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Common bean (Phaseolus vulgaris L.) has two major origins of domestication, Andean

and Mesoamerican, which contribute to the high diversity of growth type, pod and seed

characteristics. The climbing growth habit is associated with increased days to flowering

(DF), seed iron concentration (SdFe), nitrogen fixation, and yield. However, breeding

efforts in climbing beans have been limited and independent from bush type beans.

To advance climbing bean breeding, we carried out genome-wide association studies

and genomic predictions using 1,869 common bean lines belonging to five breeding

panels representing both gene pools and all growth types. The phenotypic data were

collected from 17 field trials and were complemented with 16 previously published trials.

Overall, 38 significant marker-trait associations were identified for growth habit, 14 for

DF, 13 for 100 seed weight, three for SdFe, and one for yield. Except for DF, the results

suggest a common genetic basis for traits across all panels and growth types. Seven

QTL associated with growth habits were confirmed from earlier studies and four plausible

candidate genes for SdFe and 100 seed weight were newly identified. Furthermore, the

genomic prediction accuracy for SdFe and yield in climbing beans improved up to 8.8%

when bush-type bean lines were included in the training population. In conclusion, a large

population from different gene pools and growth types across multiple breeding panels

increased the power of genomic analyses and provides a solid and diverse germplasm

base for genetic improvement of common bean.

Keywords: genome-wide association studies (GWAS), genomic selection, population structure, pleiotropy, growth

habit, common bean (Phaseolus vulgaris L.), climbing and bush type bean
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1. INTRODUCTION

Common bean (Phaseolus vulgaris L.) was domesticated about
8,000 years ago in two geographic regions, resulting in the
Andean and the Mesoamerican gene pools (Gepts et al., 1986;
Bitocchi et al., 2013). Within the two gene pools, several
groups, including climbing and bush type beans, were identified
through genetic or phenotypic characterization (Gepts et al.,
1986; Rodriguez et al., 2016). Seven domestication events for the
common bean were discovered by investigating a genetic locus
for flowering determinacy (Kwak et al., 2008, 2012). Flowering
determinacy defines the first criterion for growth type: the
determinate growth type forms a reproductive terminal bud,
whereas the indeterminate growth types produce a vegetative
one (Singh, 1981). The second criterion describes the bush vs.
climbing growth habit. Both criteria were used to distinguish four
growth types: type I (determinate bush), type II (indeterminate
bush), type III (indeterminate semi-climber), and type IV
(indeterminate climber) (Singh, 1981). Since growth type is
associated with flowering determinacy, it also affects vegetative
growth and the length of the crop cycle (González et al., 2016). In
recent decades, major breeding efforts have been directed toward
the erect growth habit of bush type beans since this habit enables
a faster cultivation cycle without staking of the plants and a single,
automated harvest (Teixeira et al., 1999; Ronner et al., 2018).
The joint diversity of common bean growth types may offer new
insights to improve not only climbing but also bush type beans.

Although largely neglected in breeding programs, climbing
beans offer three main advantages over bush type beans: first,
climbing beans reach higher yield per area, with up to 5 t ha-1

(Rosales-Serna et al., 2004; Checa et al., 2006; Barbosa et al.,
2018). Second, they have a higher symbiotic nitrogen fixation
capacity, with up to 92 kg of N fixed ha-1 (Graham, 1981; Bliss,
1993; Checa et al., 2006; Barbosa et al., 2018). Third, they achieve
higher seed iron content (SdFe), with up to 10 mg/100 g (Blair
et al., 2010; Blair, 2013; Petry et al., 2015; Mukamuhirwa and
Rurangwa, 2018). Indeed, the production of climbing beans can
be more profitable, and they are preferentially adopted in higher
and/or drought prone regions by small holder farmers in Uganda
and Rwanda (Ronner et al., 2018; Katungi et al., 2019). However,
these advantages come with the cost of staking the plants and a
longer vegetative period, partly due to the indeterminate growth
type (White et al., 1992).

To shorten the cultivation cycle, Kornegay et al. (1992)
suggested crossing type I and II bean lines with type IV lines
to achieve an increase in yield while selecting against climbing
ability. However, the climbing growth habit is tightly linked to
plant development and productivity. The relation of days to
flowering (DF), vegetative growth, and plant production was
investigated in two Andean (type I) x Mesoamerican (type IV)
recombinant inbred line populations (González et al., 2016).
In those mixed climbing and bush type populations, the QTL
containing the PvTFL1y flowering gene explained 32% of the
variation for DF, 66% for vegetative growth (length of the main
stem), and 19% for the rate of plant production, including
traits such as yield and seed weight (González et al., 2016). In
general, more days to physiological maturity (DPM) resulted

in an increased yield of lines among and across the different
growth types (White and Izquierdo, 1989; Keller et al., 2020).
However, within growth type I and type II, DPM was not
related to yield in near-isogenic lines (White et al., 1992). This
suggests that the relationship between yield, DF, and DPM can be
partially uncoupled.

The higher SdFe in climbing beans is promising to combat
iron deficiency in human nutrition, which causes anemia,
increases morbidity, and leads to economic losses (Boccio and
Iyengar, 2003). About 30% of the global population suffers from
anemia, especially women and children in developing countries
(Black et al., 2008; Stein, 2010). Increasing SdFe in legumes is
a possible avenue to improve nutritional quality in the human
diet (Petry et al., 2015; Rehman et al., 2019). In the last years, a
few biofortified lines with higher SdFe were successfully released
(HarvestPlus, 2022). Iron biofortified beans showed higher phytic
acid concentrations, which decreased the relative but not absolute
iron absorption (Petry et al., 2014). However, the SdFe of
climbing beans has not been investigated intensively and SdFe
is negatively correlated with yield (Kelly and Bornowski, 2018).
Such tradeoffs, including the longer DPM, which is associated
with the climbing habit, need to be taken into account when
improving climbing beans.

Efficient breeding for multiple traits requires detailed
knowledge about the underlying genetic architecture of the target
traits and their correlations with other key characteristics. The
genetic architecture of traits can be investigated by genome-wide
association studies (GWAS) and genomic prediction models
(Crossa et al., 2017; Cortes et al., 2021). For common bean,
GWAS have been carried out successfully and QTL for various
traits were tagged with molecular markers (Miklas et al., 2006;
Wu et al., 2020). Recently, genomic predictions were evaluated
for agronomic traits in an elite Andean breeding panel (Keller
et al., 2020). This study revealed the prediction abilities (PAs)
for the genomic estimated breeding values (GEBV) based on
genomic data only, as proposed by Meuwissen et al. (2001).
This allows breeders to efficiently select superior lines before
they enter field trials (Crossa et al., 2017). In general, PA is
increased for more heritable traits and in lines, which are closely
related to the training population (TP). In order to deal with
different populations or breeding panels, multivariate models
were suggested to account for population structure (Lehermeier
et al., 2015). Following another approach, the TP can be
optimized for genetic relatedness to improve the accuracy of the
GEBV (Akdemir and Isidro-Sánchez, 2019; Sarinelli et al., 2019).
These approaches have great potential to improve PAs, given the
increasing availability of genotypic and phenotypic data (Spindel
and McCouch, 2016). The efficient use of prediction models
based on appropriate TPs and available data sets is a key factor
in the development of new and adapted climbing bean cultivars.

In this study, comprehensive genetic analyses across all bean
growth types and the two gene pools were carried out using
1,869 lines belonging to five breeding panels. We hypothesized
that (i) climbing and bush type beans show, despite specific
growth habit loci, overall a high genetic similarity, that (ii)
combined analysis will increase the power of GWAS as well as
the genomic predictions across all growth types and that (iii)
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predictions for climbing beans with an optimized TP including
bush beans will outperform predictions which were based on the
climbing bean growth types only. Hence, we evaluated whether
breeding programs can supplement their trial data with already
existing data to improve GWAS and genomics predictions. The
overall objective was to provide molecular markers and genomic
prediction models which can be used to speed up the selection of
new bean lines across all growth types and gene pools.

