

Chap.4. Elastic Lidar Systems

Francesc Rocadenbosch

ETSETB, Dep. TSC, EEF Group Campus Nord, D4-016 roca@tsc.upc.edu

(C) 2005

SIGNAL THEORY AND COMMUNICATIONS

Б

Ш

SUMMARY

MEASUREMENTS:

- Direct:
 - Aerosol/molecular composed intensity returns
- Indirect:

(Usually requires calibrating conditions/hypotheses)

Optical parameters, pollution concentration and flux rate, wind

LASER TYPES:

- Ruby (λ = 694.3 nm, 347.2 nm)
- <u>Nd:YAG</u> (λ = 1064, 532 nm, 355 nm)
- Excimer ($\lambda \sim 350$ nm)

ELASTIC INTERACTION

Types of interaction:

 Rayleigh scattering (molecules, r << λ)
 Mie scattering (aerosols, r ≈ λ)

Types of elastic lidar:

Backscatter lidar
 Doppler lidar

APPLICATIONS

ENVIRONMENTAL

- Pollution monitoring (source strength and location), Fires
- Transport models
 - Air-quality regulations
 - Air-mass fluxes
- Aerosols role
 - Earth-atmosphere radiative budget
 - Photochemical effects
 - Air-mass tracers (e.g. wind tracers)

METEOROLOGICAL AND FSO COMMUNICATIONS

- **PBL** (Planetary Boundary Layer)
- Cloud extent and monitoring
- Estimation of atmospheric attenuation (dB/km)

Ь

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

ARCHITECTURE (II)

– Conditioning chain

Fig. SOURCE: Measures (1992); R.M. Measures, "Laser Remote Sensing. Fundamentals and Applications". John Wiley & Sons, 1984. (Reprint de 1992, Krieger Publishing Company).

INTERACION OF A LIGHT PULSE WITH THE ATMOSPHERE

- The max range from which energy is received at time t is R_0 .
- At the same time t, additional energy is received from ranges illuminated by portions of the pulse transmitted after the leading edge, the min. range from which energy is received is R₁.

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

(rectangular-shaped laser pulse, τ_{I})

F. Rocadenbosch, 2005

BASIC INTERVENING MAGNITUDES

1) Laser emitted power per pulse (τ_L), P_0 [W] $P_0 = \frac{E}{\tau_L}$

2) Incident power density on the atmospheric resolution cell, E_{in} [W/m²]

$$E_{in}(R) = \frac{P_0}{\pi r^2} \exp\left[-\int_0^R \alpha(u) \, du\right], \quad r = R\Delta\theta$$

3) Cell-backscattered power per solid-angle unit, K_{sca} [W/sr]

$$K_{sca}(R) = \beta(R)E_{in}(R)V \quad with \quad \begin{cases} V = \pi r^{2}\Delta R\\ \Delta R = c\tau_{L}/2 \end{cases}$$

4) Backscattered power collected by the telescope, P(R) [W]

$$P(R) = K_{sca}(R)\Delta\Omega \exp\left[-\int_{0}^{R} \alpha(x) dx\right], \quad \Delta\Omega = \frac{A_{r}}{R^{2}}$$

5) Finally,

$$P(R) = \frac{E \frac{c}{2} A_r}{R^2} \beta(R) \exp\left[-2 \int_0^R \alpha(u) du\right]$$

Elastic LIDAR Equation (simple scattering)

$$P(\lambda, R) = \frac{K}{R^2} \beta(\lambda, R) \exp\left[-2\int_0^R \alpha(\lambda, r) dr\right] \xi(R)$$

where:

 $\alpha(\lambda, R)$ atmospheric optical extinction coef. [m⁻¹] $\beta(\lambda, R)$ atmospheric optical backscatter coef. [m⁻¹sr⁻¹] - where $\beta(\lambda, R) = \overline{N}(R) \frac{d\overline{\sigma}(\pi)}{d\Omega}$,

-N is the average density of aerosols + molecules [m²/m³sr]

- $\xi(R)$ overlap factor [], $0 \le \xi(R) \le 1$
- P(R) optical return power [W]
- K system constant [W m³],

$$K = \frac{Ec}{2}A_r$$

where:

- E (peak) energy [J]
- A_r effective telescope area [m²]

THE LIDAR EQUATION (IV)

ATMOSPHERIC OPTICAL COEFFICIENTS

SOURCE: Measures (1992).

Concerning the lidar Eq., note that:

$$\alpha_{\lambda}(R) = \alpha_{\lambda}^{aer}(R) + \alpha_{\lambda}^{mol}(R) + \alpha_{\lambda}^{abs}(R)$$

$$\approx \beta_{\lambda}(R) = \beta_{\lambda}^{aer}(R) + \beta_{\lambda}^{mol}(R)$$

Fig. SOURCE: R.T.H. Collis and P.B. Russell, "Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption," Chap.4 in *Laser Monitoring of the Atmosphere*, E.D. Hinkley, Ed., (Springer-Verlag, New York, 1976), pp.71-102.

