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Collision risk assessment for ships’ routeing waters: an information entropy 
approach with Automatic Identification System (AIS) data 

 

Abstract: The ship’s routing was adopted to organise marine traffic flow and reduce 
the risk of collision between ships in crowded waters. With the expansion of the world’s 
fleet, ship traffic in shipping bottleneck and chokepoint areas became more and more 
busy and complex creating serious challenges for navigational safety. Therefore, 
quantitative collision risk assessment is significantly important for the ships’ routeing 
waters. In this paper, the information entropy method which integrates the K-means 
clustering based on automatic identification system (AIS) data is introduced to 
quantitatively evaluate the collision risks in the ships’ routeing waters. As a case study, 
the information entropy of courses over ground (COG) for Ningbo-Zhoushan Port (the 
largest port in the world since 2009) is calculated by using historical AIS data. Then the 
K-means clustering is used to group the bytes of information entropy of the different 
legs in the shipping route. We find that in Ningbo-Zhoushan port Precautionary Area 
(PA) 2, 4 and 7 are the highest risk legs; PA 1, 5 and 6, Traffic Separation Scheme (TSS) 
16, and 17 are medium-high risk areas. Therefore ship collision risk prevention 
measures should be prioritised in those legs. Our contributions provide a novel approach 
to quantitatively assess ship collision risks in busy waters. 

Keywords: automatic identification system (AIS) data; ship collision risk assessment; 
information entropy; K-means clustering; Ningbo-Zhoushan Port. 

1. Introduction 

Since 1967, the ships’ routing was widely adopted in busy waters. As an effective control measure, 
ships’ routeing contributed significantly in terms of enhancing navigational safety and promoting 
marine traffic efficiency. But ships’ routeing cannot completely eliminate the marine traffic conflict 
and ship collisions. For example ship’s routing can cause traffic to converge on PAs where traffic 
density and complexity may increase (Li et al. 2015);  there are still some vessels crossing the traffic 
separation zone or separation line for some reasons. With increased trade and an expanding world fleet, 
traffic density increased along with the risk (Zhang et al. 2021). Ships’ routeing and traffic separation 
schemes were formulated after extensive marine surveys and consultation with ship’s captains familiar 
with the area, and various shore-based marine specialists (Qu et al. 2011). However, the subjective 
judgment from experts failed to qualitatively alert visiting vessels as to which legs were high risk or 
to advise administrative authorities as to where risk reduction measures should be carried out. 
Consequently, the problem of ship collision risk remains a serious issue arousing widespread attention 
of all parties. It is therefore meaningful to present an approach to quantitatively estimate collision risk 
in ships’ routeing areas in order to support these judgments. 

    Up to now, there exist a large number of research to value collision risk in ships’ routeing waters, 
for instance, the Gulf of Finland (Kujala et al. 2009), Dover Strait (Squire 2003, Cockcroft 2004), 
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the Coast of Portugal (Silveira et al. 2013), Messina Strait (Cucinotta et al. 2017), Istanbul Strait 
(Aydogdu et al. 2012), Baltic Sea (Kulkarni et al. 2020), Taiwan Strait (Chai and Xue 2021), 
Yangtze River (Li et al. 2015, Wang et al. 2020, Zhang et al. 2020a), Singapore Strait (Kang et al. 
2018, Kang et al. 2019, Zhang and Meng 2019, Zhang et al. 2019) and so on. To some extent, the 
risk is a qualitative and somewhat fuzzy issue. For quantitative estimation of the collision risk in busy 
waters, the methodological effort has been made for half a century. In 1974, Fujii and Tanaka (2010) 
proposed the ‘ship domain’. After that, ship domain was widely applied and developed to measure 
marine traffic conflict and ship collision risk, for example Rawson and Brito (2021), Yu et al. (2021), 
Liu et al. (2020a), Zhang et al. (2019) and Xin et al. (2019). However, according to Pietrzykowski 
(2008) and Szlapczynski (2006), the ship domain was not fixed but changed with certain subjectivity. 
Also, the collision risk assessment was usually hindered by the insufficiency of data samples 
(Goerlandt and Kujala 2011). 

