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Abstract: The Action Research Arm Test (ARAT) presents a ceiling effect that prevents the detection
of improvements produced with rehabilitation treatments in stroke patients with mild finger joint
impairments. The aim of this study was to develop classification models to predict whether activities
with similar ARAT scores were performed by a healthy subject or by a subject post-stroke using
the extension and flexion angles of 11 finger joints as features. For this purpose, we used three
algorithms: Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN).
The dataset presented class imbalance, and the classification models presented a low recall, especially
in the stroke class. Therefore, we implemented class balance using Borderline-SMOTE. After data
balancing the classification models showed significantly higher accuracy, recall, f1-score, and AUC.
However, after data balancing, the SVM classifier showed a higher performance with a precision of
98%, a recall of 97.5%, and an AUC of 0.996. The results showed that classification models based on
human hand motion features in combination with the oversampling algorithm Borderline-SMOTE
achieve higher performance. Furthermore, our study suggests that there are differences in ARAT
activities performed between healthy and post-stroke individuals that are not detected by the ARAT
scoring process.
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1. Introduction

Machine learning (ML) is considered a subfield of computer science where knowledge
from artificial intelligence and statistics is applied to the generation of computational
models. ML algorithms can learn automatically and generate a model from input data
without being explicitly programmed to produce a particular output [1]. The learning
process is performed through training and the dataset for training is known as training
data [2]. The classification algorithms belong to supervised learning. In supervised learning,
the algorithm learns through a labeled data set (for example, a set of images labeled as
containing a cat or a lion), where each training data sample is presented in the form of an
input value with an output label [3]. The algorithm trains a model that, from the input
values, can predict the correct response based on the features defined in the process [2]. The
classification problems are commonly categorized into binary classification and multi-class
classification. The dataset is classified into two classes in binary classification, while in
multi-class classification, the given dataset is classified into more than two classes [4].
In recent years classification models have been used in various clinical applications, for
example, in medical diagnosis, disease classification, prediction of clinical outcomes, and
treatment responses [5–8]. There are several ML classification algorithms, three of the most
widely used in healthcare applications are Support Vector Machine (SVM), Random Forest
(RF), and K-Nearest Neighbors (KNN) [9–11]. However, in most classification problems in
real-life applications, the sample sizes between the different classes are unbalanced [12].
Therefore, the imbalanced data problem is commonly solved with oversampling and
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undersampling techniques. Synthetic minority oversampling technique (SMOTE), random
oversampling (ROS), and random undersampling (RUS) are some of the most commonly
used balancing techniques for imbalanced data [13]. The advantage of oversampling over
undersampling is that no samples are lost from the original training set since all data from
the minority and majority classes are preserved [14]. On the other hand, there is a new
oversampling method called Borderline-SMOTE derived from SMOTE that has shown
good results in healthcare applications [4,15,16]. SMOTE uses the k-nearest neighbor
algorithm to generate new and synthetic data to over sample the minority class [17]. In
contrast, Borderline-SMOTE generates the synthetic data around the borderline between
the two classes, unlike SMOTE, where synthetic data is created randomly in all the minority
samples [18].

Stroke remains one of the leading causes of death and disability in Europe, and projec-
tions show that the burden of stroke will not decrease in the next decade or beyond [19].
An important contributing factor to this is that the number of older persons in Europe is
rising, with a projected increase of 35% between 2017 and 2050 [20]. After a stroke, one of
the main sequelae produced is the loss of mobility in the upper extremities of the human
body. Therefore, in the assessment of upper extremity (UE) function it’s important to
improve the effectiveness of rehabilitation programs, and the use of standardized outcome
measures (OMs) which can lead to more efficient rehabilitation programs for post-stroke
patients [21,22]. There are several types of OMs used for evaluating patients with UE
disability with good psychometric properties, these are: the Fugl-Meyer assessment (FMA),
the Action Research Arm Test (ARAT), the Box and Block test (BBT), the Chedoke Arm and
Hand Inventory (CAHAI), the Nine Hole Peg Test (9-HPT), and the Wolf Motor Function
Test (WMFT). However, one of the most used OMs by physical therapists and other health
care professionals to assess the performance of the UEs in people post-stroke is the ARAT.
The ARAT is a measurement tool used to assess UE functional impairments that evaluate
19 movement tasks divided into four subtests (grasp, grip, pinch, and gross arm movement)
that assess a patient’s ability to handle objects differing in size, weight, and shape [23].
However, the ARAT, requires a human examiner to transform observations of the patient’s
movement into a score [24]. Therefore, the scoring process can be limited to assessing only
the quality of performance on each task. In addition, ARAT presents a ceiling effect that
prevents detection of improvements produced with rehabilitation treatments in subjects
with mild impairments with high ARAT scores [25].

