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Abstract—Secure communications have become a requirement 

for virtually all kind of applications. Currently, two distant 

parties can generate shared random secret keys by using public 

key cryptography. However, quantum computing represents one 

of the greatest threats for the finite complexity of the 

mathematics behind public key cryptography. In contrast, 

Quantum Key Distribution (QKD) relies on properties of 

quantum mechanics, which enables eavesdropping detection and 

guarantees the security of the key. Among QKD systems, 

polarization encoded QKD has been successfully tested in 

laboratory experiments and recently demonstrated in closed 

environments. The main drawback of QKD is its high cost, which 

comes, among others, from: i) the requirements for the quantum 

transmitters and receivers; and ii) the need of carefully selecting 

the fibers supporting the quantum channel to minimize the 

environmental effects that could dramatically change the 

polarization state of photons. In this paper, we propose a 

Machine Learning (ML) -based polarization tracking and 

compensation that is able to keep shared secret key exchange to 

high rates even under large fiber stressing events. Exhaustive 

results using both synthetic and experimental data show 

remarkable performance, which can simplify the design of both 

quantum transmitter and receiver, as well as enable the use of 

aerial optical cables, thus reducing total QKD system cost.  

Index Terms—Polarization-encoded Quantum Key 

Distribution; Machine Learning. 

I. INTRODUCTION 

UANTUM Key Distribution (QKD) [1] has become

mature in closed, controlled scenarios in view of the 

plenty of works available in the literature reporting related 

experiments (see, e.g., [2]-[5]). In polarization encoded QKD 

systems, a Quantum Transmitter (QTx) sends polarized 

photons, i.e., quantum bits (qubit), to a Quantum Receiver 

(QRx), which decodes them and generates a raw key of a 

defined length. The raw key is then distilled, using a parallel 

public channel established between transmitter and receiver, to 

correct possible detection errors due to optical transmission 

and generate a shared secret key. E.g., the authors in [3] 

showed a polarization-based QKD system using the BB84 

protocol [6], [7] that reaches shared secret Key Exchange 

Rates (KER) > 1 Mb/s for distances >100 km. In addition to 

BB84, there are some commercial solutions using other 

approaches, for example based on a two-way QKD to generate 

the keys [8]. Such solution requires additional hardware both 

in the QTx and QRx and is more prone to attacks [9]. 
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Currently, research efforts are also focused on 

demonstrating such performance in real (more challenging) 

scenarios [5], including aerial cables, where QKD 

transmission might be severely affected by weather conditions 

(e.g., high wind) that stresses optical fibers [18]. Such 

mechanical stress changes fiber birefringence, which 

introduces fluctuations on the State of Polarization (SOP) of 

the transmitted qubits and, as a result, Quantum Bit Error Rate 

(QBER) increases. Note that QBER is causally related to the 

effective KER, which reduces when QBER increases, e.g., 

from Mb/s to Kb/s or even b/s as shown in [10]. Since optical 

eavesdropping generates high QBER, a post processing phase 

named key distillation enables its detection. However, 

excessive QBER coming from SOP fluctuations might derive 

into false eavesdropping detection (threshold is typically set 

within the range 5%-10%); in such case, safety mechanisms 

against attacks are activated, thus interrupting (i.e., KER 

becomes temporarily 0), or even blocking that quantum 

channel for key exchange. 

Consequently, QKD devices must include mechanisms to 

soften such negative effects while guaranteeing robustness and 

efficiency to be deployed in real scenarios. In particular, SOP 

compensation mechanisms need to be implemented at the QRx 

to correct perturbations induced by environmental causes, thus 

increasing KER without reducing the security level. In this 

regard, current conventional feedback-based polarization 

control systems compensate SOP fluctuations by multiple 

measurements and perform one or more reactive reversal 

operations (rotations). For instance, in [11] the authors 

proposed sending photons with predefined polarization and 

they needed at least two rotations to correct long-term SOP 

drifts. The authors in [12] proposed reactive methods to 

compensate random SOP drift by performing multiple 

rotations based on QBER estimation. Finally, authors in [13] 

proposed a procedure based also in multiple rotations to 

estimate the polarization state and compensate measured 

polarization random drift, which resulted in QBER reduction. 

Authors in [15] used 106 qubits/s for QBER estimation. After 

finding the QBER, they proposed a polarization compensator 

implemented in hardware for stabilizing the SOP. They 

performed such stabilization in four steps, where they rotate 

the sphere proportionally to the estimated QBER; if QBER 

decreases the rotation continues in the same direction, and 

otherwise they reverse the rotation and start a new round. 

Authors in [16] obtained information about polarization by 

sending horizontally polarized photons and using QBER of 

that portion of photons in the key distillation process aiming at 
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not interrupting the key generation process, although that 

portion of photons need to be discarded. 

Authors in [17] performed an experimental analysis to 

evaluate the influence of polarization variations on 

polarization sensitive QKD systems in both buried and aerial 

optical fibers. They estimated two parameters, i.e., 

polarization drift time and required tracking speed, to 

characterize polarization disturbances. Specifically for aerial 

quantum communications, authors in [18] studied the impact 

of different environmental events. They considered real 

environmental impacts (like wind, sun, etc.) and realized that 

different environmental events have different impact on 

QBER. In fact, as shown in [19], SOP fluctuations caused by 

environmental events can be accurately predicted by means of 

Machine Learning (ML) [20]. 