    In recent years, the availability of AIS data provides an excellent way to overcome this difficulty. 
AIS is used to automatically exchange static and dynamic data between ships and between ship and 
shore stations. According to the International Convention for the Safety of Life At Sea (SOLAS), it is 
mandatory for ships of 300GT or over, on international voyages, and all passenger ships, to be fitted 
with AIS. With AIS data and on the basis of ship domain, Qu et al. (2011) added 2 indexes, i.e., index 
of speed dispersion, degree of acceleration and deceleration to quantitatively measure the collision 
risks in Singapore Strait. Combing the AIS data, Li et al. (2015) used the navigational traffic conflict 
technique to conduct an investigation on traffic safety in the precautionary areas of ships’ routeing. 
Cucinotta et al. (2017) employed the IWRAP model to calculate the frequency of ship collisions in 
the Strait of Messina. Zhang et al. (2019) used origin-to-destination pairs to count and plot hotspot 
areas and geographical distribution of ship accidents in the Singapore Port. Other methodological 
approaches include the convolutional neural network model (Zhang et al. 2020b), molecular dynamics 
(Liu et al. 2020b), sequence conditional generative adversarial network (Gao and Shi 2020), etc. In 
this paper, the information entropy which integrates the K-means clustering basing on the AIS data is 
introduced as a novel approach to quantitatively measure risk of collision in ship routine areas. 

Following the Introductory Section, Section 2 introduces the ship collision risk assessment and K-
means clustering methods. Section 3 gives a brief description of Ningbo-Zhoushan Port as a case study 
along with AIS data pre-processing methods. Section 4 includes the results and discussions. 
Conclusions are finally drawn in Section 5. 

2. Methodology 
The entropy methodological approach which integrates the K-means clustering based on AIS data is 
depicted in Figure 1. The method and procedures for AIS data processing is introduced in section 3.3 
combining the AIS data of Ningbo-Zhoushan Port. 
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Figure 1. Framework and workflow for this entropy method which integrates the K-means clustering 
based on AIS data. 

2.1. Information Entropy 

The concept of information entropy was presented by Shannon (1948) to measure the uncertainty of 
information. According to Núñez et al. (1996), the more orderly a system is, the lower the information 
entropy will be;  Conversely, the more chaotic a system is, the higher the information entropy will be. 
In this sense, information entropy could be used to investigate the degree of navigational order in a 
ship’s routeing. The formula for information entropy is as follows: 

𝐻𝐻(𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛) = −∑ 𝑝𝑝𝑖𝑖(𝑥𝑥)log2𝑛𝑛
𝑖𝑖=1 𝑝𝑝𝑖𝑖(𝑥𝑥)                                                 (1) 
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Where n denotes the number of information records in a system; 𝑝𝑝𝑖𝑖(𝑥𝑥) is the probability of the ith 
record; and log2𝑝𝑝𝑖𝑖(𝑥𝑥) means the information offered by the ith record.  

According to Convention on the International Regulations for Preventing Collision at Sea, 1972 
(COLREGs) (IMO 1972), ‘a vessel using a traffic separation scheme shall: (i) proceed in the 
appropriate traffic lane in the general direction of traffic flow for that lane; (ii) so far as practicable 
keep clear of a traffic separation line or separation zone; (iii) normally join or leave a traffic lane at 
the termination of the lane’. Therefore, the distributions of ships’ course over ground (i.e., COG) could 
be used to reflect the degree of order in the routing area.  

For a ships’ routeing area, if all vessels sailing in the same direction, the information entropy of 
COG is equal to 0 (see Figure 2 left); the entropy of COG is equal to 0.5n (where n denotes the total 
quantity of ships) when the same number of ships sail in opposite directions (see Figure 2 centre); and 
if n vessels are all navigating with different headings, the entropy of COG is maximum, i.e., log2n (see 
Figure 2 right). 

 

Figure 2. Information entropy of COG in different scenarios: H=0 (left), H=0.5n (center) and H=log2n 
(right). 

2.2. K-means clustering 

K-means clustering is a machine learning approach that divides n records into k clusters, and each 
record falls within the cluster with the minimum mean (Adamidis et al. 2020). Each cluster has a 
barycentre. The barycentre represents the cluster it belongs to and its value is the average of all records. 
The target of K-means clustering is to obtain the minimized objective function: 

J = ∑ ∑ ||𝑟𝑟𝑖𝑖
(𝑗𝑗) − 𝑏𝑏𝑗𝑗||2𝑛𝑛

𝑖𝑖=1
𝑘𝑘
𝑗𝑗=1                                                      (2) 

Where ||𝑟𝑟𝑖𝑖
(𝑗𝑗) − 𝑏𝑏𝑗𝑗||2 is the chosen distance measure between a record 𝑟𝑟𝑖𝑖

(𝑗𝑗) and the barycentre 𝑏𝑏𝑗𝑗 of its 
cluster (MacQueen 1967). 