FURTHER COMMENTS:

1) Assuming a homogeneous atmosphere and ideality system conditions, the lidar equation takes its simplest form:

$$P(R) = \frac{K}{R^2} \beta \exp(-2\alpha R)$$

backscatter transmittance

2) Note the LIDAR optical thickness (COT) and related transmissivity! $T(\lambda, R) = \exp[-2COT(R)]; \quad COT(R) = \int_{0}^{R} \alpha(\lambda, r) dr$

OPTICAL OVERLAP FACTOR (OVF)

The telescope cannot "read" the full atmospheric cross-section illuminated by the laser beam (i.e., does not lie within its FOV)

It is a function of many geometrical and optical parameters of both the laser and telescope.

Fig. SOURCE: Measures (1992).

THEORY AND COMMUNICATIONS

SIGNAL

ЧО

DEP.

SIGNAL THEORY AND COMMUNICATIONS

ЦО

DEP.

TEXP 1100 ms TSCAN 51 ms AM 148 RJ 143 UI 138 AZ 133 NE 129 ILU 148 OSC 119 DARK 17743 **UISUALIZACION EN TIEMPO REAL** TEXP 1100 ms TSCAN 51 ms AM RJ UI AZ ILU 135 135 133 131 129 127 **DSC 109** DARK 17097 2 **UISUALIZACION EN TIEMPO REAL TEXP 1100 ms** TSCAN 51 ms AM 140 RJ 136 UI 133 AZ 130 NE 127 ILU 140 OSC 113 DARK 17754 3

THE LIDAR EQUATION (VIII)

SIGNAL THEORY AND COMMUNICATIONS

Ь

DEP.

THE LIDAR EQ. (IX): BASIC INVERSIONS

CEILOMETRY:

Cloud-height extent monitoring

- Cloud base, peak, top
- No. of layers

RANGE CORRECTION (R²P):

Backscatter-transmittance plot Reveals atmospheric structure

- Mixing aerosol layer
- Cloud structure

 For optically "clear" atmospheres, the "range-corrected" (R²P), "backscatter" and "extinction" representations <u>look very much alike.</u>

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

LIDAR (LASER RADAR)

17

SIGNAL CONDITIONING (I): RECEIV. CHAIN

R'_V: Net Voltage Responsivity (V/W)

V_{os}: Total system offset (user+drift+background)

- n_{tot}: Total noise (photodetection + electronic)
- ϵ_q : Quantization noise
- x_{a,s}: A/Synchronous interferences

$$V_{OS} = R'_{v}P_{Back} + V_{drift} + V_{user} + \sum \frac{dV_{drift}}{dt}\Delta t$$

unwanted terms

Sampling at f_s , detection time $\tau_d = 1/f_s$, so that

$$\Delta R \approx \frac{c\tau_d}{2} = \frac{c}{2f_s}$$

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

SIGNAL CONDITIONING (II): KEYS

RECEIVER CHAIN

1) Mapping function

 $V(R) = R_i GP(R) + V_{OS}$ 2) Operational settings
a) Map B to $-V_{max}$ $P(R \rightarrow \infty) = P_{back}$

$$V_{OS} = -V_{max} - R_i G P_{back}$$

b) No ADC saturation

$$G = \frac{V_{max} - V_{OS}}{R_i P_{max}}$$

B) Intensity Display
$$V'(R) = V(R) - V(\infty)$$

EXAMPLES OF REAL SYSTEMS: RSCH. AGENCIES

NASA, Lidar In-space Technology Experiment (LITE)

SPECS: Elastic lidar, Nd:YAG (1064, 532, 355 nm), Discovery 1994. APLIC: Clouds & statosphere aerosol density, temperature

F. Rocadenbosch, 2005

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

LITE (Lidar In-space Technology Experiment)

SIGNAL THEORY AND COMMUNICATIONS ЧO DEP.

BACKSCATTER LIDAR & RSCH AGENCIES

OTHER PROJECTS (ESA)

- ATLID: similar to LITE (NASA)
- ALADIN: wind lidar space-borne sensor

CLOUD AND AEROSOL M-LIDAR

Transmitter	Laser : Nd:YAG, SHG 532 nm			
Output wavelength	532 nm			
Output energy per pulse	4 μJ			
Repetition rate	5 kHz			
Pulse duration	< 1 ns			
Effective aperture	314 cm ²			
Field of view (full angle)	55 µrad			
Filter bandwidth	0.5 nm			
Detector	APD			
Detection mode	Photon counting			
Acquisition time	> 0.8 s			
Vertical resolution	15 m			
Size (diameter x height)	220 x 1000 mm			
Weight	12.5 kg			

- Self-alignment of emission and reception axes
- Eye-safe
- Compact and portable

SOURCE: CIMEL Electronique, http://www.cimel.fr (Mod. CE370-2)

OF SIGNAL THEORY AND COMMUNICATIONS

DEP.

