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THERMOELASTICITY WITH TEMPERATURE AND
MICROTEMPERATURES WITH FADING MEMORY

LORENZO LIVERANI, RAMON QUINTANILLA

Abstract. In this paper, we investigate a model of poro-thermoelasticity with mi-
crotemperatures where the behavior of the body is influenced by the history of both
temperature and microtemperatures. Mathematically, this translates into a system of
partial integro-differential equations. Under suitable condition on the tensors appearing
in the model, we prove that the resulting system is well posed. In the one-dimensional
case, the exponential decay of the energy is proved.

1. Introduction

1.1. Thermoelasticity of porous materials. The classical theory of thermoelasticity
is especially well-suited for the description of macroscopic phenomena related to elastic
deformations. Notwithstanding, there are many physical situations in which microscopic
phenomena play a big role and, therefore, cannot be ignored. From a modeling per-
spective, this requires to take into account the microstructure of the material. Perhaps
the first to allow for such effects were the Cosserat brothers, who proposed micropolar
theories at the beginning of the 20th century [6]. However, it was not until the Sixties
that materials with microstructure started to be investigated in a significant way. For a
thorough description of these models we refer to [11, 21].

Among the several theories that appeared during this period, we want to focus on
the theory of materials with voids (also known as porous materials), first introduced by
Cowin and Nunziato in [7, 8, 33]. The fundamental concept underlying this model is the
decomposition of the bulk density as the product of two fields, namely, the density field
of the matrix material and the volume fraction field. The latter expresses the idea that
the material point might have some small voids, and ultimately introduces an additional
degree of freedom in the model. Let aside its undisputed mathematical interest, porous
materials have soon found application in many fields of technology, ranging from the
building industry, where they are used for their appealing properties of lightness and
resistance, to medicine, to repair injuries in bones. For some extensive comments regarding
the applicability of this theory, we suggest to look at [40, p.307-308]. Nowadays, porous
materials have been considered and studied in such a large number of situations that it
would not be possible to mention all of the contributions in the field. For an introduction
to the subject and its applications, we direct the interested reader to [2, 14, 15, 41], and
references therein, while for some works concerning the dynamical aspect of the theory
we refer to [4, 12, 13, 29, 31, 36, 39], but the list is far from being exhaustive.
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Between all the aspects which have been considered when studying deformations at the mi-
crostructural level (micropolar, microstretch, etc.), we are mostly interested in the concept
of microtemperatures, which is related to the temperature distribution in porous materi-
als. Materials with a microstructure are usually thought as composed of microelements.
In turn, each of these microelements is modeled itself as a material with deformations
and temperature. If we denote by x the center of mass of a microelement and denote by
θ̃ the absolute temperature, we can consider the approximation

θ̃(x′, t) = θ̃(x, t) + Ti(x
′
i − xi) +O(d2),

where O(d2) is a second order term in the diameter d of the microelement. The terms Ti
determine the temperature variation in the microelement and is what we call microtem-
peratures. Historically, this notion was proposed for the first time in the works of Grot,
Riha and Verma [19, 37, 38, 42], even though it did not receive much attention until the
article [25] was published in 2000. The latter represented a turning point in the study of
materials with microtemperatures and sparked a lot of interest in the subject. Today we
can say that there is an important amount of scientific work related to this phenomenon,
see, e.g., [22, 23, 24, 26, 27, 30].

1.2. A causality issue. Most of the studies carried out on the topic of thermoelastic-
ity with microtemperatures over the last decade assume both the temperature and the
microtemperatures to follow the parabolic structure related to the Fourier law of heat
conduction. It has been verified that, similarly to how the usual thermal dissipation acts
as a damping mechanism on the deformations, the microthermal dissipation has the same
effect on the microstructure. Although this behavior is certainly significant from a phys-
ical standpoint, from a mathematical perspective this is somewhat expected. Indeed, the
regularizing nature of the Fourier law is well known, and usually endows a physical system
of good dissipative properties. Nevertheless, the Fourier law has a strong disadvantage,
since it predicts an instantaneous propagation of thermal waves. This fact is incompati-
ble with the causality principle, and has prompted physicists and mathematicians alike to
propose alternative laws for the description of heat conduction in the theory of thermoe-
lasticity. For these reasons, the notion of microtemperatures has been recently extended
to the case in which the Fourier law is replaced, first, by the (hyperbolic) Cattaneo law
[3], and then by Tzou’s theory [28]. In both situations, the authors have observed similar
behaviors and dissipative properties to the Fourier case.

1.3. Main results. Another classical way to get rid of the paradox of infinite speed of
propagation is to relax the constitutive law for the thermal flux by means of a convolution
integral. This makes the dynamics nonlocal in time, meaning that the evolution of the heat
flux at time t depends also on its history up time t. This idea was originally introduced by
Gurtin and Pipkin in [20]. An interesting study about materials with memory (also on the
thermal variables) can be found at [1]. Today, the literature on the subject is quite rich
and active, and we refer the interested reader to the works of [5, 16, 32], just to name a
few. The present work fits into the above setting. Indeed, our goal is threefold. First and
foremost, we want to define a theory for poro-thermoelasticity with microtemperatures
that considers the history of both the temperature and that of the microtemperatures. To
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be more specific, we will start from the model of poro-thermoelasticity with microtemper-
atures proposed in [3], and show how this can be interpreted (and generalized) by means
of the theory of materials with memory. This extension makes it possible to consider a
wider range of problems, depending on the choice of the different memory kernels. Sec-
ondly, we want to propose some adequate conditions that will allow us to say that the
problem is well posed in the Hadamard sense (that is, existence, uniqueness and contin-
uous dependence of solutions). Finally we will restrict ourselves to the one-dimensional
case and demonstrate (under suitable conditions) the exponential decay of solutions.