According to Hartigan and Wong (1979), Lloyd’s algorithm is usually employed to realize K-
means clustering. This algorithm is based on Euclidean distance (ED) (Hamerly and Elkan 2002) and 
follows two steps. Firstly, each record is grouped into a cluster with the minimum ED. Secondly, the 
new barycentre is calculated as the mean values of the records in the same cluster. When the 
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distribution of records remains unchanged, the iterative process stops and it is possible to converge to 
the local minimum. 

According to Bolshakova and Azuaje (2003), the Silhouette index (s(i)) is computed to verify the 
outcomes of K-means clustering, that’s: 

s(𝑖𝑖) = 𝑐𝑐(𝑖𝑖)−𝑎𝑎(𝑖𝑖)
max (𝑐𝑐(𝑖𝑖),𝑎𝑎(𝑖𝑖))

                                                           (3) 

where a(i) and c(i) are respectively the average distance and minimum distance between the record i 
and other records. s(i) is in the interval [−1,1]. If s(i) is approaching 1, then the clustering would be 
correct. A value close to 0 means the record could be categorized into the cluster with the next closest 
mean, and a negative s(i) implied the clustering is wrong. The average s(i) is computed Formula (4): 

𝑆𝑆𝑗𝑗 = 1
𝑚𝑚
∑ 𝑠𝑠(𝑖𝑖)𝑚𝑚
𝑖𝑖=1                                                              (4) 

The reliability of clustering is measured by Global Silhouette (GS), and GS is calculated by: 

𝐺𝐺𝑆𝑆𝑢𝑢 = 1
𝑏𝑏
∑ 𝑆𝑆𝑗𝑗𝑏𝑏
𝑗𝑗=1                                                               (5) 

    The K-means clustering is convenient to use. There is a Matlab toolbox accessible at 
https://ww2.mathworks.cn/help/stats/kmeans.html.  

3. Case study 
In this section, Ningbo-Zhoushan Port is used as a case study for introducing the entropy method with 
K-means clustering. 

3.1 Brief of Ningbo-Zhoushan Port 

Since 2009 Ningbo-Zhoushan Port has been the largest port in the world in terms of port throughput. 
In 2021, over 3500 ships traversed this port on a daily basis, almost 1.5 times that of the Singapore 
Straits (Kang et al. 2019). Huge and intensive marine traffic accompanies by enormous ship collision 
risks. Therefore, the navigational safety of vessels visiting this port causes great concern for the 
maritime administrative authorities and relevant stakeholders. Regulations for promoting traffic 
efficiency and enhancing navigational safety have been put into force over the past decades, for 
instance, the Traffic Separation Scheme (TSS) and the Mandatory Ship Reporting System (MSRS) 
were formulated in 2010 and further updated in 2016. The latest TSS and MSRS in Ningbo-Zhoushan 
Port includes 28 legs, i.e., 18 TSSs, 8 PAs and 2 Two-Way Routes (TWRs) (see Figure 3).  Ningbo-
Zhoushan Port has a complex navigational environment comparable to Singapore, however, few 
academic concerts are given currently. In this sense, the assessment of ship collision risk at Ningbo-
Zhoushan Port is a worthwhile subject to attract our study.

https://ww2.mathworks.cn/help/stats/kmeans.html
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Figure 3． Legs of ships’ routeing waters in Ningbo-Zhoushan Port and Leg No.2 TSS (light green rectangle in the centre). 
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3.2 AIS DATA 

China’s shore-based AIS network is split into three regions, North, East and South China Sea. Each 
region is overseen by a special Navigation Service Center. A Navigation Service Center includes 
several administrative offices and Ningbo-Zhoushan Port is located in the area of Ningbo Office of 
Eastern Navigation Service Center. Our data is officially provided by the Ningbo Office.  

To proceed with a quantitative assessment of ship collision risk for Ningbo-Zhoushan Port, the data 
from Oct. 1st to Dec. 31st, 2020 was used. In the data set, daily data contained nearly 10 million records, 
and each record provides dynamic information (for instance, position in latitude and longitude, speed 
over ground (SOG), COG, reporting time) and statics ones (e.g. MMSI (maritime mobile service 
identify), ship name, call sign, ship size, draught, destination, ETA (estimated time of arrival). 

3.3 AIS data processing 

The statics information is highly reliable. However, the dynamics ones will inevitably appear abnormal 
in the process of generation, transmission and reception. Data noise would make some original AIS 
data unable to reflect the real movement of ships. For instance, latitude and longitude of ship positions 
should fall between 90o North and South, 180o East and West. However, some longitudes are 181ºE, 
and some latitudes are 91ºN. Additionally, the speed limit in Ningbo-Zhoushan Port is 16 knots (kn) 
downstream and 14 kn upstream. Yet, AIS data indicate that some ships navigate at a speed over 30 
kn, even 100 kn. Therefore, we must conduct a data pre-processing prior to the AIS data mining.  