2. MATERIALS AND METHODS

2.1. Germplasm
The germplasm used in this study consisted of five bean breeding
panels across all growth types: the newly composed climbing
bean panel (VEC), the Andean diversity panel (ADP), the panel
of progeny from two-way crosses between five Andean and five
Mesoamerican parents (AxM), the Mesoamerican introgression
panel (MIP), and the elite Andean breeding panel (VEF),
whereas the latter four are bush type bean panels known from
previous studies.

2.1.1. Climbing Bean Panel
The VEC comprised climbing bean lines of growth types III
and IV. The lines were selected for grain quality, commercial
seed type, disease resistance, SdFe, seed zinc concentration
(SdZn), and agronomic performance. They represent the genetic
variation used in climbing bean breeding at the International
Center for Tropical Agriculture (CIAT). The VEC was composed
mainly of lines from the Andean gene pool, but it also included
a line of the Mesoamerican gene pool (G2333) and a few lines
of admixed origin. In total, the VEC was comprised of 290 lines
including twelve breeding groups, four genebank accessions, and
six cultivars (Supplementary Table 1).

Field trials including all VEC lines were conducted in
Colombia, Uganda, and Tanzania to collect phenotypic data for
this study.

2.1.2. Bush Type Bean Panels
Four bush type breeding panels were used in this study: (i) the
ADP consisting of 352 Andean bush cultivars and breeding lines
from public and private breeding programs as described by Cichy
et al. (2015). The ADP genotyping-by-sequencing (GBS) data was
available via the ARS Feed-the-Future Grain Legumes Project
(arsftfbean.uprm.edu/bean/?p=472); (ii) the AxM as described by
Mayor Duran et al. (2016) and Mayor Duran (2016); (iii) the
MIP consisting ofMesoamerican breeding lines with interspecific
introgressions from P. acutifolious, P. dumosus, and P. coccineus
in their pedigrees and their parental lines as described by Diaz
et al. (2021); (iv) the VEF as described by Keller et al. (2020).

For the VEF, MIP, and AxM, phenotypic and genotypic data of
605, 217 and 200 lines were available, respectively. For the ADP,
field trials were conducted in Mozambique, Tanzania, and in the
United States to collect phenotypic data for this study.

2.2. Phenotyping
Agronomic traits were evaluated in the VEC and ADP as
previously described by Keller et al. (2020). Briefly, DF represents

the days from planting until 50% of the plants in the plot had at
least one open flower. The seed yield per plot was normalized to a
moisture content of 14% and extrapolated to yield per hectare.
The weight of 100 seeds (100SdW) was measured separately.
The growth type was assessed according to the four categories
described by Singh (1981). The growth habit described climbing
ability and differentiated only between bush (types I and II) and
climbing types (type III and IV). Further traits such as DPM,
pod harvest index (PHI), SdFe, SdZn, and canning quality were
phenotyped only for the VEC. Analogous to DF, DPM represents
the days until 50% of the pods in one plot had lost their green
pigmentation. For the PHI, the seed dry weight of 20 pods at
harvest was divided by the corresponding pod dry weight. The
SdFe and SdZn were assessed on dried and ground seeds as
described by Stangoulis and Sison (2008). The SdFe and SdZn
content was then quantified by the X-ray fluorescence method
using the X-Supreme 8000 instrument (Oxford Instruments,
UK) (Guild et al., 2017). The canning quality was assessed
by a trained sensory panel at Michigan State University as
described by Cichy et al. (2014). Briefly, the beans were soaked
in distilled water, canned at 100◦C, sealed, and stored for 2
weeks. Upon opening, the canning quality was assessed by a
trained consumer panel and expressed as an overall score from 1
(unacceptable appearance) to 5 (excellent appearance). The rated
criteria included color, bean splitting, free starch clumps, and
brine clarity after cooking (Cichy et al., 2014).

2.2.1. Field Trials for Climbing Beans
The field trials for the VEC were carried out at five
locations in three countries: Darién (3◦53′31′′N 76◦31′00′′W,
altitude of 1,491 m a.s.l.), Palmira (3◦30′03.0′′N 76◦21′03.5′′W,
altitude 965 m a.s.l.), and Popayán (2◦25′39′′N 76◦37′17′′W,
altitude of 1,750 m a.s.l.) in Colombia; Kawanda (0◦24′49′′N
32◦31′59′′E, altitude of 1,190 m a.s.l.) in Uganda; and Kagera
(1◦24′56.5′′S 31◦46′48.8′′E, altitude of 1,320 m a.s.l.) in Tanzania
(Supplementary Table 2). Each line was arranged in an alpha
lattice design with three replicates.

Regarding the field trials in Colombia, the experimental units
consisted of one row with a row-to-row distance of 0.95 m
and with seven seeds sown manually per meter row length.
Row length per plot differed between locations with 2.5 m,
2.2 m, and 2.0 m used in Darién, Palmira, and Popayán,
respectively (Supplementary Table 2). Climbing beans (mainly
type IV) required a trellis to support the plant. Wooden poles of 3
m height were distributed in the field in squares of 5 x 5 m. Wires
were spanned between the poles at a height of 2.3 m. Each bean
plant climbed on a string hanging from the wire. Eight strings
per plot were deployed. Plant protection was carried out when
needed using good agricultural practices.

The soil type in Darién and Popayán was an Inceptisol (Typic
Dystrandept) with about 70 g/kg and 140 g/kg of soil organic
matter, respectively, and a pH of around 5 (Barbosa et al., 2018).
The soil type in Palmira was Mollisol with a pH between 7.0
and 7.5.

In Uganda and Tanzania, the plots were planted in single 3.0 m
rows with about 30 seeds planted per row and at 0.6 m between
the rows (Supplementary Table 2). Granular N:P:K (nitrogen,
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P205 andK2O) fertilizer wasmanually applied at 125 kg/ha. Trials
were manually weeded two times. Climbing bean plants were
staked with 2 to 3 m long wooden poles. Five poles were used
per plot.

2.2.2. Field Trials for Bush Beans
The field trials for the ADP were carried out at five locations
in three countries: Arusha (3◦21′41′′S 36◦37′34′′E, altitude of
1,387 m a.s.l.), Morogoro (6◦51′14.2′′S 37◦39′27.6′′E, altitude
of 526 m a.s.l.), and Mbeya (8◦54′52′′S 33◦31′05′′E, altitude of
1,780 m a.s.l.) in Tanzania; Chokwe (24◦30′04′′S 33◦00′09′′E,
altitude of 35 m a.s.l.) in Mozambique; and Wilcox (32◦01′44′′N
109◦41′27′′W, altitude of 1,321 m a.s.l.) in the United States
(Supplementary Table 3).

The trials were conducted in two to three replications in
a randomized complete block design (Supplementary Table 3).
The plot size differed between trials with lengths of 5–8 m,
1–0.5 m spacing between rows, and 1–4 rows. The plot sizes,
soil types, and growth conditions of each trial are described in
Supplementary Table 3. Irrigated trials were watered about two
times a month and drought trials were rain fed. The growing
season of one trial (MZCH15D_heat) coincided with the high
temperature season at the site. The trials in Tanzania and in the
United States were not fertilized. In the trials in Mozambique,
single superphosphate and ammonium sulfate were applied at
about 30 kg P/ha and 6.3 kg N/ha, respectively.

2.2.3. Available Phenotypic Data From Previous

Studies
Of the 290 VEC lines, 43 were phenotypically characterized
in two trials in a previous study (Barbosa et al., 2018).
Phenotypic data were also publicly available for the AxM
(Mayor Duran, 2016), the MIP (Diaz et al., 2021), and the VEF
(Keller et al., 2020) from ten, one and three trials, respectively
(Supplementary Table 4).

