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A B S T R A C T   

Examples of how to simulate performance of conservation agriculture (CA) and conventional tillage (CT) 
practices using cropping systems models are rare in the literature, and from the Eastern Gangetic Plains (EGP). 
Here we report a comprehensive evaluation of the capacity of APSIM for simulating the performance of CA and 
CT cropping practices under a diverse range of tillage (CT vs zero tillage (ZT)), crop establishment options 
(puddled transplanted rice vs unpuddled transplanted rice), residue, N rates, and irrigation practices from two 
sites in the EGP that differed in soil type, water table dynamics, and agro-climatic conditions. We followed a 
robust procedure of model parameterisation, calibration, and validation, then undertook statistical analyses to 
evaluate model performance. We have demonstrated that when different values for key model input parameters 
are employed (i.e. change in soil properties (Ks, BD)), crop rooting parameters (xf- root hospitality, kl- root 
extraction efficiency) and soil microorganism activity (Fbiom- fraction of soil organic matter present as microbial 
biomass and Finert- the inert fraction of soil organic matter), the model performed well in simulating the different 
performances of CA and CT management practices across the environments in the EGP. Model performance was 
markedly better in the full-N than in zero-N, but both are still considered acceptable. In addition to well-watered 
and fertilised treatments, the model was able to capture an observed crop failure in rainfed unpuddled trans-
planted rice accurately, illustrating an ability to capture crop response under a wide range of water stress en-
vironments. As demonstrated by robust statistical criteria, APSIM was able to capture the effect of cropping 
system, irrigation, tillage, residue, and N-application rate within the bounds of experimental uncertainty, hence 
is now deemed a suitable tool for scenario analyses around the relevant practices.   

1. Introduction 

The rice-wheat cropping system plays a major food security role, 
occupying around 12.4 Mha in four south Asian countries (India, 
Pakistan, Nepal, and Bangladesh) (Timsina et al., 2010) and producing 
staple food for 15% of the world’s population (Laik et al., 2014). There is 
a growing awareness among policymakers and people of the area of the 
need to increase the productivity of the rice-wheat system, to meet the 
demand of the ever-growing population of the region while utilizing 
resources efficiently (Dobermann and Witt, 2000; Ladha et al., 2009; 
Hochman et al., 2013). Intensification of current rice-wheat rotation 

(conventional puddled transplanted rice–conventional-till (CT) wheat), 
through the inclusion of a rainfed summer legume (mungbean) 
following wheat (Mondal et al., 2012; Islam et al., 2019), along with the 
implementation of conservation agriculture (CA) based management 
practices (Hobbs, 2007; Jat et al., 2020), could help overcome these 
major constraints and sustain productivity (Chaki et al., 2019a). The 
results of field experiments conducted in this regard, including the 
findings presented in Chaki (2021); Chaki et al. (2021a); Chaki et al. 
(2021b), provide insights into system performance over only short pe-
riods. Furthermore, given resource constraints, it is not possible to test 
the many possible variations to cropping practices, or to understand 
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systems behaviour/performance with new imposed practices over a 
broad range of growing season conditions. Cropping system models that 
are locally calibrated and validated using short-term experimental data 
and long-term climatic data, can be useful tools for investigating farming 
system intervention options including long-term system performance 
with respect to production, economics, environmental trade-offs, and 
resource use (Akhter et al., 2014; Amarasingha et al., 2015, 2017; Khaliq 
et al., 2019). 

