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ABSTRACT: Remote sensing technologies and deep learning/machine learning 

approaches play valuable roles in crop inventory, yield estimation, cultivated area 
estimation, and crop status monitoring. Satellite-based remote sensing has led to 
increased spatial and temporal resolution, leading to a better quality of land-cover 
mapping (greater precision, and detail in the number of land cover classes). In this 
work, we propose to use a long short-term memory neural network (LSTM), an 
advanced technical model adapted from artificial neural networks (ANN) to 
estimate cassava cultivation area in southern Laos. LSTM is a modified version of 

a Recurrent Neural Network (RNN) that uses internal memory to store the 
information received prior to a given time. This property of LSTMs makes them 
advantageous for time series regression. We employ Landsat-7/8 and Sentinel-2 
time-series datasets and crop phenology information to identify and classify cassava 
fields using multi-sources remote sensing time-series in a highly fragmented 
landscape. The results indicate an overall accuracy of > 89% for cassava and > 84% 
for all-class (barren, bush/grassland, cassava, coffee, forest, seasonal, and water) 

validating the feasibility of the proposed method. This study demonstrates the 
potential of LSTM approaches for crop classification using multi-temporal, multi-
sources remote sensing time series.  
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1. INTRODUCTION

Cassava (Manihot esculenta Crantz) is a neotropical, Amazonian crop supplying one of the most 
important calorie sources in the global tropics and subtropics (Thiele et al., 2022). In the past several 
decades, Southeast Asian countries have adopted cassava as a major industrial crop linked to global 
export markets. In Lao PDR, the area of cassava cultivated is rapidly increasing, and in 2022 the root 
crop was the most valuable agricultural export, with 250 M USD exported in the first 6 months of the 

year (Lao Trade Portal, 2022). Cultivated primarily by smallholder farmers, cassava is a major 
contributor to rural incomes through the sale of fresh roots and dried chips to starch factories, commodity 
exporters, and intermediate traders forming the basis of cross-border value chains exporting to Thailand, 
Vietnam, and China (Delaquis et al., 2018). Nationally reported figures estimate 112,450 ha of cassava 
was planted in 2020, producing 3.5 M t of harvested roots (Lao Department of Agriculture, 2022). The 
rapid expansion of cassava cultivation in Laos has challenged authorities in accurately monitoring the 
rate at which fallow land, less profitable crops, and forested areas are converted to cassava plantations. 

Many approaches exist to link vegetation index values and trends to a crop for specific cultivars (Johnson 
et al., 2014; Marshall et al., 2015; Reddy et al., 2018; Stepchenko et al., 2017). Current methodologies 
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based on remote sensing have been primarily developed and applied in high-value, large-scale, intensive 
agricultural systems such as maize, tomato, and grape in Peru (Tatsumi et al., 2015), maize and soybean 
in Canada (McNairn et al., 2014), barley and wheat in Ukraine (Kussul et al., 2015), and maize, soybean, 
wheat, and barley in Germany (RuBwurm et al., 2017). These approaches have been less commonly 

applied in developing countries, where agricultural landscapes are often highly fragmented with high 
heterogeneity of crop management and practices (Mishra et al., 2016). Current methodologies are poorly 
adapted to provide reliable crop area estimates at regional scales in the tropics. To address this gap, 
integrated remote sensing datasets processed with machine learning approaches are promising. 

Deep learning is a powerful technique for processing remote sensing imagery (Han et al., 2012; 
Kamilaris et al., 2018; Zhang et al., 2016; Zhao et al., 2021). It has proved to be efficient for processing 
both optical (hyperspectral and multispectral) and radar images, and in extracting land cover types for 
crop mapping, road extraction, and building extraction applications (Chen et al., 2014; Geng et al., 2015; 
Kussul et al., 2017). Convolutional Neural Network (CNN) models have been employed in identifying 
crops (Long Short-Term Memory models (LSTM) + SVM) (Ienco et al., 2017), and crop types in time 

series (three-unit LSTM, CNN, SVM) (Rußwurm et al., 2018). Deep auto-encoders, deep belief 
networks, and recurrent neural networks with LSTM models are promising for remote sensing tasks 
(Kussul et al., 2017). 