2.3. Genotyping
GBS was conducted as previously described by Nay et al.
(2019). Briefly, DNA was extracted from leaf tissue and digested
with the ApeKI restriction enzyme as described in Elshire
et al. (2011). The sequencing was performed on the Illumina
HiSeq 2500 platform at the HudsonAlpha Genome Sequencing
Center (Huntsville, AL, United States). The sequence reads were
demultiplexed using NGSEP (v3.3.0) (Tello et al., 2019), trimmed
using Trimmomatic (v0.36) (Bolger et al., 2014), and aligned
to the reference genome of P. vulgaris G19833 v2.1 (Schmutz
et al., 2014) using Bowtie2 (v2.2.30) (Langmead and Salzberg,
2012). The variant calling was carried out using NGSEP, filtering
SNPs with a genotype quality below 40, minor allele frequency
(MAF) below 0.05, and removing SNPs with less than 60% of
genotype calls, which yielded a matrix with 20% of missing data.
The imputation of the missing data was performed with Beagle
v.5.0 (Browning et al., 2018) using 100 as an effective population
size and using the genetic map reported by Diaz et al. (2019). The
SNP calling was carried out once on the VEC separately and once
on all five panels together. All VEC lines were genotyped together

with 55 additional climbing lines from a previous study (Barbosa
et al., 2018).

2.4. Data Analysis
2.4.1. Phenotypic Data
Best linear unbiased estimators (BLUEs) were extracted from
phenotypic data in two stages. In the first stage, the field data were
corrected for spatial effects using the SpATS R package, setting
row and column as random effects (Rodríguez-Álvarez et al.,
2018). The number of plants harvested was binned (binwidth
= 5) and added as a random effect in the spatial analysis. The
plots with residuals bigger than ±3 times the SD were treated
as outliers and removed iteratively as described in Keller et al.
(2020). The BLUEs were extracted for each line in each trial
from the SpATS model (first-stage BLUEs) from all the data sets,
except for the ADP. In the ADP lines, the first-stage BLUEs were
extracted using replicate (block) as a factor for the fixed effects
since the row and column information was not available for these
randomized complete block design trials. In the second stage,
second-stage BLUEs for each line (Li) were calculated across all
trials using the following model:

yij = Li + Ej + εij (1)

where yij is the first-stage BLUE of the ith line in the jth trial,
Li is the fixed effect for each line, Ej is the fixed effect for each
trial, and εij the error term. The inverse of the squared standard
error (SE) of the mean was used as a weight, i.e., ε ∼ N(0,R);
R =

⊕n
j=0 Rj where Rj = diag[(SEij)2], and (SEij) is the standard

error of a mean of the ith line in the jth trial (Möhring and
Piepho, 2009). In addition, BLUEs for yield were scaled (mean
= 0, SD=1 resulting in Yd_scaled) for each panel to compare
relative differences between the lines beyond panel and growth
type. Kernel density estimates of the BLUEs were calculated using
a Gaussian kernel with 1/30 bandwidth of the data range. The
estimates were drawn as a smoothed histogram with the integral
equal to one using the ggplot R package (Wickham, 2016). The
significance of the genotype-by-environment interaction (GxE)
was tested by comparingmodel 1 with and without an interaction
term ELij between jth trial and ith line using the likelihood-ratio
test. The test statistic was compared with a chi-square value with
one degree of freedom and the p-value was adjusted following the
work by Self and Liang (1987).

2.4.2. Linkage Disequilibrium and Population

Structure
Pairwise measures of linkage disequilibrium (LD) were calculated
for each population in sliding windows of 100 markers. The LD
measures were corrected for kinship in the population (r2V ) as
implemented in the R package LDcorSV (v1.3.2) (Mangin et al.,
2012). The LD decay was estimated regressing the pairwise r2V
values on the physical distance of their markers using the locally
estimated scatterplot smoothing implemented in the R function
“loess” (v4.1.0), with a span value of 0.5.

The phylogenetic tree was constructed using the GGTREE R
package on the hierarchically clustered SNP matrix (Yu et al.,
2017). The population structure was assessed on the SNP matrix
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using principal components analysis (PCA) implemented in the
FactoMineR R package (Lê et al., 2008). The correlation of the
supplemental phenotypic traits (second-stage BLUEs) with the
principal components (PCs) of the SNP matrix was calculated
using the same FactoMineR package (Lê et al., 2008).

2.4.3. Genome-Wide Association Studies
To carry out GWAS, the Bayesian-information and Linkage-
disequilibrium Iteratively Nested Keyway (BLINK) algorithm
implemented in GAPIT was used (Huang et al., 2019). The
first five PCs were used to correct for population structure. The
imputed SNP matrix was used for GWAS. Identified QTL tagged
by SNP markers were labeled with “Trait_Chr_Postion” as QTL
ID, whereas yield was abbreviated with Yd and growth habit
with GH. The SNP position derived from the reference genome
G19833 v2.1 (Schmutz et al., 2014) was in Mbp rounded to
two digits.

The network of significant marker-trait associations was
visualized similarly as suggested in Fang et al. (2017) using
the ggnetwork R package (Briatte et al., 2020). The distance
between the connected nodes represents the LD between the two
SNPs calculated as the squared Pearson correlation coefficient.
The SNPs were connected when LD >0.25. The haplotypes
associated with one trait were assembled using the identified
SNPs in the indicated region for that trait. In case there were
less than six SNPs selected, these SNPs were directly assembled
to haplotypes. When more than five SNPs were selected, groups
of haplotypes were constructed by hierarchical clustering of all
lines based on those SNPs using the stats R package. The optimal
number of clusters was determined using the average silhouette
width implemented in the factoextra R package (Kassambara and
Mundt, 2020).

2.5. Genomic Prediction
The GEBV were estimated using Bayesian generalized linear
regression (BGLR) implemented in the BGLR R package (Pérez
and de los Campos, 2014). For the factorial models, the BGLR
extension for the Multiple-Trait Model (MTM) was used (http://
quantgen.github.io/MTM/vignette.html). The Gibbs sampler ran
with 20,000 iterations of which the first 10,000 were burned-
in and the remaining were thinned by factor 5. Three different
model approaches were tested.

2.5.1. Genotype Model Among and Across Trials
For each trait, the phenotypes adjusted per trial (yij) were
modeled as the sum of the GEBV for each line (gi) estimated
based on SNP marker information, i.e., the additive relationship
matrix (K), a fixed effect for the trial (Ej), and an error term
εij ∼ N(0, σ 2

ε
). The following linear model was used:

yij = gi + Ej + εij (2)

with g ∼ N(0,Kσ
2
g ) and K was calculated as the normalized cross

product of the SNPmatrix using the rrBLUP package (Endelman,
2011; Endelman and Jannink, 2012). The yij were calculated
either among all trials (using first-stage BLUEs), for all trials
separately (using first-stage BLUEs), or across all trials (using

second-stage BLUEs). In the case of the genotype model using all
trials separately, j represents always the same environment. The
same applied to the genotype model when using second-stage
BLUEs across all trials.

2.5.2. GxE Model
In the GxE model, the GEBV for each trait were estimated for
each environment (i.e., location) by adding an effect for the
interaction between the jth environment and ith GEBV (gEij) to
the model (2). This resulted in the following model:

yij = gi + Ej + gEij + εij (3)

with gE ∼ N(0, I ⊗ Kσ
2
gE), where I is the identity matrix for the

environments and⊗ denotes the Kronecker product. This means
no correlations between environments were considered.

2.5.3. Factor Analysis Model
In the factor analysis (FA) model, the GEBV for each line in each
environment (gij) were estimated for each trait using SNPmarker
information and the covariance of the phenotypes (yij) between
the trials. The following equation was used:

yij = gij + εij (4)

with g ∼ Nj(0,G⊗Kσ
2
g ), where G represents a covariance matrix

of phenotypes between trials calculated asG = BBT+9 , where B
is a matrix of loadings (regressions of the original random effects
into common factors) and9 is a diagonal matrix whose non-null
entries give the variances of factors that are trait-specific. The
model residuals were assumed to follow a multivariate normal
distribution ε ∼ Nj(0,Rε ⊗ In), where Rε is a covariance matrix
of model residuals and In represents an n-dimensional identity
matrix, where n is the number of phenotypes per environment.
Three common factors were selected.