Nevertheless, in recent years several ML models have been developed using hand
motion data obtained during the performance of the ARAT. Dutta et al. evaluated grasp
abilities and predicted scores in the ARAT test with Support Vector Machine (SVM) algo-
rithms in healthy subjects and post-stroke patients using an instrumented glove composed
of six flex sensors, three force sensors, and a motion processing unit [26]. In contrast,
Bochniewicz et al. used a Random Forest model to classify UE movement into functional
and non-functional, using inertial measurement units (IMU) during the performance of
the ARAT [27]. Lum et al. developed several machine learning algorithms K-Nearest
Neighbors (KNN), Random Forest, Linear SVM, and SVM Radial Basis Function (RBF) to
classify functional and nonfunctional activities using a wrist-worn inertial measurement
unit (IMU) during the performance of the ARAT [28]. Moreover, Kanzler et al. predicted
outcomes scores with the ARAT, BBT, or NHPT using several machine learning models
(decision tree, KNN, linear regression and random forests (RF)) with clinical data, and
digital health metrics [29]. However, to the best of our knowledge no machine learning
models have been focused on classifying ARAT activities between post-stroke patients
with mild impairments and healthy individuals based on hand motion data. Therefore,
we present this work, which has two main objectives: (I) Develop classification models to
predict whether the ARAT activities were performed by a healthy subject or by a subject
post-stroke with good upper extremity functionality, based on the hand motion information
obtained with the CyberGlove II® (CyberGlove Systems. LLC, San José, CA, USA). Hence,
the high performance of the classification models will demonstrate that there are differences
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between the activities of healthy and post-stroke subjects that are not detected with the
ARAT scoring method. On the other hand, this study has a second objective: (II) Evaluate
if data class balancing using the Borderline-SMOTE method allows better performance-
classifiers to be obtained. This paper is structured as follows. The data collection and the
machine learning architecture development is presented in Section 2. Section 3 presents
the results of the performance and comparison of the classification models before and after
data class balancing. The discussion is presented in Section 4. Finally, Section 5 concludes
this paper.

2. Materials and Methods

In this work, we selected three of the most widely used and best-performing classi-
fication algorithms in machine learning (ML), which are Support Vector Machine (SVM),
Random Forest (RF), and K-Nearest Neighbors (KNN). The development of each of the
classification models is presented in this section.

2.1. Data Source

The data in this study were obtained from previous studies and comes from the pub-
licly available Finger Joints Angles ARAT database [30]. This section briefly describes the
experimental protocol for data acquisition. The extension and flexion angles of eleven
finger joints in healthy subjects [31] and post-stroke patients [32] were measured during the
performance of sixteen activities of the Action Research Arm Test (ARAT) corresponding
to the subtests (grasp, grip, and pinch) using an instrumented glove (Cyberglove Sys-
tems LLC; San Jose, CA, USA). The eleven finger joints angles recorded were: thumb
carpometacarpal (CMC) joint, thumb, index, middle, ring, and little metacarpophalangeal
(MCP) joints, thumb interphalangeal (IP) joint, and index, middle, ring, and little proximal
interphalangeal (PIP) joints. For more information about the study protocol, please refer
to [31,32]. The information obtained allowed us to construct a dataset composed of the
flexion and extension angles of 25 healthy subjects during the performance of 400 ARAT
activities and 12 post-stroke patients during the execution of 144 ARAT activities. All the
activities were completed with an ARAT score of 2 or 3.

2.2. Data Preprocessing

In the dataset each sample was labeled according to the class to which each activity
belonged (Control = 0; Stroke = 1). There were 800 cases in class ‘0’ and 288 cases in class
‘1’. Table 1 shows the structure of the dataset used in the model. There were no missing
values in the dataset and therefore all 1088 samples were used.