We employed a large dataset of satellite imagery from southern Laos over 15 months in 2019/2020, and 
estimated cassava area through an LSTM implementation in the Google Earth Engine (GEE) and a local 
infrastructure using TensorFlow (Google, 2022). We present a framework for pre-processing, 
preparation of training data, and accuracy assessment, and discuss challenges in implementing the 
method over large areas. 

2. MATERIALS AND METHODS 

We utilized Landsat 7/8 and Sentinel-2 A/B time series imagery with high revisit time (10 days at the 
equator with one satellite, and 5 days with two satellites under cloud-free conditions which result in 2-3 
days at mid-latitudes for sentinel-2, 16 days for Landsat 7/8 sensors) (ESA, 2022). We extracted a 
collection of images acquired over fifteen months to produce monthly mosaics over a study area located 
in Champassak and Attapeu provinces of Laos. Based on these mosaics, a training dataset was produced 
for mapping cassava areas considering aspects such as the local variability of land use land cover classes 

and potential spectral confusion. The monthly mosaics and training sets were used to build supervised 
classification models using LSTM algorithms. The resultant maps were evaluated with a stratified, 
randomly sampled validation dataset checked by three independent human interpreters against google 
earth and planet imagery. The datasets and methodological steps used in this study are presented in 
Figure 1 and are described in detail in the following sections. 

 

Figure 1: Schematic representation of data and methods used in the generation of cassava mapping in 
southern Laos. 

2.1. Study area 

The study area was in the adjacent southern Lao provinces of Champassak and Attapeu, bordering on 
Thailand to the west, Cambodia to the south, and Vietnam to the east (Figure 5). The area includes an 
altitudinal gradient rising from ~100m on the eastern banks of the Mekong River to ~1000m peaks of 
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the Bolaven plateau located from 15°28’54”-13°54’35”N, 105°28'0.23”-106°49’41”E. The agroecology 
of the region transitions from rice and vegetable dominated production in the river valleys to upland 
rice, coffee, rubber, and cassava plantations in the sloping uplands and plateau. While major agricultural 
areas of this region are accessible by road, it also includes remote forested conservation areas and 

sensitive subtropical semi-dry and moist forest ecosystems at risk of deforestation. This region also 
includes Laos’ 2nd most populous city, Pakse, and is one of the country’s fastest growing agricultural 
zones, including considerable increases in cassava exports in recent years. 

2.2. Remotely sensed data 

Images were obtained from Landsat-7/8 satellites (L7, L8) (OLI sensor), which has the United States 
Geological Service (USGS) as the official image provider, and Sentinel 2A and 2B satellites (S2) (MSI 
sensor) that are administered by the European Space Agency (ESA) (ESA, 2022). Recognizing that 
cassava is a long season crop with a typical 9-12 month cropping cycle, the periods chosen were from 
01/10/2019 to 31/12/2020 to overlap with a full typical planting, growing, and harvesting cycle. After 
filtering images by period, we selected only images intersecting with the area of interest and with less 
than 90% cloud coverage according to their metadata. 

The workflow for processing included three steps: 1) preprocessing, 2) sensor harmonization, and 3) 
post-processing. For pre-processing and sensor harmonization, we followed Nguyen et al. (2020) 
implementation of Poortinga et al. (2019). All images were obtained and pre-processed directly in GEE. 
In the preprocessing step, the clouds and their shadows are removed. The Bidirectional Reflectance 

Distribution Functions (BRDF) model was applied to reduce directional effects due to the differences in 
solar and view angles between L7/L8, and S2 and topographic correction was applied (Poortinga et al., 
2019). The harmonization step included re-projection, re-scaling, and re-alignment (co-registration) of 
the L7, L8, and S2 images. After the processing, the images suffer from missing values due to the cloud 
removal algorithm. To fill the gaps, we applied a temporal interpolation algorithm on the GEE platform 
(Ujaval, 2021) to replace missing pixels with an interpolated value from its temporal neighbors. The 

leftover no-data gaps were filled by a temporal linear interpolation (Do Bendini et al., 2016), and the 

Savitzky–Golay smooth filter algorithm was used to smooth the data series fed into the model (Chen et 
al., 2021) to improve the resulting classification map (Figure 3). The final image processing step was a 
temporal aggregation of the individual images into monthly compositions using the mean value of the 
pixels. Using a monthly interval reduces requirements for downloading, storing, and processing data 
compared to individual images. Fifteen products corresponding from October 2019 to December 2020 
were generated with six spectral bands (BLUE, RED, GREEN, NIR, SWIR1, SWIR2) and Normalized 
Difference Vegetation Index (NDVI), and used for training and classifying the models. 

