256-bit vector containing

four doubles. Finally, we have m256i 256-bit vector containing integers. An

integer vector type can contain any type of integer, from chars to shorts to un-

signed long longs. An m256i may contain 32 chars, 16 shorts, eight ints, or four

longs. These integers can be signed or unsigned.

Figure 4.5: AVX2 Data Types

4.5.1 Implementation

To achieve vectorization using the AVX2 intrinsics, we followed the same steps

as we did for AVX-512. We follow the same strategy as Figure 4.4 with the

61

4.5 Vectorization using AVX2 Intrinsics

main difference being that we have half the capacity in the vector registers. That

being said, in each iteration of the outer for-loop of the diagonals, we only process

eight diagonals at a time. We extended this idea and implemented the same

optimizations as we did with AVX-512.

Most of the intrinsics offered for AVX-512 in our implementation also have a

counterpart version for AVX2. For example in AVX-512 we have the intrinsic

mm512 add epi32 while in AVX2 we have mm256 add epi32. Both add packed

32-bit integers of two vector registers and assign the result to another vector

register. In general, the intrinsics in AVX2 will have lower latency than the

corresponding intrinsics in AVX-512. Also, the CPI of AVX2 intrinsics is equal

to or lower than the corresponding ones in AVX-512.

Appendix B presents the assembly code for the primary part that uses AVX2

intrinsics. We can see that the latency of the gather functions is smaller but

with not that much difference. We also see a decreased CPI for some of the

instructions.

Table 4.2 depicts the performance results we acquired from VTune. We can see

again that the reduction in both the retired instructions and the clockticks is

noticeable. Specifically, we have an average percentage decrease of 83% for the

number of instructions. The total clockticks are also reduced giving us an average

speedup equal to 3.4 for the total execution. We see an improvement compared

to AVX-512, but still, we are far from the ideal speedup (equal to eight when

using AVX2).

62

4.5 Vectorization using AVX2 Intrinsics

Versions Sub-Sections Instructions (B) Clockticks (B) CPI

Error (%) D1 D2 D1 D2 D1 D2

Scalar

Loop-Peeling - - - - - -

SIMD - - - - - -

Scalar - - - - - -

Total 167.9 336.5 23.5 31.5 0.140 0.094

AVX2 Base

Implementation

Loop-Peeling 1.1 1.3 0.1 0.7 0.100 0.051

SIMD 26.5 48.1 8.3 6.1 0.316 0.126

Scalar 1.0 7.0 0.7 1.1 0.587 0.170

Total 28.6 56.7 9.1 7.3 0.317 0.130

Table 4.2: Performance evaluation of the first version (optimized) with AVX2

(Instructions and Clocktics are expressed in Billions, CPI)

4.5.2 Unrolling a Second Iteration of Vectorized Code

We know that the gather intrinsic is still the bottleneck. Figure 4.6 depicts the

execution trace of the instructions for two iterations of the outer for-loop where

the vectorized code uses the gathers. Because of the dependencies between each

iteration, in the second iteration, the gather functions take a long to be dispatched

and eventually retired completely. So the gather functions in the second iteration

are retired on cycle ninety.

In this figure, the colors of the pipeline have the following meaning. Light blue

means that the instruction is predecoded, and darker blue means that it is added

to IDQ. Light red means the instruction is issued, and dark red means it is

ready for dispatch. Orange means it is eventually dispatched, yellow means it is

executed, and green means it is retired.

63

4.5 Vectorization using AVX2 Intrinsics

Figure 4.6: Execution trace of vectorized part with AVX2

One way to decrease this delay is to use loop-unrolling of the outer for-loop of

the execution as shown in Listing 4.7. The loop is unrolled by a factor of 2. So,

for every outer for-loop iteration of the diagonals, we extend sixteen diagonals

(instead of eight) using a duplicate code for two blocks of eight elements. These

blocks of instructions use different sets of variables. As we use duplicate code

adapted for the two blocks of elements, we reduce the dependencies between

these two blocks.

1 void ex t end wave f r on t vec to r i z ed (. . .) {
2 // 1 . SEQUENTIALLY EXTEND THE REMAINING DIAGONALS

3

4 f o r (k=k min ; k<=k max ; k+=16) {
5 // 2 . ONE ITERATION OF VECTORIZED CODE

64

4.5 Vectorization using AVX2 Intrinsics

6 // HERE WE HAVE DUPLICATE CODE

7 // ACTING OVER TWO BLOCKS OF 8 ELEMENTS

8

9 // 3 . SEQUENTIALLY EXTEND THE REMAINING DIAGONALS

10

11 }
12 }

Listing 4.7: AVX2 Loop Unrolling

The previous dependencies hold every other iteration of the initial outer loop

instead of each iteration. That allows us to dispatch the two gathered instructions

of the second iteration earlier, achieving better pipelining and, eventually, better

throughput. We can see that effect in Figure 4.7 where we see the execution

trace when using loop-unrolling for the outer for-loop. Now the gather functions

of the second iteration (from the initial implementation) have been retired by

cycle fifty-three. This is a significant improvement. This pipelining of the gather

functions will happen every other iteration of the initial implementation.