Table 1. Dataset variables.

y1 x1 x2 x3 x4 (◦) x5 (◦) x6 (◦) x7 (◦) x8 (◦) x9 (◦) x10 (◦) x11 (◦) x12 (◦) x13 (◦) x14 (◦)

0 Test 01 Grasp Extension 4.47 13.51 1.73 −16.75 7.72 8.02 3.93 −17.50 3.16 8.64 2.13
1 Test 12 Grip Flexion 18.42 17.87 23.39 28.44 9.41 27.20 10.76 11.30 13.52 21.26 4.42
0 Test 13 Grasp Extension 6.70 13.78 0.65 20.91 13.05 22.22 11.41 13.85 12.03 20.11 3.68
1 Test 04 Pinch Flexion 13.85 15.30 7.08 17.12 10.53 19.67 8.00 13.23 10.31 18.02 4.89

y1 = response of the dataset; x1–x14 = features of the dataset; x1 = activity, x2 = subtest; x3 = type of motion;
x4 = thumb CMC, x5 = thumb MCP, x6 = thumb IP, x7 = index MCP, x8 = index PIP, x9 = middle MCP, x10 = middle
PIP, x11 = ring MCP, x12 = ring PIP, x13 = little MCP, x14 = little PIP; ◦ = degree.

In the dataset we identified the input and output variables, the input was known
as feature, and the output was known as response. The dataset has 14 features; the first
three correspond to “Activity”, “Subtest”, and “Motion (Extension or Flexion)”, and the
remaining eleven correspond to the angles of the finger joints. On the other hand, the
response variable is the class to which the subject corresponds {0-Control, 1-Stroke}. Hence,
the categorical features in the dataset (x1, x2, x3) were transformed into binary values using
one-Hot encoding method. One-Hot encoding transforms a single categorical variable
with p observations and d distinct values, to d binary variables with p observations each.
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Therefore, each distinct value is converted into a new column and assigned a binary value
indicating the true (1) or false (0) value to the column. Importantly, other demographic
characteristics were not considered in the ML classifiers because the objective of the study
was focused on assessing hand motion information.

2.3. Validation Methods

In order to evaluate the overall performance of the classification models, two validation
methods were used. The first method used was the hold-out, in which we split our dataset
into two parts, a training set and a test set. In each classification model we used 75% of
the data as the training set and the remaining 25% as the test set. In addition, the second
method used to measure the classification model’s performance was the 5x2cv test. Unlike
the common hold-out method, in which we usually split the data set into two parts: a
training set and a test set, in the 5x2cv test, we performed five replications of two-fold
cross-validation. In each replication, the dataset is divided into two equal sets (50% training
and 50% test data).

2.4. Tuning Hyperparameters

Hyperparameters are user-adjustable parameters that can vary in quantity from one
model to another. There are several computational methods to find the optimal hyperpa-
rameters of the model. Two of the most commonly used are GridSearchCV and Randomized
Search CV. We decided to use the GridSearchCV; this technique uses all possible permuta-
tions of the hyperparameters of a given model. The performance of each model was then
evaluated, and the best hyperparameter values were selected. In addition, GridSearchCV
has the advantage of performing a K-Fold cross validation, where the number of folds is
specified by its cv parameter. If it is not specified, it applied a five-fold cross validation by
default. Cross-validation is a technique to identify different problems during model train-
ing, such as the occurrence of overfitting. To do this, GridSearchCV will split the training
data into training and test partitions to tune the hyperparameters on these data [33].

2.5. Classification Metrics

Evaluation metrics for classification models can be applied in two phases. Firstly, in
the training phase, to produce a more accurate prediction result in the future evaluation of
the classification model. Subsequently, in the testing phase, evaluation metrics are used to
measure the efficacy of the classifier when tested on unseen data [34]. Therefore, knowing
the different metrics and making the proper selection is crucial to improving the model’s
performance. Therefore, to evaluate the performance of the classification models, we used
the following metrics in this work: confusion matrix (not a metric but fundamental to the
others), precision, accuracy, recall, F1-score, area under the receiver operating characteristics
(AU-ROC), and the classification report. The formulas corresponding to the evaluation
metrics are shown in Table 2.

Table 2. Formulas of evaluation metrics.

Metric Formula Description

Accuracy TP+TN
TP+FP+TN+FN

Accuracy measures the ratio of the number of correct predictions over the total
number of predictions. Therefore, accuracy measures how often the classifier

correctly predicts.

Precision TP
TP+FP

Precision measures the positive instances that are correctly predicted from the
total predicted instances in a positive class.