In this work, we propose a lightweight ML-based SOP 

tracking and polarization compensation that uses Deep Neural 

Network (DNN) models for polarization encoded QKD 

systems. Such models accurately anticipate SOP fluctuations, 

so adaptive actions can be taken at the QRx to reverse them 

before they produce negative impact. The proposed system is 

specifically designed to maximize performance, i.e., to reduce 

false eavesdropping detection and increase effective KER, in 

scenarios exposed to environmental events. The proposed 

approach will enable cost reduction of QKD systems as: i) 

QTx specifications can be relaxed since SOP imperfections 

can be corrected by the QRx; and ii) the hardware design of 

the QRx can be simplified and rely on software. 

The rest of the paper is organized as follows. Section II 

presents the main concepts related to QKD. In addition, it 

describes in depth the operation cycle for SOP tracking and 

the proposed ML-based fast QKD. The proposed solution is 

based on SOP monitoring, SOP prediction, and proactive 

rotation plan. These key components are detailed in Section 

III, which also includes the notation used along this paper. The 

discussion is supported by the results in Section 0. Finally, 

Section V draws the main conclusion of the work. 

II. ML-BASED FAST QUANTUM KEY DISTRIBUTION 

In this section, we first briefly present the main concepts 

and used notation. Rather than an exhaustive description of 

QKD systems, we first present the essential concepts 

regarding transmission, propagation, and photons 

measurement for raw keys exchange under the BB84 protocol 

[7]. Next, we identify opportunities and propose solutions to 

accelerate the distribution of keys over a quantum channel in 

the presence of SOP fluctuations. 

A. Preliminary concepts  

In BB84, the QTx continuously generates raw keys 

containing sequences of pairs of Boolean values, each pair 

containing a basis (B) and bit (b). The pair <B(t), b(t)> 

generated at time t is defined by the quantum state |q(t)〉, 
which can be defined as a position on the Bloch sphere [21]. 

Therefore, |q(t)〉 can be alternative expressed: i) in Euclidean  
 

TABLE I. |q(t)〉 CONFIGURATION AT QTX 

Linear Polarization Axis <B, b> <θp, φp> [rad] 

Horizontal (H) Z 0 0 <0, 0> 

Vertical (V) Z 0 1 <π, 0> 

Diagonal (D) X 1 0 <π/2, 0> 

Anti-Diagonal (A) X 1 1 <3·π/2, 0> 
 

coordinates <x(t), y(t), z(t)>, with one component for axis X, 

Y, and Z, respectively; or ii) in polar coordinates <θ(t), φ(t)>, 

represented by azimuth and ellipticity angles, respectively. 

In practice, |q(t)〉 is encoded as a single photon, which 

translates into a single point on the unitary Poincaré sphere; 

Both Bloch and Poincaré spheres are exchangeable if axes X, 

Y, and Z of the former match Stokes S2, S3, and S1, 

respectively, in the latter. Table I specifies the four possible 

linear polarizations for each |q(t)〉 in terms of: i) axis; ii) coded 

basis and bit; and iii) position on the Poincaré sphere. 

Effects related to fiber propagation and eavesdropping alter 

|q(t)〉. Let us denote |p(t)〉 = <θp(t), φp(t)> as the real 

polarization of the received photon. We adopt the QRx 

hardware architecture proposed in [13] and [14], where the 

QRx is equipped with a Beam Splitter (BS), two Electronic 

Polarization Controllers (EPC) followed by Polarization Beam 

Splitters (PBS) and Single-Photon Detectors (SPD). The 

photon first reaches the EPCs, which are in charge of 

polarization alignment. Specifically, given a reference 

polarization state r(t) (hereafter denoted as rotation) defined 

by the tuple <θr(t), φr(t)>, the EPCs perform a reversal 

operation to align the photon detector with the configured 

polarization state. Hence, it is worth noting that the rotation 

with configuration θr(t)=θp(t) and φr(t)=φp(t) is the one 

perfectly aligned with the state |p(t)〉 of received photon. 

Before the photon passes through the PBS, a basis is selected, 

which entails selecting a specific axis in the sphere to detect 

the photon and extract its bit [7]. Two main conditions lead to 

erroneous bit extraction: i) if the sphere is perfectly aligned 

with |p(t)〉, the bit is wrongly decoded if QRx selects the 

wrong basis; and ii) even if QRx selected the correct basis, bit 

error can be produced if there is misalignment between r(t) 

and |p(t)〉. 