65

4.5 Vectorization using AVX2 Intrinsics

Figure 4.7: Execution trace of vectorized part with AVX2 using loop unrolling

4.5.3 Performance Evaluation

Table 4.3 depicts the performance results we acquired from VTune, comparing

the two versions of the AVX2 implementation. The loop-unrolling technique has

improved slightly the execution time of the vectorized part providing us with an

average speedup of 1.2 for the vectored part between the loop-unrolling version

and the basic version with AVX2. In general, comparing the final version of AVX2

with the scalar version, we have an average percentage decrease in the number

of instructions equal to 83.5% and an average speedup for the clockticks equal to

3.6 for the overall execution of the extend-wavefronts kernel.

66

4.6 Comparison of Vectorized WFA Implementations

Versions Sub-Sections Instructions (B) Clockticks (B) CPI

Error (%) D1 D2 D1 D2 D1 D2

Scalar

Loop-Peeling - - - - - -

SIMD - - - - - -

Scalar - - - - - -

Total 167.9 336.5 23.5 31.5 0.140 0.094

AVX2 Base

Implementation

Loop-Peeling 1.1 1.3 0.1 0.7 0.100 0.051

SIMD 26.5 48.1 8.3 6.1 0.316 0.126

Scalar 1.0 7 0.7 1.1 0.587 0.170

Total 28.6 56.7 9.1 7.3 0.317 0.130

Loop

Unrolling

Loop-Peeling 1.9 2.5 0.2 0.2 0.100 0.057

SIMD 23.7 46.3 6.4 6.1 0.272 0.132

Scalar 2.1 5.6 0.9 1.2 0.469 0.203

Total 27.8 54.7 7.5 7.5 0.274 0.153

Table 4.3: Performance evaluation of the loop-unrolling version of AVX2 (In-

structions and Clocktics are expressed in Billions)

4.6 Comparison of Vectorized WFA Implemen-

tations

This section compares the basic metrics between our implementations in AVX2

and AVX-512. In Table 4.4 we have gathered this information. Both AVX2

and AVX-512 implementations are faster than the scalar implementation, with

speedups of 3.6 and 2.9, respectively. We have implemented the same optimiza-

tions in the AVX-512 and AVX2 base implementation, and we see that the AVX2

implementation is considerably faster.

This can be explained using the appendices A and B. Here we see that the in-

structions of AVX2 have smaller latency and CPI in general. Sometimes the CPI

of AVX2 instructions can be even half the one we have in AVX-512. For example,

the gather instruction has a CPI equal to eight in AVX-512 and a CPI equal to

4 in AVX2. This has a significant effect on the total execution time. We see that

the average CPI of the wavefront extend when using AVX-512 is equal to 0.54.

67

4.7 Comparison of Sequence Alignment Implementations

This is higher compared to the average CPI for the AVX2 base implementation,

which equals to 0.23. That means that even if the AVX-512 implementation has

fewer total instructions retired, the difference in CPI will give the advantage to

the AVX2 version. The AVX2 base implementation is already faster than the

corresponding AVX-512 implementation, using the same optimizations. On top

of that, we tried the loop-unrolling technique to reduce the dependencies between

the iterations of the outer for-loop of the diagonals.

Versions Sub-Sections Instructions (B) Clockticks (B) CPI

Error (%) D1 D2 D1 D2 D1 D2

Scalar

Loop-Peeling - - - - - -

SIMD - - - - - -

Scalar - - - - - -

Total 167.9 336.5 23.5 31.5 0.140 0.094

AVX-512

Loop-Peeling 1.8 2.6 0.3 0.1 0.216 0.056

SIMD 14.2 28.6 13.0 7.1 0.915 0.247

Scalar 1.0 1.7 1.1 0.5 1.026 0.268

Total 17.1 33.4 14.5 7.7 0.840 0.232

AVX2

Loop-Peeling 1.9 2.5 0.2 0.2 0.100 0.057

SIMD 23.7 46.3 6.4 6.1 0.272 0.132

Scalar 2.1 5.6 0.9 1.2 0.469 0.203

Total 27.8 54.7 7.5 7.5 0.274 0.153

Table 4.4: Comparison of AVX implementations (Instructions and Clocktics are

expressed in Billions)

4.7 Comparison of Sequence Alignment Imple-

mentations

We have to calculate the potential speedups we could reach for the genome-

mapping tools (Minimap2, Bwa-Mem2), if we substitute their alignment algo-

rithm (KSW2) with the vectorized WFA implementation. Table 4.5 presents

a performance evaluation of the WFA versions compared to the KSW2 algo-

rithm. We use real datasets (Illumina, PacBio, Nanopore) and four simulated

68

4.7 Comparison of Sequence Alignment Implementations

ones (D1, D2, D3, D4). KSW2 is the current version of KSW used in the genome

tools. WFA (no SIMD) represents the version of WFA where we do not use

any form vectorization. WFA (partial-SIMD) only uses auto-vectorization in the

compute part of the algorithm. WFA+AVX2 uses auto-vectorization in the al-

gorithm’s compute part and AVX2 vectorization intrinsics for the extend part.