The mathematical tool best suited to treat partial differential equations with mem-
ory terms is the well known past history framework, first introduced by Dafermos in the
seminal work [9]. This setting will allow us to exploit results from the theory of linear
semigroups. More in detail, we will prove the well-posedness of our system by means of the
Lumer-Phillips corollary to the Hille-Yosida theorem, and use the classical characteriza-
tion of exponentially stable semigroups due to Gearhart, Greiner, Huang and Prüss (see,
e.g, [10]) to demonstrate the exponential decay of the solutions in the one-dimensional
case. The main mathematical difficulty of the problem at hand resides in the fact that
we have to handle more than one memory term. As we will see, this requires some form
of uniform control over the memory kernels, along the lines of the work [32].

1.4. Plan of the paper. In the next section we propose the new model that we are going
to work with as well as the general assumptions on the constitutive fields. In Section 3 we
propose the abstract setting for our problem and in Section 4 we rephrase the equations in
the past history framework. The existence and uniqueness theorem is stated and proved
in Section 5. In the last section we restrict our attention to the one dimensional case and
obtain the exponential stability of the solutions.

2. The Model System

We consider a nonhomogeneous porous material occupying a smooth, bounded domain
Ω ⊂ R3. First, let us state the evolution equations for the theory of poro-thermoelasticity
with microtemperatures for a centrosymmetric material. These equations are:

(2.1) ρüi = tij,j,

(2.2) Jφ̈ = hj,j + g,

(2.3) ρη̇ = qj,j,

(2.4) ρε̇i = qji,j + qi −Qi.

The first two equations represent, respectively, the balances of the linear momentum and
of the first stress moment. Here ρ is the mass density, ui is the displacement vector,
tij is the stress tensor, J is the equlibrated inertia, φ is the volume fraction, hj is the
equilibrated stress and g is the equilibrated body force. Next, we have the balances of
the energy and of its first moment, where η is the entropy, qi is the heat flux vector, εi is
the first moment of the energy vector, qij is the first heat flux moment tensor and Qi is
the microheat flux average vector.
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In order to obtain the final model, we complement the above relations with the consti-
tutive equtions in the case of the Lord-Shulman theory. These are given by (see [3]):

tij = Aijrsur,s +Dijφ− aijθ,
hi = Aijφ,j −NijTj,

g = −Dijui,j − ξφ+ Fθ,

ρη = aijui,j + Fφ+ aθ,

ρεi = −Njiφ,j −BijTj,

τ q̇i + qi = kijθ,j +HijTj,

τ q̇ij + qij = −PijrsTr,s,
τ Q̇i +Qi = (kij −Kij)θ,j + (Hij − Λij)Tj,

where we recall that θ is the temperature and Ti are the microtemperatures. It is under-
stood that all the tensors appearing in the above equations might depend on the space
variable x and on time. However, to simplify the notation we will omit this dependence
for the forthcoming computations. We can now formally solve the constitutive equations
for qi, qij and Qi. Multiplying by et/τ the constitutive equation for qi we get

d

dt
(qie

t/τ ) =
1

τ
et/τ (kijθ,j +HijTj).

Integrating and making the reasonable assumption that

lim
t→−∞

qi(t)e
t/τ = 0,

we have

qi(t) =

∫ t

−∞

e−(t−s)/τ

τ
(kijθ,j(s) +HijTj(s))ds

=

∫ t

−∞

e−(t−s)/τ

τ
(kijα̇,j(s) +HijṘj(s))ds

=

∫ ∞
0

e−s/τ

τ
(kijα̇,j(t− s) +HijṘj(t− s))ds,

where we denote by (see [17, 18])

α(t) = α(0) +

∫ t

0

θ(s)ds, Ri(t) = Ri(0) +

∫ t

0

Ti(s)ds

respectively the thermal displacement and the microthermal displacement. Assuming now

lim
t→−∞

α,i(t)e
t/τ = lim

t→−∞
Ri(t)e

t/τ = 0,

we can integrate by parts to obtain

qi(t) =
1

τ
(kijα,j(t) +HijRj(t))−

1

τ 2

∫ ∞
0

e−s/τ (kijα,j(t− s) +HijRj(t− s))ds.
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Calling

k∗ij(s) =
e−s/τ

τ
kij,

H∗ij(s) =
e−s/τ

τ
Hij,

and substituting into the above equation, we finally arrive to

qi(t) = k∗ij(0)α,j(t) +H∗ij(0)Rj(t) +

∫ ∞
0

(
∂

∂s
k∗ij(s)α,j(t− s) +

∂

∂s
H∗ij(s)Rj(t− s)

)
ds.

Now we can follow the same procedure for the constitutive equations of qij and Qi. This
yields

qij(t) = −P ∗ijrs(0)Rr,s(t)−
∫ ∞

0

∂

∂s
P ∗ijrs(s)Rr,s(t− s)ds,

and

Qi(t) = (k∗ij(0)−K∗ij(0))α,j(t) + (H∗ij(0)− Λ∗ij(0))Rj(t)∫ ∞
0

(
∂

∂s
(k∗ij(s)−K∗ij(s))α,j(t− s) +

∂

∂s
(H∗ij(s)− Λ∗ij(s))Rj(t− s)

)
ds.