Besides the quantum channel, a parallel secure public 

channel is used for key distillation purposes [1]. QRx starts 

sending a subset of decoded bits and basis to QTx in order to 

quantify bit errors, i.e., QBER. In case that QBER exceeds a 

given threshold, e.g., 10%, eavesdropping in the quantum 

channel is assumed, which triggers a safety mechanism, such 

as QKD interruption. Otherwise, QKD is assumed to be secure 

enough. Next, bases need to be verified, since they were 

randomly selected at the QRx side. To that end, key sifting is 

performed, where QTx sends to QRx the sequence of used 

bases through the public channel, so that QRx can check them 

and discard the wrong ones. After the bases are synchronized, 

error cascading is conducted to correct the erroneous bits, 

which results into a corrected sifted key. In the end, a portion 

of the sifted key is selected as the final shared secret key to 

amplify privacy. This process results into a maximum  
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Fig. 1. Reactive (a) and ML-based adaptive (b) SOP rotation. 
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Fig. 2. System architecture. 
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Fig. 3. Example of operation (a) and performance of the reactive (b) and ML-

based adaptive (c) SOP rotation. 
 

achievable KER when QBER is low, and it will be noticeably 

reduced when QBER increases. 

B. Opportunities and proposed solutions 

For illustrative purposes, Fig. 1a shows the operation of the 

quantum channel with time based on the approach proposed in 

[13]. At regular time intervals of size m, the QTx sends a 

number of qubits with a predefined polarization that are used 

to monitor the current SOP, denoted |o(t)〉, at the QRx. Based 

on the measured SOP, the QRx computes the needed rotation 

(denoted r(t)) to compensate the polarization drift. Once the 

rotation is performed, the quantum communication system 

exchanges polarization-encoded keys. If the value of m is 

large enough compared to the time for monitoring (TO) and 

rotation (TR), this scheme introduces a small overhead, while 

allows to react quickly to changes in the SOP. Fig. 1a also 

includes a possible evolution of the QBER from one rotation 

to the next. In the presence of SOP fluctuations, it might 

happen that the rotation performed at the starting of a period 

does not allow to keep the QBER under a desired threshold 

(denoted QBERth), e.g., 1%, until the next polarization state is 

measured, and a new rotation is performed. 

A possible solution to deal with scenarios with large SOP 

fluctuations would be to reduce m, which would result in a 

higher system overhead, especially during the time when 

fluctuations are small or negligible. For that, m can be defined 

dynamically, which would entail a way to synchronize QTx 

and QRx real-time. In view of this, we propose an approach to 

track SOP fluctuations and apply ML to predict the next 

polarization states based on such tracking. Then, rotations can 

be planned to be performed at any intermediate time from one 

SOP measurement to the next; the number of rotations would 

vary from none to several, so the obtained QBER is always 

under QBERth (Fig. 1b). 

Because rotations can be planned to be performed at 

intermediate times, accurate estimation of future states is of 

paramount importance for the proposed system. Armed with 

such predictive tool, an optimization problem can be solved to 

decide not only when to perform the rotations, but also the 

value of each rotation to minimize the number of total 

rotations that are performed; this would result into a reduced 

overhead, while assuring a contained QBER. In the example 

of QBER evolution in Fig. 1b, no initial rotation is needed, as 

QBER was initially low, whereas two rotations are performed 

at intermediate times. In particular, the first rotation is 

performed to compensate SOP at a future state, as revealed by 

the evolution of the QBER that progressively reduces until a 

minimum and increases again reaching a value close to 

QBERth before the second rotation is performed. 

Fig. 2 shows a schematic view of a quantum communication 

channel established between remote sites A and B. Without 

assuming any specific polarization based QTx 

implementation, let us consider that a qubit is generated by 

randomly selecting one linear polarization (points H, V, R, 

and Q on the sphere at site A in Fig. 2). Then, the perfectly 

polarized photon is sent to the QRx. When the photons are 

received and measured at the QRx side, the SOP position 

might have drifted. Fig. 2 reproduces the EPC and PBS 

modules in the QRx based on the architecture proposed in 

[13]. The obtained QBER will be below QBERth if the state of 

the received photons is within an area centered in the current 

reference polarization state with radius dth. When the reference 

polarization state of the QRx is rotated, the area of tolerable 

QBERth also moves covering a different region. In the 

proposed system, a ML-based module is in charge of tracking 

SOP and deciding the rotations to be performed (Fig. 2). 

An illustrative example of the operation is presented in Fig. 

3. Fig. 3a shows the evolution polarization angle θ of the real 

photons state |p(t)〉 and measured state |o(t)〉, both at the QRx. 

In addition, linear (polynomial of degree 1) interpolation 

connecting two measured polarization states is represented. 

Note that although linear interpolation is used for the sake of 

simplicity in the drawing, higher degrees can be used. In Fig. 

3b-c, the rotations that are performed under the reactive and 
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adaptive approaches are shown. We assume here the same 

period m for both approaches. In the reactive approach (Fig. 

3b), one single rotation is performed once the current state |o〉 
is measured after TO, which results into 28 rotations for the 

sample in Fig. 3a. However, as many as 15 of the rotations are 

unnecessary, because at the time they are performed, the 

measured polarization state is within the area of low QBER. 

On the contrary, there are 4 periods with high and very high 

QBER, due to large SOP fluctuations in those periods. In 

contrast, the proposed ML-based SOP tracking and rotation 

planning approach, is able to achieve low QBER even during 

large SOP fluctuations (Fig. 3c), due to its ability to predict 

future polarization states and plan the needed rotations. Note 

that the total number of rotations under the ML-based 

approach is equivalent (it can be even lower) to the reactive 

approach, which ensures high efficiency. That fact, combined 

to the reduced QBER, results in faster KER. 