2.5.4. Training Population Optimization
For each VEC line in the validation set, the 50 closest related
lines from all five panels were added to the TP (TP optimized).
Genetic relationships were calculated as the cophenetic distances
of the hierarchically clustered lines based on the SNP matrix,
i.e., as the height of the dendrogram where the two branches
including the considered lines join each other. This means that
the TP could consist of between 50 lines (in case the lines to be
tested would have all the same 50 closest relatives) and 2,500 lines
(if they would not have the same closest relatives). The number
of related lines (50) was chosen arbitrarily but seemed reasonable
for a panel of 1,500 lines with some population structure. The
optimized TP was compared to a TP containing only VEC lines
(TP VEC) and a TP containing all lines from all five panels
(TP extended).

2.5.5. Cross-Validation
The cross-validation was done 100 times, randomly splitting
the dataset into training and validation set, i.e., for each cross-
validation step, 70% of the lines were selected for the training
and 30% for the validation set. The lines in the training and
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validation sets were referred to as TP and new lines, respectively.
The Pearson correlation coefficient (r) between predicted and
observed values was calculated at each cross-validation step to
assess the PA. The prediction accuracy (PAcc) is defined as the
quotient of PA and the square root of heritability.

2.5.6. Genomic BLUPs Without Cross-Validation
The genomic r is defined as the Pearson correlation coefficient of
modeled vs. observed values when all lines were used in the TP
to fit the model. The genomic r was derived from the predicted
genomic BLUPs without cross-validation.

3. RESULTS

The traits DF, 100SdW, SdFe, and yield were analyzed in
27, 28, 6, and 33 field trials, respectively, using a total
of 1,869 lines belonging to five different breeding panels
(Supplementary Figure 1). For this study, six and eleven field
trials were newly evaluated, adding data for the VEC and ADP,
respectively. The number of evaluated lines per trial was 290 for
the VEC (Supplementary Table 2) and ranged between 41 and
268 for the ADP (Supplementary Table 3).

3.1. Phenotypes of Climbing Beans
The lines of the VEC showed different phenotypic distributions
for the traits DF, 100SdW, SdFe, and yield among all field
trials (Figure 1A). Especially, strong environmental effects were
observed for yield. The trials carried out in the lowlands
and in the warmer climates (Palmira, Kawanda, and Kagera)
had less yield compared to the remaining trials in the high-
altitude locations Darién and Popayán. Phenotypic variation
among and across trials was also observed for additional
traits, including important breeding targets such as canning
quality and PHI (Supplementary Figure 2). The phenotypic
correlations between trials were evaluated using the first-stage
BLUEs: positive correlations were revealed across the trials
for DF, 100SdW, and SdFe, whereas yield of the Pal19D and
TzKg19D trials were mainly negatively correlated to the other
trials (Figure 1B). The likelihood-ratio test confirmed significant
GxE (p value < 0.001) for all traits, especially for yield, where
the variance component for GxE was higher than for the lines
(Supplementary Table 5).

Across all trials, the correlations between traits were
evaluated using the second-stage BLUEs. Positive correlations
were revealed between the traits SdFe, SdZn, DPM, and
DF (Supplementary Figure 3). However, the correlations were
negative between yield, nitrogen use efficiency, and 100SdW.
Additionally, PHI was negatively correlated to SdFe and SdZn.
Since yield showed strong GxE, the correlations to other traits
differed across trials, e.g., the yield was negatively correlated with
DF in the Pop15B and Pal19D trials but positively correlated
with DF in the remaining trials (Supplementary Figure 4).
In summary, strong GxE was observed for yield, while the
remaining traits showed moderate GxE among the different
environments and trials.

3.2. Comparing Phenotypes of the Five
Breeding Panels
The phenotypic distribution of DF, 100SdW, SdFe, and yield
were compared among all five panels across all trials (Figure 2A).
The climbing beans of the VEC showed on average 28%, 21%,
and 67% higher DF, SdFe, and yield than the bush type panels,
respectively. The trait 100SdW depended primarily on the gene
pools, showing lower values in the Mesoamerican MIP and the
AxM, consisting of inter gene pool crosses. The observation in
the VEC, that SdFe correlated negatively and DF and 100SdW
positively to yield, was also true in the four bush bean panels
(Supplementary Figure 4).

3.3. Structure and Diversity of the Five
Breeding Panels
In the joint analysis of all five panels, 14,913 SNP markers
distributed over the whole genome were kept from the raw
169,087 SNPs after filtering for genotype quality calls, MAF, and
missingness. The dendrogram of the 1,869 lines showed grouping
intoMesoamerican (represented by theMIP) and Andean origin,
whereas the AxM and part of the VEC formed an admixture
branch (Figure 2B). These genetic groups were also visible in the
PCA analysis of all lines: the first PC clearly grouped the lines
according to their Andean and Mesoamerican origin spreading
the admixed AxM lines in-between (Figure 2C). In agreement,
the first PC was highly correlated with 100SdW (r = −0.67)
which differentiated the two gene pools (Figures 2A,C). The
second PC explained variation for growth type, separating mostly
the VEC lines from the others, and was correlated to DF (r = 0.58,
Figure 2C). The first and second PC explained 28.9 and 3.4%
of the genetic variance, respectively. The third PC, explaining
2.4% of the variance, captured variationmainly between the AxM
and MIP, whereas the fourth and fifth PC showed the smallest
variation for the VEF (Supplementary Figure 5). Finally, the
sixth PC showed no clear pattern among the panels. Therefore,
five first PCs were included as fixed effects for GWAS. The LD
decay observed for all the breeding panels was faster for the
combined panel than for the separate panels, enabling higher
detection power for GWAS (Figure 2D). In general, the genetic
diversity was bigger between the two gene pools than between the
growth types.

3.4. Genome-Wide Association Studies
Across All Panels
Carrying out GWAS using the second-stage BLUEs across all
trials and breeding panels, a total of 69 significant marker-trait
associations were identified below the 1% Bonferroni corrected
significance level (Figure 3A and Table 1). The observed p-
value distribution showed a clear deviation of the identified
significant SNPs from the expected uniform distribution if no
genetic linkage was present (Figure 3B). A p-value inflation
was visible mainly in growth habit and 100 SdW. Most striking
was the region at around 45Mbp on Chr 1 associated with
significant effects for growth habit, DF, DPM, and 100 SdW
(Supplementary Figure 6). Furthermore, different QTL for SdFe
and scaled yield across all panels were identified.

Frontiers in Plant Science | www.frontiersin.org 6 April 2022 | Volume 13 | Article 830896

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Keller et al. Improving Genomic Predictions for Beans

]ah/gk[ dleiY]gk/gm[ eFdS]g[ WdS001]d[ FD

40 50 60 70 0 25 50 75 50 75 100 0 2000 4000 6000

0.0000

0.0005

0.0010

0.0015

0.00

0.02

0.04

0.000

0.025

0.050

0.075

0.0

0.1

0.2

BLUEs

D
e

n
s
it
y

Dar14B
Dar18B

Dar19B
Pal19D

Pop15B
Pop17D

TzKg19D
UgKw19D

A

−1.0 −0.5 0.0 0.5 1.0

Pearson
correlation

DF

D
a

r1
4

B

P
o

p
1

5
B

U
g

K
w

1
9

D

D
a

r1
9

B

P
o

p
1

7
D

D
a

r1
8

B

P
a

l1
9

D

Dar14B

Pop15B

UgKw19D

Dar19B

Pop17D

Dar18B

Pal19D

100SdW

T
z
K

g
1

9
D

P
a

l1
9

D

P
o

p
1

5
B

D
a

r1
8

B

D
a

r1
9

B

D
a

r1
4

B

P
o

p
1

7
D

TzKg19D

Pal19D

Pop15B

Dar18B

Dar19B

Dar14B

Pop17D

SdFe

P
o

p
1

7
D

D
a

r1
4

B

D
a

r1
8

B

D
a

r1
9

B

Pop17D

Dar14B

Dar18B

Dar19B

Yield

T
z
K

g
1

9
D

P
a

l1
9

D
P

o
p

1
5

B
U

g
K

w
1

9
D

P
o

p
1

7
D

D
a

r1
4

B
D

a
r1

8
B

D
a

r1
9

B

TzKg19D
Pal19D

Pop15B
UgKw19D

Pop17D
Dar14B
Dar18B
Dar19B

B

FIGURE 1 | Phenotypes of the climbing bean panel (VEC). (A) Density diagrams for days to flowering (DF), 100 seed weight (100SdW), seed iron concentration