Recall TP
TP+FN

Precision measures the positive instances that are correctly predicted from the
total predicted instances in a positive class.

F1-score 2 × Recall×Precision
Recall+Precision

F-score or F1-score evaluates the recall and precision at the same time. Therefore,
F-score is maximum if the recall is equal to the precision.
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Confusion Matrix

A confusion matrix is a useful tool for analyzing the performance of classification
models when tested on unseen data. A confusion matrix is a cross table of true labels versus
model predictions. Each row of the confusion matrix represents instances of an actual class,
and each column represents instances of a predicted class [34]. Typically, it is used for
binary classification problems but can also be applied to multi-class classification problems.
In Figure 1 a binary confusion matrix of 2 × 2 is shown.
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misclassified negative and positive instances, respectively.

2.6. Over-Sampling Data

In this work, the classes in the data set are slightly unbalanced. Therefore, the im-
balanced data problem is solved with oversampling or undersampling techniques. The
advantage of oversampling over undersampling is that no samples are lost from the origi-
nal training set, since all data from the minority and majority classes are preserved [14].
However, in a large dataset, the time and memory consumption could be very large and
costly in oversampling. Since the dataset in our study is not huge and the imbalance is
mild, we do not face this problem. Therefore, we selected an oversampling technique. We
decided to use the Borderline-SMOTE algorithm motivated by the results in studies of
arrhythmia detection [15], estimation of brain metastasis [16] and emotion recognition [4].

Borderline-SMOTE is an algorithm derived from SMOTE (Synthetic Minority Over-
sampling Technique). Borderline-SMOTE generates the synthetic data around the bor-
derline between the two classes [18]. The procedure is as follows: First, we calculate the
nearest neighbors in the minority class N in all the training set samples. Next, we identified
the nearest neighbors; if the majority correspond to the majority class, the samples are put
in a set called Danger. The samples in Danger correspond to the borderline data of the
minority class. Then, we selected a random N nearest neighbors for each sample in Danger
to create the synthetic data. Therefore, we calculate the distance between the sample and
its N nearest neighbors and multiply by a random number between 0 and 1. Finally, the
synthetic samples of the minority class are generated:

Synthetic = pj + rj × di f j, j = 1, 2, . . . , s

where pj represents the samples in Danger, rj represents a random number between [0, 1],
and difj represents the distance between the samples and the N nearest neighbor.
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2.7. Statistical Analysis

The three classification models (RF, SVM, KNN) were compared to determine which
has the best performance. First, we presented the results obtained with the GridSearchcv
technique on the three classification models in different evaluation metrics such as Ac-
curacy, Precision, Recall, F1-score, and AUC-ROC using the hold-out method. Next, the
overall performance of the models were obtained and compared with the 5x2cv com-
bined F test [35] using the MLxtend library by Sebastian Raschka [36], which provided the
f-statistic and p-value. Subsequently, we evaluated the performance of the three classifi-
cation models using the hold-out method with several evaluation metrics after balancing
the data classes with the technique Borderline-SMOTE. Then, the evaluation metrics of the
three models after data balancing were obtained and compared using the 5x2cv combined
F test. Finally, each classification model was compared before balancing and after balancing
using the 5x2cv t paired test. The statistical analysis was conducted using the software
Anaconda (Anaconda Inc, Austin, TX, USA) with Python 3.9. A p-value of less than 0.05
was considered statistically significant for all the statistical analyses.

3. Results

In this section, the results of the performance and the comparison of the classification
models Random Forest (RF), K-nearest Neighbor (KNN), and Support Vector Machine
(SVM) are presented.

3.1. Hyperparameters Selection

The GridSearchCV technique was applied to each of the classification algorithms
(RF, KNN, SVM) developed in this work using a cross validation fold value of five. The
best performing hyperparameter values obtained in each of the classification models were
as follows.

1. SVM: [‘C’: 10, ‘gamma’: 0.1, ‘kernel’: ‘rbf’]
2. KNN: [‘leaf_size’: 20, ‘metric’: ‘minkowski’, ‘n_neighbors’: 10, ‘p’: 3, ‘weights’:

‘distance’]
3. RF: [‘max_depth’: 50, ‘min_samples_leaf’: 1, ‘min_samples_split’: 3, ‘n_estimators’: 500]

3.2. Classification Models with GridSearchCV

The hyperparameter values obtained were used to evaluate each classifier in the
prediction of results in the test set and the results were as follows.

