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Abstract: Many decision-making situations require the evaluation of several voters or agents. In a
situation where voters evaluate candidates, the question arises of how best to aggregate evaluations
so as to compare the candidates. The aim of this work is to propose a method of aggregating the
evaluations of the voters, which has outstanding properties and serve as a potential evaluative tool in
many contexts. Ordered weighted averages is a family of rules appropriate for studying this problem.
In this paper, I propose as a solution an ordered weighted average that satisfies compelling properties
and whose weights are derived from the binomial distribution.
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1. Introduction

A method of aggregating scores from various voters (also known as judges) to one or
more candidates is proposed in this article. The study carries out analyses of the family of
ordered weighted averages and selects the one with the best properties, with the purpose
to assign a fair evaluation of a single candidate and to rank fairly the candidates when they
compete. A unified procedure is proposed for these two situations. I formally describe the
context under study by defining three sets.

Let N = {1, 2, . . . , n} be the set of judges. Throughout this article I assume n ≥ 2. Let
C = {c1, c2, . . . , cm} be the set of candidates. I am interested in two different situations: that
in which a sole candidate is evaluated, i.e., m = 1, and that in which several candidates are
evaluated and afterwards ranked, i.e., m ≥ 2. Let Γ be the evaluation set, through which
judges express their evaluation in Γ to each candidate. There is no restriction on the ballots
or choices. For instance, a judge can assign the same evaluation to several candidates. In
this article, I mainly refer to numerical evaluations that in most cases can be thought of
as grades. The terms grades or scores is used interchangeably from now on. I deal with
several types of sets for Γ. The most standard type for it is a finite set Γ = {g1, . . . , gγ}
of cardinality γ ≥ 2. The evaluations are numerical (Grades can also be qualitative, (e.g.,
Γ = {1, 2, 3, 4, 5} can be also thought of as Γ = {A, B, C, D, E}) if there is a bijection
between the two sets, i.e., if they can be thought of as equivalent forms of grading.) (e.g.,
Γ = {0, 1, 2, . . . , 9, 10} or Γ = {1, 2, 3, 4, 5}), being equally spaced, i.e., gi+1 − gi = ε > 0
for all i = 1, . . . , γ− 1. However, practically everything exposed in the article also applies
to larger sets where grades’ equidistance is not required, or more generally, continuous
intervals of real numbers, such as, for example, Γ = [0, 1], (The continuous set [0, 1] can
also be understood as a normalization of any other closed, bounded and convex set.) so
that the judges can express their evaluation from a finer grid.

The case of several candidates has been extensively studied. In fact, additive rules,
close solutions to the mean, interpret the evaluations as grades selecting as winner the can-
didate with the highest total grade. They are sometimes referred to as “utilitarian” voting
rules, [1]. Two characterization results for additive rules are provided in [2]: evaluative
voting and range voting. Other rules are conceivable as well, such as comparing candidates
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according to their median evaluation, see [3], or to their minimum evaluation [4]. The rule
I propose in this paper is an alternative to all these proposals.

This work on voting rules is connected to game theory in the following sense. A voting
method is identified with a game structure. The voters are the players, the social decisions
to be adopted are the alternatives, the strategies are the concrete ways of casting the vote
available to each voter and the aggregation function incorporates the set of rules through
which is determined the social decision to adopt.

The remainder of this section provides motivating examples of real situations coming
from very different backgrounds. The other sections of this article are organized as follows.
The ordered weighted averages are introduced in Section 2, as a broad class of solutions to
the aggregation problem posed. Some particular ordered weighted averages are introduced
in Section 3, including the new rule, which is the main objective of study in this work. Two
characterizations of this rule are presented in Section 4. Section 5 highlights additional
compelling properties of the rule proposed in this article. The conclusion ends the paper in
Section 6.

Motivating Examples

I start by discussing several examples from very different backgrounds. In the first
three examples, a single candidate is evaluated. In the next examples, various candidates
are evaluated and subsequently ranked.

1. Evaluating final degree projects and Ph.D. thesis: The evaluation of the project consists of
the presentation and defense of an innovative work. The jury of the project is usually
made up of three or five professors. It is usually five when it comes to doctoral theses.
Each member of the committee proposes a grade. The final qualification awarded by
the committee is deduced from the individual grades. Some aspects are crucial for the
student: pass or not, cum laude or not.
The mean of the individual grades is often used to obtain the student’s final grade.
For instance, assume that the grades are 5, 5, 9, 9, 10 on an integer scale from 0 to 10.
The mean is 7.5, the median is 9 and the proposed rule in this paper yields 7.8125.

