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Machine learning for knowledge acquisition and
accelerated inverse-design for non-Hermitian
systems
Waqas W. Ahmed1, Mohamed Farhat1, Kestutis Staliunas2,3,4, Xiangliang Zhang 1,5✉ & Ying Wu 1,6✉

Non-Hermitian systems offer new platforms for unusual physical properties that can be

flexibly manipulated by redistribution of the real and imaginary parts of refractive indices,

whose presence breaks conventional wave propagation symmetries, leading to asymmetric

reflection and symmetric transmission with respect to the wave propagation direction.

Here, we use supervised and unsupervised learning techniques for knowledge acquisition

in non-Hermitian systems which accelerate the inverse design process. In particular, we

construct a deep learning model that relates the transmission and asymmetric reflection in

non-conservative settings and propose sub-manifold learning to recognize non-Hermitian

features from transmission spectra. The developed deep learning framework determines the

feasibility of a desired spectral response for a given structure and uncovers the role of

effective gain-loss parameters to tailor the spectral response. These findings offer a route for

intelligent inverse design and contribute to the understanding of physical mechanism in

general non-Hermitian systems.
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Non-Hermitian systems, first studied in quantum
mechanics1,2, have been attracting a growing interest in
wave physics, especially in optics for being a promising

platform to explore new physical phenomena3–7 that are impos-
sible in Hermitian systems. Hermitian systems exhibit symmetric
transmission and reflection with respect to the direction of
the incident wave. This symmetry stems from reciprocity and
energy conservation principles. Yet, gain-loss in non-Hermitian
systems breaks space symmetry and reveals unusual properties
such as unidirectional invisibility8,9, lasing and coherent perfect
absorption10, asymmetric chirality11, and many others12–16. Non-
Hermitian systems extend photonic design to complex plane of
dielectric permittivity, examining the delicate relationship between
the refractive index, and gain-loss modulation17. Several platforms
are readily available for designing non-Hermitian photonics sys-
tems, including waveguides5,6 microcavities18,19, metamaterials20,
fiber optics21, plasmonic meta-atoms22, and microwave systems23.
The new development in non-Hermitian physics opens up an array
of future applications and technologies, including optical sensors24,
laser-absorbers10, micro-lasers25,26, meta lens27, telemetry28, to
name a few. In simple cases, even if the scatterers are elastic
(conservative) and only one dimensional (1D), scattering problems
may not be solved analytically. Some general relations may be
derived. For instance, the reflection and the transmission for
conservative systems obey tj j2 þ rj j2 ¼ 1. For non-conservative
but balanced gain-loss systems, another general relation exists, i.e.,
rLr

�
R ¼ 1� tj j2 relating the left and the right reflection waves.

However, in the most general case, such relations do not exist.
Lowest order Born approximation valid for weak scatterers predicts
the left and right reflection and transmission spectra as r0L;R kð Þ ¼
ik
2

R b
aε xð Þe± 2ikxdx and t0 kð Þ ¼ 1þ ik

2

R b
aε xð Þdx, where for x < a and

x > b the medium is air. These integrals depend on a general
function of scatterer, ε(x), and value of reflection, r0L;R; for left and
right incident plane wave e± ikz . Obviously for real valued ε(x),
the above relation gives rL ¼ r�R. Yet, continuing to calculate
higher order born approximations, reflection-transmission spectra
become interdependent due to recursive relation of reradiated
electric fields i.e., En ζð Þ ¼ ik

2

R b
aε xð ÞEn�1 zð Þe�ik x�ζj jdz where ζ lies in

the range of a≤ ζ ≤ b. This implies that the transmission and the
reflection spectra might be related even for arbitrary scattering
functions ε(x). The analysis of Born approximation chain reveals
that this hypothetic dependence is absent for very weak scattering
and vanishes proportionally to εðzÞ

�� ��2. Nevertheless, the analysis,
even in this 1D case, cannot produce analytical tractable results or
general relation between rL, rR, and t spectra. Eventually, whether
rL, rR, and t are mutually related remains an open question.
In addition, the amount of effective gain-loss plays a crucial role
in designing the specific functionalities of the non-Hermitian
structures that require careful tuning of design parameters. The
existing modeling methods in conventional photonics use
exhaustive tuning of material (and geometrical) parameters via
brute-force and optimization for on-demand wave control29,30,
which are computationally expensive. Therefore, intelligent models
to understand the underlying physics of wave-matter interaction
with the latent data structures is desired to reveal the relation
between different physical quantities and automate the design of
technological devices.