3.3.1 Area filtering 

Our original data coverage is from 31ºN/120ºE to 28ºN/125ºE, the volume of a whole day’s data is 
about 1.3G. The ships’ routeing areas in Ningbo-Zhoushan Port account s for only 0.31% of the total 
data coverage area. Therefore, we filtered out data that fall outside of the research area to promote 
calculation efficiency. The procedure is to check record by record whether the ship was sailing in the 
research area during the period of Oct. 1st to Dec. 31st, 2020. Let lat and lon are the latitude and 
longitude values in the AIS records, and the lat and lon should satisfy:    

𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑙𝑙𝑙𝑙𝑙𝑙1,𝑚𝑚𝑖𝑖𝑛𝑛, 𝑙𝑙𝑙𝑙𝑙𝑙2,𝑚𝑚𝑖𝑖𝑛𝑛,⋯ , 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁,𝑚𝑚𝑖𝑖𝑛𝑛)                                      (6) 

𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑙𝑙𝑙𝑙𝑙𝑙1,𝑚𝑚𝑎𝑎𝑚𝑚, 𝑙𝑙𝑙𝑙𝑙𝑙2,𝑚𝑚𝑎𝑎𝑚𝑚,⋯ , 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁,𝑚𝑚𝑎𝑎𝑚𝑚)                                    (7) 

  𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑙𝑙𝑙𝑙𝑚𝑚1,𝑚𝑚𝑖𝑖𝑛𝑛, 𝑙𝑙𝑙𝑙𝑚𝑚2,𝑚𝑚𝑖𝑖𝑛𝑛,⋯ , 𝑙𝑙𝑙𝑙𝑚𝑚𝑁𝑁,𝑚𝑚𝑖𝑖𝑛𝑛)                                   (8) 

𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑙𝑙𝑙𝑙𝑚𝑚1,𝑚𝑚𝑎𝑎𝑚𝑚, 𝑙𝑙𝑙𝑙𝑚𝑚2,𝑚𝑚𝑎𝑎𝑚𝑚,⋯ , 𝑙𝑙𝑙𝑙𝑚𝑚𝑁𝑁,𝑚𝑚𝑎𝑎𝑚𝑚)                                 (9) 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚                                                        (10) 

𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑙𝑙𝑙𝑙𝑚𝑚 < 𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚                                                      (11) 

Where  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑚𝑚𝑎𝑎𝑚𝑚 , 𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖,𝑚𝑚𝑎𝑎𝑚𝑚  are the minimum latitude, maximum latitude, 
minimum longitude and maximum longitude of Leg i, 𝑖𝑖ϵ{1,2,⋯ ,𝑁𝑁}.  
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    After filtering, the volume of a whole day’s data in the study area is about 100M. Taking Oct. 30th 
2020 as an example, 3,540 ships and 2,650,681 records are caught. 

3.3.2 Data cleansing 
According to Zhao et al. (2018), errors would impact the quality of AIS data. In this study, we 
conducted data cleansing according to the procedures set by Feng et al. (2021) 

First, we calculated the distance between the positions at time 𝑙𝑙𝑗𝑗 and 𝑙𝑙𝑗𝑗+1under the unique MMSI by: 

𝐷𝐷𝑖𝑖,𝑡𝑡𝑗𝑗 = �(𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖,𝑡𝑡𝑗𝑗 − 𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖,𝑡𝑡𝑗𝑗+1)2 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡𝑗𝑗 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡𝑗𝑗+1)22                            (12) 

Where 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑗𝑗 and  𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖,𝑡𝑡𝑗𝑗  are separately the latitude and longitude of the ship with MMSI i in at time 

𝑙𝑙𝑗𝑗;  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖,𝑡𝑡𝑗𝑗+1  and 𝑙𝑙𝑙𝑙𝑚𝑚𝑖𝑖,𝑡𝑡𝑗𝑗+1  denote the latitude and longitude in at time 𝑙𝑙𝑗𝑗+1.  