(SdFe), and seed yield of up to 290 VEC lines in eight trials are shown. Best linear unbiased predictors (BLUEs) were calculated from each trial corrected for spatial

effects in the field. (B) Pearson correlation coefficients were calculated across all trials for each trait based on the BLUEs. Trials were abbreviated based on the

location Darién (Dar), Palmira (Pal), Popayán (Pop) in Colombia, Kagera in Tanzania (TzKg), or Kawanda in Uganda (UgKw), the year and the planting season

(sequentially A to D). For a detailed description of each trial refer to Supplementary Table 2.

3.4.1. Growth Habit and Pleiotropy
For growth habit, 38 significant marker-trait associations
were detected (Table 1). These QTL determined growth
habit, e.g., bush (type I and II) from climbing beans (type
III and IV) or they distinguished growth determinacy, e.g.,
separated determinate types I from indeterminate type II, III,
and IV (Supplementary Figure 7A). The SNPs associated
with growth habits on Chr 1, 3, and 6 (GH_1_43.71,
GH_3_1.29, and GH_6_23.87) differentiated mainly the
determinate growth type I from the other three types. In

contrast, two QTL on Chr 4 (GH_4_1.42 and GH_4_40.05)
and on QTL on Chr 5 (GH_5_0.74) differentiated bush
from climbing types. The minor SNP variant on Chr 2
(GH_2_40.05) was the only one exclusively associated with the
two climbing growth types (type III and IV). However, this
association is to interpret cautiously since this SNP variant was
rare (MAF= 0.05).

The region at the end of Chr 1 showed significant pleiotropic
effects on different traits (Supplementary Figure 6). In that
region, significant SNPs were identified not only for growth
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FIGURE 2 | Phenotypic and genotypic characterization of five common bean breeding panels including lines with bush and climbing growth habit originating from the

Andean and Mesoamerican gene pools. (A) Density diagrams of best linear unbiased estimators among five breeding bean panels are shown for days to

(Continued)

Frontiers in Plant Science | www.frontiersin.org 8 April 2022 | Volume 13 | Article 830896

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Keller et al. Improving Genomic Predictions for Beans

FIGURE 2 | flowering (DF), 100 seed weight (100SdW), seed iron concentration (SdFe), and seed yield. (B) Dendrogram of 1,869 lines characterized by 14,913 SNPs

shows the hierarchical relationships between lines and panels [following the same color code for panels as in (A)]. (C) Principal components (PC) 1 and 2 visualize the

genetic similarity across all five breeding panels. The arrows show quantitative supplementary phenotypic traits. Their cosines indicate the correlation with PC axes

and their length approximate the SD of the variable. The extreme lines on the PC 1 axis are labeled. (D) Linkage disequilibrium (LD) decay is shown for all panels

separately and combined. The LD was calculated in sliding windows of 100 markers and corrected for kinship in the population (r2V ).
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climbing growth habit, days to flowering (DF), 100 seed weight (100SdW), seed iron concentration (SdFe), and seed yield. Seed yield was scaled among panels to

allow comparison between them. The horizontal black lines show the Bonferroni corrected significance threshold at the 1% level. The vertical lines indicate the

position of the two most significant markers for each trait. (B) Quantile distribution plots show the deviation of expected to observed p-values of SNP to trait

associations for each trait.

habits but also for DF, DPM, and 100SdW. Additionally, the
significant SNPs for growth habit on Chr 3 and 6 showed a
tendency toward pleiotropic effects as observed for the QTL

on Chr 1 (Supplementary Figure 7B). Interestingly, the QTL
on Chr 4 (GH_4_1.42 and GH_4_40.05) showed again a
different pattern than the others: these SNPs increased 100SdW
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with increasing DF while, surprisingly, yield (scaled across
populations) decreased. In summary, the 38 SNPs significantly
associated with growth habit determined the four different
growth types in different proportions, whereas only a few of these
SNPs expressed pleiotropic effects.

3.4.2. SNP Effects Among Breeding Panels
In general, the significant marker-trait associations identified
in the whole population of 1,869 lines showed effects also in
the panels separately (Figure 4). An exception was the QTL
DF_9_29.38 which revealed significant associations only in the
VEF and ADP, the two Andean panels. An interesting breeding
target for yield is Yd_7_4.86, expressing a clear effect in all five
panels. This QTL was physically linked to DF_7_4.82 and in LD
with several other QTL on different chromosomes (Figure 5A).
Finally, two QTL for SdFe (SdFe_2_46.07 and SdFe_6_22.37)
showed an effect in all three panels which had data for SdFe
(Figure 4). Except for DF, major QTL for 100SdW, SdFe, and
yield were identified showing effects in all five breeding panels.

3.4.3. Haplotype Effects Across and Among Growth

Types
For traits with complex genetic architecture, single SNPs poorly
explain the variance caused by the associated genetic region.
Therefore, haplotypes were constructed on Chr 1 between
43.71 and 45.47 Mbp for SNPs significantly associated either
with DF or growth type. The haplotypes for DF on Chr 1
explained 44.6% of the variance for DF across all growth types
(Supplementary Figure 8A). In contrast, the best SNP for DF
on Chr 1 explained only 8% of the variance. The haplotypes
for growth type on Chr 1 differentiated type I from the other
types (Supplementary Figure 8B). The first haplotype (“101”)
was almost exclusively associated with the determinate growth
type I. The second haplotype (“001”) was mainly associated
with growth types II and IV. The remaining three haplotypes
were associated with climbing growth habit (types III and IV).
An important breeding goal is to shorten DF in all growth
types while maintaining other agronomic traits. Therefore, all
SNPs in the region from 44.60 to 45.47 Mbp on Chr 1 were
clustered, resulting in ten distinct haplotypes according to the
average silhouette width (Figure 5B). As expected, the haplotypes
showed strong effects on DF and explained almost 50% of the
variation for DF. However, these haplotype effects were not
consistent among the growth types, explaining 3.7, 36.9, 0.0,
and 5.3% of the DF variation in growth types I, II, III, and
IV, respectively. In addition, the effect on the remaining traits
varied substantially across the haplotypes. Since only a few
SNPs expressed significant pleiotropic effects, some trade-offs
between traits could be removed by breaking the LD of QTL on
different chromosomes (Figure 5A). In summary, the QTL on
Chr 1 between 44.60 to 45.47 Mbp controlled major processes
across the growth types but showed minor effects among them.
Furthermore, the QTL exhibited varying pleiotropic effects on
SdFe, 100SdW, and yield which can be decreased by breaking the
LD between this and further QTL (e.g., Yd_7_4.86).

3.5. GWAS Within the Climbing Bean
Germplasm
For the genetic analyses within the climbing bean
germplasm, a total of 15,589 SNPs were identified in
the VEC. The population structure was moderate with
PC1 and PC2 explaining 19.1 and 5.8 % of the genetic
variance, respectively (Supplementary Figure 9). In total,
22 significant marker-trait associations were identified in
the VEC (Supplementary Table 6). Two QTL for PHI
and DF were identified on Chr 5 in proximity at 38.67
and 39.34 Mbp, respectively, indicating tight linkage
(Supplementary Figure 10A). Several SNPs significantly
associated with SdFe and SdZn were identified on Chr 2, 4, 6, 7,
and 10. Furthermore, a QTL for canning quality was identified
on Chr 7 at 2.67 Mbp. No clear p-value inflation or deflation
was observed compared to the expected p-value distribution
(Supplementary Figure 10B). In summary, further SNPs
were identified in the VEC separately to specifically improve
climbing beans.