We note that qi, qij and Qi are given in terms of the history of the thermal displacement
and the microthermal displacement. This represents an advantage with respect to consider
the history of the temperature and the microtemperatures since we can define a larger
class of materials (see Remark 2.1). In fact we can recover the materials proposed at [5]
as a sub-class when the microtemperatures are not present.

Plugging the newly derived constitutive equations for qi, qij and Qi into those of poro-
thermoelasticity, we have the system of field equations:

(2.5) ρüi = (Aijrsur,s +Dijφ− aijθ),j,

(2.6) Jφ̈ = (Aijφ,j −NijTj),i −Dijui,j − ξφ+ Fθ,

(2.7)

aα̈ = −aiju̇i,j − Fφ̇+ (kij(0)α,j +Hij(0)Rj),i

+

∫ ∞
0

(k′ij(s)α,j(t− s) +H ′ij(s)Rj(t− s)),ids,

(2.8)

BijR̈j =−Njiφ̇,j + (Pijrs(0)Rr,s),j +

∫ ∞
0

(P ′ijrs(s)Rr,s(t− s)),jds

−Kij(0)α,j(t)− Λij(0)Rj(t)−
∫ ∞

0

(K ′ij(s)α,j(t− s) + Λ′ij(s)Rj(s))ds,

where we have omitted the star to simplify the notation and used the standard writing
f ′(s) to indicate the derivative ∂f

∂s
. Our goal will be to study the well-posedness and

asymptotic dynamics of system (2.5)-(2.8), supplemented with the Dirichlet boundary
conditions

ui(x, t)|x∈∂Ω = φ(x, t)|x∈∂Ω = α(x, t)|x∈∂Ω = Ri(x, t)|x∈∂Ω = 0.
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2.1. General assumptions. In greater generality, we will consider the system of equa-
tions (2.5)-(2.8) with general memory kernels

kij = kij(s), Kij = Kij(s), Hij = Hij(s), Λij = Λij(s), Pijrs = Pijrs(s),

which we will assume independent of x ∈ Ω. This assumption, albeit non necessary,
greatly simplifies the exposition. Furthermore, we require that

(i) There exist positive contants ρ0, J0, α0, B0 such that

ρ(x) ≥ ρ0, J(x) ≥ J0, a(x) ≥ a0, Bij(x)TiTj ≥ B0TiTi.

(ii) There exists a positive constant A0 such that

Aijrsηijηrs + 2Dijηijφ+ ξφ2 ≥ A0(ηijηij + φ2).

for every η = (ηij), and φ ∈ R.
(iii) The functions kij,Λij, Pijrs are symmetric in the sense that

kij = kji, Λij = Λji, Pijrs = Prsij.

Furthermore, we assume that

(2.9) Kij = Hji.

(iv) There exists a positive constant g0 such that for every ξ = (ξi), ζ = (ζi) and
η = (ηij),

kij(∞)ξiξj + (Kij(∞) +Hji(∞))ζiξj + Λij(∞)ζiζj + Pijrs(∞)ηijηrs

≥ g0(ξiξi + ζiζi + ηijηij),

where

kij(∞) = lim
s→∞

kij(s)

and similarly for the other kernels.
(v) There exists a positive decreasing continuous and integrable scalar function `(s)

and a constant κ ≥ 1 such that

(2.10)

`(s)(ξiξi + ζiζi + ηijηij)

≤ −k′ij(s)ξiξj − (K ′ij(s) +H ′ji(s))ζiξj − Λ′ij(s)ζiζj − P ′ijrs(s)ηijηrs
≤ κ`(s)(ξiξi + ζiζi + ηijηij),

for every ξ = (ξi), ζ = (ζi) and η = (ηij). We denote by

κ =

∫ ∞
0

`(s)ds,

the resultant of `.
(vi) It holds

k′′ij(s)ξiξj + (K ′′ij(s) +H ′′ji(s))ζiξj + Λ′′ij(s)ζiζj + P ′′ijrs(s)ηijηrs ≥ 0,

for every ξ = (ξi), ζ = (ζi) and η = (ηij).
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Assumptions (i)-(iii) are natural in the context of thermoelasticity. Indeed, the meaning
of (i) is clear, while (ii) is saying that the mechanical energy of the system is positive
definite. This hypothesis plays a critical role in the context of elastic stability. On the
other hand, assumptions (iv)-(vi) arise naturally in the study of equations with memory
terms (see e.g. [35]).

Remark 2.1. The observant reader will have noticed that assumption (iv) is in contrast
with the exponential memory kernels that we have found integrating the constitutive
equations, where, for instance, k∗ij(∞) = 0. However, in order to consider the general
problem we must allow for the case kij(∞) 6= 0 (and the same for the other kernels). In
this way, for example, we recover the model analyzed in [5]. The case of kernels vanishing
at infinity will be the object of future works.

Assumption (2.9) is related with Onsager’s postulate in the case of the classical theory.
From now on we will always write Kij instead of Hji. We note that Kij + Hji = 2Kij.
We conclude this section with a technical lemma, which will be useful in the sequel.

Lemma 2.2. Let assumptions (iii) and (v) hold. Then for every i, j = 1, 2, 3 we have

−k′ij(s) ≤ κ`(s) ∀s ∈ R+,

and the same holds for −Λ′ij, −K ′ij and −P ′ijrs.

Proof. Setting in (2.10)

ξ1 = 1 and ξ2 = ξ3 = ζi = ηij = 0 for i, j = 1, 2, 3,

we see at once that

−k′11(s) ≤ κ`(s).

In a similar fashion, we can show that the same holds for −k′22,−k′33 and −Λ′ii,−P ′ijij for
every i, j. Now consider the matrix(

−k′11(s) −k′12(s)
−k′21(s) −k′22(s)

)
.