Secondly, mean value 𝜇𝜇 and variance s of 𝐷𝐷𝑖𝑖,𝑡𝑡𝑗𝑗 in the research, areas were obtained according to: 

𝜇𝜇 =
∑ ∑ 𝐷𝐷𝑖𝑖,𝑡𝑡𝑗𝑗

𝑗𝑗=𝐽𝐽𝑖𝑖−1
𝑗𝑗=1

𝑖𝑖=𝐼𝐼
𝑖𝑖=1

∑ (𝐽𝐽𝑖𝑖−1𝑖𝑖=𝐼𝐼
𝑖𝑖=1 )

                                                                      (13) 

𝑠𝑠 = �∑ ∑ (𝐷𝐷𝑖𝑖,𝑡𝑡𝑗𝑗−𝜇𝜇)2𝑗𝑗=𝐽𝐽𝑖𝑖−1
𝑗𝑗=1

𝑖𝑖=𝐼𝐼
𝑖𝑖=1

∑ (𝐽𝐽𝑖𝑖−1𝑖𝑖=𝐼𝐼
𝑖𝑖=1 )

2

                                                               (14) 

where 𝐽𝐽𝑖𝑖is the record number of the ship with MMSI i in the research area; I means the total quantity 
of ships in the selected area. 

Finally, delete the abnormal data. According to our statistics, 2, 650, 680 distances are obtained, of 
which only 2, 245 fall outside the interval of μ+3σ. In another word, 99.9153% of distances are less 
than μ+3σ. According to Feng et al. (2021), points that fall out of μ+3σ are usually abnormal. 
Therefore, we eliminated that data. Figure 4 is the AIS trajectory plot with the original data and 
cleansed data of Oct. 30th, 2020. 
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Figure 4. AIS trajectory plot in Ningbo-Zhou Port with original data (left) and with cleansed data of 
Oct. 30th, 2020 by Feng et al. (2021)’s algorithm (right). 

3.3.3 Legs dividing   
There are 28 legs including 18 TSSs, 8 PAs and 2 TWRs in Ningbo-Zhoushan Port. Therefore, we 
need to group those records obtained by area filtering in section 3.3.1 into 28 groups for further data 
mining. Firstly, to determine the boundaries of each leg. For example, Leg No.2 TSS is a quadrilateral 
(see Figure 3), and the geographic coordinates of the vertices are listed in Table 1. Then, the procedure 
is proceeded to check (record by record) whether a ship is fallen into this area or not as per Formula 
(15)-(18): 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙1 ≥  𝑙𝑙𝑎𝑎𝑡𝑡2−𝑙𝑙𝑎𝑎𝑡𝑡1
𝑙𝑙𝑙𝑙𝑛𝑛2−𝑙𝑙𝑙𝑙𝑛𝑛1

(𝑙𝑙𝑙𝑙𝑚𝑚 − 𝑙𝑙𝑙𝑙𝑚𝑚1)                                                    (15) 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙2 ≥
𝑙𝑙𝑎𝑎𝑡𝑡3−𝑙𝑙𝑎𝑎𝑡𝑡2
𝑙𝑙𝑙𝑙𝑛𝑛3−𝑙𝑙𝑙𝑙𝑛𝑛2

(𝑙𝑙𝑙𝑙𝑚𝑚 − 𝑙𝑙𝑙𝑙𝑚𝑚2)                                                    (16) 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙3 ≥
𝑙𝑙𝑎𝑎𝑡𝑡4−𝑙𝑙𝑎𝑎𝑡𝑡3
𝑙𝑙𝑙𝑙𝑛𝑛4−𝑙𝑙𝑙𝑙𝑛𝑛3

(𝑙𝑙𝑙𝑙𝑚𝑚 − 𝑙𝑙𝑙𝑙𝑚𝑚3)                                                    (17) 

𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑙𝑙𝑙𝑙𝑙𝑙4 ≥
𝑙𝑙𝑎𝑎𝑡𝑡1−𝑙𝑙𝑎𝑎𝑡𝑡4
𝑙𝑙𝑙𝑙𝑛𝑛1−𝑙𝑙𝑙𝑙𝑛𝑛4

(𝑙𝑙𝑙𝑙𝑚𝑚 − 𝑙𝑙𝑙𝑙𝑚𝑚4)                                                    (18) 

where lat and lon are the latitude and longitude values in the AIS records. 

Table 1. The latitude and longitude coordinates of vertices of Leg No.2 TSS. 

Vertices Latitude (N) Longitude (E) 
(lon1, lat1) 29.90833333  122.17661111  
(lon2, lat2) 29.86802778 122.19941667 
(lon3, lat3) 29.86297222 122.18800000 
(lon4, lat4) 29.90333333 122.16472222 
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    Following this procedure, all the records of one-day’s AIS data are categorized into 28 groups. Next, 
we further merge 92-day’s data (i.e., from Oct. 1st to Dec. 31st, 2020) of each leg for information 
mining.  

4. Results and discussion 

4.1 Results 

As the first step, following the methodology of information entropy described in Section 2.1, we 
calculate the COG entropy of different ships’ routing legs in Oct.-Dec., 2020. The summary of COG 
entropy is tabulated in Table 2 and Figure 5 (left). 