2. Judging professors by students in universities: Students evaluate their professors accord-
ing to their satisfaction with their teaching performance. They are allowed to assign
an integer number from one (very unsatisfactory) to five (very satisfactory). Thus,
each professor gets a score between one and five per course, which is the mean of
students’ scores. A professor usually teaches between 10 and 20 courses every five
years, and therefore obtains an aggregated score of the five-year period, which is
again the mean of all the courses taught.
Professors can request a teaching supplement every 5 years. A very important criterion
is the assessment obtained by students during these 5 years. A professor needs a
minimum mark of three to obtain the five-year teaching supplement. For instance,
assume the scores per course obtained by a professor in the 10 courses taught in a
five-year period were:

1.5, 1.5, 2, 3, 3.2, 3.2, 3.2, 3.6, 3.8, 4.

The mean is 2.9 which has fatal consequences for the professor, the median is 3.2 and
the proposed rule is 3.09.

3. Rating companies by debt agencies: Debt rating agencies (such as Standard and Poors,
Fitch, Moody’s or DBR, among others) evaluate companies. They use a rating scale,
which goes from the best evaluation to the worst evaluation and comprises 21 degrees.
The rating scale is mainly divided into two sections or categories: investment (from
1st to 10th) and speculative (from 11th to 21st). Different agencies provide company
rankings simultaneously. The way their qualifications are aggregated is fundamental
for the company, investors of the company and potential future investors. Assume,
that the qualifications of the four agencies for a certain company are: 8, 9, 10, 14. If the



Mathematics 2022, 10, 4418 3 of 14

mean, which is over 10, is used to aggregate these evaluations, the company’s category
is declared speculative. Instead, the proposed rule assigns 10, which corresponds
to the last level of investment category. Note that in this example, I have taken the
ordinal criterion so that the lower the number, the better the rating.

4. Doctoral student selection problem: Some universities offer programs for gaining the
doctoral (Ph.D.) degree. The process to select students is open to students from
everywhere. In most of the cases, the number of applicants is much greater than the
number of available scholarships, so the candidates must be ranked. The problem of
selecting young promising doctoral researchers can be seen to consist of a collection
of applicants for the Ph.D. program and a set of experts who grade each applicant by
using a pre-established set of allowed scores. An application of this problem at the
Graduate School of Turku Center for Computer Science in Finland has been studied
by using ordered weighted averages in [5].

5. Artistic sports competitions: Some sports competitions require the evaluation of ath-
letes performance by a panel of judges, such as diving, artistic skating, gymnastics,
rhythmic gymnastics, dancing, riding, etc. The rules used are very diverse and range
from the mean (used by several federations, for example, the International Federation
for Equestrian Sports), the median (the synthesis of the scores of each subjury in
rhythmic gymnastics is a median), trimmed means (used in various cases of diving)
to some sophisticated methods. Other interesting techniques have been proposed by
Crowley [6] or Gambarelli [7]. Both used the arithmetic mean of some scores. The first
technique was based on discarding a fixed number of scores being the furthest from
the median, while the second only discards scores when these were considered to be
inappropriate. Regulations of some international federations collect the use of these
rules, see, e.g., [8].

6. Judging the judges: Federations, companies or universities are also interested in evaluat-
ing the judges that make up the evaluation panel after each evaluative activity. Judges
that are too strict or not rigorous enough with the majority of the candidates are less
appropriate for the constitution of new panels. Neither the mean nor the median are
useful rules for detecting such extreme form of grading. The rule proposed in the
article is also ideal for detecting these profiles of judges and therefore to establish
rankings of judges based on their past performances as judges.

The following two examples are similar to the fourth one described above, so I omit
their description here. I just point out relevant aspects of them.

7. Ranking of research projects by scientific committees: The main distinction with the
fourth example above is that in this example, the expected number of applicants is
usually huge.

8. Ranking of restaurants or movies on designed websites: At a given time, the set N is large
and formed from all the people who have rated these restaurants or these movies. In
most of the previous examples, N is not necessarily large.

The rule presented in Section 3 of this paper is useful for all these contexts.

2. Ordered Weighted Averages

Following [9], aggregation is the process of combining several numerical values into a
single representative one, a procedure called an aggregation function. Despite the simplicity
of this definition, the size of the field of its applications is incredibly huge. Making decisions
(in artificial intelligence as well) often leads to aggregating preferences or scores on a given
set of alternatives. The concept of the ordered weighted averaging operator was introduced
by Yager, [10] and intensively developed in [11] and subsequent works. Since then, these
functions have been axiomatized and extended in various ways. The development of
an appropriate methodology for obtaining the weights is still an issue of great interest.
This work is a contribution in the search for appropriate weights for several decision-
making problems.
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Formally, an ordered weighted average (OWA) operator of dimension n is a mapping
Gn : Rn → R that has an associated collection of weights wn = (wn

1 , . . . , wn
n) lying in the

unit interval and summing to one (wn
i ≥ 0 for all i and

n
∑

i=1
wn

i = 1) with

Gn(x1, . . . , xn) =
n

∑
j=1

wn
j yj

where yj is the jth largest element in {x1, . . . , xn}. A fundamental aspect of this operator is
that the reordering step, in particular an xi is not associated with a particular weight wn

i
but rather a weight is associated with a particular ordered position of the xi’s. By choosing
different wn, one can implement different aggregation operators. The OWA operator is a
nonlinear operator as a result of the process of determining the yj’s.