2.3. Model training and testing datasets 

GPS points collected in the field were supplemented with Google Earth Pro and Planet imagery plugin 
on QGIS to collect cassava and non-cassava labeled samples to build the training, validation, and test 
datasets. Using the monthly mosaics and prior knowledge of the region, image interpretation experts 
collected 2,000 points for the cassava class and each of barren land, bush, forest, coffee, rice/seasonal, 
and water, resulting in 14,000-time series, each associated with a single point with pixels of only one 

land use land cover class, well-distributed throughout the study area and covering, as much as possible, 
all the land use land cover class variability observed. These points were used for classifier training and 
validation. For training and analysis of the accuracy of the models, 80% of the points were used for 
training, 10% were used for validation of the LSTM model, and 10% for testing.  

2.4. Long short-term memory models 

The RNN architecture we used employs Long Short-Term Memory (LSTM), a specific recurrent neural 
network architecture designed to model temporal sequences and their long-range dependencies more 
accurately than conventional RNNs (Sak et al., 2014), an important feature when working with longer 
time series. Each LSTM unit is designed to ‘remember’ values over arbitrary time intervals (long or 
short), improving efficiency when depicting variable temporal patterns such as those frequently 
observed in crop growing cycles (Zhong et al., 2019). 
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Figure 2: The structure of the optimal LSTM-based model employed for prediction of cassava area 
(adapted from Zhong et al., 2019). 

The implementation of the LSTM classification approach (Zhong et al., 2019) is based on analyzing the 
spectral, spatial, and temporal dimensions of all monthly mosaics. To perform the classification task, we 
built a deep architecture stacking together three LSTM units (Figure 2). The use of multiple LSTM units, 
as commonly used for CNN networks combining several convolutional layers, allows for the extraction 
of high-level nonlinear temporal dependencies available in the remote sensing time series. This new 
representation is then fed to a dense neural network which assigns classes based on the new 
representation (Ienco et al., 2017). As a multiclass prediction, the output layer used the SoftMax 

activation function, while the other layers used the ReLu function (Parente et al., 2019). LSTM layers 
were used jointly with fully connected layers and dropout. We set the number of hidden dimensions 
equal to 32 units each. The probability of dropping neurons was set to 50%, 50%, and 20% for layers 1, 
2, and 3, respectively, decreasing the chance of overfitting during model training (Parente et al., 2019). 
We set an initial learning rate of 0.001 and the last layer contained seven neurons corresponding to the 
probability of the seven classes. The neural network was trained for 100 epochs with a batch size equal 
to 16. We configured the model to use the Adam optimizer (Kingma et al., 2015), categorical cross-
entropy loss function, and categorical accuracy as an evaluation metric, all parameters available in the 

TensorFlow library (Google, 2022). Finally, the trained model was used to classify all the pixels in the 
study area and produce a map showing the extent of cassava cultivation. 

2.5. Land cover map validation protocol 

Following Olofsson et al. (2014), validation was conducted on the binary map of cassava and non-
cassava. We performed stratified random sampling to select 98 and 102 points in the cassava and non-

cassava categories. Three human image interpreters independently reviewed each point using google 
imagery and assigned it a category. Points with disagreement amongst the interpreters were then 
reviewed and discussed as a group to assign a final category. In case of doubt or in case the google 
imagery was out-dated, the class was assigned based on the phenology observed on monthly Planet 
composite imagery obtained through the NICFI (Planet, 2022) program. 