Then, K-means clustering introduced in Section 3.2 is applied to categorize the COG entropy. All 
the 28 legs in Ningbo-Zhoushan Port are grouped into 5 clusters according to the clustering results, of 
which Leg PA7, PA4 and PA2 are listed in Q1; Leg PA1, PA6, PA5, TSS16 and TSS17 belong to Q2; 
Leg TSS18, TSS4, PA3, TSS3 and PA0 are included in Q3; Leg TSS10, TSS12, TSS11, TSS8 and 
TSS7 fall into Q5; others reside in Q4 (see Figure 5 (right) and Table 3). 

Table 2. COG entropy of different ships’ routing legs in Oct., Nov., Dec. and Oct.-Dec., 2020. 

Area Entropy in Oct.-Dec.  Entropy in Oct. Entropy in Nov. Entropy in Dec. 
TSS1 9.437006  9.495599 9.485184 9.293706 
TSS2 9.445622  9.485428 9.427324 9.383306 
TSS3 9.745884  9.726616 9.771963 9.727595 
TSS4 9.962802  9.963339 9.935324 9.955288 
TSS5 9.332828  9.352240 9.299271 9.314235 
TSS6 9.547908  9.487102 9.495667 9.633948 
TSS7 8.460033  8.455798 8.468596 8.428346 
TSS8 9.131970  9.176956 9.123440 8.983526 
TSS9 9.376190  9.387928 9.363981 9.348116 
TSS10 9.164479  9.114813 9.157449 9.179990 
TSS11 9.131607  9.096462 9.126073 9.136520 
TSS12 9.125986  9.071209 9.137402 9.125853 
TSS13 9.446923  9.460766 9.397363 9.394001 
TSS14 9.358533  9.291016 9.278039 9.416255 
TSS15 9.499747  9.484828 9.411135 9.504675 
TSS16 10.23805  10.20241 10.20021 10.26575 
TSS17 10.07689  10.10663 10.06030 10.01553 
TSS18 9.958244  9.793181 9.954311 9.991887 
PA0 9.763028  9.842374 9.699753 9.649678 
PA1 10.59500  10.63338 10.58827 10.52276 
PA2 10.86911  10.85868 10.84576 10.88601 
PA3 9.888699  9.896444 9.891775 9.843703 
PA4 11.10966  11.10905 11.09417 11.11066 
PA5 10.38200  10.21403 10.02098 10.57486 
PA6 10.55678  10.52240 10.50447 10.61616 
PA7 11.21362  11.21288 11.20715 11.17656 
TWR1 9.521161  9.535013 9.537964 9.476346 
TWR2 9.454826  9.458937 9.395435 9.429724 
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Figure 5. COG entropy (left) and K-means clustering (right) for COG entropy of different ships’ 
routing legs in Oct., Nov., Dec. and Oct.-Dec., 2020. 

Table 3. COG entropy and K-means clustering for COG entropy of different ships’ routing legs in Oct., 
Nov., Dec. and Oct.-Dec., 2020. 

Clusters  legs COG entropy Risk level Oct.-Dec. Oct. Nov. Dec. 

Q1 
PA7 11.20193 11.21288 11.20715 11.17656 

High risk PA4 11.10607 11.10905 11.09417 11.11066 
PA2 10.86964 10.85868 10.84576 10.88601 

Q2 

PA1 10.56603 10.63338 10.58827 10.52276 

Medium-high risk  
PA6 10.56602 10.52240 10.50447 10.61616 
PA5 10.40607 10.21403 10.02098 10.57486 
TSS16 10.24392 10.20241 10.20021 10.26575 
TSS17 10.04940 10.10663 10.06030 10.01553 

Q3 

TSS18 10.00202 9.793181 9.954311 9.991887 

Medium risk 
TSS4 9.953289 9.963339 9.935324 9.955288 
PA3 9.877233 9.896444 9.891775 9.843703 
TSS3 9.752939 9.726616 9.771963 9.727595 
PA0 9.698074 9.842374 9.699753 9.649678 

Q4 

TSS6 9.573951 9.487102 9.495667 9.633948 

Medium-low risk 

TWR1 9.510606 9.535013 9.537964 9.476346 
TSS15 9.482051 9.484828 9.411135 9.504675 
TWR2 9.431629 9.458937 9.395435 9.429724 
TSS13 9.418291 9.460766 9.397363 9.394001 
TSS2 9.415489 9.485428 9.427324 9.383306 
TSS1 9.399122 9.495599 9.485184 9.293706 
TSS14 9.371948 9.291016 9.278039 9.416255 
TSS9 9.363394 9.387928 9.363981 9.348116 
TSS5 9.314652 9.352240 9.299271 9.314235 