3.6. Genomic Prediction
The GEBV for new VEC climbing bean lines (validation set) were
calculated either with parts of the VEC or with parts of all five
panels as TP.

3.6.1. Genomic Prediction Among Environments
The PAs for new VEC lines within each trial and across all trials
differed between the traits as well as the used model approaches
(Figure 6). In general, PAs followed the heritability and the
genomic r calculated using all available lines as TP. PAs for yield
reached about r ≈ 0.5 in the high-altitude locations Darién
and Popayán, where climbing beans are better adapted. The PAs
for yield in other locations were lower. The trials Dar14B and
Pop15B showed lower PAs with higher variability because these
trials comprised only 100 lines.

On average, the FA model showed the best performance for
DF. The genotype model for single trials performed best for
100SdW, SdFe, and yield. The FA andGxEmodel reached slightly
lower average PAs for SdFe and yield, respectively. The strong
GxE for yield was reflected in the different marker effects among
the locations (Supplementary Figure 11). The PAcc reached the
highest values for 100SdW using the genotype model among
trials (77.4%), DF using the FA model (67.4%), SdFe using the
genotype model for single trials (63.5%), and yield using the
genotype model for single trials(72.5%, Supplementary Table 7).
In summary, the PAs differed among models and traits, i.e.,
when predicting for a single trial, the genotype model performed
best, except for DF. When predicting for multiple years in one
location, the FA model was promising for DF and SdFe while for
yield and 100SdW, the GxE models performed best.

3.6.2. Genomic Prediction Across Environments With

Optimization of the Training Population
To increase PAs for new VEC lines, three different approaches
were tested: when only VEC lines were in the TP (TP VEC),
when all lines of the five panels were in the TP (TP extended),
or when distantly related lines were excluded (TP optimized;
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TABLE 1 | Significant marker-trait associations across five bean breeding panels below the 1% significance level according to genome-wide association studies.

QTL ID Trait Chr Pos p-value Marker MAF

GH_1_0.53 Growth habit 1 526025 1.18E-10 Pv2.1_01_526025_A/T 0.24

GH_1_2.85 Growth habit 1 2850955 2.78E-10 Pv2.1_01_2850955 C/G 0.38

GH_1_43.71 Growth habit 1 43707108 1.93E-35 Pv2.1_01_43707108 A/G 0.41

GH_1_45.04 Growth habit 1 45044047 3.90E-36 Pv2.1_01_45044047 C/T 0.13

GH_1_45.37 Growth habit 1 45374662 4.01E-24 Pv2.1_01_45374662 T/C 0.08

GH_1_47.44 Growth habit 1 47439968 1.23E-08 Pv2.1_01_47439968 G/C 0.16

GH_2_32.21 Growth habit 2 32208182 9.73E-08 Pv2.1_02_32208182 C/G 0.32

GH_2_40.05 Growth habit 2 40045968 6.88E-18 Pv2.1_02_40045968 C/A 0.05

GH_3_1.29 Growth habit 3 1289075 2.35E-08 Pv2.1_03_1289075 T/A 0.45

GH_3_1.92 Growth habit 3 1921492 1.22E-09 Pv2.1_03_1921492 A/G 0.03

GH_3_42.49 Growth habit 3 42488118 9.24E-09 Pv2.1_03_42488118 G/C 0.3

GH_3_44.06 Growth habit 3 44056005 2.62E-09 Pv2.1_03_44056005 A/T 0.12

GH_4_0.45 Growth habit 4 448766 2.45E-07 Pv2.1_04_448766 A/T 0.03

GH_4_1.42 Growth habit 4 1421295 2.52E-09 Pv2.1_04_1421295 A/G 0.47

GH_4_1.92 Growth habit 4 1919859 1.29E-09 Pv2.1_04_1919859 A/G 0.26

GH_4_2.16 Growth habit 4 2164168 9.82E-08 Pv2.1_04_2164168 T/C 0.08

GH_4_2.56 Growth habit 4 2559941 1.04E-11 Pv2.1_04_2559941 A/T 0.25

GH_4_47.17 Growth habit 4 47174835 1.95E-07 Pv2.1_04_47174835 T/A 0.26

GH_5_0.39 Growth habit 5 394641 7.38E-10 Pv2.1_05_394641 T/G 0.13

GH_5_0.74 Growth habit 5 739798 1.33E-16 Pv2.1_05_739798 G/A 0.28

GH_5_10.7 Growth habit 5 10696009 1.63E-07 Pv2.1_05_10696009 G/C 0.02

GH_6_22.3 Growth habit 6 22301003 3.03E-15 Pv2.1_06_22301003 A/G 0.03

GH_6_22.51 Growth habit 6 22508433 3.94E-16 Pv2.1_06_22508433 T/G 0.16

GH_6_23.87 Growth habit 6 23868436 1.66E-08 Pv2.1_06_23868436 G/C 0.37

GH_6_26.05 Growth habit 6 26054074 2.23E-07 Pv2.1_06_26054074 C/T 0.1

GH_6_29.43 Growth habit 6 29429040 1.53E-08 Pv2.1_06_29429040 G/A 0.02

GH_7_3.05 Growth habit 7 3047903 1.18E-09 Pv2.1_07_3047903 G/A 0.28

GH_7_7.15 Growth habit 7 7150019 6.01E-10 Pv2.1_07_7150019 C/T 0.1

GH_7_38.99 Growth habit 7 38987037 3.73E-10 Pv2.1_07_38987037 A/G 0.42

GH_8_2.11 Growth habit 8 2107245 2.42E-07 Pv2.1_08_2107245 C/T 0.23

GH_9_0.86 Growth habit 9 860918 6.16E-07 Pv2.1_09_860918 G/A 0.17

GH_9_13.92 Growth habit 9 13924731 3.14E-08 Pv2.1_09_13924731 T/C 0.49

GH_9_34.74 Growth habit 9 34742076 1.48E-07 Pv2.1_09_34742076 A/G 0.23

GH_9_36.11 Growth habit 9 36110952 1.03E-07 Pv2.1_09_36110952 A/T 0.01

GH_10_3.19 Growth habit 10 3191949 6.26E-08 Pv2.1_10_3191949 G/T 0.21

GH_10_6.5 Growth habit 10 6495216 2.67E-09 Pv2.1_10_6495216 G/T 0.27

GH_11_1.01 Growth habit 11 1010422 1.14E-08 Pv2.1_11_1010422 T/C 0.49

GH_11_2.78 Growth habit 11 2775768 9.58E-11 Pv2.1_11_2775768 T/G 0.16

DF_1_41.08 DF 1 41082526 7.72E-09 Pv2.1_01_41082526 G/A 0.22

DF_1_44.6 DF 1 44604072 1.88E-08 Pv2.1_01_44604072 A/C 0.35

DF_1_44.93 DF 1 44927394 5.64E-09 Pv2.1_01_44927394 C/T 0.25

DF_1_45.04 DF 1 45044047 5.11E-08 Pv2.1_01_45044047 C/T 0.13

DF_1_45.23 DF 1 45233651 3.51E-09 Pv2.1_01_45233651 A/G 0.08

DF_1_45.47 DF 1 45469012 1.21E-33 Pv2.1_01_45469012 G/A 0.1

DF_2_7.9 DF 2 7900892 1.22E-08 Pv2.1_02_7900892 A/C 0.26

DF_2_31.53 DF 2 31525478 4.99E-09 Pv2.1_02_31525478 A/C 0.16

DF_4_45.98 DF 4 45975326 5.51E-08 Pv2.1_04_45975326 T/C 0.38

DF_7_4.82 DF 7 4824001 5.29E-09 Pv2.1_07_4824001 C/G 0.26

DF_8_15.48 DF 8 15481886 1.12E-08 Pv2.1_08_15481886 T/A 0.01

(Continued)
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TABLE 1 | Continued