III. ML-BASED SOP TRACKING AND ROTATION MANAGER 

In this section, we first present the procedure used to 

measure and predict the evolution of photons’ polarization 

state based on the combination of the quantum state 

tomography theory [22] and DNN models. Next, the 

procedure to plan the sequence of Poincaré sphere rotations 

that needs to be carried out to achieve accurate polarization 

alignment based on the SOP prediction is described. Table II 

summarizes the notation that will be consistently used along 

the paper. 

A. SOP monitoring and prediction 

As introduced in the previous section, SOP can be affected by 

perturbations on the fiber, during the monitoring period 

starting at time t, the QTx sends a number of photons with a 

known polarization and the QRx measures them in different 

axes to accurately estimate the current state |o(t)〉, defined by 

the tuple <θo(t), φo(t)>. Specifically, the QTx generates n 

photons with H polarization (i.e., <B,b> = <0,0>), which are 

propagated through the quantum channel. At the QRx side, the 

received photons are separated in three different chunks of n/3 

photons, one for each of the three axes X, Y, and Z 

measurements. The decoded bits can contain some 1’s due to 

the combination of the selected axes for measurement, the 

fluctuations of the SOP during propagation, and the current 

rotation configuration in the EPC. Then, we define the QBER 

of a chunk as the sum of the extracted bits (number of 

erroneous bits) over the length of the chunk (n/3). After 

transmitting and decoding all n photons, measurement results 

are available for each axis, i.e., QBER(t) = {X, Y, Z}. 

Algorithm I specifies the steps to estimate |o(t)〉 as a function 

of the computed QBERs, based on the well-known theory and 

equations presented in [23]. The measurement along the Z axis 

is enough to compute θ(t) (line 1 in Algorithm I), whereas φ(t) 

requires from measurements along X and Y axes to estimate 

sine and cosine of φ(t), respectively (lines 2-4). 

Once the current polarization state |o(t)〉 is estimated, it is 

used to predict the SOP evolution until the next monitoring  
 

TABLE II. NOTATION 

b(t) Bit at time t. 

B(t) Basis at time t. 

|q(t)〉 Quantum state at QTx at time t. 

θ(t) Azimuth angle of the quantum state at time t. 

φ(t) Ellipticity angle of the quantum state at time t. 

Si Stoke parameters (i in [1, 3]). 

|p(t)〉 Real photon state at the QRx at time t. 

|o(t)〉 Measured (estimated) state at QRx at time t. 

r(t) Reference polarization state (rotation) at QRx at time t. 

m QKD Operational time period. 

w Previous time window for DNN prediction. 

O Sequence of k polarization states. 

QBER(t) Quantum Bit Error Rate at time t. 

ALGORITHM I. SOP MONITORING PROCEDURE 

INPUT: QBER(t) 

OUTPUT: |o(t)〉 

1: 

2: 

3: 

4: 

5: 

θ(t) ⃪ cos-1(1-2·QBER(t).Z) 

sin(φ(t)) ⃪ (1-2·QBER(t).Y)/sin(θ(t)) 

cos(φ(t)) ⃪ (1-2·QBER(t).X)/sin(θ(t)) 

φ(t) ⃪tan-1(sin(φ(t))/cos(φ(t))) 

return |o(t)〉 = <θ(t), φ(t)> 

ALGORITHM II. SOP PREDICTION PROCEDURE 

INPUT: o(t), DB, f, params={w, m, l, k} 

OUTPUT: O 

1: 
2: 
3: 
4: 
5: 
6: 
7: 

DB ⃪ DB U o(t) 
X ⃪ DB.query(“time”>=t-w) 
|o(t+m)〉 ⃪ f.predict(X) 
X ⃪ X.append(o(t+m)) 
g ⃪ polynomialFitting(X, l) 
O ⃪ g.predict(t+i·m/k, ∀ i∈[0,k]) 
return O 

 

period. Algorithm II presents the pseudocode; it receives as 

inputs: i) the currently estimated state |o(t)〉; ii) the set of past 

polarization state estimations DB; iii) the DNN model f used 

for SOP prediction; and iv) a set of configuration parameters. 

The objective is to generate sequence O containing the current 

estimated state |o(t)〉 and the prediction of the next k 

consecutive and evenly distributed polarization states 

connecting |o(t)〉 and the expected one for the next monitoring 

period, i.e., |o(t+m)〉. O can be formally defined as: 

𝑂(𝑡,𝑚, 𝑘) = [|𝑜 (𝑡 + 𝑖 ·
𝑚

𝑘
)〉, ∀𝑖 ∈ [0. . 𝑘]] (1) 