The WFA+AVX2 also uses auto-vectorization in the compute part, using this

time AVX-512 vectorization intrinsics. For all the datasets, the AVX vectorized

versions of WFA deliver the best results.

Time(s)

Illumina PacBio Nanopore D1 D2 D3 D4

KSW2 1194.6 315457.4 83425.7 1888.8 1890.6 53.8 56.3

WFA (no SIMD) 34.3 750.0 28726.2 140.4 906.0 8.6 32.5

WFA (partial-SIMD) 32.9 509.4 17626.8 88.8 567.0 7.9 25.1

WFA+AVX2 32.6 391.8 12021.6 61.2 390.0 7.9 23.1

WFA+AVX512 28.8 381.6 12505.8 61.2 390.6 7.8 23.1

Table 4.5: Execution Time of KSW and WFA implementations

Speedup With Respect To KSW2

Illumina PacBio Nanopore D1 D2 D3 D4

WFA (no SIMD) 34.8 420.6 2.9 13.5 2.1 6.2 1.7

WFA (partial-SIMD) 36.3 619.3 4.7 21.3 3.3 6.8 2.2

WFA+AVX2 36.7 805.1 6.9 30.9 4.8 6.8 2.4

WFA+AVX512 41.5 826.7 6.7 30.9 4.8 6.9 2.4

Table 4.6: Speedups of WFA versions with respect to KSW2

Table 4.6 presents the speedups of the different WFA versions with respect to

the KSW2. The speedups indicate a significant improvement in execution time.

The lower speedup is 2.4 for the D4 dataset of short reads. The most significant

speedup is equal to 826.7, and we achieve it for the PacBio dataset, which consists

of long sequences.

69

4.7 Comparison of Sequence Alignment Implementations

Figure 4.8: Theoretical percentage decrease based on the initial bottlenecks char-

acterization and potential overall speedup of genome-mapping tools using the

vectorized WFA algorithm

Figure 4.8 depicts the potential speedups for the genome mapping tools using

our previous hotspots analysis. The percentage of the alignment in the overall

execution decreased dramatically, specifically for the PacBio dataset, where we

have a significant speedup, using vectorized WFA. We can see that the tools have

potential speedups from 1.3 to 2.9 if we substitute the KSW2 algorithm with the

vectorized WFA.

70

Chapter 5

Conclusions

In this thesis, we presented a thorough performance analysis of widely-used

genome-mapping tools (Minimap2, Bwa-Mem2, and Bowtie2). This work of-

fered insights into the mapping tools’ scalability, performance bottlenecks, and

microarchitecture exploitation. In turn, this analysis motivated the necessity of

accelerating the alignment step of the genome-mapping tools. In particular, the

sequence alignment kernel of these tools is based on traditional DP-based algo-

rithms, like Smith-Waterman-Gotoh (i.e., KSW2), which require quadratic time

and memory on the length of the sequences. As a result, the computational

requirements of classical DP-based approaches quickly becomes a critical per-

formance bottleneck, and most of these methods fail to scale with longer read

lengths [47]. Moreover, intrinsic dependencies on the DP recurrences limit the

effectiveness of vectorization approaches.

Consequently, the aim of this work is to motivate more efficient algorithms that

allow accelerating genome-mapping tools. In this thesis, we proposed the utiliza-

tion of the WFA algorithm to replace classical DP-based alignment algorithms.

Moreover, as we showed before, the WFA algorithm can be effectively vector-

ized using SIMD instructions. In particular, both stages of the WFA algorithm

(i.e., extend and compute) are suitable for vectorization. The first stage (WFA

compute) can be easily vectorized using the auto-vectorization features of modern

compilers. However, the second stage (WFA extend) requires a fine-tuned tailored

71

5.1 Future work

vectorized implementation. This way, we proposed two SIMD implementations

using Intel’s AVX2 and AVX512 instructions.

By utilizing the vectorized WFA algorithm we can accelerate the genome-mapping

tools (Minimap2 and Bwa-Mem2) that use the widely-used DP-based algorithm

KSW2, for their alignment step. Specifically, our evaluation indicated that our

vectorized AVX implementation achieves speedups from 2.4× up to 826.7× com-

pared to KSW2. In return, this can yield significant potential speedups for the

genome tools mentioned above, from 1.3 up to 2.9.

5.0.1 Publications

In the context of the work developed for this thesis, the author has contributed

to the elaboration of a scientific paper and a poster. Moreover, he is working on

the preparation of a manuscript derived from this work’s thesis.

• Quim Aguado-Puig, Santiago Marco-Sola, Juan Carlos Moure, Chris-

tos Matzoros, David Castells-Rufas, Antonio Espinosa, and Miquel Moreto.

”WFA-GPU: Gap-affine pairwise alignment using GPUs.” bioRxiv (2022) [2]

• WFA-GPU: Accelerated gap-affine pairwise alignment, 21st European Con-

ference on Computational Biology, 2022 (Poster).