3.2.1. Random Forest

The RF classifier showed an accuracy of 93% and a high precision of 96.5%. In contrast,
the recall of 76.4% and the f1-score of 85.3% were low. On the other hand, the classification
report presented in Table 3 shows that the recall and the f1-score values were higher in the
control class but were lower in the stroke class. In contrast, the precision was higher in the
stroke class, as is shown in the confusion matrix in Figure 2.

Table 3. Random Forest model classification report.

Classes Precision Recall F1-Score Support

Control 0.92 0.99 0.95 200
Stroke 0.96 0.76 0.85 72

3.2.2. K-nearest Neighbor

The KNN classifier presented a high precision of 95.3% and an accuracy of 87.9%. In
contrast, the recall of 56.9 % and the f1-score of 71% were low. Table 4 shows that the recall
and f1-score were higher in the control class. While the precision was low in the control
class as is shown in Figure 3.
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3.2.3. Support Vector Machine

The SVM classifier showed a high precision of 98.3% and a high accuracy of 94.5%. In
contrast, the SVM classifier showed a recall of 80.5% and an f1-score of 88.5%. However,
the classification report in Table 5 showed high values in precision, recall, and f1-score in
the control class and in the precision of the stroke class, as is shown in the confusion matrix
in Figure 4.
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Table 5. Support Vector Machine model classification report.

Classes Precision Recall F1-Score Support

Control 0.93 0.99 0.96 200
Stroke 0.98 0.81 0.89 72
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3.3. Performance Comparison of Classification Models

Table 6 shows the mean values and standard deviation of several evaluation metrics
for the RF, SVM, and KNN classifiers. The results showed that the three models have
similar precision, and no significant differences were found among the three classifiers
(p > 0.05). The SVM classifier showed significantly higher accuracy and f1-score than the
KNN classifier. In contrast, no significant differences (p > 0.05) were found in accuracy
and f1-score between the SVM and RF classifiers. In addition, the SVM classifier showed a
significantly higher recall and AUC than the RF and the KNN classifiers.

Table 6. Comparison of classification models in different evaluation metrics.

Evaluation
Metric

RF SVM KNN RF-VM RF-KNN SVM-KNN

Mean ± SD Mean ± SD Mean ± SD f p f p f p

Precision 0.961 ± 0.02 0.969 ± 0.03 0.951 ± 0.02 1.459 0.355 1.788 0.271 1.421 0.366
Accuracy 0.933 ± 0.01 0.958 ± 0.01 0.913 ± 0.01 2.917 0.124 2.2 0.199 26.388 0.001 ***

Recall 0.781 ± 0.04 0.872 ± 0.04 0.710 ± 0.07 8.959 0.013 * 1.089 0.513 45.417 0.00 ***
F1-score 0.861 ± 0.02 0.917 ± 0.02 0.811 ± 0.04 3.789 0.077 1.7 0.29 36.179 0.00 ***

AUC 0.980 ± 0.01 0.984 ± 0.03 0.939 ± 0.02 5.445 0.038 * 8.15 0.016 ** 11.754 0.007 **

RF = Random Forest; SVM = Support Vector Machine; KNN = K-nearest Neighbors; SD = standard deviation; f = f
statistic; *: p ≤ 0.05; **: p ≤= 0.01; ***: p ≤= 0.001.

3.4. Borderline-SMOTE Data Balancing

The dataset in this work presented a mild case of imbalanced data between the two
classes (control and stroke) as is shown in Figure 5. The results presented earlier in this
work showed a high accuracy in the three classifiers. However, the accuracy metric is
not a good indicator when there are imbalanced classes, as in this case. In contrast, the
classifiers KNN and RF showed a lower recall especially in the classification of subjects of
the control class. Therefore, to optimize the performance of the classifiers, we decided to
use the Borderline-SMOTE algorithm for data oversampling. In contrast, Figure 6 shows
the classes after the data balancing with Borderline-SMOTE.
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3.5. Classification Models with Borderline-SMOTE