In recent years, machine-learning (ML) techniques were suc-
cessfully applied for forward and inverse designs in different
physical settings31–46. ML-based models are often regarded as black
boxes because they do not reveal the physical behavior of the
designed structures. In the literature, less efforts have been devoted
to get scientific insights of photonic structures using ML47–50. Such
scientific knowledge is essential to exclude suboptimal designs
for fabrication or to discover new physics. Although tremendous

progresses in ML-enabled methods have been made to solve dif-
ferent physical problems, most of the reported studies are devoted
to address the Hermitian (or conservative) systems, leaving ML
models for non-Hermitian problems yet to be developed. Here, we
focus on non-Hermitian systems and exploit the ML for knowledge
extraction that streamlines the inverse design process. By analyzing
large amounts of spectral data, the ML provides us hint to the
answer to the general question about the relation between asym-
metric reflections and transmission in non-conservative systems.
We develop powerful design tools that intelligently learn the
bidirectional mapping between non-Hermitian material para-
meters and scattering spectra, considerably reducing the compu-
tation requirements. The forward process from design material
parameters to response-space is well defined, but the backward
inverse problem (from response space to material parameters) is
ambiguous due to the degenerate solution space51. In fact, one
identical response can be yield by various parameter sets. There-
fore, solving the inverse design problem for the desired spectral
properties is very challenging for practical realizations due to the
existence of non-unique solutions. To this end, we first identify the
sub-manifolds of non-Hermitian features (gain, loss, balanced
gain-loss cases) which play an important role for inverse design.
We use unsupervised learning based on Principal Component
Analysis52 (PCA) that reduces the dimensionality of the trans-
mission spectra over a set of training data and discovers the clus-
tering among the data representing gain, lossy, and balanced non-
Hermitian cases, as depicted in Fig. 1a. The largest variance com-
ponent helps to understand the underlying features in the data and
provides insights about the role of effective media in designing non-
Hermitian structures. Further, sub-manifold learning is utilized to
accelerate the inverse design process. The inverse design process is
divided into training and inference phases as shown in Fig. 1b. The
training phase involves the modeling of the forward neural network,
f̂ ðDÞ as a function of the design space, D, where f̂ is a universal
approximator function for forward simulator. Inference phase
retrieves the design parameters, D, for on-demand spectra, which
involves the computation of feasible starting design parameters
based on manifold learning and the gradient of the pretrained
forward model with respect to the design space ∂f̂ =∂D while fixing
all the weights and biases of the network. K-dimensional (KD) tree
algorithm53 is applied to find the nearest neighboring point for the
latent transmission spectra within a feasible region that works as a
promising starting point, D, to achieve the optimal design using
adaptive gradient approach. In addition, we reconstruct the trans-
mission spectra from the asymmetric reflection that uncovers one-
to-one and one-to-many mapping among reflection and trans-
mission in forward and reverse directions.

In this paper, we propose a machine learning approach for
knowledge discovery and solve the inverse problem in non-Hermitian
photonics. As a proof of concept and without loss of generality, we
apply our design strategy to study multilayered non-Hermitian
structures where the complex optical materials exhibit highly asym-
metric optical response due to simultaneous index and gain-loss
modulation. The developed deep learning frameworks uncover the
relationship between the transmission and the asymmetric reflection,
recognize the non-Hermitian features in spectral data, and solve the
inverse problem in general non-Hermitian systems.