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

EXAMPLES: BACKSCATTER LIDAR - UPC 1996

LASER		RECEIVER		SYSTEM SPECS		
Gain mediu	m Nd:YAG	Focal length	2 m	Configura	ation	Vertical biaxial
Energy	0.5 J/532 nm	Aperture Ø	20 cm	System N	EP	70 fW·Hz ^{-1/2}
Divergence	0.1mrad	Detector	APD (EGG C30954)	Min. Det.	Power	< 5 nW
Pulse length	10 ns	Net Responsivity	$6 \times 10^{1} - 3 \times 10^{6} \text{ V/W}$	Acquisitio	n	20 Msps/12bit
PRF	10 Hz	Bandwidth	10 MHz	Spatial re	solution	7.5 m
					DIS SPE (as c μW F	TINCTIVE ECS: compared to RADARS)
		LASER 532/1064 nm			$\Delta \mathbf{R}$ $\Delta \mathbf{t} =$	= 7.5 m! : 1 min

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

BACKSCATTER LIDAR - UPC 1996

LASER	RECEIVER		SYSTEM SPECS		
Gain medium Nd:YAG	Focal length	2 m	Configuration	Vertical biaxial	
Energy 0.5 J/532 nm	Aperture Ø	20 cm			
Divergence 0.1mrad		APD (EGG C30954)			
Pulse length 10 ns	Net Responsivity	$6 \times 10^{1} - 3 \times 10^{6} \text{ V/W}$			
PRF 10 Hz		10 MHz		7.5 m	

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

DEP. OF SIGNAL THEORY AND COMMUNICATIONS **-IDAR (LASER RADAR**

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

F. Rocadenbosch, 2005

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

AND COMMUNICATIONS

SIGNAL THEORY

DEP. OF

LIDAR (LASER RADAR)

CONCEPT

-We accommodate
range A-B into the ADC
at the odd pulses and
C-D at the even ones.
-Hence, ADC dyn.
range doubles!

REQUIREMENTS

1) Each window is defined by a set

(G, V_{OS}, R_{min})

2) Synchronous G and V_{os} update

WINDOWED EXPLORATION (II)

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

SRL SYSTEM CONFIGURATION

SIGNAL THEORY AND COMMUNICATIONS DEP. OF

PSEUDO-RANDOM SYSTEMS

Fig. SOURCE: Takeuchi et al, "Random modulation CW lidar", Appl. Opt., 22(9), 1382-6 (1983).

KEYS:

1) A feedback n-stage shift register with non-zero initial state acts as a periodic seq. generator.

2) The PN (pseudo-noise) sequence length is

 $N = 2^n - 1$

i.e., period = NT_b

3) Usually, the binary polar NRZ sequence is used,

$$a'_{k} = 2a_{k} - 1$$
$$a'(t) = \sum_{k} (2a_{k} - 1) \Pi \left(\frac{t - kT_{b}}{T_{b}}\right)$$

PN SEQUENCES (II)

4) Periodic Autocorrelation

$$\widetilde{R}_{a'a'}(j) = \begin{cases} 1 & j = 0\\ -\frac{1}{N} & j \neq 0 \end{cases}$$

$$(N+1) \quad l = i$$

$$\widetilde{R}_{aa'}(n) = \begin{cases} \frac{N+1}{2N} = \frac{l}{N} & j = 0\\ 0 & j \neq 0 \end{cases}$$

5) Reencounters the system (atmospheric) impulse response \rightarrow

- System identification
- <u>Demodulation</u> is substituted by <u>correlation</u> _Г

$$g(t) = \frac{c}{2} A_r \frac{1}{R^2} \beta(R) T(R)^2 \xi(\lambda) \xi(R)$$

$$\begin{cases} \widetilde{x}(t) = Ea(t) = P'_0 T_b a(t) \\ \widetilde{y}(t) = \widetilde{x}(t) * g(t) \end{cases}$$

$$\widetilde{\hat{g}}(t) = \widetilde{y}(t) * a'(t) \approx g(t)$$

THE ATMOSPHERIC ID. PROBLEM

The impulse excitation is substituted by • $\widetilde{R}_{ss}(t) = l E_b \delta(t)$

SYSTEM LAYOUT

Fig. SOURCE: Bundschuh et al., "Feasibility study of a compact low cost correlation LIDAR using a pseudo-noise modulated diode laser and an APD in the current mode", IEEE (1996).

s(t)

 $s(t) \star g(t)$

>

h(t)

h(t)

 $s(t) \star s(t)$

s(t)

s(t)

SIGNAL THEORY AND COMMUNICATIONS LIDAR (LASER RADAR) ЧO DEP.

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

PROTOTYPE EXAMPLE