If Γ = {g1, g2, . . . , gγ} with gi+1 − gi > 0 for all i = 1, . . . , γ− 1, then the image of any
OWA is contained in the real interval [g1, gγ]. If Γ = [0, 1], then the image of any OWA is
contained in [0, 1].

The OWA operator is anonymous on the variables, i.e.,

Gn(x1, . . . , xn) = Gn(xπ(1), . . . , xπ(n)) (1)

if π is a permutation map on the set N. The property of anonymity on the variables of an
OWA hints at the natural property of fairness among the judges. Thus, all OWAs implicitly
assume that all judges play an a priori equivalent evaluative role, which does not mean
that their evaluations for a particular panel decision are weighted in the same way.

As there is a permutation π in (1) such that xπ(i) = yi for all i with y1 ≤ y2 · · · ≤ yn, I
directly consider from now n-dimensional vectors in the domain being nondecreasingly ordered:

Gn(y1, . . . , yn) =
n

∑
j=1

wn
j yj

where yj is the jth largest element of xi. Hence, the jth component does not necessarily
correspond to the evaluation of the labeled jth judge. Hereafter, I just use as a domain the
n-dimensional vectors x = (x1, . . . , xn) with the property

x1 ≤ x2 ≤ · · · ≤ xn (2)

Let me remark that I am interested in well-defined operators for all n. Thus, I use
a superscript n for the OWAs and their associated collection of weights, i.e., Gn and wn.
When there is no confusion, I write G and w instead of Gn and wn, respectively. I also point
out that not all the aggregated rules are OWAs, but OWAs constitute a large family of rules.

Properties and Examples of Ordered Weighted Averages

Any OWA operator G is idempotent, bounded and monotonic:

1. Idempotency: G(c, . . . , c) = c for all c ∈ Γ.
2. Boundness: If x1 ≤ · · · ≤ xn, then x1 ≤ G(x1, . . . , xn) ≤ xn.
3. Monotonicity: If x1 ≤ y1, . . . , xn ≤ yn, then G(x1, . . . , xn) ≤ G(y1, . . . , yn).

Nevertheless, not all of them satisfy strict monotonicity:

4. Strict monotonicity: If x1 ≤ y1, . . . , xn ≤ yn and (x1, . . . , xn) 6= (y1, . . . , yn), then
G(x1, . . . , xn) < G(y1, . . . , yn).

Notable OWA operators are:
G(x1, . . . , xn) = max(x1, . . . , xn) if wn = 1 and wj = 0 for j 6= n.
G(x1, . . . , xn) = min(x1, . . . , xn) if w1 = 1 and wj = 0 for j 6= 1.
G(x1, . . . , xn) = mean(x1, . . . , xn) if wj =

1
n for all j ∈ {1, . . . , n}.
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G(x1, . . . , xn) = median(x1, . . . , xn) if the weights w = (w1, . . . , wn) are:

w =


(

(n−1)/2︷ ︸︸ ︷
0, . . . , 0, 1,

(n−1)/2︷ ︸︸ ︷
0, . . . , 0) if n is odd

(

n/2−1︷ ︸︸ ︷
0, . . . , 0,

1
2

,
1
2

,

n/2−1︷ ︸︸ ︷
0, . . . , 0) if n is even

G(x1, . . . , xn) = (n− 2)/n-trimmed mean(x1, . . . , xn) for n ≥ 3 proceeding as in the
mean, but eliminating the highest and lowest scores.

wi =


1

n−2 if 1 < i < n

0 if i = 1 or i = n

G(x1, . . . , xn) = (n− 4)/n-trimmed mean(x1, . . . , xn) for n ≥ 5 proceeding as in the
mean, but eliminating the two highest and two lowest scores.

wi =


1

n−4 if 2 < i < n− 1

0 otherwise

Combinations of the previous well-known OWAs could also be considered. For instance,

G(x1, . . . , xn) =

{
min(x1, . . . , xn) if n is odd
max(x1, . . . , xn) if n is even

Henceforth, the capital letters M, M−1
−1, M−2

−2 and D refer, respectively, to the OWAs mean,
(n− 2)/n-trimmed mean, (n− 4)/n-trimmed mean and to the median.