By assumption (iii) we have −k′12(s) = −k′21(s). Moreover, it is easy to see that, by
assumption (v), this matrix is actually positive definite. Therefore

k′12(s)k′21(s) = (k′12(s))2 = (k′21(s))2 ≤ k′11(s)k′22(s),

from which we infer

−k′12(s) ≤ κ`(s).

By the same token, one can show that all the off-diagonal entries of −k′ij, −Λ′ij and −P ′ijrs
are also bounded by κ`(s). Finally, let us turn to −K ′ij. Observe first that it is not difficult
to prove that −k′ii, −Λ′ii and −P ′ijij are positive functions, by choosing ξ, ζ and η in a
suitable way in (2.10). Now let us take

ξ1 = ζ1 = 1 and ξ2 = ξ3 = ζ2 = ζ3 = ηij = 0 for i, j = 1, 2, 3.

Then, in view of (2.9), we have

−k′11(s)− 2K ′11(s)− Λ′11(s) ≤ 2κ`(s).
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By the positivity of −k′11 and −Λ′11 we finally get

−K ′11(s) ≤ κ`(s).

With the same reasoning we can show that the same holds for −K ′ij for every i, j, and
this concludes the proof. �

3. Functional Setting and Notation

We indicate by (H, 〈·, ·〉, ‖ · ‖) the usual Hilbert space L2(Ω) and by (V, 〈·, ·〉1, ‖ · ‖1) the
standard Sobolev space H1

0 (Ω) of functions in H1 vanishing on ∂Ω. We denote by

H = [L2(Ω)]3, V = [H1
0 (Ω)]3

the corresponding vectorial versions, keeping the same scalar notation for their norms.
We would like to rephrase equations (2.5)-(2.8) in the so-called past history framework.
To this end, let us preliminarily introduce the Hilbert spaces

M = L2
`(R+, V ), M = L2

`(R+,V ),

of square summable functions with respect to the measure `(s)ds, endowed with the scalar
products

〈ω, ω∗〉M =

∫ ∞
0

∫
Ω

`(s)ω,i(x, s)ω
∗
,i(x, s)dxds,

〈ηi, η∗i 〉M =

∫ ∞
0

∫
Ω

`(s)
(
ηi(x, s)η

∗
i (x, s) + ηi,j(x, s)η

∗
i,j(x, s)

)
dxds,

and norms

‖ω‖2
M =

∫ ∞
0

∫
Ω

`(s)|ω,i(x, s)|2xds,

‖ηi‖2
M =

∫ ∞
0

∫
Ω

`(s)
(
|ηi(x, s)|2 + |ηi,j(x, s)|2

)
dxds.

Next, we define the Hilbert space

N =M×M.

endowed with the standard product norm. Observe that, omitting for simplicity the
explicit dependence of the involved functions on s and x, in view of assumption (v),

‖(ω, ηi)‖2
N = −

∫ ∞
0

∫
Ω

k′ijω,iω,j + 2K ′ijηiω,j + Λ′ijηiηj + P ′ijrsηi,jηr,sdxds,

is an equivalent norm on N , with corresponding scalar product

〈(ω, ηi), (ω∗, η∗i )〉N = −
∫ ∞

0

∫
Ω

k′ijω,iω
∗
,j +K ′ij(ηiω

∗
,j + η∗i ω,j) + Λ′ijηiη

∗
j + P ′ijrsηi,jη

∗
r,sdxds.

Finally, we introduce the phase space associated to our problem

H = V ×H × V ×H × V ×H × V ×H ×N ,
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endowed with the norm

‖u‖2H =

∫
Ω

(Aijrsui,jur,s + 2Dijui,jφ+ ξ|φ|2 +Aijφ,iφ,j + ρ|vi|2 + J |ψ|2 + a|θ|2 +BijTiTj)dx

+

∫
Ω

(kij(∞)α,iα,j + 2Kij(∞)Riα,j + Λij(∞)RiRj + Pijrs(∞)Ri,jRr,s)dx

−
∫ ∞

0

∫
Ω

(k′ijω,iω,j + 2K ′ijηiω,j + Λ′ijηiηj + P ′ijrsηi,jηr,s)dxds,

where

u = (ui, vi, φ, ψ, α, θ, Ri, Ti, ω, ηi).

Thanks to assumptions (i), (ii), (iv) and (v), this is equivalent to the standard prod-
uct norm defined on H. We will also consider the infinitesimal generator of the right-
translation semigroup on N , that is, the linear operator T given by

T (ω, ηi) = −(ω′, η′i),

with domain

D(T ) = {(ω, ηi) ∈ N : (ω′, η′i) ∈ N , (ω, ηi)(0) = 0}
In light of assumption (vi), a straightforward integration by parts yields the dissipative
estimate

(3.1)
〈T (ω, ηi), (ω, ηi)〉N = −1

2

∫ ∞
0

∫
Ω

k′′ijω,iω,j + 2K ′′ijηiω,j + Λ′′ijηiηj + P ′′ijrsηi,jηr,sdxds

≤ 0

for every (ω, ηi) ∈ D(T ). We refer the interested reader to [35] for a thorough discussion
on the mathematical properties of T and of the semigroup of right translation on memory
spaces.