QTL ID Trait Chr Pos p-value Marker MAF

DF_9_23.12 DF 9 23116201 9.41E-09 Pv2.1_09_23116201 C/T 0.28

DF_9_29.38 DF 9 29378513 1.25E-10 Pv2.1_09_29378513 C/T 0.07

DF_9_37.83 DF 9 37825106 3.55E-09 Pv2.1_09_37825106 T/G 0.21

SdW_1_17.16 100SdW 1 17164005 1.19E-07 Pv2.1_01_17164005 A/G 0.16

SdW_1_42.52 100SdW 1 42515535 5.49E-10 Pv2.1_01_42515535 A/G 0.07

SdW_1_47.26 100SdW 1 47260087 7.66E-09 Pv2.1_01_47260087 A/G 0.28

SdW_2_2.23 100SdW 2 2234763 3.64E-08 Pv2.1_02_2234763 T/G 0.45

SdW_4_46.54 100SdW 4 46540184 1.51E-08 Pv2.1_04_46540184 C/G 0.36

SdW_5_1.06 100SdW 5 1062441 1.09E-07 Pv2.1_05_1062441 C/A 0.44

SdW_5_4.07 100SdW 5 4065359 8.94E-11 Pv2.1_05_4065359 C/T 0.28

SdW_6_18.46 100SdW 6 18456447 1.48E-08 Pv2.1_06_18456447 G/A 0.2

SdW_6_25.25 100SdW 6 25248245 1.34E-08 Pv2.1_06_25248245 G/C 0.21

SdW_6_28.9 100SdW 6 28898246 3.91E-13 Pv2.1_06_28898246 G/A 0.16

SdW_7_28.77 100SdW 7 28765036 1.85E-11 Pv2.1_07_28765036 C/T 0.02

SdW_9_28.29 100SdW 9 28287352 6.16E-07 Pv2.1_09_28287352 G/A 0.12

SdW_11_1.55 100SdW 11 1547189 1.39E-09 Pv2.1_11_1547189 C/T 0.12

SdFe_2_46.07 SdFe 2 46068228 3.20E-08 Pv2.1_02_46068228 G/C 0.19

SdFe_6_22.37 SdFe 6 22365971 3.95E-11 Pv2.1_06_22365971 A/C 0.32

SdFe_9_36 8 SdFe 9 36804490 6.26E-08 Pv2.1_09_36804490 C/T 0.16

Yd_7_4.86 Yield scaled 7 4856975 3.28E-08 Pv2.1_07_4856975 C/T 0.23

The QTL ID, trait, chromosome (Chr), physical position (Pos) in bp, association strength (p value), name of the marker, and minor allele frequency (MAF) of the significantly associated

SNPs is reported. The panels included bush and climbing growth habits and were evaluated for days to flowering (DF), 100 seed weight (100SdW), seed iron concentration (SdFe), and

seed yield (Yield_scaled, scaled for each panel).

Supplementary Figure 12). The optimized TP increased PAs for
DF, SdFe, and yield (scaled among panels) when adding bush type
lines of other panels and reached a PAcc of 66.8, 66.6, and 22.7%
corresponding to a 0.7, 1.8, and 8.8% increase on the averaged PA,
respectively (Figure 6). Regarding 100SdW, the TP optimization
and extension decreased PAs slightly compared to the TP with
only VEC lines. In summary, in complex traits such as SdFe and
yield, the PA can be improved by adding related lines from other
panels which are not in the TP even though they were tested in
different trials.

4. DISCUSSION

Based on the largest assembly of phenotypic and genotypic
common bean data, we showed increased PAs for important traits
of climbing bean by the addition of related bush type beans
from other trials to the TP. In addition, the extended pool of
lines, including 1,869 genotypes from distinct breeding panels,
was useful to predict growth type and to increase power in the
detection of QTL using GWAS (Spindel and McCouch, 2016).
Hence, this comprehensive study provides a solid basis to harness
the large genetic diversity of common bean germplasm and to
implement marker-assisted and genomic selection strategies for
more efficient climbing bean breeding.

4.1. QTL Across Breeding Panels
For all studied traits, QTL with clear effects on the phenotypes
in all five breeding panels were detected (Figure 4). This diverse

joint group of panels with fast LD decay enabled the identification
of SNPs tightly linked to the causal loci while controlling for
population structure (Sul et al., 2018; Huang et al., 2019).
On the one hand, several QTL for growth habit and DF
were confirmed from previous studies. On the other hand,
especially for SdFe and 100SdW, new QTL and candidate genes
were identified.

4.1.1. Previously Described and New QTL for DF and

Growth Habit
Considering significant marker-trait associations less than 1
Mbp away from previously reported positions, QTL for DF
and growth habit were confirmed on Chr 1, 4, 9, and 11. In
addition, on Chr 6, 7, and 8, significantly associated SNPs
were mapped to a distance of 1 to 4 Mbp from previously
reported QTL. The terminal flowering gene PvTFL1y (fin
locus identified as Phvul.001G189200 on Chr 1 at 44.85
Mbp) (Norton, 1915; Koinange et al., 1996; Kwak et al.,
2008; Repinski et al., 2012; González et al., 2016) was
confirmed by DF_1_44.60 (Table 1). The phytochrome A
gene (Ppd locus identified as Phvul.001G221100 on Chr 1
at 47.64 Mbp) conferring photoperiod sensitivity (Coyne
and Schuster, 1974; Gu et al., 1998; Kamfwa et al., 2015;
Weller et al., 2019) was tightly linked to GH_1_47.43. In
agreement, the haplotype “101” constructed in the region
from 43.71 to 45.37 Mbp almost exclusively differentiated
between determinate and indeterminate growth types
(Supplementary Figure 8B). Thus, multiple SNPs are required
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The error bars show the SD.
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horizontal line is the square root of heritability indicating the heritable variance of the trait in each trial. Trials were abbreviated based on the location Darién (Dar),

Palmira (Pal), Popayán (Pop) in Colombia, Kagera in Tanzania (TzKg), or Kawanda in Uganda (UgKw), the year, and the planting season (sequentially A to D). For a

detailed description of each trial refer to Supplementary Table 2.

to determine growth type including the allelic version of the
PvTFL1y gene.

In the region of the two identified SNPs for growth habit
on Chr 4 (GH_4_1.42 and GH_4_1.92), a QTL associated with
climbing ability and plant height was previously reported (linked
to Pvctt001 marker at 0.51 Mbp) (Checa and Blair, 2008).
Furthermore, in proximity to GH_6_29.43, a QTL for DF was
previously reported at 31.6Mbp (Raggi et al., 2019). The terminal
flowering gene PvTFL1z (Phvul.007G229300 a homolog of
PvTFL1y) was located on Chr 7 at 35.31 Mbp (Kwak et al., 2008).

In our study, GH_7_38.99 was detected proximal to PvTFL1z. On
the upper arm of Chr 8 at 4.9 Mbp, another QTL for DF was
reported previously (Raggi et al., 2019). Similarly, we detected
GH_8_2.11 at less than 3 Mbp distance. A second fin locus
(fin’) on Chr 9 was tagged by molecular markers at 13.39Mbp
(de Campos et al., 2011) and at around 20 cM (González et al.,
2016). This fin’ locus is probably tagged by GH_9_13.92. A QTL
for DF on Chr 11 at around 9 cM reported in Bhakta et al. (2017)
was linked to GH_11_1.01 (at around 8.8 cM). A new QTL for
growth habit, GH_2_40.05 was identified with one SNP variant
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exclusively associated to climbing beans, however, with a low
MAF of 5%. Newly identified SNPs for growth habit with lower
LOD scores have to be interpreted carefully due to the observed
p-value inflation, indicating remaining population structure. In
conclusion, the joint analysis consisting of diverse common bean
populations showed high detection power for DF and growth
habit QTL. Four to potentially seven QTL known from previous
studies and several new QTL for DF and growth habit were
identified and tagged by tightly linked SNP markers.