Subfamilies of OWAs may be given according to the structure of the weights
w = (w1, . . . , wn):

5. Symmetry: wi = wn+1−i for all i = 1, 2, . . . , n.
6. Positivity: wi > 0 for all i.
7. ID-monotonicity: wi ≤ wj if i < j and j ≤ d n

2 e, and wi ≥ wj if i < j and b n
2 c+ 1 ≤ i.

8. Strict ID-monotonicity: wi < wj if i < j, and j ≤ d n
2 e and wi > wj if i < j and

b n
2 c+ 1 ≤ i.

The property of symmetry tells us that each pair of equally distant judges’ evaluations
to the median grade have the same weight assigned and therefore the two judges’ evalua-
tions count equally in the final weighted average. If, for a given number of judges n, one
depicts the weights of the OWA in the plane as pairs (i, wn

i ) for i = 1, . . . , n where the indices
of the first coordinates are chosen by respecting the ordering in (2), the symmetry property
implies that the vertical line x = n+1

2 is a symmetry axis of the bidimensional graphic.
The term ID-monotonicity corresponds to the abbreviation that refers to increasing

weights on the left of the median index i and decreasing on the right of the median
index i. This property tells us that the nearer the judge’s evaluation is to this median
index, the higher (with possibility of ties) their influence is in the aggregated score. As
ID-monotonicity is not necessarily strict, there could be a case of ties with precedent or
subsequent assigned scores, as it occurs for the mean. Thus, strict ID-monotonicity avoids
these ties and underestimates, with an emphasis, extreme evaluations, either by excess or
defect. The mean is an example of OWA that satisfies ID-monotonicity but does not satisfy
strict ID-monotonicity.

The property of positivity means that all judges’ evaluations are taken into account,
i.e., none of them is discarded by the OWA that provides the aggregated score. Thus,
positivity can be thought of as a measure of representativeness for an OWA, which can be
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defined as the ratio between the number of nonzero weights and the number of judges in
the panel. Thus, positivity is identified with a maximum representative equal to one. Note
that only the mean M among the OWAs described above satisfies strict positivity.

Proposition 1. An OWA is strictly positive if and only if it is strictly monotonic.

Proof. Let G be an arbitrary n-dimensional OWA with weights w = (w1, w2, . . . , wn). The
first part is quite obvious because wi > 0 for all i, xi ≤ yi for all i and xj < yj for some j,
implies wi(yi − xi) ≥ 0 for all i and wj(yj − xj) > 0. Thus,

G(x1, . . . , xn) =
n

∑
i=1

wixi <
n

∑
i=1

wiyi = G(y1, . . . , yn).

Conversely, assume that G is strictly monotonic. Let (x1, . . . , xn) ≤ (y1, . . . , yn) and
xj < yj for some j (1 ≤ j ≤ n). Let g1 and gγ be the minimum and maximum values in Γ.
Consider the sequence of n + 1 n-dimensional vectors χi = (x1, . . . , xn) from i = 0 to i = n
such that the i greatest components of χi are equal to gγ and the (n− i) lowest components
of χi are equal to g1. It holds that G(χi)− G(χi−1) = wn−i+1(gγ − g1) for all i = 1, . . . , n.
As (gγ − g1) > 0 and G(χi)− G(χi−1) > 0, since G is strictly monotonic, it follows that
wn−i+1 > 0. By varying i from 1 to n, positivity is deduced.

In summary, the stated properties of OWAs point towards potential good aggregation
measures; nevertheless, they are not sufficient since there exist many OWAs that satisfy all
of them. In the next section, I introduce the OWA, which in my view has better properties
to be chosen as the evaluative measure of many processes. The proposed OWA belongs to
a family based on a well-known and significant probabilistic model.

3. Binomial OWA Rules

Let n ≥ 1 and

pn
i =

(
n− 1
i− 1

)
for all i = 1, 2, . . . , n (3)

which are well-defined for each positive integer n. A well-known property of Pascal’s

numbers in (3) is
n
∑

i=1
pn

i = 2n−1 for all positive integer n. For each a ∈ (0, 1), consider

the weights
wn

i = pn
i · ai−1 · (1− a)n−i (4)

These weights define for each a ∈ (0, 1) an OWA binomial rule of dimension n, [12].
The binomial term is due to the following probabilistic interpretation of the coefficients.
The weights of wn

i follow a binomial distribution X with parameters n− 1 (which stands for
the number of trials) and p = a (which stands for the probability of success), so that

wn
i = P(X = i− 1)

for i = 1, . . . , n, which is approximated by the normal distribution with parameters:

µ = (n− 1)a and σ =
√
(n− 1) · a · (1− a). (5)

An interesting particular case arises when a = 1/2. Then, (4) becomes wn
i := qn

i where

qn
i =

pn
i

2n−1 (6)
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and the normal approximation in (5) has parameters:

µ =
n− 1

2
and σ =

√
n− 1
2

. (7)

Henceforth, I refer to the binomial OWA rule for a = 1
2 as the F-rule, which can be

expressed as:

Fn(x1, . . . , xn) =
n

∑
i=1

qn
i · xi

Figure 1 shows the numerators pn
i in (3) of the weighted coefficients qn

i in (6) of the
F-rule for small values of n. These numbers form the well-known Pascal triangle. As the
number of judges is known in advance, I just need to take the numbers pn

i in the nth row in
Figure 1 and standardize them to get the weights qn

i for F. For instance, the numbers in the
antepenultimate row are used to calculate the F-rule for a panel of seven judges. Figure 2
shows the shapes of bidimensional graphics (i, qn

i ) of Fn-rules for panels of n = 2, . . . , 10
judges:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Figure 1. The numbers of Pascal’s triangle, pn
i for all n = 1, . . . , 9 and i = 0, . . . , n− 1.

Figure 2. Weights qn
i for the Fn-rules from n = 2 to n = 10.

Variants of the F-Rule

In this subsection, I introduce variants of the F-rule, based on discarded extreme
judges’ scores, similarly to the trimmed versions of the mean, M−1

−1 and M−2
−2.

The F-rule minus the best and the worst judges’ scores for n ≥ 3: I just remove x1 and
xn in (2), redefine the scores xi for i > 1 and i < n as xi := xi+1, replace n by n− 2 and then
apply the F-rule to the new n− 2 variables. That is, I take

Fn−2(x1, . . . , xn−2) =
1

2n−3

n−2

∑
i=1

pn−2
i · xi =

n−2

∑
i=1

qn−2
i · xi (8)

Hereafter, I refer to the OWA in (8) as F−1
−1 .
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The F-rule minus the two best and the two worst judges’ scores for n ≥ 5: I just
remove x1, x2, xn−1 and xn in (2), redefine the scores xi for i > 2 and i < n− 1 as xi := xi+2,
replace n by n− 4 and then apply the F-rule to the new n− 4 variables. That is, I take

Fn−4(x1, . . . , xn−4) =
1

2n−5

n−4

∑
i=1

pn−4
i · xi =

n−4

∑
i=1

qn−4
i · xi (9)

Hereafter, I refer to the OWA in (9) as F−2
−2 .

The numerators of the coefficients qn−2
i and qn−4

i to compute the F−1
−1 and F−2

−2 indices,
respectively, appear in Figure 1. As the number of judges is fixed and known in advance,
I just need to take the respective numbers in the (n− 2)th and (n− 4)th row in Figure 1.
For instance, the numbers in the fifth row are used to calculate the F−1

−1 -rule for a panel of
seven judges and to calculate F−2

−2 -rule for a panel of nine judges.

4. Some Characterizations of the F-Rule
4.1. A Characterization as a Binomial Rule

It is clear that the binomial rules satisfy monotonicity and strict monotonicity, as
described in Section 2, since positivity, wn

i > 0 for all n and i ≤ n in (4), implies strict
monotonicity by Proposition 1. The next result concerns the properties of symmetry and
ID-monotonicity of binomial rules.

Proposition 2. 1. A binomial rule is symmetric if and only if a = 1
2 .

2. A binomial rule is ID-monotonic for n large enough if and only if a = 1
2 .

Proof. 1. The converse is clear since(
n− 1
i− 1

)
= pn

i = pn
n−i+1 =

(
n− 1
n− i

)
for all i ≤ n, which implies qn

i = qn
n−i+1. For the direct implication, assume that the

binomial rule is symmetric, then wn
i = wn

n−i+1 for all i = 1, 2, . . . , n, which implies

pn
i ai−1(1− a)n−i = pn

n−i−1an−i(1− a)i−1. Thus, a = 1− a and a = 1
2 .

2. The converse is clear since

(n−1
i−1) < (n−1

i ) if i = 1, . . . , d n
2 e − 1, and

(n−1
i−1) > (n−1

i ) if i = b n
2 c+ 1, . . . , n− 1.

which, respectively, imply qn
i < qn

i+1 if i = 1, . . . , d n
2 e − 1 and qn

i > qn
i+1 if i =

b n
2 c+ 1, . . . , n− 1.

For the direct implication, I assume that the binomial rule is not the F-rule, i.e., a 6= 1
2 .

Assume first that a > 1
2 and n is odd. Consider

wn
n+1

2

wn
n+3

2

=
n + 1
n− 1

· 1− a
a

As 1−a
a < 1 is a fixed number and lim

n→∞
n+1
n−1 = 1 there exists some n0 ∈ N such that

for all n ≥ n0, it holds that wn
n+1

2
< wn

n+3
2

, which ensures that ID-monotonicity fails.