5.1 Future work

In the previous section, we discussed the potential speedups we could attain by

adequately integrating the vectorized WFA implementation into state-of-the-art

genome-mapping tools. Currently, we are working on the integration of these

WFA accelerated implementation into Minimap2 and Bowtie2. Further work in-

volves the analysis and integration into other bioinformatics tools that perform

extensive usage of pairwise alignment primitives. In the future, we would be

interested in examining the possibility of further accelerating WFA on multi-

cores (using intraparallelization techniques). Furthermore, we could extend our

work into the optimization of other critical kernels (like seeding, chaining, and

filtering)

72

5.2 Financial and Technical Support

5.2 Financial and Technical Support

This thesis was supported by the European Unions’s Horizon 2020 Framework

Programme under the DeepHealth project [825111], by the European Union Re-

gional Development Fund within the framework of the ERDF Operational Pro-

gram of Catalonia 2014-2020 with a grant of 50% of total cost eligible under

the DRAC project [001-P-001723] and Lenovo-BSC Contract-Framework Con-

tract (2020). It was also supported by the Spanish Ministerio de Ciencia e Inno-

vacion MCIN AEI/10.13039/501100011033 under contracts PID2020-113614RB-

C21 and TIN2015-65316-P and by the Generalitat de Catalunya GenCat-DIUiE(GRR)

(contracts 2017-SGR-313, 2017-SGR-1328, and 2017-SGR-1414).

73

Chapter 6

Appendices

74

Appendix A: Latency of AVX-512 instructions

for the primary part of vectorization

uOps Latency CPI Instructions

1 1 0.33 vpaddd %zmm5, %zmm9, %zmm1

1 4 1.00 vpcmpled %zmm12, %zmm1, %k1

1 1 0.33 vmovdqa64 %zmm1, %zmm5

1 1 0.33 vmovdqa32 %zmm6, %zmm2

2 8 0.50 vmovdqu32 (%r12), %zmm0 {%k1} {z}
1 1 1.00 kmovw %k1, %k2

1 1 0.33 vpsubd %zmm1, %zmm0, %zmm4 {%k1} {z}
1 1 0.33 vmovdqa32 %zmm6, %zmm1

5 25 8.00 vpgatherdd (%r14,%zmm4), %zmm1 {%k2}
1 1 1.00 kmovw %k1, %k3

5 25 8.00 vpgatherdd (%r15,%zmm0), %zmm2 {%k3}
1 1 1.00 vpshufb %zmm7, %zmm1, %zmm1

1 1 1.00 vpshufb %zmm7, %zmm2, %zmm2

1 1 0.50 vpxord %zmm1, %zmm2, %zmm8 {%k1} {z}
1 5 0.50 vplzcntd %zmm8, %zmm2 {%k1} {z}
1 1 0.33 vpaddd %zmm3, %zmm4, %zmm8 {%k1} {z}
1 1 1.00 vpsrld $3, %zmm2, %zmm1 {%k1} {z}
1 1 0.33 vmovdqa32 %zmm0, %zmm2

1 1 0.33 vpaddd %zmm1, %zmm0, %zmm2 {%k1}
1 1 0.33 vpaddd %zmm3, %zmm0, %zmm4 {%k1} {z}
1 4 1.00 vpcmpled %zmm10, %zmm8, %k1 {%k1}
2 1 1.00 vmovdqu64 %zmm2, (%r12)

1 4 1.00 vpcmpled %zmm11, %zmm4, %k1 {%k1}
1 4 1.00 vpcmpeqd %zmm3, %zmm1, %k0 {%k1}
1 3 1.00 kmovw %k0, %eax

75

Appendix B: Latency of AVX2 instructions for

the primary part of vectorization

#uOps Latency CPI Instructions

1 7 0.50 vlddqu (%r12), %ymm2

1 1 0.33 vpaddd %ymm4, %ymm9, %ymm0

1 1 0.33 vpsubd %ymm0, %ymm2, %ymm1

1 1 0.33 vmovdqa %ymm3, %ymm10

1 1 0.33 vmovdqa %ymm3, %ymm11

1 1 0.33 vmovdqa %ymm0, %ymm4

5 22 4.00 vpgatherdd %ymm10, (%r14,%ymm1), %ymm0

5 22 4.00 vpgatherdd %ymm11, (%r15,%ymm2), %ymm1

1 1 1.00 vpshufb %ymm5, %ymm0, %ymm0

1 1 1.00 vpshufb %ymm5, %ymm1, %ymm1

1 1 0.33 vpxor %ymm1, %ymm0, %ymm1

1 1 0.50 vpsrld $8, %ymm1, %ymm0

1 1 0.33 vpandn %ymm1, %ymm0, %ymm0

1 4 0.50 vcvtdq2ps %ymm0, %ymm0

1 4 0.50 vpsrld $23, %ymm0, %ymm0

1 4 0.50 vpsubusw %ymm0, %ymm8, %ymm0

1 4 0.50 vpminsw %ymm7, %ymm0, %ymm0

1 4 0.50 vpsrld $3, %ymm0, %ymm0

1 4 1.00 vpcmpeqd %ymm6, %ymm0, %k1

1 1 0.33 vpaddd %ymm2, %ymm0, %ymm2

2 1 1.00 vmovdqu %ymm2, (%r12)