The three classification models showed an improvement in the classification of both
classes (control and stroke), as is shown in Table 7 after data balancing with Borderline-
SMOTE. Previously, the classification models showed difficulty in classifying subjects with
stroke due to the class imbalance. The improvement was remarkable, particularly in the
metrics of recall and f1-score. The overall performance of the classification models in the
test set was evaluated with the following evaluation metrics: accuracy, precision, recall, F1-
score, and AUC-ROC. The results were as follows: The SVM classifier showed a precision
of 98%, while the RF classifier showed a precision of 96.4%, and the KNN classifier showed
a precision of 86.3%. On the other hand, the KNN classifier presented a recall value of 98%,
but analyzing the classification report in Table 7 we observed a low recall value of 84%
in the control class. In contrast, the SVM classifier presented a recall value of 97.5% and
the RF presented a recall of 94% and both classifiers had a uniform recall value in the two
classes. In addition, the SVM classifier showed the highest f1-score of 97.7 %, while the RF
classifier showed a f1-score of 95.2% and the KNN classifier showed a f1-score of 91.8%.
Finally, the AUC-ROC of the three classifiers is shown in Figure 7.
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Table 7. Classification Report of the three classification models after data balancing (Borderline-
SMOTE).

Evaluation Metric
RF SVM KNN

Control Stroke Control Stroke Control Stroke

Precision 0.94 0.96 0.98 0.86 0.98 0.98
Recall 0.96 0.94 0.84 0.98 0.98 0.97

F1-score 0.95 0.95 0.91 0.92 0.98 0.98
Support 200 200 200 200 200 200

Accuracy 0.95 0.98 0.91
RF = Random Forest; SVM = Support Vector Machine; KNN = K-nearest Neighbors.
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3.6. Performance Comparison between Classifiers after Borderline-SMOTE

Table 8 shows the mean values and standard deviation of several evaluation metrics
for the RF, SVM, and KNN classifiers using Borderline-SMOTE. As can be seen, the three
classification models have a similar and consistent performance. The results showed no
significant differences (p > 0.05) in accuracy, recall, and f1-score among the three classifiers.
However, the RF classifier showed significantly higher precision than the KNN classifier.
In contrast, the RF and the SVM classifiers showed a significantly higher AUC than the
KNN classifier.

Table 8. Comparison of classification models after Borderline-SMOTE in different evaluation metrics.

Evaluation
Metric

BS_RF BS_SVM BS_KNN BS_RF-BS_SVM BS_RF-KNN BS_SVM-KNN

Mean ± SD Mean ± SD Mean ± SD f p f p f p

Precision 0.971 ± 0.014 0.968 ± 0.008 0.914 ± 0.021 0.551 0.803 6.083 0.03 * 4.049 0.068
Accuracy 0.971 ± 0.010 0.978 ± 0.006 0.948 ± 0.014 1.691 0.293 2.81 0.133 3.88 0.074

Recall 0.970 ± 0.014 0.989 ± 0.007 0.989 ± 0.009 3.403 0.094 3.8 0.077 2.765 0.137
F1-score 0.971 ± 0.010 0.978 ± 0.006 0.950 ± 0.013 1.833 0.261 2.525 0.159 3.668 0.082

AUC 0.996 ± 0.002 0.995 ± 0.004 0.980 ± 0.009 4.074 0.067 7.457 0.019 * 7.098 0.022 *

BS_RF = Borderline-SMOTE in Random Forest; BS_SVM = Borderline-SMOTE in Support Vector Machine;
BS_ KNN = Borderline-SMOTE in K-nearest Neighbors; SD = standard deviation; f = f statistic; *: p ≤ 0.05.