Q5 

TSS10 9.178359 9.114813 9.157449 9.179990 

Low 
TSS12 9.142813 9.071209 9.137402 9.125853 
TSS11 9.139480 9.096462 9.126073 9.136520 
TSS8 9.081009 9.176956 9.123440 8.983526 
TSS7 8.456011 8.455798 8.468596 8.428346 

4.2. Discussions 

4.2.1 Robustness analysis 
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To verify the robustness of the employed data, the COG entropy of Oct., Nov. and Dec. 2020 is also 
calculated (see Table 2 and Figure 5 (left)). The correlation coefficient between the data of Oct., Nov., 
Dec. and the data of Oct.-Dec. are 0.992822263, 0.992584776 and 0.997400626 respectively. In 
Figure 5 (left)), high consistency is indicated by the curves of Oct., Nov., Dec and Oct.-Dec, which 
implies that the traffic flow in Ningbo-Zhoushan Port is temporally stable and regular. 

The COG entropy of Oct., Nov. and Dec. are also individually processed with the K-means 
clustering algorithm. The clustering results of Oct., Nov. and Dec. are the same as those of Oct.-Dec. 
(see Table 3 and Figure 5 (right))., i.e., Leg PA7, PA4 and PA2 are listed in Q1; Leg PA1, PA6, PA5, 
TSS16 and TSS17 belong to Q2; Leg TSS18, TSS4, PA3, TSS3 and PA0 are included in Q3; Leg 
TSS10, TSS12, TSS11, TSS8 and TSS7 fall into Q5; others reside in Q4. This means that the clustering 
of COG entropy for the routing legs of Ningbo-Zhoushan Port is also temporally stable and regular.  

4.2.2 Characteristics analysis 
According to the clustering results, TSS10, TSS12, TSS11, TSS8 and TSS7 are listed in Q5. Figure 

6 reports the COG probability distribution of each traffic lane in Q5, and a bimodal normal distribution 
is observed in each of these scenarios (Remarks: in navigation practice, 0 ° is equal to 360 °, therefore, 
figures of TSS8 and TSS7 are also bimodal normal distributions). This means that the navigation order 
in these traffic lanes was very good, almost all vessels were proceeding in the general directions of 
traffic flow for those lanes. Therefore, we could infer that the ship collision risk in Q5 is low. 

 

Figure 6. COG probability distributions in Q5. 

By K-means clustering, TTS5, TSS9, TSS14, TSS1, TSS2, TSS13, TWR2, TSS15, TWR1 and 
TSS6 are grouped into Q4. Figure 7 explicates the COG probability distributions of each traffic lane 
in Q4, and an approximate bimodal normal distribution with a little noise is observed in each of these 
scenarios (Remarks: in navigation practice, 0 ° is equal to 360 °, therefore, TSS1 is also an approximate 
bimodal normal distribution with a little noise). This implies that the navigation order in these traffic 
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lanes was good, most vessels were proceeding in the general directions of traffic flow for those lanes; 
however, there are a small number of ships crossing the traffic separation zone or separation line. The 
ship collision risk was increasing but at a medium-low level. 

  

 

Figure 7. COG probability distributions in Q4. 

The clustering results categorize PA0, TSS3, PA3, TSS4 and TSS18 into Q3. Figure 8 explicates 
the COG probability distributions of each traffic lane in Q3, and an approximate bimodal normal 
distribution with significant noise is observed in each of these scenarios. This shows that the navigation 
order in these traffic lanes was fair, most vessels were proceeding in the general directions of traffic 
flow for those lanes; however, there are numerous ships crossing the traffic separation zone (for 
instance in PA3 and TSS18) or many vessels were deviating from the general directions of the traffic 
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flow by a considerable amount (for instance PA0, TSS3 and TSS4). As a consequence, more crossing 
situations occurred, and the risk of ship collision increased to a medium level accordingly. 

 

Figure 8. COG probability distributions in Q3. 

The K-means clusters TSS17, TSS16, PA5, PA6 and PA1 into Q2. Figure 9 indicates the COG 
probability distributions of each traffic lane in Q2, and an approximate multimodal normal distribution 
with significant noise is observed in each of these scenarios. This shows that the navigation order in 
these traffic lanes was complex. In these areas, ships were sailing in various directions. Consequently, 
crossing situations occurred frequently, therefore, the ship collision risk was at a medium-high level.  