The proof for a > 1
2 and n even is analogous to the former one by checking that

wn
n
2 +1 < wn

n
2 +2 for n large enough, which ensures that ID-monotonicity fails.
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The proof for a < 1
2 is analogous to the previous one by checking, in the odd case,

that wn
n+1

2
< wn

n−1
2

for n large enough, and that wn
n
2

< wn
n
2−1 for n large enough,

inequalities that lead to failures of ID-monotonicity.

Proposition 2 highlights the F-rule, since it is the only OWA based on the binomial
distribution which satisfies symmetry and ID-monotonicity. The probabilistic interpretation
of the binomial rules together with one of these two properties constitute a characterization
of the F-rule.

Corollary 1. 1. The F-rule is the only binomial rule which satisfies symmetry.
2. The F-rule is the only binomial rule which satisfies ID-monotonicity.

The F-rule, in contrast to rules M and D, has other interesting properties deduced
from the structure of its weights. These two additional properties follow from known
properties of the binomial distribution.

The central concavity (CC-property):
A sequence of OWAs, {Gn}n≥1, satisfies the CC-property if the pairs (i, wn

i ) are either
concave in the domain of indices or concave in a central interval of the domain of indices
and convex in two extreme intervals.

The bidimensional graphic of the pairs (i, qn
i ) for i = 1, . . . , n has the next pattern: for

n ≤ 5 it is concave, for n ≥ 6 it is convex on the left of the domain of indices and on the
right of it, while concave in the middle. This property is fulfilled by the sequence of rules
{Fn}n≥1 because Pascal’s numbers verify it. Observe, for example, in Figure 2 that for
n = 9, concavity is achieved in the interval [3, 7], while convexity is achieved in [1, 4]∪ [6, 9].
Thus, the two inflection points in the normal approximation with parameters given in (7)
and shown in Figure 2 belong to the real intervals (3, 4) and (6, 7).

The interquartile asymptotic density (asymptotic IQ-density):
Let IQ be the interquartile interval of judges’ scores in (2), i.e., the interval between the first
and third quartiles. A sequence of OWAs, {Gn}n≥1, satisfies the asymptotic IQ-density if:

lim
n→∞ ∑

i : xi∈IQ
wn

i = 1.

This property is fulfilled by the sequence of rules {Fn}n≥1 and its proof is easily
derived from the normal approximation in (7) of the binomial distribution.

4.2. A Characterization as an OWA Rule

Let n ≥ 2 be the number of judges and Γ be a closed and bounded real interval. From
the ordered judges’ grades x = (x1, . . . , xn) x1 ≤ x2 ≤ · · · ≤ xn, consider y = (y1, . . . , yn−1)

such that yi =
xi+xi+1

2 for all i = 1, . . . , n− 1, which obviously satisfy y1 ≤ y2 ≤ · · · ≤ yn−1
and yi ∈ Γ for all i = 1, . . . , n− 1. I say that y is the average reduction of x.

A sequence of OWAs {Gn}n≥1 satisfies the invariant average reduction (IAR) if
Gn(x) = Gn−1(y) for all n ≥ 2 and whenever y is the average reduction of x.

Vector y is a way of shrinking vector x, keeping the value of the rule invariant. By suc-
cessively shrinking vector x, the value of the rule is obtained. From a practical perspective,
this axiom is compelling: a rule satisfying the IAR can be viewed as transparent, as it can
be computed by a recursive procedure of means of consecutive pairs of scores.

Proposition 3. A sequence of OWAs {Gn}n≥1 satisfies the IAR if and only if it is the sequence
of {Fn}n≥1-rules.
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Proof. The sequence of Fj-rules for all j ≤ n satisfies the IAR, since qn
i + qn

i−1 = qn+1
i for all

i = 1, . . . , n− 1, which is a consequence of the well-known property of Pascal’s numbers:(
n
i

)
=

(
n− 1
i− 1

)
+

(
n− 1

i

)
, (10)

For the converse, I proceed by induction on the number of judges.
Let n = 2, by the IAR, it holds

w2
1x1 + w2

2x2 = w1
1y1 = w1

1

(
x1 + x2

2

)
The OWA conditions for n = 1 and n = 2 imply w1

1 = 1 and w2
2 = 1− w2

1. Thus,(
1
2
− w2

1

)
(x1 − x2) = 0 (11)

Let χ = (z1, z2) be a vector such that z1 < z2; by substituting it in (11) it follows that
w2

1 = 1
2 . Hence, w2

1 = w2
2 = 1

2 .
Assume the condition is true for all n, i.e.,

wn
i =

(n−1
i−1)

2n−1 i = 1, . . . , n

I want to see that

wn+1
i =

( n
i−1)