3.7. Performance Comparison of the Classifiers before and after Data Balancing

In general, the three classification models RF, KNN, SVM showed an improvement
after the data balancing process using the Borderline-SMOTE technique in several metrics.
In the statistical comparison of the classifiers with unbalanced data and with data balancing,
the following results were obtained. In precision metrics, no significant differences were
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found in the RF and SVM classifiers before data balancing and after data balancing. In
contrast, the KNN classifier after data balancing showed significantly lower precision
than before balancing, as is shown in Figure 8. On the other hand, the RF, SVM, and
KNN classifiers showed significantly higher accuracy, recall, f1-score, and AUC after data
balancing, as is shown in Figures 8–12.
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Figure 9. Comparison of accuracy between classification models with imbalanced and oversampled
data. RF = Random Forest; BS_RF = Borderline-SMOTE Random Forest; SVM = Support Vector
Machine; BS_SVM = Borderline-SMOTE Support Vector Machine; KNN = K-nearest Neighbors;
BS_ KNN = Borderline-SMOTE K-nearest Neighbors; **: p ≤ 0.01; ****: p ≤ 0.0001.
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Figure 10. Comparison of recall between classification models with imbalanced and oversampled
data. RF = Random Forest; BS_RF = Borderline-SMOTE Random Forest; SVM = Support Vector
Machine; BS_SVM = Borderline-SMOTE Support Vector Machine; KNN = K-nearest Neighbors;
BS_ KNN = Borderline-SMOTE K-nearest Neighbors; ****: p ≤ 0.0001.
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Figure 11. Comparison of F1-score between classification models with imbalanced and oversampled
data. RF = Random Forest; BS_RF = Borderline-SMOTE Random Forest; SVM = Support Vector
Machine; BS_SVM = Borderline-SMOTE Support Vector Machine; KNN = K-nearest Neighbors;
BS_ KNN = Borderline-SMOTE K-nearest Neighbors; ***: p ≤ 0.001; ****: p ≤ 0.0001.
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4. Discussion

In this work, three binary classification models were developed using the following
algorithms: Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor
(KNN). We used as features, the angles of flexion and extension of 11 finger joints during the
performance of the activities of the Action Research Arm Test (ARAT) to classify activities
between two classes: healthy subject (0 = Control) and post-stroke patients (1 = Stroke).
Importantly, the activities included in the dataset of the stroke group obtained a score of 2–3
on the ARAT. While in all the activities included in the dataset of the control group, a score
of 3 was obtained. Therefore, based on the ARAT score all tasks were completed and there
is not much difference between the tasks in one group and the other. In this way, using
completed tasks based on the ARAT score, the performance of the classifier is evaluated.

The result showed that the SVM classifier had the best performance in the test set
before data balancing with a precision of 98.3%, an accuracy of 94.5 %, a recall of 80.5%,
f1-score of 88.5% and an AUC of 0.989. In addition, the recall and AUC were significantly
higher than the RF and KNN classifiers. However, the recall values in the three classifiers
were low especially in the stroke group. The lower recall showed that the model was
classifying stroke patients as healthy subjects as is shown in the confusion matrices in
Figures 2–4. Besides, we detected a mild imbalance between classes, so we decided to use
the oversampling technique Borderline-SMOTE. The results showed that after Borderline-
SMOTE the three classifiers showed significantly higher accuracy, recall, f1-score, and
AUC. In the recall, there was an increase in the RF (17.6%), SVM (17%), and KNN (41.1%).
However, the KNN classifier showed a recall of 84% in the control class while the RF and
SVM classifiers had a balanced recall in both classes. In addition, the precision of the
KNN was significantly lower after data balancing. Finally, all the classification models
showed an AUC > 0.95. In fact, the RF and SVM showed the best performance after
data balancing and no significant differences were found in any metric between the two
classifiers. However, the SVM showed a high accuracy, recall and f1-score and therefore a
more balanced performance. Hence, The SVM was the model with the best performance
after data balancing with Borderline-SMOTE and before data balancing.
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The results in our study showed that after data balancing using Borderline-SMOTE
the classification models showed an improved performance as in other research. Reddy
et al. applied the Borderline-SMOTE algorithm on convolutional neural networks (CNN)
to detect arrhythmias using electrocardiogram signals. Their results showed a significantly
higher f1-score and accuracy after the use of Borderline-SMOTE [15]. The results of our
work were similar, where the three classification models obtained significantly higher
accuracy, recall and f1-score after using the Borderline-SMOTE technique. On the other
hand, Chang et al. presented a study for emotion recognition with electroencephalogram
(EEG) signals using data augmentation with the Borderline-SMOTE method [4]. They
compared traditional machine learning methods, and their results showed that SVM
and XGBoost had better performance in average accuracy and average macro f1-score
than decision tree and KNN models. Our work obtained similar results where the SVM
algorithm showed higher accuracy and f1-score than the KNN and RF models. However,
our study used a binary classification analysis, and in the study of Chang et al., a multiclass
classification method was used.