Sequence O is determined by using DNN-based forecasting 

and polynomial fitting sequentially. The DNN is used to 

accurately forecast a discrete time-dependent event ahead in 

time, whereas polynomial is used to interpolate unknown 

polarization states between known states. The procedure is as 

follows; the last estimated polarization state is stored in the 

SOP database and the last estimated polarization states within 

the previous time window w are retrieved (lines 1-2 in 

Algorithm II) that are used to feed a DNN model that predicts 

|o(t+m)〉 (line 3). The DNN has 2·⎿w/m⏌ inputs (for angles θ 

and φ of those last SOP values), several hidden layers using 

the tanh activation function, and two outputs for angles θ and 

φ of predicted state |o(t+m)〉. Next, the last w estimated 
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polarization states together with the predicted |o(t+m)〉 are 

used to interpolate a polynomial-based model g (lines 4-5). To 

increase the accuracy of the interpolation procedure, g is a 

compound model with four l-degree polynomials used to 

estimate sin(θ), cos(θ), sin(φ), and cos(φ) as a function of time 

in the range [t, t+m]. Finally, g is used to obtain k predictions 

between |o(t)〉 and |o(t+m)〉 (line 6), where parameter k is 

proportional to the difference (distance) between those points 

in the sphere: 

𝑘 = ⌈distance(|𝑜(𝑡)〉, |𝑜(𝑡 + 𝑚)〉) ∗ 100⌉ (2) 

B. Rotation plan computation based on SOP prediction 

After the SOP prediction phase, the problem of finding 

which rotations need to be applied within the time interval [t, 

t+m] is solved. This problem can be modeled as an 

optimization problem and stated as follows: 

Given: 

• The sequence O of predicted states, each for a relative 

time i∈[0, m] and defined as O(i) = <θo(i), φo(i)>. 

• The set of candidate rotations R, where every rotation r is 

defined by <θr, φr>. R includes the rotation r0 currently 

configured in the EPC. 

• A circular area of radius dmax [rad] defined for a target 

QBER and thus, determining the need of rotations. A 

candidate rotation r∈R that becomes active at relative 

time j is valid for state predictions |o〉∈O | i≥j if and only 

if distance(r, |o〉) ≤ dmax. 

Output: The rotations plan P = [<r, i>], where every element 

defines the relative time i∈[0, m] when candidate rotation r∈R 

needs to be configured in the EPC. 

Objective: minimize the number of rotations to be performed. 

To reduce the complexity of the rotation plan problem, we 

consider that set R includes the current rotation r0 and all 

predicted polarization states in O. Therefore, a trivial feasible 

solution would consist in performing k rotations, one for each 

predicted state. To efficiently solve the rotation plan 

optimization problem, we designed the fast deterministic 

greedy algorithm specified in Algorithm III. After the needed 

initializations (line 1 in Algorithm III), a pre-computation 

phase is run to find the subset of predicted polarization states 

that can be served from each candidate rotation (lines 2-5). 

Then, an iterative procedure is executed to build the plan 

(sequence) of rotations until all polarization states are assigned 

to, at least, one of the selected rotations (lines 6-16). At every 

iteration, the greedy cost of every rotation is computed (lines 

7-11). Such cost is defined as a weighted sum of three 

components, with weights β1 >> β2 >> 1. The three 

components account: i) whether the rotation covers reference 

polarization state |oref〉, which is initialized with the measured 

polarization state and updated with the last state covered by 

the rotation when a new rotation is performed. This 

component tries to foster selecting new rotations that overlap 

with the previous one, which forces building the plan as a 

sequence that tracks the evolution of O; ii) whether the  
 

ALGORITHM III. HEURISTIC FOR THE ROTATION PLAN PROBLEM  

INPUT: O, R, dmax 

OUTPUT: P 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

P ⃪ {}; i ⃪ 0; Oin ⃪ {}; |oref〉 ⃪ O[0] 

for r ∈ R do 

for |o〉 ∈ O do 

if distance(r, |o〉) > dmax then continue 

r.O.append(|o〉) 
while Oin <> O do 

for each r ∈ R do 

if |oref〉 ∈ r.O then x1 ⃪ 1 else x1 ⃪ 0 

if r=r0 then x2 ⃪ 1 else x2 ⃪ 0 

x3 ⃪ |r.O| 

r.cost ⃪ β1·x1 + β2·x2 + x3 

r’ ⃪ argmax(r.cost ∀r∈R) 

P ⃪ P U <r’, i> 

Oin ⃪ Oin U r’.O 

|oref〉 ⃪ r’.O[-1] 

i ⃪ |oref〉.i 
return P 

 

rotation is the currently active one or not, so as to reduce the 

number of rotations; and iii) the number of polarization states 

covered by the candidate rotation. The candidate rotation with 

the highest greedy cost is selected and added to the incumbent 

solution (lines 12-13). Then, the relative time to perform the 

next rotation is computed and the set of covered polarization 

states Oin and reference state |oref〉 are updated (lines 14-16). 

Finally, the rotation plan is returned (line 17). 

IV. RESULTS 

In this section, we first present the simulation environment 

used to evaluate the proposed ML-based fast QKD system and 

find the value of dth that results into the considered QBERth. 

Next, we focus on the performance of SOP estimation, 

prediction, and SOP interpolation. Then, the ML-based 

adaptive operation is evaluated, and finally, a study of 

robustness against eavesdropping is presented. 

A. Simulation environment and parameters tuning 

The quantum systems presented in the previous sections 

have been implemented in Python3, using IBM’s Qiskit 

development tools [24]; this includes the implementation of all 

the modules and components in QTx and QRx, as well as 

qubits propagation through the quantum channel. In addition, 

the full stack of BB84 key distillation steps [7], i.e., key 

sifting, QBER estimation, error correction cascade, and 

privacy amplification, have been implemented to emulate the 

real operation on the public channel. 