Simulation models are being increasingly used for analysis and de-
cision making processes in agricultural fields, such as for achieving 
increased production and food security, understanding soil carbon 
changes, ecosystem services, limiting greenhouse gas emissions, climate 
change adaptation and mitigation, pests and disease losses, livestock 
and pasture production, and understanding climatic risk; all of which 
are not possible from short-term experiments (Holzworth et al., 2014a, 
2014b). Many modelling efforts have continued over decades because of 
their potential benefits in agricultural decision support systems (Jones 
et al., 2003; Whitbread et al., 2010; Holzworth et al., 2014a). The bio-
physical models integrate soil, climate, crop, and management practices 
to simulate the growth and yield of a crop in association with 
below-ground processes (e.g., soil N dynamics, soil water), often on a 
daily time-step basis. Once properly parameterised, calibrated and 
validated, the model can be used to analyse the influence of a range of 
factors on the growth and yield of a crop, and also to interpret experi-
mental findings and extrapolate to wider climatic, soil and management 
conditions. Furthermore, well-tested models help to understand 
numerous underlying processes of crop production and to quantify 
them, which is often difficult and expensive under field conditions. 
Several dynamic simulation models are being used worldwide such as 
DSSAT (Jones et al., 2003), APSIM (Keating et al., 2003; Holzworth 
et al., 2014a), CropSyst (Stöckle et al., 2003), EPIC (Izaurralde et al., 
2006), STICS (Brisson et al., 2003), WOFOST (Keulen and Wolf, 1986), 
RIWER (Jing et al., 2010) and infoCrop (Aggarwal et al., 2006). How-
ever, few of them have the capacity to simulate farmer detailed man-
agement decisions which change from year to year based on prevailing 
climatic conditions or soil status (for example, different rice sowing 
dates each season based on start of monsoon rains), or to simulate the 
rice-based cropping systems (rice followed by non-rice crops in rotation) 
which dominate in the Eastern Gangetic Plains (EGP). The Agricultural 
Production Systems sIMulator (APSIM) is such a model and has been 
successfully used in modelling diversified cropping systems, crop rota-
tions, intercropping, fallowing, water balance, N stress and balance, and 
environmental dynamics (Probert et al., 1997, 1998; Carberry et al., 
2002; Keating et al., 2002; Robertson et al., 2002; Verburg and Bond, 
2003; Whitbread et al., 2010; Balwinder-Singh et al., 2011; Akhter et al., 
2014; Holzworth et al., 2014a; Chaki et al., 2019b). The model has also 
been improved to simulate rice-based cropping systems (Gaydon et al., 
2012a). The capacity of APSIM to simulate major cropping systems of 
Asia (12 countries, various climates, soil, and management) has recently 
been evaluated successfully in terms of crop duration, growth, yield, 
crop sequences, water productivity, soil carbon changes and crop 
response to elevated CO2 levels (Gaydon et al., 2017). No other cropping 
systems model offers the flexibility in specifying specific farmer decision 
making logic in simulations (Gaydon et al., 2017), thereby capturing 
season by season changes in farmer management practices in response to 
prevailing conditions. Although contrasts between CA vs CT practices 
are widely reported in the literature, there are very few examples of 
modelling these differences in cropping systems simulation (examples 
would be Balwinder-Singh et al. (2015), from the North-Western Indo 
Gangetic Plains (NW-IGP), and Corbeels et al. (2016), from Monze, 
Southern Province of Zambia) and there are none from the EGP. For 
simulating the impact of CA management on crop productivity, simu-
lating soil water is the foremost variable (especially for water-limited 
environments) which should be simulated quite sensibly for the anal-
ysis of trade-offs of water allocation using the cropping systems model. 
To address this gap, we evaluated the capacity of APSIM to simulate the 

differences in observed performance between CA and CT cropping 
practices (which are illustrated in Fig. S1 by non 1:1 correlation re-
lationships) with different N and irrigation managements in the 
rice-wheat system for two diverse environments (varied in soil types, 
water table dynamics, and agro-climatic conditions) of the EGP, utilising 
the data gained from experiments detailed in Chaki (2021); Chaki et al. 
(2021a); Chaki et al. (2021b). 

2. Materials and methods 

A robust procedure of model parameterisation, calibration, and 
validation was followed and then statistical analyses were undertaken to 
evaluate the model performance. 