Results and discussion
To demonstrate the effectiveness of our design approach, we
study a non-Hermitian structure with periodically distributed
five-layer supercells, where each layer of the unit cell may be
parametrized with thickness and material as shown Fig. 1. We
model such structure with the transfer matrix method (TMM)
where the material properties of the ith layer are represented by
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complex refractive index ni ¼ nRi þ inIi, where nR and nI are the
real and the imaginary parts of the refractive index [see “Methods”
section for detail]. The background medium is air. The complex
refractive index distribution of the supercell dictates its scattering
properties. Data driven approaches generally require a huge
amount of data (from thousands to millions of sets) for discovering
the hidden features and the intrinsic relations between the input
and the output. In the data generation process, we assume the same
thickness for each layer and consider material parameters as design
variables D= [nR1; nR2; nR3; nR4; nR5; nI1; nI2; nI3; nI4; nI5] to
determine the scattering response, i.e., transmission and reflection
properties for the left and right incident waves. Because of reci-
procity, such a structure provides symmetric transmission T =
TR= TL and, in general (e.g., if mirror symmetry is broken),
asymmetric reflection denoted by RR and RL for left and right
direction of incident waves, respectively. For illustration, the
spectral response of interest is set in the normalized frequency
range 0:2≤ωa=2πc≤ 0.8 where each data set contains ten design
parameters and 100 discrete points for each transmission and
reflection spectrum S ¼ ½s1; s2; s3; s4 ¼ ¼ s100�. The real and
imaginary parts of the refractive index are restricted in the range
[1 1.4] and [−0.2 0.2] for data generation, respectively. In our
study, we randomly generate 50,000 data samples of forward
simulations with TMM. Among these, 80% of the samples are used
as a training set, 10% for validation, and the remaining 10% for
final testing. The training set is used for knowledge acquisition and
training the feed forward networks; the validation set serves as a
check to avoid overfitting, and the testing set evaluates the per-
formance of the network. Here, we assume only material properties
as the design space for the network training since refractive
index and gain-loss modulations are crucial to non-Hermitian
physics. Yet, the geometrical parameters (thickness) can also be

easily incorporated, since the proposed feed forward neural net-
works can handle discrete data structures, either in terms of
material or geometrical parameters.

Interplay of reflection and transmission in non-Hermitian
structures. Conservation laws, as fundamental physical principles,
have been conventionally derived in the model-driven way and
more recently re-discovered with data-driven approaches54–56.
Typically, the elements of the transfer matrix result in a con-
servation relation that connects transmission and reflection for
multilayer configuration. In Hermitian systems, the generalized
conservation relation is simply expressed as T + R = 1 where left
and right reflections are necessarily identical due to mirror sym-
metry, i.e., RL = RR = R. Following this relation, Parity-time (PT)-
symmetric systems with balanced gain and loss43 hold the relationffiffiffiffiffiffiffiffiffiffi

RLRR

p ¼ 1� Tj j. In non-Hermitian systems, energy conserva-
tion is not valid due to the existence of gain and loss and, therefore,
the intrinsic correlation between transmission and reflection in a
general non-conservative system is yet to be developed. Here, we
exploit deep learning to unveil the relation between transmission
and reflection responses of non-Hermitian structures. We uncover
one-to-one mapping from reflection (RL, RR) to transmission T
(i.e., unique transmission response exists for any given reflection of
arbitrary structure) and many-to-one in the reverse direction. The
one-to-one relation is valuable to reconstruct the transmission
from given reflections and analytically accessible through the
training process that adjusts the weights in a neural network (NN)
forming a series of nested rectified linear unit functions. The
trained NN provides a universal function approximator f ðR;T;ΘÞ
where the function f maps the reflection R to transmission T with
the trained weight parameters Θ.

Fig. 1 Conceptual illustration of the design process for machine learning assisted non-Hermitian photonics structures. a Dimensionality reduction based
on Principal Component Analysis (PCA) reveals the lower-dimensional sub-spaces where gain, lossy, and balanced system reside. A high dimensional
transmission spectrum generated from a periodic five-layer photonic structure, of complex refractive index ni ¼ nRi þ inIi, where nR and nI are the real and
the imaginary parts, whose unit-cell is shown, is mapped to a point. The latent space for different spectra (left reflection and transmission RL and TL and
right reflection and transmission RR and TR) forms feasible regions of gain, lossy, and balanced systems spanned by the first two principal components (PC1
and PC2). b For the inverse design, the dimensionality of the desired response (transmission) is reduced using PCA to observe the feasibility of the
response with effective gain, lossy, and balanced media. Using a trained neural network (NN) that relates the design space with the response space, we
search for the optimum solution with adaptive gradient descent method. The nearest neighbor of the target response within the possible region is used as a
starting point to optimize the final structure. D̂ denotes the input whereas Ŝ denotes the output.
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We implement the function f by a fully connected NN to learn
the mapping between the left reflection, RL (or right reflection,
RR), and transmission, where the reflection is fed as input and
transmission as output to the network [see Fig. 2a]. The training
process optimizes weights Θ by minimizing the mean absolute
loss L¼ 1