1 1 0.33 vmovdqa32 %ymm3, %ymm0 {%k1} {z}
1 2 1.00 vpmovmskb %ymm0, %edx

76

References

[1] Aguado-Puig, Q., Marco-Sola, S., Moure, J. C., Castells-Rufas, D., Alvarez,

L., Espinosa, A., and Moreto, M. (2022a). Accelerating edit-distance sequence

alignment on gpu using the wavefront algorithm. IEEE access , 10, 63782–

63796. 15

[2] Aguado-Puig, Q., Marco-Sola, S., Moure, J. C., Matzoros, C., Castells-Rufas,

D., Espinosa, A., and Moreto, M. (2022b). Wfa-gpu: Gap-affine pairwise

alignment using gpus. bioRxiv . 15, 72

[3] Ahmed, N., Bertels, K., and Al-Ars, Z. (2016). A comparison of seed-and-

extend techniques in modern dna read alignment algorithms. In 2016 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), pages

1421–1428. 14

[4] Alser, M., Bingol, Z., Cali, D., Kim, J., Ghose, S., Alkan, C., and Mutlu, O.

(2020). Accelerating genome analysis: A primer on an ongoing journey. IEEE

Micro, 40(05), 65–75. 2

[5] Alser, M., Rotman, J., Deshpande, D., Taraszka, K., Shi, H., Baykal, P. I.,

Yang, H. T., Xue, V., Knyazev, S., Singer, B. D., Balliu, B., Koslicki, D.,

Skums, P., Zelikovsky, A., Alkan, C., Mutlu, O., and Mangul, S. (2021). Tech-

nology dictates algorithms: recent developments in read alignment. Genome

Biology , 22(1), 249. 12, 14

[6] Alser, M., Lindegger, J., Firtina, C., Almadhoun, N., Mao, H., Singh, G.,

Gomez-Luna, J., and Mutlu, O. (2022). From molecules to genomic varia-

tions: Accelerating genome analysis via intelligent algorithms and architec-

77

REFERENCES

tures. Computational and Structural Biotechnology Journal , 20, 4579–4599. x,

1, 2, 8, 9, 10, 15

[7] Behjati, S. and Tarpey, P. S. (2013). What is next generation sequencing?

Archives of Disease in Childhood - Education and Practice, 98(6), 236–238. 7

[8] Bohannan, Z. S. and Mitrofanova, A. (2019). Calling variants in the clinic:

Informed variant calling decisions based on biological, clinical, and laboratory

variables. Computational and Structural Biotechnology Journal , 17, 561–569.

11

[9] Britannica, T. Editors of Encyclopaedia (2022). Genetic code. https://www.

britannica.com/science/genetic-code. 5

[10] BSC (2021). Marenostrum 4 node specs. https://www.bsc.es/support/

MareNostrum4-ug.pdf. 21

[11] BSC (2022). MN4 Technical Information. https://www.bsc.es/

marenostrum/marenostrum/technical-information. viii, 21

[12] Castells-Rufas, D., Marco-Sola, S., Aguado-Puig, Q., Espinosa-Morales, A.,

Moure, J. C., Alvarez, L., and Moretó, M. (2021). Opencl-based fpga accel-

erator for semi-global approximate string matching using diagonal bit-vectors.

In 2021 31st International Conference on Field-Programmable Logic and Ap-

plications (FPL), pages 174–178. IEEE. 14

[13] Castells-Rufas, D., Marco-Sola, S., Moure, J. C., Aguado, Q., and Espinosa,

A. (2022). Fpga acceleration of pre-alignment filters for short read mapping

with hls. IEEE Access , 10, 22079–22100. 14

[14] CDC (2022). Genomic sequencing. https://www.cdc.gov/coronavirus/

2019-ncov/variants/genomic-surveillance.html. 1, 7

[15] Chacón, A., Marco-Sola, S., Espinosa, A., Ribeca, P., and Moure, J. C.

(2014). Thread-cooperative, bit-parallel computation of levenshtein distance

on gpu. In Proceedings of the 28th ACM international conference on Super-

computing , pages 103–112. 14

78

https://www.britannica.com/science/genetic-code
https://www.britannica.com/science/genetic-code
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.cdc.gov/coronavirus/2019-ncov/variants/genomic-surveillance.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/genomic-surveillance.html

REFERENCES

[16] Churko, J. M., Mantalas, G. L., Snyder, M. P., and Wu, J. C. (2013).