4. Basic Equations in linear Heat Conduction with Memory

In the same spirit of [9], we introduce the variables (omitting the dependence on x)

ωt(s) = α(t)− α(t− s),
ηti(s) = Ri(t)−Ri(t− s),

modeling the histories of the thermal and microtermal displacements. Then, we can
rewrite equations (2.5)-(2.8) as

(4.1) ρüi = (Aijrsur,s +Dijφ− aijθ),j,

(4.2) Jφ̈ = (Aijφ,j −NijTj),i −Dijui,j − ξφ+ Fθ,

(4.3)

aα̈ = −aiju̇i,j − Fφ̇+ (kij(∞)α,j +Kji(∞)Rj),i

−
∫ ∞

0

(k′ij(s)ω,j(s) +K ′ji(s)ηj(s)),ids,
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(4.4)

BijR̈j =−Njiφ̇,j + (Pijrs(∞)Rr,s),j −
∫ ∞

0

(P ′ijrs(s)ηr,s(s)),jds

−Kij(∞)α,j − Λij(∞)Rj +

∫ ∞
0

(K ′ij(s)ω,j(s) + Λ′ij(s)ηj(s))ds,

(4.5) (ω̇, η̇i) = T (ω, ηi) + (θ, Ti).

Introducing the state vector

u(t) = (ui(t), u̇i(t), φ(t), φ̇(t), α(t), α̇(t), Ri(t), Ṙi(t), ω, ηi),

we view system (4.1)-(4.4) as the ODE on H
d

dt
u(t) = Au(t).

Here A is the linear operator defined as

(4.6) A



ui
vi
φ
ψ
α
θ
Ri

Ti
ω
ηi


=



vi
1
ρ
(Aijrsur,s +Dijφ− aijθ),j

ψ
1
J

[(Aijφ,j −NijTj),i −Dijui,j − ξφ+ Fθ]
θ

a−1M
Ti

CijNj
T ω + θ
T ηi + Ti


,

where Cij is the inverse matrix of Bij (which certainly exists in view of assumption (i))
and

(4.7)

M = −aijvi,j − Fψ + (kij(∞)α,j +Kji(∞)Rj),i

−
∫ ∞

0

(k′ij(s)ω,j(s) +K ′ji(s)ηj(s)),ids,

while

(4.8)

Ni = −Njiψ,j + (Pijrs(∞)Rr,s),j −Kij(∞)α,j − Λij(∞)Rj

−
∫ ∞

0

(P ′ijrs(s)ηr,s(s)),jds+

∫ ∞
0

(K ′ij(s)ω,j(s) + Λ′ij(s)ηj(s))ds.

The operator A has dense domain D(A) defined by

D(A) =

u ∈ H
∣∣∣∣∣∣∣∣∣∣

vi, ψ, θ, Ti ∈ V
(Aijrsur,s +Dijφ− aijθ),j ∈ H

(Aijφ,j −NijTj),i ∈ H
M,Ni ∈ H

(ω, η) ∈ D(T )

 .

5. Existence and Uniqueness

This section is devoted to the proof of the generation of a solution semigroup for system
(4.1)-(4.5). Let us state the main result.
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Theorem 5.1. The operator A is the infinitesimal generator of a strongly continuous
linear semigroup S(t) on the phase space H. Besides, S(t) is contractive with respect to
the norm of H.

The proof of Theorem 5.1 is obtained exploiting the well known Lumer-Phillips The-
orem. In turn, this amounts in proving the following two lemmas. Before delving into
details, we remark that since we are dealing with real Banach spaces, in what follows
A will actually denote the complexification of the infinitesimal generator A, that is, the
operator acting on the complex Hilbert space H + iH by the rule

u+ iv 7→ Au+ iAv.

Lemma 5.2. The operator A is dissipative, that is,

Re 〈Au,u〉H ≤ 0, ∀u ∈ D(A).

Proof. By means of the divergence theorem and exploiting the boundary conditions, a
direct computation reveals that

〈AU ,U〉H = −
∫ ∞

0

∫
B

[(k′ijT ω,iω,j +K ′ij(T ηiω,j + T ω,jηi) + Λ′ijT ηiηj + P ′ijrs(T ηi,jηr,s)]dsdv

= 〈T (ω, ηi), (ω, ηi)〉M
≤ 0,

where the inequality follows from (3.1). Therefore, the operator A is dissipative. �

Lemma 5.3. The operator I− A is onto from D(A) into H.

Proof. For every vector

f = (f
(0)
i , f

(1)
i , f (2), f (3), f (4), f (5), f

(6)
i , f

(7)
i , f (8), f

(9)
i ) ∈ H

we look for a unique solution u ∈ D(A) to the resolvent equation

(I− A)u = f .

Equivalently, we try to solve in D(A) the following system

ui − vi = f
(0)
i ,(5.1)

ρvi − (Aijrsur,s +Dijφ− aijθ),j = ρf
(1)
i ,(5.2)

φ− ψ = f (2),(5.3)

Jψ − (Aijφ,j −NijTi),j +Dijui,j + ξφ− Fθ = Jf (3),(5.4)

α− θ = f (4),(5.5)

aθ −M = af (5),(5.6)

Ri − Ti = f
(6)
i ,(5.7)

BijTj − Ni = Bijf
(7)
i ,(5.8)

ω − T ω − θ = f (8),(5.9)

ηi − T ηi − Ti = f
(9)
i .(5.10)
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where M and Ni were defined at (4.7) and (4.8). Integrating (5.9) and (5.10) we obtain

ω(s) =

∫ s

0

e−(s−y)f (8)(y)dy + (1− e−s)θ = (E ∗ f (8))(s) + (1− e−s)θ,

ηi(s) =

∫ s

0

e−(s−y)f
(9)
i (y)dy + (1− e−s)Ti = (E ∗ f (9)

i )(s) + (1− e−s)Ti,

where E(s) = e−s and ∗ denotes the convolution product on (0, s). Making use of the
standard properties of the convolution, we have