Eavesdropping and SOP perturbations effects impact the 

propagation of the photons through the quantum channel. To 

reproduce eavesdropping, a module that emulates 

eavesdropping, i.e., third-party intercepting (measuring) 

photons at a fixed predefined rate, was implemented. This 

module is characterized by an eavesdropping rate, calculated 

as the percentage of photons intercepted by the eavesdropper 

over the total number of measured photons in transmitting 

keys. Regarding SOP, a generator that reproduces fiber 

stressing events of different types and magnitudes was  
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Fig. 4. Three illustrative fiber stressing events. Fig. 5. QBER vs distance(r,|o〉). Fig. 6. |o(t)〉 estimation error. 
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Fig. 7. |o(t+m)〉 prediction performance. Fig. 8. O interpolation error. 
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Fig. 9. SOP tracking example. 

implemented. In addition to generate purely synthetic random 

SOP fluctuations, this module uses the experimental dataset 

containing 10,000 events of 4 seconds in [19] to generate 

realistic ones. An example of generated SOP fluctuations is 

represented in Fig. 4, where three events of incremental 

magnitude have been reproduced: a) fiber hit, b) fiber bending, 

and c) fiber shaking; the QBER values in Fig. 4 represent the 

average performance when no polarization alignment is 

considered. We observe that a small hit produces a QBER 

increment and could be treated as random noise. Fiber bending 

introduces a slightly larger QBER and requires polarization 

alignment to keep high performance. Finally, fiber shaking 

highly increases QBER. Assuming a typical maximum QBER 

= 5%, the last two events would interrupt QKD operation. 

For numerical evaluation purposes, we configured a QKD 

channel over a 50-km single mode fiber (SMF) link, with 

maximum individual fiber Polarization Mode Dispersion 

(PMD) of 0.1 ps/√km and loss of 0.2 dB/km. Note that this 

configuration represents a reasonable distance for a metro 

network scenario and it is in line with the setup in [13]. We 

assume currently commercial QTx and QRx, where photon 

generation rate is 1 GHz (as in [25] and [26]) and TR is 2 μs 

[13]. We also assume high-speed EPCs with specifications 

similar to [27]. Moreover, a typical configuration for the key 

distillation process is considered, with sifted key rate, privacy 

amplification rate, and eavesdropping detection threshold are 

45%, 10%, and 10%, respectively. With this configuration, a 

nominal KER of 4.5 Mb/s is achieved in the absence of SOP 

perturbations and eavesdropping. 

With the aforementioned configuration, we conducted an 

experiment to compute the relation between QBER and 

distance(r,|o〉) and find dth so as to achieve a given desired 

performance, i.e., QBERth. Specifically, we generated photons 

at a fixed polarization H and introduced random SOP 

perturbations in the quantum channel for a wide range of 

magnitudes. The polarization alignment in the EPC, i.e., r, was 

fixed and perfectly aligned with H. Then, we computed the 

obtained QBER as a function of the distance between the 

estimated SOP at the QRx, i.e., |o〉 and r. The results are 

presented in Fig. 5, where we observe that distance(r,|o〉) ≤ 

0.34 produces QBER < 3%, whereas distance(r,|o〉) = 0.2 

produces QBER ~1%. Hereafter, we consider dth = 0.2 and 

QBERth = 1% as a target reference value for performance 

evaluation purposes. 

B. SOP monitoring and prediction 

Let us now focus on evaluating the performance of the SOP 

monitoring process, i.e., |o(t)〉 measurement. We first need to 

analyze the error between true received polarization |p(t)〉 and 

estimated one |o(t)〉 as a function of the number of photons to 

decide the time for monitoring, i.e., TO. To this aim, we 

generated photons with different polarizations and estimated 

the SOP in the QRx. Fig. 6 plots the obtained SOP estimation 

error as a function of the number of photons (n) sent and 

received during the monitoring interval. In view of the figure, 

we can conclude that sending and measuring 15,000 photons  
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Fig. 10. QBER, KER, and #rotations vs dmax for various SOP fluctuation events.  

results in negligible error estimation (lower than 0.05 rad), 

which leads to additional QBER < 0.1%. Such number of 

photons require 15 μs. Note that monitoring duration should 

be longer as time for QBER computation, SOP estimation, 

SOP prediction, and rotation plan computation needs to be 

spent. In consequence, we fix the monitoring time TO = 1 ms, 

which should represent just a small portion of the total 

quantum channel operational period m. 

Next, we focus on the performance evaluation of |o(t+m)〉 
polarization state prediction. To this aim, we selected 75% of 

all experiments and train the DNN-based polarization state 

prediction model introduced in Section III with different 

configurations of input, hidden, and output layers. We start by 

analyzing the operational time period m, which is of 

paramount importance for the efficiency of our approach. Fig. 

7a presents the prediction error as a function of m, computed 

as the difference between the polarization state predicted for 

the next period at time t and the state measured at time t+m. 

For the sake of a fair comparative analysis, we fix w=500 ms. 