3. RESULTS AND DISCUSSION 

3.1. Phenological curves of cassava 

The intra annual NDVI curve of cassava has a well defined phenology corresponding with changes in 
the phenological stages of the crop growth cycle (Figure 3). In the study area cassava was planted from 
late May to early June and harvested during the period from late January to early February. This is 
reflected in the cassava NDVI spectral curves, which begin to increase from June until August, increase 
from mid-September to December, and decrease to bare soil during the harvest period. 
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Figure 3: Examples of time-series NDVI spectral curves for cassava crop planted, (a) beginning of 
season, (b) end of season, (c) middle of season, (d) length of season, (e) time of planting, and (f) time of 
harvesting. The orange line represents the smoothed data, and the blue line is the original data. 

3.2. Model calibration and accuracy assessment 

LSTM classifiers were trained to classify time series versus other classes. In order to test model 
calibration, we computed the overall accuracy (OA), the kappa coefficient, the User, and Producer 
accuracies (UA and PA), and the F1 Score for each class based on the test set (10% of the training dataset 
not used for calibration). The LSTM accuracy metrics are illustrated in Figure 4. The overall accuracy 
was 93.43%, and the Kappa coefficient was 0.92. The results of the accuracy analysis using the 

validation dataset for the model developed for the UA, PA, and F1 provided by LSTM for cassava were 
90%,  89%, and 89%, respectively. Evaluating the results, it is possible to verify that the model based 
on LSTM using the context of the entire time series for classification, achieved satisfactory accuracy to 
be used as input data for future analysis purposes. 

 

Figure 4: Accuracy analysis results with validation dataset from the model for the land use land 
classes observed in the study area. 

3.3. Cassava Area Mapping 

After evaluating the accuracy of the model, we used it to generate a map of land cover in the study area. 
Three subregions were selected randomly, and combined with high-resolution Google Satellite images 
in QGIS software to illustrate the output of the generated classification (Figure 5). 
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Figure 5: Land use land cover map in southern Laos: a) LULC map with seven classes and b) 
Cassava/Non-Cassava mapping and three subregions: a) monthly mosaic for November 2020 (RGB: 
SWIR1-NIR-RED bands) and b) the cassava maps produced with LSTM. 

In the regions of interest (ROI 1 and ROI 2), LSTM better separated cassava areas, but in ROI 3 there 
was confusion between cassava with bush/grassland and other crops. Several pixels of cassava in the 
classified map were misclassified as tree crops, bush/grassland, and other crops, likely due to similarity 
between phenological curves of cassava and other classes in the rainfed study area (rice, corn, and 
scrubland). This misclassification was expected given the results of the model testing presented in Figure 
4. For a better separation by LSTM, the number of training samples of cassava and other crops could be 

increased or sub-grouped. 

Finally, the map produced through the LSTM model was validated based on a set of points randomly 
selected and visually validated by 3 independent interpreters. The results of the validation exercise, after 

normalization by area as proposed by Olofsson et al., (2014), show that the cassava/non-cassava map 
had an overall accuracy of 98% ± 2%. The cassava class had a UA of 83% ± 7% and PA of 83% ± 28%, 
while the non-cassava class had a UA and PA of 99% ± 2% and 99% ± 0% respectively. Cassava 
represented about 6% of the total studied area, while the non-cassava class encompassed the remaining 
94%. The imbalance in the distribution of the classes lead to a high level of uncertainty in the estimation 
of the PA of the cassava class. As the UA of the cassava class is high and with low uncertainty, it might 
indicate that the cassava area shown in our results is a slight underestimation of the real extent. 

4. CONCLUSIONS 

The identification and mapping of cassava is a crucial step for land use management planning in Laos. 
This study demonstrates a methodology for generation of maps based on monthly data differentiating 
seven classes of land use and land cover within the study area. The application of several techniques for 
the compatibility and correction of satellite images allowed us to work with L7/8 and S2 images as a 

single collection to train machine learning models based on recurrent neural networks using the Long 



Trong V.Phan                                                                           Near real-time monitoring of cassava cultivation area 

APFITA 2022 International Conference | Hanoi, Viet Nam | 24-26 November, 2022 

short-term memory - LSTM neural network architecture. The LSTM-based model presented satisfactory 
results, with an average F1-Score of 89% for the cassava-mapped class. 