‖ω‖2
M ≤ 2‖E ∗ f (8)‖2

M + 2κ‖θ‖2
1 ≤ 2‖f (8)‖2

M + 2κ‖θ‖2
1,

so that ω ∈ M. In a similar way, one is able to show that η = (ηi) ∈M. Substituting
(5.1), (5.3), (5.5) and (5.7) into the main system, we arrive at

(5.11)

ρui − (Aijrsur,s +Dijφ− aijα),j = Ψ
(1)
i ,

Jφ− (Aijφ,j −NijRi),j +Dijuij + ξφ− Fα = Ψ(2),

aα + aijui,j + Fφ− (kij(∞)α,i +Kji(∞)Ri),j + k̂′ijα,ij + K̂ ′jiRi,j = Ψ(3),

BijRj +Nijφ,j − (Pijrs(∞)Rr,s),j +Kij(∞)α,j + Λij(∞)Rj

+ P̂ ′ijrsRr,sj − K̂ ′ijα,j − Λ̂′ijRj = Ψ
(4)
i

Here

k̂′ij =

∫ ∞
0

k′ij(s)(1− e−s)ds

and in the same way we define K̂ ′ij, P̂ ′ijrs and Λ̂′ij. Moreover

Ψ
(1)
i = ρf

(0)
i + ρf

(1)
i + aijf

(5)
,j ,

Ψ(2) = Jf (2) + Jf (3) +Nijf
(6)
i,j − Ff (4),

Ψ(3) = af (4) + af (5) + aijf
(0)
i,j + Ff (2) + k̂′ijf

(4)
,ij

−
∫ ∞

0

k′ij(s)(E ∗ f (8)),ij(s)ds−
∫ ∞

0

K ′ji(s)(E ∗ f
(9)
i ),j(s)ds,

Ψ
(4)
i = Bij(f

(6)
j + f

(7)
j ) +Nijf

(3)
,j + K̂ ′ijf

(4)
,j

−
∫ ∞

0

K ′ij(s)(E ∗ f (8)),j(s)ds−
∫ ∞

0

P ′ijrs(s)(E ∗ f (9)
r ),sj(s)ds−

∫ ∞
0

Λ′ij(s)(E ∗ f
(9)
j )(s)ds.



MICROTEMPERATURES WITH FADING MEMORY 13

In order to prove the existence of u ∈ D(A) satisfying the resolvent equation, we make
use of the Lax-Milgram theorem. To this end, we define the following bilinear form

a((ui, φ, α,Ri), (ũi, φ̃, α̃, R̃i)) = ρuiũi + (Aijrsur,s +Dijφ− aijα)ũi,j

+ Jφφ̃+ (Aijφ,j −NijRi)φ̃,j +Dijuijφ̃+ ξφφ̃− Fαφ̃
+ aαα̃− aijuiα̃,j + Fφα̃ + (kij(∞)α,iα̃ +Kji(∞)Ri)α̃,j

− k̂′ijα,iα̃,j − K̂ ′jiRiα̃,j +BijRjR̃i +Nijφ,jR̃i

+ (Pijrs(∞)Rr,s)R̃i,j +Kij(∞)α,jR̃i + Λij(∞)RjR̃i

− P̂ ′ijrsRr,sR̃i,j − K̂ ′ijα,jR̃i − Λ̂′ijRjR̃i.

In particular, a : V 8 × V 8 → R. We need to show that a is continuous and coercive.
Moreover, we need to prove that Ψi ∈ V −1 for every i = 1, ..., 4, where V −1 is the dual
space of V . Continuity is a straightforward consequence of the Cauchy-Schwarz and
Young inequalities. For what concerns coercivity, by direct computations and making use
of assumption (v), we have

a((ui, φ, α,Ri), (ui, φ, α,Ri)) ≥ ρ‖(ui, φ, α,Ri)‖2
V 4 .

Finally, with the help of Lemma 2.2 we have∥∥∥− ∫ ∞
0

k′ij(s)(E ∗ f (8))(s)ds
∥∥∥

1
≤
∫ ∞

0

−k′ij(s)(E ∗ ‖f (8)‖1)(s)ds

≤ κ

∫ ∞
0

`(s)(E ∗ ‖f (8)‖1)(s)ds

≤ κ

∫ ∞
0

√
`(s)(E ∗

√
`‖f (8)‖1)(s)ds

≤ κ
√
κ‖E ∗

√
`‖f (8)‖1‖L2(R+)

≤ κ
√
κ‖
√
`‖f (8)‖1‖L2(R+)

= κ
√
κ‖f (8)‖M.

Similarly, we can show that

−
∫ ∞

0

K ′ji(s)Fi(s)ds ∈ H1.

Therefore, Ψ3 ∈ V −1. By the same token, we have Ψ4 ∈ V −1. An application of Lax-
Milgram theorem yields ui, φ, α,Ri ∈ V satisfying (5.11). Thanks to (5.1), (5.3), (5.5)
and (5.7) we immediately find also vi, ψ, θ and Ti. The last step to conclude the proof
consists in showing that the solution we have found belongs to D(A). The only thing we
need to check is that (ω, ηi) ∈ D(T ). However, using the fact that ω ∈ M and η ∈M
we see at once that

(T ω, T ηi) = (ω, ηi)− (θ, Ti)− (f (8), f
(9)
i ) ∈ N .