In all the cases, we considered 4 hidden layers, with 400, 200, 

50 and 10 neurons using the tanh activation function. We 

observe that m=50 ms provides maximum deviation error 

below the target 0.2. Then, fixing m=50 ms, we now study the 

impact of w. Fig. 7b shows the obtained error as a function of 

w, where maximum deviation error below the target 0.2 

radians can be obtained for w>200 ms. Therefore, w = 500 ms 

provides a good trade-off between accuracy and DNN 

complexity. 

Finally, we evaluate the accuracy to interpolate polarization 

states between |o(t)〉 and |o(t+m)〉, i.e., sequence O estimation. 

To this end, we fixed k=100 intermediate polarization states 

(one state every 500 μs) and analyze the average and 

maximum estimation error as a function of the degree l of the 

fitting polynomials (Fig. 8). As a reference, we plot the error 

obtained by the DNN to predict |o(t+m)〉. Interestingly, 

polynomials of degree 2 reach the highest performance, as 

average error is only 10% over that for |o(t+m)〉 prediction, 

while maximum error is even better than that. 

In order to better visualize the accuracy of the combined 

DNN-based and polynomial fitting approach, Fig. 9 presents 

the real and predicted polarization states projected in the 

Poincaré sphere for a 650 ms fiber shaking example. Fig. 9a 

shows the first 600 ms, where SOP fluctuation covered around 

π/2 radians in 500 ms, followed by a sharp and fast change to 

the opposite direction covering π radians in just 100 ms. The 

event continues on the other side of the sphere (Fig. 9b) 

doubling the speed to cover π radians in 50 ms. We observe 

that prediction is highly accurate regardless the speed of the 

event and the position on the sphere, which validates the 

proposed SOP prediction method. 

C. ML-based adaptive operation evaluation 

From the previous results, we adopt the configuration TO = 

1 ms and m = 50 ms, which results into a remarkable low 

overhead of 2%, which is in line with the approach in [13]. Let 

us now evaluate the ML-based adaptive approaches, where the 

configuration providing the best performance to estimate 

sequence O is now used in a set of simulations conducted to 

emulate QKD operation. The events reproduced in this 

evaluation belong to the 25% not used during the previous 

DNN training and polynomial models’ evaluation. The 

reactive approach is also evaluated here with the same 

configuration, for comparison purposes. 

The plots in Fig. 10 show the QBER, number of rotations 

performed, and KER under the adaptive ML-based method as 

a function of parameter dmax, and for the different type of 

events. For benchmarking purposes, the reactive approach is  
 



 8 

Q
B

ER

Time (s)

0%

5%

10%

15%

20%

25%

30%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Predictive

Reactive

Eavesdropping threshold

Highest QBER
(6.1%)

 
Fig. 11. Example of QKD performance during a fiber shaking event. 
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Fig. 12. Impact of fiber stressing events on eavesdropping detection 

TABLE III. Performance comparison during shaking events 

Approach QBER KER (Mb/s) # Rotations 

ML-based 

(m=50ms, dmax=0.2) 
0.41% 4.21 205% 

Reactive 

(m=50ms) 
1.60% 3.73 100% 

Reactive 

(m=8ms) [13] 
0.07% 3.96 624% 

 

presented; recall that the reactive approach does not depend on 

the value of dmax. All the values represent the average 

performance obtained in a sustained presence of events. 

We observe that dmax = 0.2 is the best configuration, since 

achieves the overall highest performance in terms of QBER 

(<0.5%) and KER (close to the nominal value of 4.5 Mb/s). 

Interestingly, the performance of the predictive approach is as 

good as the reactive one in the presence of hit and bending 

events, whereas it remarkably improves the performance of 

the reactive in the presence of shaking events: 3.88 times 

lower QBER, which results in 89% increment in KER. The 

benefits of adaptability can be clearly seen by analyzing the 

number of rotations. The ML-based approach reduces 

noticeably the number of rotations as it performs rotations 

only when they are really needed, e.g., 8.2 and 5.9 times less 

rotations under hit and blending events to achieve the same 

performance than the reactive approach. However, in the event 

of heavy SOP fluctuations, the predictive approach performs 

more rotations compared to the reactive one. In Fig. 10c, 50% 

more rotations were needed in the event of fiber shaking. The 

results confirm the adaptability of the proposed ML-based 

approach. 

The previous results show clear benefits of the ML-based 

adaptive approach with respect to the reactive one, from 

analyzing the average performance. However, if we analyze 

event by event, the benefits are even larger. An example is 

presented in Fig. 11, where the obtained QBER as a function 

of time is presented for a fiber shaking event; monitoring 

periods are not represented for the sake of clarity. We observe 

that the reactive approach produces high QBER in general and 

several peaks exceed the eavesdropping threshold (maximum 

35%), which lead to intervals where no keys can be exchanged 

after the key distillation process. In contrast, the proposed 

ML-based adaptive approach produces low QBER 

continuously, which is only altered with some isolated peak 

(maximum 6.1%), which is well below the eavesdropping 

threshold, and key exchange is never disrupted during the 

whole event. This fact results in a less variable secret key 

exchange flow, which might be beneficial from the security of 

the overall system. 