2n i = 1, . . . , n + 1

By the IAR, it holds
n+1

∑
i=1

wn+1
i xi =

n

∑
i=1

wn
i yi

By the definition of the yi’s, the induction hypothesis, the well-known property of
Pascal’s numbers (10) for all i = 1, . . . n− 1 and using ( j

0) = (j
j) = 1 for all positive integer

j, it holds:
n+1

∑
i=1

wn+1
i xi =

1
2n

[
n+1

∑
i=1

(
n

i− 1

)
xi

]
Thus,

n+1

∑
i=1

(
wn+1

i − 1
2n

(
n

i− 1

))
xi = 0 (12)

Equation (12) can be written as

n+1

∑
i=1

ci xi = 0 (13)

where ci = wn+1
i − 1

2n (
n

i−1). Let Γ = [a, b]. To prove that ci = 0 for all i, consider the vectors
χj for j = 1, . . . , n + 1 satisfying (2) and with the j largest components equal to b and the
rest of the components (for j ≤ n) equal to a. By applying (13) to these n + 1 vectors, it
results for all j = 1, . . . , n + 1:

C · χj = 0 (14)

where C = (c1, . . . , cn+1) and “·” is the inner product.
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From (14) it follows an homogeneous and linear system with unknowns ci and unique
solution ci = 0 for all i = 1, . . . , n + 1. Thus,

wn+1
i =

( n
i−1)

2n i = 1, . . . , n + 1.

as desired.

5. Other Significant Advantages of Using the F-Rule

As seen in the previous sections, several mathematical properties support the use of
the F-rule. In this section I still want to emphasize other desirable properties, in a slightly
more informal way, that a good rule should ideally fulfill.

These new properties refer to: discrimination, outliers’ dependency, consistency with
respect to truncations of the rule itself, and computational simplicity.

5.1. Discrimination

Assume there is a large number of candidates m. Let n be the number of judges on
the panel and assume that the domain of the judges’ scores is Γ = {0, 1, . . . , 10}. Then,
each judge has 11 choices between 0 and 10 and the F-rule is either 10 or a rational number
between 0 and 9, plus a fraction of the type i/2n−1 where i = 0, 1, . . . , 2n−1 − 1. Thus, the
range of values for the F-rule is 10 · 2n−1 + 1. This number is considerably high, even for
moderately small panels, and guarantees very few ties among candidates.

By way of comparison, I consider the range for the mean, M-rule, under the same
assumptions. The M-rule is either 10 or a number between 0 and 9, plus a fraction of the
type i/n where i = 0, 1, . . . , n − 1. Thus, the range of values for the mean is 10 · n + 1.
This number is considerably smaller than 10 · 2n−1 + 1, even for panels of a reduced
number of judges. Therefore, ties among candidates are much more frequent for the M-rule
than for the F-rule. Of course, the lack of discrimination is even more pronounced for
the median, the D-rule, which is the main drawback of the median as a good rule for
evaluating candidates.

5.2. Almost Independence of Extreme Judges’ Scores

Judges’ scores in the interquartile interval are the most transparent evaluation of the
candidates’ performances. Scores in the interquartile interval are the only ones that are
surely free of outliers (i.e., extreme scores produced for some personal technical reason or,
even, for manipulation) and therefore should be of greater importance in the rule selected.
The interquartile range, the difference between the third and the first quartiles, is a good
measure of dispersion for skewed distributions. Outliers for technical reasons should be
minimized, whereas outliers for manipulation should ideally be avoided.

As reflected by the asymptotic IQ-density, the F-rule for a moderate number of judges
mainly depends on the central grades, so the incidence of extreme scores is minimal when
F or any other of its variants, F−1

−1 or F−2
−2 , are used. Oppositely, the dependency on judges’

extreme scores of the M-rule and its variants is high.
The F-rule cannot prevent manipulation, since results in [13–16] fail for it, but at least

it minimizes its incidence. The larger the panel of judges, the less manipulable the F-rule is.
The variants F−1

−1 and F−2
−2 rules prevent the manipulation of a few judges and preserve the

main ideas of F.

5.3. Almost Consistency with Its Variants

Assume there are at least two candidates, m ≥ 2. Let x and y be the scores obtained by
two candidates, which are taken orderly as in (2). I write G(x) for the aggregated evaluation
for the OWA G. Let H be another OWA. A reversal of two candidates with scores x and y for
the pair of OWAs G and H arises when

(G(x)− G(y)) · (H(x)− H(y)) < 0.
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This means that G and H order x and y oppositely.
The interest here lies in the reversals of an OWA with its variants. For instance,

between the M-rule and any of its variants M−1
−1 or M−2

−2, or between the F-rule and any of
its variants F−1

−1 or F−2
−2 . If M(x)−M(y) > 0 and M−1

−1(x)−M−1
−1(y) < 0, then I say that the

rules M and M−1
−1 reverse candidates’ scores x and y. The same applies for F and its variants