N ∑i Ti � T̂i

�� ��, where Ti and T̂i are the ground truth and
the predicted transmission responses, respectively. The architec-
ture of the designed network consists of four fully connected
layers with 500–500–400–300 neurons as depicted in Fig. 2a
(see details in Supplementary Note 1). The performance of the
trained network is quantified with the relative spectral error
defined as: es ¼ ∑i Ti � T̂i

�� ��=Ti, where Ti and T̂i denote the
discretized target and predicted spectral response, respectively.
In Fig. 2b, we show the distribution of the spectral error over the
entire testing set in histogram form that indicates a high
prediction accuracy (over 97%) of the network with an average
error of 2.89% (dashed red line). The prediction performance of
the trained model is demonstrated by three representative
examples in Fig. 2c, where the red and the black dashed curves
corresponding to the TMM simulation and the designed network
prediction, respectively, show an excellent agreement.

Note that neural networks can also be designed to determine
the transmission spectra from the given right reflection (see
Supplementary Note 2), or from both reflections (see Supple-
mentary Note 3). Our findings suggest that only one component
of the reflection, either left or right, is sufficient to build the
transmission profile of the considered non-Hermitian system.

Sub-manifold learning for features recognition in non-
Hermitian structures. The spectral response of a photonic
structure depends to a great extent on the operational frequency.
A multi-dimensional frequency response presents a large number
of features, which grows very fast with the number of discrete
frequencies. Due to extra degrees of freedom introduced by
gain-loss modulation in non-Hermitian systems, the spectral
response of photonic structures becomes even more complex.

Consequently, it becomes extremely challenging to recognize the
non-Hermitian structure from the spectral response and infer
some knowledge for deep physical insight. Therefore, effective
procedures to extract the most relevant information contained in
the system response are highly desired. Different approaches have
proven to be useful for extraction of the valuable information in
data, such as PCA52, multidimensional binary search tree53,
neural autoencoder57, to name a few58,59. Such approaches are
based on dimensionality reduction to visualize patterns, simila-
rities, and differences in data with minimum loss of information.
In this study, we exploit the unsupervised dimensionality
reduction algorithm using PCA59 that transforms the discretized
transmission spectra from a high-dimensional space to a low-
dimensional latent space and models the sub-manifolds for
different non-Hermitian structures. These manifolds, in the form
of convex hull, are used to investigate the feasibility of having a
desired optical response from a certain class of non-Hermitian
structure. When mapped into the respective two-dimensional
(2D) feature space, these responses form a distribution of points,
which characterize the correlation among the multi-frequency
responses. The latent representation exploits the variance of
features as well as the covariance between features to find major
trends in spectral data. PCA organizes the large dimensions of
each spectrum in terms of a respective feature vector, existing in
higher-dimensional feature space. The procedure includes the
rotation of the coordinate axes of the feature space such that the
first axis results with the maximum possible data dispersion (as
quantified by the statistical variance), the second axis with the
second maximum dispersion, and so on52. This principle is illu-
strated for a transmission spectrum with the transmission
amplitude at three different frequencies in Fig. 1. In practice, we
deal with n frequencies and represent one transmission spectrum
as an n-dimensional vector. Since the n frequency features are not
independent, a large set of the transmission spectra when all
represented as n-dimensional vectors live on a low-dimensional
manifold embedded in the n-dimensional space. Therefore,
PCA can be employed to reduce the n-dimensional space to a