In Q1 (i.e., PA2, PA4 and PA7, see Figure 10), the confusion of course was more obvious, and the 
navigation order was more complex with a high risk of collision. 

In this way, the calculation of COG entropy divides the ships’ routeing areas of Ningbo-Zhoushan 
Port into different risk levels (see Figure 11). Of them, PA7, PA4 and PA2 are in the high-risk level; 
PA1, PA6, PA5, TSS 16 and TSS17 are medium-high risky. The precautionary areas where vessels 
meet and cross are always higher risk areas. Therefore, the results of K-means clustering match the 
actual situation. And then, why TSS 16 and TSS17 are marked as medium-high risky? We plot the 
AIS trajectory of Oct. 30th, 2020 near TSS16 and TSS17. From Figure 12 (left) it could be seen that a 
dense traffic flow that should pass through PA6 actually crossed the west area of TTS 17. In addition, 
there existed a number of shipyards to the south of TTS 17. As vessels entered and departed, they 
would cross the traffic separation line. Therefore, the COG probability distribution of TSS 17 
presented an approximate four modal normal distribution with significant noise (see Figure 9 (TSS17)) 
and a high entropy value. From Figure 12 (left) it could be seen that a dense traffic flow that should 
pass through PA7 actually crossed the west area of TTS 16. Additionally, there was an inner-islands 
fixed voyage that crossed the TTS 17. Therefore, the COG probability distribution of TSS 16 was 
similar to an approximate six modal normal distribution with significant noise (see Figure 9 (TSS16)) 
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and a high entropy value. 

 

Figure 9. COG probability distributions in Q2. 

 

Figure 10. COG probability distributions in Q1. 

It should be emphasized that PA0 and PA3 are all busy precautionary areas, however, their entropy 
levels are not very high, and they are included in medium-risk groups. We plot the AIS trajectory of 
Oct. 30th, 2020 near PA3 (see Figure 12 (central)) and PA0 (see Figure 12 (right)). From Figure 12 
(central) it could be noticed a fixed traffic flow that passed through PA3 (actually a scheduled 
passenger voyage between Ningbo and Zhoushan), and there were no other crossing routes. This made 
the navigation order in PA3 relatively simple, therefore, the entropy of PA3 is not very high. PA0 is 
the most important entrance of Ningbo-Zhoushan Port, this area is a key point that Maritime Safety 
Administration. From Figure 12 (left) it could be seen that most vessels were sailing along the Deep-
water route outside of Xiazhi Men. This made the navigation order in PA0 also relatively simple, 
therefore, the entropy of PA0 is not very high. 
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Figure 11.  Collision risk division for the ships’ routeing areas in Ningbo-Zhoushan Port.
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Figure 12. AIS trajectory plot in TSS16, TSS17 (left), PA3 (central) and PA0 (right) of Ningbo-
Zhoushan Port with the data of Oct. 30th, 2020. 

5. Conclusions 
Ships’ routeing was adopted to guide marine traffic flow and reduce the risk of collision in the crowded 
waterways. With the expansion of the world’s fleet, marine traffic in bottleneck and chokepoint areas 
became more and more complex creating serious challenges for navigational safety. Therefore, 
quantitative collision risk assessment is significantly important for the ships’ routeing areas. In this 
contribution, information entropy is proposed to develop indices to quantitatively measure the risk of 
collision. We use Ningbo-Zhoushan Port as the case study. The AIS data of Ningbo-Zhoushan Port is 
used to offer the course over ground (COG) information after data-cleansing processing and then the 
information entropy of COGs in each leg of the ships’ routeing in Ningbo-Zhoushan Port is calculated. 
Next, the K-means clustering is applied to group the SOGs entropy. According to the clustering results, 
PA7, PA4 and PA2 are categorized as the most high-risk legs in the ships’ routeing areas of Ningbo-
Zhoushan Port. TSS17, TSS16, PA5, PA6 and PA1 follow with medium-high risk. Therefore, visiting 
shipmasters should proceed with caution in these areas. Priority should be given to collision risk 
prevention in these areas. This study also finds that numerous ships cross the traffic separation zone 
or separation line, which results in higher entropy in those areas and greater potential for ship collision. 
The safety level would be significantly improved if the rules on navigation are abided according to the 
entropy reduction principle. 

    Ships’ routeing areas in Ningbo-Zhoushan Port also include several inshore traffic zones and the 
Deep-water route outside of Xiazhi Men. Considering the inshore traffic zones are usually used by 
small vessels, and the Deep-water route is specially designed for ultra-large vessels with draught more 
than 22.5m (few in number), these areas were not covered in this study. 
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