Overview of high throughput sequencing technologies to elucidate molecular

pathways in cardiovascular diseases. Circ Res , 112(12), 1613–1623. 2

[17] Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L.,

Land, S. J., Lu, X., and Ruden, D. M. (2012). A program for annotating and

predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the

genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin),

6(2), 80–92. 10

[18] CSU (2022). Practical Computing and Bioinformatics for Con-

servation and Evolutionary Genomics. https://eriqande.github.io/

eca-bioinf-handbook/. Accessed: 2022-09-08. 2

[19] Daily, J. (2016). Parasail: Simd c library for global, semi-global, and local

pairwise sequence alignments. BMC bioinformatics , 17(1), 1–11. 15

[20] Davis, U. (2022). Illumina High Throughput Sequencing. https://dnatech.

genomecenter.ucdavis.edu/illumina-high-throughput-sequencing/.

Accessed: 2022-09-06. 2

[21] Davis-Turak, J., Courtney, S. M., Hazard, E. S., Glen, Jr, W. B., da Silveira,

W. A., Wesselman, T., Harbin, L. P., Wolf, B. J., Chung, D., and Hardiman, G.

(2017). Genomics pipelines and data integration: challenges and opportunities

in the research setting. Expert Rev Mol Diagn, 17(3), 225–237. 9

[22] Eric Green (2021). Cost of Sequencing. https://www.humanprogress.org/

the-fastest-learning-curve-in-history/. 8

[23] Fakruddin, M. and Chowdhury, A. (2012). Pyrosequencing-an alternative to

traditional sanger sequencing. American Journal of Biochemistry and Biotech-

nology , 8(1), 14–20. 7

[24] Farrar, M. (2006). Striped Smith-Waterman speeds database searches six

times over other SIMD implementations. Bioinformatics , 23(2), 156–161. 16,

19, 38

79

https://eriqande.github.io/eca-bioinf-handbook/
https://eriqande.github.io/eca-bioinf-handbook/
https://dnatech.genomecenter.ucdavis.edu/illumina-high-throughput-sequencing/
https://dnatech.genomecenter.ucdavis.edu/illumina-high-throughput-sequencing/
https://www.humanprogress.org/the-fastest-learning-curve-in-history/
https://www.humanprogress.org/the-fastest-learning-curve-in-history/

REFERENCES

[25] Flicek, P. and Birney, E. (2009). Sense from sequence reads: methods for

alignment and assembly. Nat Methods , 6(11 Suppl), S6–S12. 7

[26] Frellsen, J., Menzel, P., and Krogh, A. (2014). 6.03 - algorithms for map-

ping high-throughput dna sequences**jes frellsen and peter menzel contributed

equally. In A. Brahme, editor, Comprehensive Biomedical Physics , pages 41–

50. Elsevier, Oxford. 2

[27] GATK (2022). HaplotypeCaller. https://gatk.broadinstitute.org/hc/

en-us/articles/360037225632-HaplotypeCaller. 11

[28] Gotoh, O. (1982). An improved algorithm for matching biological sequences.

Journal of Molecular Biology , 162(3), 705–708. 16, 37

[29] Hagemann, I. S. (2015). Chapter 1 - overview of technical aspects and

chemistries of next-generation sequencing. In S. Kulkarni and J. Pfeifer, edi-

tors, Clinical Genomics , pages 3–19. Academic Press, Boston. 7

[30] Haghi, A., Marco-Sola, S., Alvarez, L., Diamantopoulos, D., Hagleitner, C.,

and Moreto, M. (2021). An fpga accelerator of the wavefront algorithm for

genomics pairwise alignment. In 2021 31st International Conference on Field-

Programmable Logic and Applications (FPL), pages 151–159. IEEE. 15

[31] Holtgrewe, M. (2010). Mason : A read simulator for second generation

sequencing data. Technical Report FU Berlin. 22

[32] Illumina.com (2022). Illumina sequencing. https://www.illumina.com/

science/technology/next-generation-sequencing.html. Accessed: 2022-

09-04. 2, 8

[33] Institute, N. H. G. R. (2013). First human genome draft. https://bit.ly/

3T8MU2D. 7

[34] Intel (2022a). AVX-512 Overview. https://www.intel.com/content/www/

us/en/architecture-and-technology/avx-512-overview.html. 3

[35] Intel (2022b). AVX2 Overview. intel.ly/3V16LCj. 3

80

https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller
https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller
https://www.illumina.com/science/technology/next-generation-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing.html
https://bit.ly/3T8MU2D
https://bit.ly/3T8MU2D
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
intel.ly/3V16LCj

REFERENCES

[36] Intel (2022). Intel® VTune™ Profiler. https://www.intel.com/content/

www/us/en/developer/tools/oneapi/vtune-profiler.html. 23

[37] Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-

matching algorithms. IBM Journal of Research and Development , 31(2), 249–

260. 16

[38] Kim, J. S., Senol Cali, D., Xin, H., Lee, D., Ghose, S., Alser, M., Hassan,

H., Ergin, O., Alkan, C., and Mutlu, O. (2018). Grim-filter: Fast seed location

filtering in dna read mapping using processing-in-memory technologies. BMC

Genomics , 19(2), 89. 14

[39] Koboldt, D. C. (2020). Best practices for variant calling in clinical sequenc-

ing. Genome Medicine, 12(1), 91. 10

[40] Lander, E. S., Linton, L. M., Birren, B., et al. (2001). Initial sequencing and