The performance of the reactive approach can be improved 

by reducing the operational period m, so to add more 

adaptability in the presence of heavy events, at the cost of 

reducing the efficiency, and thus the KER. Specifically, in the 

following results we consider m=8 ms, which is in line with 

[13]. Table III summarizes the obtained results under shaking 

events. The new configuration for the reactive approach shows 

best performance in terms of QBER, even improving that of 

the predictive one. However, the shorter operational time 

reduces the throughput of secret key exchanges since the 

overhead becomes more significant. Moreover, this 

configuration performs a remarkably larger number of 

rotations compared to the predictive approach, which is 

demonstrated to provide the largest KER. 



 9 

D. Robustness against eavesdropping 

Finally, let us evaluate the robustness of the proposed ML-

based adaptive approach in the presence of eavesdropping. 

Two different cases have been studied while eavesdropping is 

being active: i) no fiber stressing event is produced; and ii) a 

large shaking event is produced. Fig. 12 shows the computed 

QBER, number of rotations and resulting KER as a function of 

the eavesdropping rate, defined as the probability that an 

eavesdropper intercepts a photon. We observe from Fig. 12a 

that the proposed ML-based SOP tracking and polarization 

compensation is able to reduce the QBER in the case of the 

shaking event to values that are in slightly above to those 

when no event is produced, and it leaves eavesdropping 

effects uncorrected. Fig. 12b shows the number of rotations, 

which are totally independent of the eavesdropping rate. 

Finally, Fig. 12c shows that the resulting KER are remarkably 

close in both cases. In conclusion, the performance of our 

proposed ML-based approach is noticeably robust against 

eavesdropping. 

V. CONCLUDING REMARKS 

The polarization based QKD technology is ready for its 

deployment in real telecom operators’ networks and 

commercial solutions already exist. The main challenge, 

however, is its very high cost coming from both, hardware 

requirements of the quantum transmitter and receiver, and 

from the high sensitivity of the quantum channel to 

polarization variations. 

A ML-based SOP tracking and polarization compensator 

has been presented consisting of three main components: i) a 

SOP monitoring procedure able to precisely estimate the 

current polarization state while minimizing overhead; ii) a 

lightweight ML-based SOP prediction that is able to 

accurately forecast future SOP evolution with fine granularity; 

iii) a Poincaré sphere rotation planner, which decides when 

rotations need to be performed and the magnitude of such 

rotations to compensate polarization drift and keep QBER 

under a given threshold. 

The SOP monitoring consists in periodically sending a 

number of photons with known polarization, so the quantum 

receiver can accurately estimate the current polarization state. 

In the results, we showed that the estimation error is 0.05 

radians when the number of photons sent is 15,000. Such error 

translates, in the worst case, into an additional QBER of 0.1%, 

which is almost negligible. Besides, the time to transmit such 

number of photons is 15 μs, which leaves time to the next 

components to perform their needed computation. Here, we 

estimate that a total of 1 ms can be dedicated to SOP 

monitoring, tracking, and polarization compensation, so the 

other two components need to be fast and produce accurate 

decisions, so the total overhead of the proposed system is low 

(around 2%). 

The ML-based SOP prediction actually consists of two 

subcomponents: i) a DNN model to predict at time t the 

polarization state for time t+m; and ii) a fine grain SOP 

evolution predictor based on polynomial fitting. The results 

showed that by fixing m to 50 ms maximum estimation error is 

below 0.15 radians, which translates, in the worst case, into 

additional QBER below 0.5%. Such value of m results into a 

noticeable low system overhead of 2%. Note that system 

overload is closely related to the value of m. In our case, we 

keep m fixed to the selected value, which results into a 

constant system overhead. However, one could devise a 

system that select m dynamically, so when the SOP is stable, 

m can have a high value that can be reduced under large SOP 

fluctuations. In such case, the overhead can be potentially 

reduced to around 1%. Nonetheless, this would entail some 

sort of synchronization between the QTx and QRx thus, 

increasing system complexity and cost. In conclusion, the 

proposed system provides a good trade-off between system 

overhead and cost. Regarding the granularity of polynomial 

fitting, it was fixed to 500 μs and we showed that a 

polynomial of degree 2 provides low enough average 

prediction error.  

The rotation planner was modeled as an optimization 

problem and an efficient greedy heuristic was devised. The 

results showed that a maximum distance between the current 

polarization in the quantum receiver and the estimated 

polarization state of 0.2 radians results into low QBER and 

KER close to the nominal value of 4.5 Mb/s. With such 

configuration, the rotation planner showed exceptional 

performance, as QBER was reduced 3.88 times and KER 

increased 89% under realistic shaking events, as compared to 

a reference feedback-based polarization compensator. The 

proposed system showed total neutrality against 

eavesdropping, so the system does not interfere its detection. 

In conclusion, our ML-based SOP tracking and polarization 

compensator might significantly reduce the cost of 

conventional feedback-based compensation in polarization 

encoded QKD systems as it minimizes polarization state 

measurements and reversal rotations as counter-actions. This 

simplifies the specifications of quantum transmitter and 

receiver and enables the use of aerial optical fiber cables. Note 

that a target key exchange rate can be achieved by improving 

key distillation process (e.g., by reducing QBER), while 

relaxing photon generation rate specifications at the QTx. In 

addition, the hardware design of the QRx can be simplified 

and rely on software. 
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