2.1. Description of the model used (APSIM v7.5) 

The APSIM software provides a dynamic cropping systems modelling 
framework, which contains interconnected modules of key farming 
system components to be plugged in to simulate biophysical process in 
the systems (McCown et al., 1996; Keating et al., 2003; Holzworth et al., 
2014a). The model comprises biophysical modules, a flexible manage-
ment module, and various data input-output modules connected to a 
central simulation engine that drives the simulation of the systems. 

The key strength of APSIM is that it focuses on cropping systems 
rather than individual crops, and simulates management-related con-
tingencies between crops (e.g. planting dates) as well as carry-over ef-
fects on dynamic soil properties. Soil state variables are simulated 
continuously with regards to weather and management and crops “come 
to the soil finding it in one state and leave it in another state” after 
completing its term (McCown et al., 1995). APSIM places equal 
emphasis on the demand and supply sides of the simulation as impacted 
by weather and management, rather than being focussed on demand like 
many crop models. 

The generic plant model incorporated into APSIM (Wang et al., 
2002) has now been able to simulate 30 different crops (Holzworth 
et al., 2014a). The plant modules simulate key physiological processes 
on a daily time-step basis to simulate potential production which is 
constrained by the availability of resources (soil water, N), daily weather 
(solar radiation, maximum and minimum temperature, and rainfall) and 
management factors (sowing date, tillage type, irrigation, and N apply 
date, residue management, etc.) (Keating et al., 2003). Two model op-
tions are available for soil water balance simulation in APSIM - a 
cascading layer approach (SOILWAT: simple one using “tipping bucket” 
approach) (Probert et al., 1998) and Richards equation method (APS-
WIM: using numerical solution) (Verburg et al., 1996; Huth et al., 2012). 
The surface organic matter (SURFACEOM) module has the function of 
addition, removal, incorporation, decomposition in situ, and soil cover 
(Probert et al., 1998; Thorburn et al., 2001). APSIM simulates the effect 
of crop residues on the efficiency with which soil water is captured and 
retained in the system. APSIM calculates a surface residue effect (an 
overall effective cover value of 0–1) on soil evaporation and runoff 
based on the total residue present on the soil surface. The soil N (SOILN) 
module simulates the processes of nitrification and denitrification in the 
soil, stubble/roots left from the previous crop, and thus N supply to the 
plant (Probert et al., 1998). SOILN also simulates the soil carbon bal-
ance. APSIM treats soil organic matter as a three-pool system. The fresh 
organic matter (FOM) pool comprises the incorporated crop residues 
and roots. After decomposition of the FOM pool, the labile soil microbial 
biomass (BIOM) pool, and the more stable humus (HUM) pool are 
formed. The decomposition process of organic matter pools releases 
mineral N and the rates of mineralisation depend on soil temperature 
and water supply during the process (Probert et al., 1998). APSIM pond 
(POND) module simulates different biological and chemical processes 
occurring in the flooded rice field (Gaydon et al., 2012b). 
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2.2. Experimental sites 

The field experiments were established on two experimental farms of 
the Bangladesh Wheat and Maize Research Institute (BWMRI); (i) in the 
Rajshahi district (latitude 24◦22’ N, longitude 88◦39’ E and 12 m ASL) 
and (ii) in the Dinajpur district (latitude 25◦89’ N, longitude 88◦76’ E 
and 41 m ASL). Each trial was conducted for two years (2016 and 2017 
at Rajshahi, and 2017 and 2018 at Dinajpur) (Fig. 1). The Dinajpur site 
represents lighter soils (higher sand content) with deeper water tables, 
whereas the Rajshahi site represents heavy soils (high clay content) with 
shallow water tables. The details of climate, soil, and water table dy-
namics of the two sites are presented in Chaki et al. (2021a). 

The experimental field had been under a conventionally-tilled rice- 
wheat system for the previous five years at Rajshahi and the previous 
twenty years at Dinajpur. However, mungbean was occasionally culti-
vated at the Rajshahi site between wheat and rice crops, practicing 
conventional methods. 

2.3. Description of the experimental datasets 

The details of the crop establishment, management, experimental 
measurements, cropping history, and data used for model calibration 
and validation has been described in Chaki (2021); Chaki et al. (2021a); 
Chaki et al. (2021b), and a summary of the experimental treatments are 
given here. 