Fig. 2 Designed neural network for left reflection to transmission mapping. a Architecture of the optimized network, showing the left reflection RL as
function of frequency ω as input and the predicted transmission T̂ as function of ω as output. b Histogram of the spectral prediction error. c Three
representative examples for generation of transmission response T (using Transfer Matrix Method: TMM and Machine Learning: ML) from three different
given reflection spectra RL versus normalized frequency ωa/2πc, with a the dimension of the scatterer and c the speed of light in free space. The solid red
and dotted black line represent the transmission calculated from TMM and ML method, respectively. More examples are shown in Supplementary Fig. 1.
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lower-dimensional space (e.g., a 2D space spanned by the first
two principal components), and visualize interesting patterns of
gain, lossy, and balanced media [see Method section for details].
In our study, PCA is applied over the training data of transmis-
sion spectra, and the first two components encoding the latent
representation in 2D are shown in Fig. 3a. However, the number
of principal components required for dimensionality reduction
depends on the nature of the spectral data being examined. The
dominant spectral features of a spectrum with many resonance
peaks spread randomly over the broad frequency range may
require more principal components for latent space representa-
tion. A convex hull is plotted to show the boundary of possible
feasible response from the given non-Hermitian structure [see
Fig. 3b]. Note that the convex hull has been formed with Quic-
khull algorithm to bound the transmission patterns in 2D latent
space60. We identify three distinct manifolds corresponding to
the effective gain, lossy, and balanced gain-loss class for the latent
spectra. An overlapping area appears when the relative amount of
gain and loss in the system are nearly equal. Around the center of
the reduced space, the gain and loss become exactly balanced,
which maximizes the unidirectionality. The difference in the area
of color-coded sub-manifold implies the capability of the multi-
layer configuration to construct a wide range of feasible spectral
responses with different non-Hermitian media. Figure 3c–e pre-
sents representative transmission spectra belonging to three dis-
tinct manifolds, respectively. Sub-manifold learning can be used
to forecast the feasibility of a response using a specific structure
class. There are different physical scenarios associated with
the identified feasible regions. For example, the gain region
is ideal for lasing and designing amplifiers with stacked index-
gain modulations. The balanced region can be applied for

simultaneous lasing and coherent perfect absorption, sensing, and
unidirectional invisibility, while coherent perfect absorbers can be
designed using the lossy region.

Forward neural network. We develop a forward neural network to
determine the spectral response for a given structure. It takes the
design parameters as input D and the spectral response as output S
to build a mapping relation as S ¼ f ðDÞ where f is the complex
nonlinear function constructed by the forward neural network.
One-to-one mapping from design parameter to spectral response is
a regression problem that can be modeled by NN, as depicted in
Fig. 4a. The network is trained with mean absolute spectral loss
defined as L¼ 1

N ∑i Si � Ŝi
�� �� where Si and Ŝi are the ground truth

and the predicted spectral response, respectively. The designed
architecture for the forward NN has 500–500–400–400–300−300
neurons in six layers, for transmission, and asymmetric reflections
[see Fig. 4a]. In order to assess the performance of the designed
network, we define the relative spectral error on the testing data
sets as: e ¼ ∑i Si � Ŝi

�� ��=Si where Si and Ŝi correspond to target
and predicted spectral responses. The average spectral errors (below
4%) for transmission and left/right reflection of the designed for-
ward networks are presented in Fig. 4b. The results of representative
predicted responses agree well with TMM simulations, as show in
Fig. 4c, d (see more details in Supplementary Note 4).

Inverse network. Next, we move toward the inverse design
problem after obtaining a well-trained forward NN model.
Naturally, most inverse design problems are ambiguous due to
the “one-to-many” mapping i.e., different non-unique solutions
exist for the same target response. Consequently, a single

Fig. 3 Principal component analysis for the transmission spectra generated from a five-layer periodic non-Hermitian structure. a Representation of the
first two principal components (PC1 and PC2) of the transmission spectra. b The corresponding convex-hulls of the feasible regions for non-Hermitian
structures in Fig. 1 in the reduced 2D space. The red, blue, and yellow regions correspond to effective gain, lossy, and balanced media, respectively.
The response generated from effective gain and lossy media resides top-right and bottom-left from the center of the latent space, respectively. An
overlapping region is found when the gain and loss are balanced with the threshold 10−6. Within this overlapping area, PT-symmetry with perfect
transmission exists around the center of the latent space. c–e Representative examples for the transmission spectra versus normalized frequency ωa/
2πc, with a the dimension of the scatterer and c the speed of light in free space, residing in gain, balanced, and lossy regions of reduced space are
presented, respectively.
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discriminative network cannot achieve the optimal solution in the
inverse design. To mitigate this problem, auxiliary training
approaches and optimization strategies have been incorporated
in the inverse design process31,32,37,38,43,61–64. In our work, we
propose the sub-manifold learning with neural adjoint method to
solve the inverse problem. To design a structure that results in a
desired spectral response, the first step is to find the corre-
sponding target point in the latent space by reducing the
dimensionality of the desired response using PCA. Next, the KD-
tree algorithm is applied to find the nearest neighboring point for
the corresponding target point in the latent space within feasible
sub-manifolds. The identified nearest neighboring point will act
as the starting point for inverse design using a neural adjoint
approach. The neural adjoint method determines the optimal
solution by computing the gradient of the pretrained forward
model f̂ ðDÞ with respect to the design parameters while keeping
all weights and biases of the network fixed. The pretrained
forward network f̂ ðDÞ provides a closed-form differentiable
expression, and thus the calculation of ∂f̂ =∂D is trivial for the
inverse design process. The gradient of the input design para-
meters with respect to a loss function L is estimated to iteratively
move along the loss surface for the optimal solution. The inverse