The methods presented here can map large areas quickly, accurately, and inexpensively compared to 
traditional census-based approaches or expert manual interpretation of satellite images. The LSTM-
based model presented superior results but requires retraining with additional samples to better model 
the variability of the land use classes in new regions. When applied to cassava-growing districts in Laos, 
this would allow for the validation of reported district production statistics, in addition to providing 

currently unavailable spatially explicit differentiation of expansion through cropland conversion or 
deforestation. An accurate and near-real time representation of changing cassava cropping patterns 
would enable decision makers to better monitor and regulate the cassava industry, forecast agricultural 
markets, and target agronomic or phytosanitary assistance initiatives. These abilities are critically 
important for building data-driven policy narratives and promoting sustainability and resilience in Laos’ 
most valuable agricultural commodity. 

5. REFERENCES 

Chen, Y., Cao, R., Chen, J., Liu, L., & Matsushita, B., 2021. A practical approach to reconstruct high-
quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter. ISPRS Journal of 
Photogrammetry and Remote Sensing, 180, 174–190. 

Chen, Y., Lin, Z., Zhao, X., Wang, G., & Gu, Y., 2014. Deep Learning-Based Classification of 
Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 
Sensing, 7(6), 2094–2107. 

Delaquis, E., Andersen, K. F., Minato, N., Cu, T. T. le, Karssenberg, M. E., Sok, S., Wyckhuys, K. A. 
G., Newby, J. C., Burra, D. D., Srean, P., Phirun, I., Le, N. D., Pham, N. T., Garrett, K. A., Almekinders, 
C. J. M., Struik, P. C., & de Haan, S. (2018). Raising the Stakes: Cassava Seed Networks at Multiple 
Scales in Cambodia and Vietnam. Frontiers in Sustainable Food Systems, 2, 73. 

Do Bendini, H. N., Sanches, I. D., Körting, T. S., Fonseca, L. M. G., Luiz, A. J. B., & Formaggio, A. 
R., 2016. Using Landsat 8 image time series for crop mapping in a region of Cerrado, Brazil. 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - 
ISPRS Archives, 41, 845–850. 

ESA., 2022. Sentinel-2 - Missions - Sentinel Online - Sentinel Online. 
https://sentinel.esa.int/web/sentinel/missions/sentinel-2. Accessed: 15/09/2022. 

Geng, J., Fan, J., Wang, H., Ma, X., Li, B., & Chen, F., 2015. High-Resolution SAR Image Classification 
via Deep Convolutional Autoencoders. IEEE Geoscience and Remote Sensing Letters, 12(11), 2351–
2355.  

Google., 2022. TensorFlow. https://www.tensorflow.org/. Accessed: 15/09/2022.  

Han, M., Zhu, X., & Yao, W., 2012. Remote sensing image classification based on neural network 
ensemble algorithm. Neurocomputing, 78(1), 133–138. 

Ienco, D., Gaetano, R., Dupaquier, C., & Maurel, P., 2017. Land Cover Classification via Multitemporal 
Spatial Data by Deep Recurrent Neural Networks. IEEE Geoscience and Remote Sensing Letters, 
14(10), 1685–1689. 

Johnson, D. M., 2014. An assessment of pre- and within-season remotely sensed variables for 
forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141, 116–
128. 

Kamilaris, A., & Prenafeta-Boldú, F. X., 2018. Deep learning in agriculture: A survey. Computers and 
Electronics in Agriculture, 147, 70–90. 

Kingma, D. P., & Lei Ba, J., 2015. Adam: A Method for Stochastic Optimization. ICLR. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://www.tensorflow.org/


Trong V.Phan                                                                           Near real-time monitoring of cassava cultivation area 

APFITA 2022 International Conference | Hanoi, Viet Nam | 24-26 November, 2022 

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A., 2017. Deep Learning Classification of Land 
Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 
14(5), 778–782. 

Kussul, N., Skakun, S., Shelestov, A., Lavreniuk, M., Yailymov, B., & Kussul, O., 2015. Regional scale 
crop mapping using multi-temporal satellite imagery. ISPRS - International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 45–52.  

Lao Department of Agriculture., 2022. Annual Agricultural Yearbook 2020. 

Lao Trade Portal., 2022. https://www.laotradeportal.gov.la/. Accessed: 15/09/2022. 