The experiment was laid out in a randomized split-plot design with 
three replications. The sub-plot size was 5 m × 6 m at Rajshahi and 
3 m × 5 m at Dinajpur. The main plots were separated by a 1.2 m wide 
buffer, and sub-plots by 0.75 m buffer. Six cropping system treatments 
(CS) were allocated in the main plots as follows: 

CS1: Puddled transplanted rice (PTR) – Conventional tilled wheat 
(CT wheat, 3 irrigations). 

CS2: PTR – CT wheat (3 irrigations) – CT mungbean. 
CS3: Unpuddled transplanted rice (UPTR) – ZT wheat (3 irrigations) 

– ZT mungbean. 

CS4: UPTR – ZT wheat (2 irrigations) – ZT mungbean. 
CS5: UPTR – ZT wheat (1 irrigation) – ZT mungbean. 
CS6: Rainfed-unpuddled transplanted rice (RUPTR) – ZT wheat (0 

irrigation) – ZT mungbean (Rainfed system). 
Three N rates (N0: zero N, N45: 45 kg ha− 1 N and N90: 90 kg ha− 1 N 

for rice, and N0: zero N, N60: 60 kg ha− 1 N and N120: 120 kg ha− 1 N for 
wheat, representing zero, half, and full recommended application rate) 
were imposed in the sub-plots to assess model response to N, and its 
ability to simulate indigenous soil supply. There was no N fertiliser 
applied to mungbean. Rice was established as PTR (transplanted in 
puddled soil- a process of wet tillage in ponding water to create a soft 
soil environment and impermeable sub-soil layer) after CT wheat, and as 
UPTR (transplanted in no-till soil) after either ZT wheat or mungbean. 
Wheat was sown using a BARI ZT drill seeder into the conventionally 
tilled plot (land prepared by 2-W tractor) after PTR crop harvest, and 
into the no-till plot after UPTR and RUPTR crop harvest. Mungbean was 
sown after harvesting wheat using a similar method of establishment 
used in wheat. All above-ground crop residues were removed from the 
CT (CS1 and CS2), and 25 cm standing residue of rice and wheat and all 
residue of mungbean was retained in the CA (CS3 to CS6) after har-
vesting of the respective crops, following accepted CA practice (Islam 
et al., 2019). 

2.4. APSIM parameterisation 

The APSIM model (version 7.5) was parameterised by supplying 
measured data to the model such as climate data, soil properties, crop 
varieties, crop phenology, crop management practices followed, and 
inputs supplied. 

2.4.1. Climate data 
Daily maximum and minimum temperatures, rainfall, and solar ra-

diation were recorded daily using an automatic weather station (DWS 
Decagon Weather Station configured with EM50 data logger at Rajshahi 
and HOBO RX3000 Weather Station at Dinajpur) installed at the 

Fig. 1. Map showing experimental sites.  
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experimental sites. Long-term climate data (1982–2019) for Rajshahi 
and Dinajpur were collected from the weather records of the Bangladesh 
Meteorological Department (BMD) (Fig. S2). These data were used as 
climate inputs to APSIM. 

2.4.2. Soils data 
APSIM requires measurable soil physical parameters on a layer basis 

including bulk density, saturated water content, drained upper limit, 
lower limit (expressed in volumetric moisture content terms), soil water 
content (SWCON), and saturated hydraulic conductivity, and soil 
chemical parameters such as organic C, pH, and mineral N (NO3

- and 
NH4

+). Soil samples were collected from the experimental sites in seven 
layers: 0–15, 15–30, 30–60, 60–90, 90–120, 120–150, 150–180 cm and 
processed for particle size analysis, bulk density, and chemical compo-
sition using standard procedures (details in Chaki et al. (2021a)). Water 
content at the lower limit (at 1500 kPa) and drained upper limit (at 33 
kPa) was measured using a pressure plate apparatus. Details of soil data 
used in APSIM simulations are provided in Table 1. 