model can be denoted as f̂
�1ðS;D0Þ, where D0 is the initial

structure obtained from sub-manifold learning and S is the
desired spectra.

Let S be our desired spectra, and Di be our current best
estimate of the design space, where the index i indicates the
iteration for adaptive gradient-based estimation procedure.
To compute Di+1, first we calculate the moving averages based

on decaying exponential rates and gradient of the input design
parameters with respect to a loss function in the following way:

mi ¼ β1mi�1 þ 1� β1
� � ∂L f̂ ðD̂iÞ; S

� �
∂D̂i

;

vi ¼ β2vi�1 þ ð1� β2Þ
∂L f̂ ðD̂iÞ; S

� �
∂D̂i

2
4

3
5
2

;

ð1Þ

where L¼ 1
N ∑

N
i f̂ ðD̂Þ � Si
� �2

is the mean squared loss function

and β1, β2 are the exponential decay of the rates for the first
moment estimates and second-moment estimates, respectively.
Next, we need to correct the bias in the first and the second
moment estimates as:

m̂i ¼
mi

1� βi1
; v̂i ¼

vi
1� βi2

: ð2Þ

Finally, we can update the design parameters based on the
calculated moving averages with a step size α:

D̂iþ1 ¼ D̂i � α
m̂iffiffiffiffi
v̂i

p þ ϵ
; ð3Þ

where α is the adaptive learning rate65. The major problem with
existing neural adjoint methods is the selection of initial seed,
however, we mitigate it with sub-manifold learning that
eventually leads to an accurate solution in inverse design.

The results for the inverse design are summarized in Fig. 5. We
consider three represented examples of desired responses whose

Fig. 4 Designed feed forward neural network for non-Hermitian structures. a Architecture of the 6-layer neural network with input D and output Ŝ, with
the transmission T̂, left reflection R̂L, and right reflection R̂R versus frequency ω. b Average spectral prediction error for transmission and left/right
reflection. c, d Representative examples of the predicted spectral response (using Transfer Matrix Method: TMM and Machine Learning: ML) for the
designed networks (i) transmission, (ii) left reflection, and (iii) right reflection versus normalized frequency ωa/2πc, with a the dimension of the scatterer
and c the speed of light in free space.
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transmission spectra resides within sub-manifold of lossy, gain, and
balanced media indicated by b–d shown in Fig. 5a. Finding the
nearest neighbor for the corresponding points in the latent space
works as the initial structure that is evolved to achieve optimal target
spectrum. The predicted spectra coincide with the target that
indicates the strong capability of our method to design any spectral
response absent in the training set, as shown in Fig. 5b–d (see details
in Supplementary Note 5). Figure 5c shows the perfect transmission
and asymmetric reflection that do not require any strict space and
time symmetry conditions as in the case of PT-symmetric structures.
Therefore, the proposed approach can be used to design a more
general class of planar reflectionless structures with non-Hermitian
materials that can be realized with locally isotropic and non-
magnetic materials. In addition, the method can be applied to design
high-quality resonators based on non-Hermitian photonic structures
with more spectral points in desired frequency range for training
data without affecting prediction time.