F−1
−1 and F−2

−2 .
If M(x)−M(y) 6= 0 and is close to zero, then the x’s and y’s outliers become decisive

in whether M and M−1
−1 or M and M−2

−2 show reversals. I regard this situation as an internal
inconsistency of the rule M since it reflects that it is vulnerable to some small score changes.
Reversals are seen as an internal weakness. I claim that the mean witnesses many reversals,
which is another reason to discard it as a good aggregating rule since M, M−1

−1 and M−2
−2

easily provide different rankings.
Fewer reversals are observed for F and F−1

−1 or for F and F−2
−2 . The intuition lies in the

fact that F and its variants are very little dependent on extreme scores in comparison with
the M rule and its variants. Simulations for a particular sports event, see [17], showed that
reversals of F with its variants were very infrequent.

5.4. Computational Simplicity

The F-rule is an OWA, so it is very simple to be understood and computed by the
audience, in contrast with some sophisticated rules that are applied in some sports. The
IAR property illustrates that the F-rule can be calculated iteratively by just computing
n(n−1)

2 means of pairs of numbers, which is incredibly easy.
Figure 3 shows this iterative calculation of a candidate with grades (6, 6, 8, 8, 8, 9),

which was evaluated by a panel of six judges. The numbers in the second row in Figure 3
are the means of the indicated numbers in the first row. The numbers in the remaining
rows are obtained in the same way. Thus, the F-rule is F(6, 6, 8, 8, 8, 9) = 7.65625.

6 6 8 8 8 9

6 7 8 8 8.5

6.5 7.5 8 8.25

7 7.75 8.125

7.375 7.9375

7.65625

Figure 3. Recursive method to compute the F-rule by just using means of pairs of numbers.

6. Conclusions

OWAs constitute a large family of aggregation rules. The mean, the median and
some trimmed means are examples of OWAs that are frequently used in practice and are
supported for several theoretical works. This article proposes an alternative which, as far as
I known, is new and is supported by several theoretical arguments exposed in the previous
sections. By way of summary, I review here some of its good properties:

1. It is based on the binomial (and normal) distribution;
2. It is sensitive to an increase or decrease of any judge’s score;
3. It is representative of the panel of judges; all judges’ scores count;
4. It discriminates very well and ties among candidates are almost avoided;
5. It mostly concentrates the aggregated score in the intermediate judges’ scores, and

this tendency increases when the number of members in the panel increases;
6. It is consistent with its variants F−1

−1 or F−2
−2 , so that reversals are almost nonexistent;
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7. It has very little dependence on extreme judges’ scores; although potential judges’ ma-
nipulation is not fully avoided, at least it is considerably minimized when compared
with other rules such as the mean;

8. Close versions F−1
−1 or F−2

−2 can prevent having a few manipulators or radical judges,
while keeping almost all the ideas that support F; the hypothetical presence of manip-
ulators or radical judges may suggest the use of one of these two variants;

9. It is also useful to evaluate the post judges’ reliability. A way to do that is by summing
the coefficients qn

i assigned by the judge to all the candidates being evaluated. Judges
who are poorly scored in this way can be potentially penalized;

10. It is transparent, very simple to compute and therefore easy to be understood for
candidates and potential audience;

11. It has been shown to be applicable as a tie-breaking system in open tournaments with
a limited number of rounds and many participants, e.g., as in chess, go, scrabble,
bridge, etc., see [17].

We highlighted the median, the mean and some trimmed means, among the most
relevant studied alternative aggregation rules to the one proposed in this paper. Note that
the median and close rules to it, such as the majority judgment, fail to be representative
and do not discriminate well, resulting in many draws (properties 3, 4 and 11 above fail for
the median). The mean and some of its trimmed versions show a worst behavior than the
F-rule for properties 4 to 8 and 11. Moreover, the median and the mean rules do not satisfy
strict ID-monotonicity, the CC-property and the asymptotic IQ-density.

The main motivation of the present article was to propose a simple and well-defined
rule that could be implemented in practice in multiple real-life situations that require
aggregation. It would be of great interest if the proposal were analyzed in detail by
other scholars. Theoretical studies on the proposed rule would be of interest, such as, for
example, obtaining a compelling new axiomatic characterization of the F-rule. Carrying
out simulations to verify the intuitively high degree of fulfillment of the properties stated
in Sections 5.2 and 5.3 is also a topic of interest. As stated, the F-rule is not immune to
manipulation, and studies on this issue would also be significant. Finally, I wonder whether
it exists a rule, not coming from a discretization of a normal distribution, that satisfies the
properties for an OWA stated in Section 2 as well as the CC-property and the asymptotic
IQ-density in Section 4.
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