In addition, there are few studies that have developed machine learning models with
data obtained from the ARAT test. Dutta et al. developed an SVM classifier with an
accuracy of 92% to predict ARAT scores in patients with different degrees of disability.
They used a glove with six flex sensor and three force sensors and a motion processing
unit [26]. In contrast, Dutta et al. predicted ARAT scores (0, 1, 2, 3) using a multiclass
classification model and presented problems in classifying classes 0 and 2. On the other
hand, Rheme et al. used an SVM model to predict good and poor motor outcomes of stroke
patients based on the ARAT score, grip force index, and magnetic resonance imaging (fMRI)
using a SVM classifier with an accuracy of 76% [37]. However, the outcome of patients with
initially moderate impairment could not be predicted with the information of the ARAT
score and the grip force test. The results of the above studies demonstrate that it is difficult
to predict in post-stroke subjects with moderate impairments based on the ARAT scoring
process which confirms what was established in our study. Therefore, the difference with
our work is that our study was not based on the ARAT score, but on the information of
eleven finger joints angles obtained with the human hand motion system composed by a
data glove with 18 flexion sensors during the performance of the ARAT. In addition, in our
study we obtained an accuracy of 97.8% with the SVM model, 97.1% with the RF model,
and 94.8% with the KNN model classifying ARAT activities. Therefore, our classification
models presented better results than those presented in the studies by Dutta et al. and
Rheme et al. Furthermore, to our knowledge, there are no previous studies that have
developed machine learning models to classify ARAT activities using the range of motion
of the finger joints as features and, therefore, a direct comparison with other studies will
be biased as most of these use demographic characteristics and scores on several outcome
measures as features.

For these reasons, our results demonstrate that using human hand motion information
allows the development of high-performance Machine Learning models (SVM, KNN, RF)
for classifying ARAT activities. However, to achieve these results it was necessary to
balance the classes using the Borderline-SMOTE algorithm. Importantly, we demonstrate
that there are differences not detected by the ARAT scoring process that are limited only
to evaluate the quality performance. Therefore, these results are of clinical relevance for
physiotherapists and other health care professionals who can use a classification model
for the detection of finger joint impairments not only in people post-stroke but also after
surgical procedures, hand injuries and other hand disorders.

Nevertheless, the present study had some limitations. We were limited to the use of
traditional machine learning classifiers, but the use of Ensemble Machine Learning methods
has shown very good results in clinical studies [38,39], so that in future work we could im-
plement an ensemble classifier and compare the results. In addition, deep learning has also
been used for classification problems in the area of healthcare, especially Convolutional neu-
ral networks (CNNs), showing good results in combination with Borderline-SMOTE [4,15].
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Moreover, Fraiwan et al. used deep transfer learning to detect scoliosis and spondylolisthe-
sis [40]. Therefore, the use of deep learning should also be considered for future studies.
On the other hand, other research to improve the performance of disease predictions uses
the development of a classification algorithm based on a multi-level iterative influence
measure that would be interesting to use in future research [41]. Another limitation we had
is that it was not possible to access patient demographic data. This would have allowed us
to evaluate the impact of these features on the classification algorithm. Finally, we limited
ourselves to evaluating patients with good upper extremity function according to the ARAT
score. Therefore, it would be interesting to evaluate subjects with different degrees of upper
extremity impairment to perform a classification model to predict ARAT scores based on
information from the eleven finger joints. On the other hand, it is essential to consider the
recall results since the activities of post-stroke patients identified as the control group could
have been performed in the same way as a healthy person. Therefore, the bias would not
be in the classifier model, but in the fact that there were no significant differences in certain
activities between post-stroke patients and healthy subjects.

5. Conclusions

In this study, we present the novel development of classification models based on
human hand motion features in combination with the oversampling algorithm Borderline-
SMOTE. The classifiers with unbalanced data showed a low recall and f1-score especially
in the stroke class, after the implementation of Borderline-SMOTE the three classifiers
showed a significantly higher accuracy, recall, f1-score, and AUC. However, the SVM
classifier showed the higher performance with a precision of 98%, a recall of 97.5% and
an AUC of 0.996 after data balancing. Therefore, the results showed that the classification
models using Borderline-SMOTE achieve a higher performance. In addition, the high
performance of the classifiers showed that there are differences between the activities
performed between healthy and post-stroke individuals that are not detected by the ARAT
scoring process. Regardless, the recall results can show activities in which people from
both classes performed equally well. Furthermore, the classification model based on hand
motion information can be used in future work for the detection of finger joint impairments
not only in people post-stroke but also after surgical procedures, hand injuries, and other
hand disorders.
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