Conclusion
In conclusion, we propose unsupervised and supervised learning
for modeling the optical response of non-Hermitian photonic

structures that can derive valuable insights about the relationships
of asymmetric reflections and transmission in non-conservative
systems. The study reveals that either the left or the right
reflection is sufficient to determine the corresponding transmis-
sion profile. As demonstration, we study a multilayered periodic
structure and develop a machine learning framework for
knowledge acquisition and retrieval of the design parameters for a
given spectral response. In particular, we propose a machine
learning model to determine the transmission from a given
asymmetric reflection without design parameters that uncover the
one-to-one mapping from the reflection to the transmission
spectra. The dimensionality reduction based on PCA is applied to
learn the sub-manifolds of lossy, gain, and balanced structures via
the transmission response. The learned sub-manifolds in 2D
latent space are useful to determine the feasibility of the response
with a given class of structures and find the best initial seed for
inverse-design with neural adaptive gradient method. In this
proposal, a single feed-forward neural network is trained rather
than the complex training procedures used in common machine
learning-based inverse methods that tend to yield suboptimal
results. The PCA and KD-tree algorithm provide accurate initi-
alization for neural adjoint method to find an approximate

Fig. 5 Inverse design approach based on sub-manifold learning and neural adjoint method. a Convex-hulls of the feasible regions for non-Hermitian
structures for the training transmission data in latent space. b–d Desired spectral responses (using Transfer Matrix Method: TMM and Machine Learning:
ML) versus normalized frequency ωa/2πc, with a the dimension of the scatterer and c the speed of light in free space, designed with adaptive gradient
descent method. The initial seed is obtained within feasible sub-manifolds of lossy, gain, and balanced non-Hermitian systems.
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globally optimal solution within a short period of time (one
minute). The approach is used to inversely design the unidirec-
tional properties with multilayered structures that do not require
any strict symmetry as in PT-symmetric structures. Our metho-
dology integrates dimensionality reduction to automate the
design and, thus, provides a versatile platform to learn new
physical insights in non-Hermitian photonics structures. The
inverse design method is not restricted to optical problems, and it
can be applied directly to find accurate solutions to ill-posed
problems in other physical systems such as acoustics, elasticity, or
plasmonics. It is worth to mention that we use the feed forward
neural networks to represent discrete data structures (material or
geometry parameters) in modeling the response of multilayered
structures. However, the idea can be extended for complex cou-
pled systems beyond multilayered systems by replacing the feed
forward neural network with different network architectures.
Graphical neural networks can be used to model photonic sys-
tems with interacting objects (e.g., coupled ring resonators), while
recurrent neural networks are used to model dynamical photonics
systems.

Methods
Transfer matrix method. TMM is one of the most widely used methods to model
light propagation in multilayered structures. In this study, we consider a one-
dimensional periodic structure formed by five alternating layers with coherent
interfaces. We assume that all layers are isotropic and nonmagnetic with different
dielectric material. The electric field is represented as a superposition of the left-
and right-propagating waves with wavevector, k= ω=c, as: E� zð Þ ¼ Eþ

L e
ikz þ

E�
R e

�ikz and Eþ zð Þ ¼ E�
R e

ikz þ Eþ
R e

�ikz for the left z < � L=2
� �

and the right
z > L=2
� �

side of the structure, respectively. The continuity conditions for the
tangential electric field components at the outer interfaces of the layered structure
determine the transfer matrix, M, that is the product of matching and propagation
matrices. Mathematically, the transfer matrix relates the field amplitudes of the left-
and right propagating waves in the following manner:

E�
R

Eþ
R

� 	
¼ M

Eþ
L

E�
L

� 	
;M ¼ M11 M12

M21 M22

� 	
: ð4Þ

The transmission coefficient tR,L, and reflection coefficient rR,L, (along with the

transmittance TR;L¼ tR;L
�� ��2 and reflectance RR;L¼ rR;L

�� ��2) for left (L) and right (R)
incidence waves can be computed from boundary conditions and related with the
elements of transfer matrix as:

tR ¼ 1
M22

; tL ¼ M11M22�M12M21
M22

;

rR ¼ M12
M22

; rL ¼ �M21
M22

:
ð5Þ

Principal component analysis. PCA is a powerful unsupervised method for
dimensionality reduction that transforms the data to a lower dimensional space to
identify the intrinsic patterns and correlation in the data without loss of original
information. Consider m data points of n-dimensional spectral space S= [s1, s2…..
sn] where, s1 represents ith features, and n represents the total number of features.
The response data matrix can be written as Rm×n from which successive k
orthogonal components (also called principal components) are computed to find
the direction of the maximum variance. The largest eigenvalues of the response
data matrix along with the corresponding eigenvectors are used to analyze a large
amount of high-dimensional transmission data. In this work, we implement PCA
with python sklearn libaray that uses the singular value decomposition for the
calculation of principal components.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding
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