analysis of the human genome. Nature, 409(6822), 860–921. 1

[41] Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with

bowtie 2. Nature Methods , 9(4), 357–359. 3, 19, 20, 22

[42] Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs

with bwa-mem. arXiv preprint arXiv:1303.3997 . 18

[43] Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioin-

formatics , 34(18), 3094–3100. 3, 10, 16, 20, 22

[44] M. Holtgrewe (2010). Mason2 Github. https://github.com/seqan/seqan/

tree/master/apps/mason2. 22

[45] Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. (2012). The gem

mapper: fast, accurate and versatile alignment by filtration. Nature Methods ,

9(12), 1185–1188. 10

[46] Marco-Sola, S., Moure, J. C., Moreto, M., and Espinosa, A. (2020). Fast

gap-affine pairwise alignment using the wavefront algorithm. Bioinformatics ,

37(4), 456–463. 3

81

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/seqan/seqan/tree/master/apps/mason2
https://github.com/seqan/seqan/tree/master/apps/mason2

REFERENCES

[47] Marco-Sola, S., Moure, J. C., Moreto, M., and Espinosa, A. (2021). Fast

gap-affine pairwise alignment using the wavefront algorithm. Bioinformatics ,

37(4), 456–463. 15, 38, 71

[48] Marco-Sola, S., Eizenga, J. M., Guarracino, A., Paten, B., Garrison, E., and

Moreto, M. (2022). Optimal gap-affine alignment in o(s) space. bioRxiv . 38

[49] Nagwa (2022). DNA/Nucleotides Figure. https://www.nagwa.com/en/

explainers/328197350602/. viii, 6

[50] nature.com (2022). ”What Is a Cell?”. https://www.nature.com/

scitable/topicpage/what-is-a-cell-14023083/. 5

[51] NCBI (2019). FASTQ file format. https://www.ncbi.nlm.nih.gov/sra/

docs/submitformats. 10

[52] Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to

the search for similarities in the amino acid sequence of two proteins. Journal

of Molecular Biology , 48(3), 443–453. 16, 37

[53] NHGRI (2022a). Chromosome Def. https://www.genome.gov/

genetics-glossary/Chromosome. 6

[54] NHGRI (2022b). DNA Def. https://www.genome.gov/

genetics-glossary/Deoxyribonucleic-Acid. 6

[55] NHGRI (2022c). Gene Def. https://www.genome.gov/

genetics-glossary/Gene. 6

[56] Ono, Y., Asai, K., and Hamada, M. (2020). PBSIM2: a simulator for long-

read sequencers with a novel generative model of quality scores. Bioinformatics ,

37(5), 589–595. 22

[57] Ono, Y., Asai, K., and Hamada, M. (2022). pbsim2 Github. https://

learn.gencore.bio.nyu.edu/variant-calling/variant-discovery/. 22

[58] Oxford Nanopore Technologies (2022). ONT Sequencing. https://

nanoporetech.com/. 8

82

https://www.nagwa.com/en/explainers/328197350602/
https://www.nagwa.com/en/explainers/328197350602/
https://www.nature.com/scitable/topicpage/what-is-a-cell-14023083/
https://www.nature.com/scitable/topicpage/what-is-a-cell-14023083/
https://www.ncbi.nlm.nih.gov/sra/docs/submitformats
https://www.ncbi.nlm.nih.gov/sra/docs/submitformats
https://www.genome.gov/genetics-glossary/Chromosome
https://www.genome.gov/genetics-glossary/Chromosome
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Gene
https://www.genome.gov/genetics-glossary/Gene
https://learn.gencore.bio.nyu.edu/variant-calling/variant-discovery/
https://learn.gencore.bio.nyu.edu/variant-calling/variant-discovery/
https://nanoporetech.com/
https://nanoporetech.com/

REFERENCES

[59] Pacific Biosciences (2022). PacBio Sequencing. https://www.pacb.com/. 8

[60] Pirooznia, M., Kramer, M., Parla, J., Goes, F. S., Potash, J. B., McCombie,

W. R., and Zandi, P. P. (2014). Validation and assessment of variant calling

pipelines for next-generation sequencing. Human Genomics , 8(1), 14. 9, 10,

11

[61] Ranganathan, S., Gribskov, M., Nakai, K., and Schönbach, C., editors

(2019). Encyclopedia of Bioinformatics and Computational Biology - Volume

2 . Elsevier. 1

[62] Reuter, J. A., Spacek, D. V., and Snyder, M. P. (2015). High-throughput

sequencing technologies. Mol Cell , 58(4), 586–597. 2

[63] Roy, S., Coldren, C., Karunamurthy, A., Kip, N. S., Klee, E. W., Lincoln,

S. E., Leon, A., Pullambhatla, M., Temple-Smolkin, R. L., Voelkerding, K. V.,

Wang, C., and Carter, A. B. (2018). Standards and guidelines for validating

next-generation sequencing bioinformatics pipelines: A joint recommendation

of the association for molecular pathology and the college of american pathol-

ogists. The Journal of Molecular Diagnostics , 20(1), 4–27. 1, 2

[64] SADASIVAN, H., Maric, M., Dawson, E., Iyer, V., Israeli, J., and

Narayanasamy, S. (2022). Accelerating minimap2 for accurate long read align-

ment on gpus. 31, 35

[65] Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with

chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74(12), 5463–5467. 7

[66] Schatz, M. (2010). High performance computing for dna sequence alignment

and assembly. 3

[67] Schloss, J. A. (2008). How to get genomes at one ten-thousandth the cost.