Besides, it is straightforward to check that ω(s), ηi(s)→ 0 in V as s→ 0. Hence (ω, ηi) ∈
D(T ) and the proof is finished. �
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6. Exponential Stability: the One-Dimensional System

In this section we focus on the exponential stability of (4.1)-(4.5) in one space dimension.
In particular, the system becomes

(6.1) ρutt = Auxx +Dφx − a∗αtx,

(6.2) Jφtt = A∗φxx −NRtx −Dux − ξφ+ Fαt,

(6.3) aαtt = k∞αxx − a∗utx − Fφt +K∞Rx −
∫ ∞

0

(k′(s)ωxx(s) +K ′(s)ηx(s))ds

(6.4)

BRtt = P∞Rxx −Nφtx −K∞αx − Λ∞R

+

∫ ∞
0

(K ′(s)ωx(s) + Λ′(s)η(s)− P ′(s)ηxx(s))ds,

(6.5) (ωt, ηt) = T (ω, η) + (αt, Rt).

To obtain the exponential stability, we need an additional hypothesis. Namely, we assume
there exists δ > 0, such that

(6.6)
(k′′(s) + δk′(s))ξ2 + 2(K ′′(s) + δK ′(s))ζξ

+ (Λ′′(s) + δΛ′(s))ζ2 + (P ′′(s) + δP ′(s))η2 ≥ 0,

for every s ≥ 0 and ξ, ζ, η ∈ R.

Remark 6.1. Assumption (6.6) plays the same role of the well known Dafermos inequal-
ity, which is usually stated for a generic memory kernel µ(s) as

(6.7) µ′(s) + δµ(s) ≤ 0, ∀s ≥ 0.

For many equations with memory (6.7) is sufficient to obtain the exponential stability. In
our case, upon choosing ξ, ζ and η in a suitable way, it is not difficult to show that the
kernels −k′(s), −Λ′(s) and −P ′(s) satisfy (6.7).

The following theorem holds

Theorem 6.2. Under assumption (6.6), the semigroup S(t) is exponentially stable.

The proof of Theorem 6.2 relies on the following abstract result, which is a simplified
version of the famous characterization of Gearhart, Greiner, Huang and Prüss. We refer
the interested reader to [16] for the proof.

Proposition 6.3. Let A be the infinitesimal generator of a linear contraction semigroup
S(t) = eAt on a Banach space X . Then, S(t) is exponentially stable if and only if there
exists σ > 0 such that

inf
λ∈R
‖(iλ− A)x‖X ≥ σ‖x‖X , ∀x ∈ D(A).
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We are now in position to prove the main result of this section. We proceed by con-
tradiction and assume that S(t) does not decay exponentially. On account of Proposition
6.3, this means that there exist sequences λn ∈ R and

un = (un, vn, φn, ψn, αn, θn, Rn, Tn, ωn, ηn) ∈ D(A)

such that

(6.8) ‖un‖2
H = 1,

and

(6.9) ‖iλnun − Aun‖H → 0.

Without loss of generality, we set all coefficients to be equal to 1. In components, (6.9)
reads

iλnun − vn → 0 in V,(6.10)

iλnvn − ∂xxun − ∂xφn + ∂xθn → 0 in H,(6.11)

iλnφn − ψn → 0 in V,(6.12)

iλnψn − ∂xxφn + ∂xTn + ∂xun + φn − θn → 0 in H,(6.13)

iλnαn − θn → 0 in V,(6.14)

iλnθn −Mn → 0 in H,(6.15)

iλnRn − Tn → 0 in V,(6.16)

iλnTn − Nn → 0 in H,(6.17)

iλnωn − T ωn − θn → 0 in M,(6.18)

iλnηn − T ηn − Tn → 0 in M,(6.19)

where we recall that

Mn = −∂xvn − ψn + ∂xxαn + ∂xRn −
∫ ∞

0

(k′(s)∂xxωn(s) +H ′(s)∂xηn(s))ds,

and

Nn = −∂xψn + ∂xxRn − ∂xαn −Rn −
∫ ∞

0

(P ′(s)∂xxηn(s)−H ′(s)∂xωn(s)− Λ′(s)ηn(s))ds.

The contradiction will be obtained by showing that ‖un‖2 → 0. First of all, we observe
that, by the dissipativity of A

〈Aun,un〉H = 〈T (ωn, ηn), (ωn, ηn)〉N ≤ −δ‖(ωn, ηn)‖2
N ,

where the inequality follows from assumption (6.6). Then, since

Re 〈iλnun − Aun,un〉H = −Re 〈Aun,un〉H → 0,

we have

δ‖(ωn, ηn)‖2
N ≤ −Re 〈Aun,un〉H → 0.

In the same spirit as [34], we now distinguish two cases.
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Case 1: λn 6→ 0. Up to a subsequence, we can assume that

(6.20) inf
n
|λn| > 0.

The proof will be carried out with the help of some technical lemmas.

Lemma 6.4. Up to a subsequence, we have that

lim
n→∞

‖θn‖H = 0,

and
lim
n→∞

‖Tn‖H = 0.

Proof. We will prove the lemma only for θn. The proof for Tn is identical and therefore
omitted. We preliminary show that

sup
n∈N
|λn|‖θn‖V −1 <∞,

where V −1 is the dual space of V . Henceforth, we will denote by ‖ · ‖−1 the norm in V −1,
coherently with the notation used for V . We can write

iλnθn = iλnθn + Mn −Mn.

Hence,
‖iλnθn‖−1 ≤ ‖iλnθn + Mn‖−1 + ‖Mn‖−1.