4.1.2. QTL for SdFe and Their Independence From

Growth Habit
Four meta-QTL were previously reported for SdFe on Chr 1
(between 43.3 and 48.5 Mbp), on Chr 6 (between 28.2 and 29.5
Mbp), on Chr 9 (between 11.7 and 13.5 Mbp), and Chr 11
(between 2.3 and 5.3 Mbp) (Izquierdo et al., 2018). All four
QTL fall right onto or next to QTL for growth habit identified
in the current study. Since climbing beans in general exhibit a
higher SdFe (Blair et al., 2010; Petry et al., 2015), the previously
reported QTL is probably confounded with population structure.
The effects of these QTL on SdFe were also detected in our
analysis but the associations did not exceed the 5% significance
threshold (Supplementary Figure 7B). A QTL for SdZn was
recently reported on Chr 1 at 49.37 Mbp in European landraces
next to PvTFL1y, suggesting a genetic linkage between DF and
SdZn (Caproni et al., 2020). From the three major QTL for SdFe
detected in our study, two were identified for the first time and
SdFe_6_22.37 was previously reported in proximity at 22.8 Mbp
(Diaz et al., 2020). The identified SNPs for SdFe on Chr 2 and 6
showed an effect in all three evaluated breeding panels and are
thus independent of the growth habit (Figure 4). The QTL at the
end of Chr 2 (SdFe_2_46.07) is of particular interest because it
was linked to a QTL for DPM in this study and a pleiotropic QTL
affecting DF, DPM, 100SdW, and yield in the VEF (Keller et al.,
2020). In conclusion, various QTL for SdFe reported previously
seemed to be confounded with growth habit, while our joint
analysis allowed us to detect new SNPs associated with SdFe
across different breeding panels.

4.1.3. Candidate Gene Identification for SdFe and

100SdW
Four new candidate genes were identified for SdFe and 100SdW:
on Chr 6 at 22.18 Mbp, in a distance of less than 200,000 bp from
the SNP most significantly associated to SdFe (SdFe_6_22.37),
the Phvul.006G113100 gene was annotated as a homologous
to a ferric-chelate reductase, reported to be involved in iron
uptake from the soil (Robinson et al., 1999; Wu et al., 2005;
Jeong et al., 2008; Asard et al., 2013). In proximity, less than
125,000 bp away from SdFe_2_46.07 and SdFe_9_36.80, the
genes Phvul.002G292900 and Phvul.009G247600, respectively,
were annotated. These two genes putatively expressAtox1-related
copper transport proteins, which are involved in copper and iron
homeostasis (Himelblau et al., 1998; Puig et al., 2007). A QTL
for copper and iron uptake was shown previously to have close
genetic linkage (Waters and Grusak, 2008). Regarding 100SdW,
a putative asparagine synthetase (Phvul.006G188400) on Chr 6 at
28.87 Mbp, less than 30,000 bp away from SdW_6_28.90, showed

major effects in all breeding panels (Figure 4). The asparagine
synthetase remobilizes nitrogen from sources to sinks and was
reported to increase seed weight and soluble protein content in
Arabidopsis seed (Gaufichon et al., 2016, 2017). In conclusion,
for the major QTL for SdFe and 100SdW, plausible candidate
genes were identified whose putative functions remain to be
further validated.

4.2. QTL Detected Within Breeding Panels
Several QTL were identified only in the VEC, e.g., a pleiotropic
QTL for DF and PHI on Chr 5 between 38.68 and 39.34 Mbp.
The QTL for PHI differed from QTL previously identified in bi-
parental bush type populations (Mukeshimana et al., 2014; Diaz
et al., 2018). The PHI was weakly and positively correlated to
DF and yield (Supplementary Figure 3). This pleiotropic effect
of the identified QTL might be related to the time from flowering
until harvest which could affect DF and PHI. Regarding DF, the
major QTL tagged by DF_1_44.60 was mapped more closely to
PvTFL1y in the current joint analysis than in a separate analysis of
the ADP and VEF at 48.34 and 49.72 Mbp, respectively (Kamfwa
et al., 2015; Keller et al., 2020). In agreement, the LD decay of
the combined panel was faster than that of the separate panels.
Furthermore, we concluded that the genetic control of flowering
is different on the single SNP level (Figure 4) and haplotype level
among the growth types (Figure 5B). The major QTL for DF
on Chr 1 showed no effect within growth type III lines. One
possible explanation is that DF within the climbing growth habit
is regulated by additional genes or growth habit specific alleles.
Additionally, haplotype 1 showed increased yield for growth
types I and II while the effect on DF differed. It demonstrates that
DF and yield are loosely linked as suggested earlier byWhite et al.
(1992). Similarly, the QTL for SdFe on Chr 2 at 2.91 and 48.86
Mbp were valid only for the VEC and were not detected in the
joint analysis suggesting some specific alleles were present only
in the climbing bean panel.

4.3. Genomic Predictions Across and
Within Breeding Panels
Using only VEC lines as TP in the different modeling approaches,
the FA model performed well for DF and SdFe, showing
the importance of covariance between trials for those traits
(Figure 6). Such FAmodels work well for different environments,
where some lines were already tested, were previously reported
for sweet cherry (Prunus avium L.) (Hardner et al., 2019).
The PAcc for yield of the genotype model using the first-
and second-stage BLUEs among all environments were lower
in comparison to the FA model and GxE model which took
environmental differences into account. In agreement, the high
GxE was visible in the correlations between the trials which
reached values from –0.41 to 0.64 (Figure 1B). Those interactions
were additionally reflected in the relatively high PA of the
GxE model in yield and in the differing marker effects among
locations (Figure 6 and Supplementary Figure 11). Comparing
different traits, the correlations between yield and DPM in
bush type beans altered when changing from low- to high-
altitude locations (Diaz et al., 2018). Therefore, the single-
trial genotype model and the GxE model, which account for
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location effects such as high- and lowland, worked best for the
predictions of yield. Similarly, high GxE for yield was shown
before in the VEF under different environmental conditions
(Keller et al., 2020). Across all trials, the TP optimization turned
out to be a promising strategy to predict the performance of
new climbing bean lines. For complex traits such as SdFe and
yield, optimizing the TP with related lines from different panels
tested under different conditions improved the PA by 1.8 and
8.8%, respectively. Especially for smaller breeding programs
or new breeding panels, it is, therefore, advisable to optimize
the TP even when the added lines were tested in different
field trials.

5. CONCLUSION

The benefits of introducing genes conferring climbing ability into
new breeding lines are limited because growth habits are fixed in
specific production systems and their modification would have
pleiotropic effects, most likely affecting traits like DF and SdFe
negatively. The most significant QTL for growth habit at the end
of Chr 1 was pleiotropic. However, this QTL was in LD with
several other QTL which can be selected separately since they
were located on different chromosomes (Figure 5A). In addition,
this QTL had no effect on common beans of the growth type
III. Regarding other QTL, we detected stable SdFe and yield
QTL which showed effects in all tested panels without significant
pleiotropic effects. The identified markers were validated in very
diverse germplasm including all growth types and both gene
pools. The resulting fast LD decay allowed mapping of QTL
more precisely than was achieved in separated panels. Genomic
prediction models were established across populations enabling
the selection and hybridization of the best lines of all populations
to combine favorable alleles. Especially for yield, GxE needs to
be modeled when breeding for different environments. The large
common bean diversity presented in this study was used to
identify markers across populations and to establish and improve
prediction models. The joint population will provide a basis to
exploit this genetic diversity and will contribute to the quick and
targeted development of new (climbing bean) lines.
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