Nature Biotechnology , 26(10), 1113–1115. 2

[68] Shibuya, T. (2006). Geometric suffix tree: A new index structure for protein

3-d structures. In M. Lewenstein and G. Valiente, editors, Combinatorial Pat-

tern Matching , pages 84–93, Berlin, Heidelberg. Springer Berlin Heidelberg.

13

83

https://www.pacb.com/

REFERENCES

[69] Smith, T. and Waterman, M. (1981). Identification of common molecular

subsequences. Journal of Molecular Biology , 147(1), 195–197. 16, 17

[70] Song, B., Marco-Sola, S., Moreto, M., Johnson, L., Buckler, E. S., and

Stitzer, M. C. (2022). Anchorwave: Sensitive alignment of genomes with

high sequence diversity, extensive structural polymorphism, and whole-genome

duplication. Proceedings of the National Academy of Sciences , 119(1),

e2113075119. 10

[71] Suzuki, H. and Kasahara, M. (2018a). Introducing difference recurrence rela-

tions for faster semi-global alignment of long sequences. BMC Bioinformatics ,

19(Suppl 1), 45. 17

[72] Suzuki, H. and Kasahara, M. (2018b). Introducing difference recurrence rela-

tions for faster semi-global alignment of long sequences. BMC bioinformatics ,

19(1), 33–47. 38

[73] Tikiri, C. (2013). Fast and accurate mapping of next generation sequencing

data. 5

[74] Ukkonen, E. (2012). How to reconstruct a genome. In B. Rovan, V. Sassone,

and P. Widmayer, editors, Mathematical Foundations of Computer Science

2012 , pages 48–48, Berlin, Heidelberg. Springer Berlin Heidelberg. 3

[75] Univeristy, A. S. (2022). ”Are viruses alive?”. https://askabiologist.

asu.edu/questions/are-viruses-alive. 5

[76] Vasimuddin, M., Misra, S., Li, H., and Aluru, S. (2019). Efficient

architecture-aware acceleration of bwa-mem for multicore systems. In 2019

IEEE International Parallel and Distributed Processing Symposium (IPDPS),

pages 314–324. 3, 10, 18, 20, 22

[77] Xin, H., Nahar, S., Zhu, R., Emmons, J., Pekhimenko, G., Kingsford, C.,

Alkan, C., and Mutlu, O. (2015). Optimal seed solver: optimizing seed selection

in read mapping. Bioinformatics , 32(11), 1632–1642. 13

84

https://askabiologist.asu.edu/questions/are-viruses-alive
https://askabiologist.asu.edu/questions/are-viruses-alive

	Acknowledgments
	Abstract
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Goals and Contributions
	1.4 Outline

	2 Background
	2.1 Basic Biology
	2.2 Sequencing
	2.3 Genome Analysis Pipelines
	2.4 Mapping Stages
	2.4.1 Indexing
	2.4.2 Seeding and Filtering
	2.4.3 Seed Chaining and Extension
	2.4.4 Pairwise Alignment

	2.5 Genome Mappers
	2.5.1 Minimap2
	2.5.2 Bwa-Mem2
	2.5.3 Bowtie2

	3 Experimental Evaluation of Genome Mappers
	3.1 Experimental Setup
	3.1.1 Machines
	3.1.2 Tools
	3.1.3 Datasets

	3.2 Scalability Analysis
	3.3 Bottleneck Analysis
	3.4 Microarchitecture Exploration
	3.5 Summary

	4 Accelerating Sequence Alignment
	4.1 Classical Sequence Alignment Algorithms
	4.2 Wavefront Alignment Algorithm (WFA)
	4.2.1 Wavefront Furthest-Reaching Diagonals
	4.2.2 Alignment Algorithm using Wavefronts

	4.3 Exploiting SIMD Paralellism in WFA
	4.4 Vectorization Using AVX-512 Intrinsics
	4.4.1 Initial Approach
	4.4.2 Implementation
	4.4.3 Optimizations
	4.4.3.1 Hybrid Implementation
	4.4.3.2 Loop Unrolling of Remaining Diagonals
	4.4.3.3 Other Code Improvements

	4.4.4 Performance Evaluation

	4.5 Vectorization using AVX2 Intrinsics
	4.5.1 Implementation
	4.5.2 Unrolling a Second Iteration of Vectorized Code
	4.5.3 Performance Evaluation

	4.6 Comparison of Vectorized WFA Implementations
	4.7 Comparison of Sequence Alignment Implementations

	5 Conclusions
	5.0.1 Publications
	5.1 Future work
	5.2 Financial and Technical Support

	6 Appendices