The first term of the sum is clearly bounded, being infinitesimal. On the other hand,

‖Mn‖−1 ≤ ‖vn‖+‖ψn‖−1+‖αn‖1+‖Rn‖+
∥∥∥∫ ∞

0

−k′(s)∂xxωn(s)ds
∥∥∥
−1

+
∥∥∥∫ ∞

0

−H ′(s)∂xηn(s)ds
∥∥∥
−1
.

We can bound the last two terms on the right hand side in the following way∥∥∥∫ ∞
0

−k′(s)∂xxωn(s)ds
∥∥∥
−1
≤
∫ ∞

0

−k′(s)‖ωn(s)‖1ds

≤ κ

∫ ∞
0

`(s)‖ωn(s)‖1ds

= κ

∫ ∞
0

√
`(s)

√
`(s)‖ωn(s)‖1ds

≤ κ
√
κ‖ωn‖M.

By the same token, one can show that the other integral term is also bounded. We
rephrase (6.18) as

iλnωn − T ωn − θn = εn,

with εn → 0 in M. Since ωn ∈ D(T ), we can solve the above equation to obtain the
explicit representation

(6.21) ωn(s) =
1

iλn
(1− e−iλns)θn +

∫ s

0

e−iλn(s−y)εn(y)dy.

Now observe that

|iλn〈ωn, A−1θn〉M| ≤ |λn|‖θn‖−1

∫ ∞
0

`(s)‖ωn‖1ds→ 0,
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since ωn → 0 in M and ‖θn‖−1 was bounded. Hence, we have

(6.22) |iλn〈ωn, A−1θn〉M| = an‖θn‖2 + bn → 0,

having set

an =

∫ ∞
0

`(s)(1− e−iλns)ds,

bn = iλn

∫ ∞
0

`(s)
(∫ s

0

e−iλn(s−y)〈εn(y), A−1θn〉V dy
)
ds

Following exactly the same reasoning of [34, Lemma 5.5] we see that bn → 0. For what
concerns an, we consider two separate cases. Let λ? be a limit point of the sequence λn.
From (6.20) we have

λ? ∈ [−∞,∞] \ {0}.
If λ? ∈ {−∞,∞}, then by the Riemann-Lebesgue lemma we have the convergence (up to
a subsequence)

an →
∫ ∞

0

`(s)ds > 0.

On the other hand, if λ? ∈ R \ {0},

an →
∫ ∞

0

`(s)(1− e−iλ?s)ds,

and

Re

∫ ∞
0

`(s)(1− e−iλ?s)ds =

∫ ∞
0

`(s)(1− cosλ?s)ds > 0.

In both cases, in order for (6.22) to hold, it must be ‖θn‖ → 0. �

Lemma 6.5. Up to a subsequence,

lim
n→∞

‖Rn‖1 = lim
n→∞

‖αn‖1 → 0.

Proof. Define

ρn(s) =
1

iλn
(1− e−iλns)(θn − iλnαn).

In view of (6.14), it is clear that ρn → 0 in M. We can then rewrite (6.21) as

ωn(s) = (1− e−iλns)αn +

∫ s

0

e−iλn(s−y)εn(y)dy + ρn(s),

which, on account of Step 1, entails

〈ωn, αn〉M = an‖αn‖2
1 + cn + 〈ρn, αn〉M → 0,

with an as above and

cn =

∫ ∞
0

`(s)
(∫ s

0

eiλn(s−y)〈εn(y), αn〉1dy
)
ds.

Clearly,
〈ρn, αn〉M → 0.

Besides, with the same reasoning of Lemma 6.4, cn → 0. Hence, we obtain that ‖αn‖1 → 0.
This proof can then be repeated to show that ‖Rn‖1 → 0. �
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Conclusion of the proof. At this point we proceed as in [3]. We multiply equation
(6.17) by λ−1

n ∂xφn. In view of (6.12), and exploiting the convergences obtained above, we
get

i‖φn‖2
1 + 〈∂xRn,

∂xxφn
λn
〉 → 0.

Thanks to equation (6.13) we see that ∂xxφn/λn is bounded. In turn, this yields that

‖φn‖2
1 → 0.

In a similar fashion, using equations (6.15) and (6.11) it is possible to show that ‖un‖1 → 0
too, as n→∞. Finally, a straightforward application of equations (6.10) and (6.12) yields
the convergence of vn, ψn → 0 in H.

Case 2: λn → 0. In this case, in light of (6.8), (6.10), (6.14) and (6.16) we have

vn → 0 in V,

θn → 0 in V,

Tn → 0 in V.

In turn, due to (6.11) and (6.13), this entails

−∂xxun − ∂xφn → 0 in H,(6.23)

−∂xxφn + ∂xun + φn → 0 in H.(6.24)

Multiplying (6.23) by un, (6.24) by φn, and summing up the two, we get

(6.25) ‖∂xun‖2 + 〈φn, ∂xun〉+ 〈∂xun, φn〉+ ‖φn‖2 + ‖∂xφn‖2 → 0.

Since
‖∂xun‖2 + 〈φn, ∂xun〉+ 〈∂xun, φn〉+ ‖φn‖2 = ‖∂xun + φn‖2 ≥ 0,

by (6.25) we have ‖φn‖ → 0 in V . In turn, this gives us the convergence of un → 0 in V .
An almost identical reasoning yields the convergence of Rn and αn to 0 in the space V .

Remark 6.6. If we do not assume all the constants to be equal to 1, we do not obtain a
perfect square in (6.25). However, the thesis follow in the same way thanks to assumption
(ii).
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[23] D. Ieşan, On a theory of thermoelasticity without energy dissipation for solids with microtemperatures,

ZAMM Z. Angew. Math. Mech. 98 (2018), 870–885.
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