Marshall, M., & Thenkabail, P., 2015. Developing in situ Non-Destructive Estimates of Crop Biomass 
to Address Issues of Scale in Remote Sensing. Remote Sensing 2015, Vol. 7, Pages 808-835, 7(1), 808–
835. 

McNairn, H., Kross, A., Lapen, D., Caves, R., & Shang, J., 2014. Early season monitoring of corn and 
soybeans with TerraSAR-X and RADARSAT-2. International Journal of Applied Earth Observation 
and Geoinformation, 28, 252–259. 

Mishra, S., Mishra, D., & Santra, G. H., 2016. Applications of Machine Learning Techniques in 
Agricultural Crop Production: A Review Paper. Indian Journal of Science and Technology, 9(38). 

Nguyen, M. D., Baez-Villanueva, O. M., Bui, D. D., Nguyen, P. T., & Ribbe, L., 2020. Harmonization 
of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan 
(Vietnam) and Bekaa (Lebanon). Remote Sensing 2020, Vol. 12, Page 281, 12(2), 281. 

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. v., Woodcock, C. E., & Wulder, M. A., 2014. Good 
practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 
148, 42–57. 

Parente, L., Taquary, E., Silva, A. P., Souza, C., & Ferreira, L. (2019). Next Generation Mapping: 
Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sensing 2019, 
Vol. 11, Page 2881, 11(23), 2881. 

Planet., 2022. NICFI Program - Satellite Imagery and Monitoring | Planet. 
https://www.planet.com/nicfi/. Accessed: 15/09/2022. 

Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., Aung, K. S., Chishtie, F., & Saah, D., 2019. 
Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with 
Systematic Error Quantification. Remote Sensing 2019, Vol. 11, Page 831, 11(7), 831.  

Reddy, D. S., & Prasad, P. R. C., 2018. Prediction of vegetation dynamics using NDVI time series data 
and LSTM. Modeling Earth Systems and Environment, 4(1), 409–419. 

RuBwurm, M., & Korner, M., 2017. Temporal Vegetation Modelling Using Long Short-Term Memory 
Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images. 2017 IEEE 
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1496–1504. 

Rußwurm, M., & Körner, M., 2018. Multi-Temporal Land Cover Classification with Sequential 
Recurrent Encoders. ISPRS International Journal of Geo-Information, 7(4), 129. 

Sak, H., Senior, A., & Beaufays, F., 2014. Long Short-Term Memory Based Recurrent Neural Network 
Architectures for Large Vocabulary Speech Recognition. 

Stepchenko, A., 2017. Land cover classification based on MODIS imagery data using artificial neural 
networks. Vide. Tehnologija. Resursi - Environment, Technology, Resources, 2, 159–164. 

Tatsumi, K., Yamashiki, Y., Canales Torres, M. A., & Taipe, C. L. R., 2015. Crop classification of 
upland fields using Random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in 
Agriculture, 115, 171–179. 

https://www.laotradeportal.gov.la/
https://www.planet.com/nicfi/


Trong V.Phan                                                                           Near real-time monitoring of cassava cultivation area 

APFITA 2022 International Conference | Hanoi, Viet Nam | 24-26 November, 2022 

Thiele, G., Friedmann, M., Campos, H. A., Polar, V., & Bentley, J. W., 2022. Root, tuber and banana 
food system innovations : value creation for inclusive outcomes. 561. 

Ujaval., 2021. Temporal Gap-Filling with Linear Interpolation in GEE – Spatial Thoughts. 
https://spatialthoughts.com/2021/11/08/temporal-interpolation-gee/. Accessed: 15/09/2022. 

Zhang, L., Zhang, L., & Du, B., 2016. Deep Learning for Remote Sensing Data: A Technical Tutorial 
on the State of the Art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22–40. 

Zhao, H., Duan, S., Liu, J., Sun, L., & Reymondin, L., 2021. Evaluation of Five Deep Learning Models 
for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information. Remote 
Sensing 2021, Vol. 13, Page 2790, 13(14), 2790. 

Zhong, L., Hu, L., & Zhou, H., 2019. Deep learning based multi-temporal crop classification. Remote 
Sensing of Environment, 221, 430–443. 

https://spatialthoughts.com/2021/11/08/temporal-interpolation-gee/