2.4.3. Groundwater levels 
Groundwater levels were monitored at 15 days’ interval in piezom-

eter tubes installed in the experimental field at each site. At Rajshahi, the 
water table depth fluctuated between 0.5 m and 0.9 m during the rabi 
season, while it ranged from 0 to 1.6 m during the Kharif season 
(Fig. S3). The persistence of a shallow perched water table in the 
experimental field at Rajshahi indicated the presence of an impermeable 
layer restricting water movement through the soil profile. At Dinajpur, 
the water table depth was deeper than 2 m (2.5–4.7 m) during the rabi 
season, while it ranged from 1.5 to 4.8 m during the Kharif season 
(Fig. S3). The daily groundwater table depth data were provided as 
additional inputs to the APSIM climate file, and we configured APSIM 
manager logic to read this groundwater table data daily from the APSIM 
climate file. 

2.5. APSIM calibration 

APSIM requires some other parameters, such as crop genetic co-
efficients and some soil parameters that are difficult to measure or have 
greater uncertainty in measured values, which need iterative adjust-
ment. Through the calibration process, the APSIM model was run with 
best possible guess values and then model outputs were compared with 
the first season of observed data (crop developmental stages, grain yield, 
biomass, soil water, soil NO3

--N) from the selected treatments (details in 

subsections below), and the process repeated with re-estimated values 
until a satisfactory performance in simulating the output variables of 
interest (for example, yield) was achieved. 

2.5.1. Crop phenology 
The crop varieties used in this simulation study were rice (var. BRRI 

dhan52), wheat (var. BARI Gom-26 for Rajshahi, and BARI Gom-32 for 
Dinajpur) and mungbean (var. BARI Mung-6). For the rice variety, the 
simulated dates of sowing, transplanting, panicle initiation, flowering, 
physiological maturity, and harvest were compared with observed 
values to adjust the varietal rice phenology parameters for APSIM- 
Oryza. For the wheat varieties, the simulated (using APSIM-Wheat 
model) dates of sowing, emergence, flowering, physiological maturity, 
and harvest were compared with observed phenology dates for the first 
season, and similarly, model parameters adjusted until a good agree-
ment was achieved. For the mungbean variety, the observed dates of 
sowing, emergence, flowering, physiological maturity, and harvest were 
compared with simulated phenology dates using the APSIM-Mungbean 
model. For each crop variety, the APSIM-crop phenology coefficient 
values were varied iteratively to produce a close match between the 
observed and simulated phenology dates. 

The recommended irrigation and fertiliser treatment CS3N3 was 
selected for the calibration of phenology development parameters for 
wheat and mungbean. The APSIM-Oryza version was developed under 
non-limiting N environments and thus shows no effect of N-stress on rice 
phenology (Bouman and Van Laar, 2006; Gaydon et al., 2017). In order 
to capture the phenology dates of rice under different N-stress envi-
ronments, treatments CS3N1, CS3N2, and CS3N3 were used to create 
different virtual varieties which exhibit correct phenology for the asso-
ciated N treatment. 

2.5.2. Crop biomass and yield 
The biomass for rice was measured on plants collected from 4 hills 

(two hills × two hills) in each sub-plot at 35 days after transplanting 
(DAT), 60 DAT, 85 DAT, and at the maturity stage. The biomass for 
wheat and mungbean was measured on plants collected from a 
randomly located one-meter row in each sub-plot at 30 days after 
sowing (DAS), 50 DAS, 70 DAS, and at maturity stage for wheat, and at 
30 DAS, 50 DAS, and at harvest for mungbean. The biomass was then 
split into leaves, stems, and heads for each treatment. The partitioned 
biomass was dried in an oven at 70 ◦C for 3–5 days until the weight was 
constant. At maturity, grain yield was measured by harvesting an area of 
6 m2 in the centre of each sub-plot. The grain was threshed using a plot 

Table 1 
Soil physical and chemical properties at the experimental sites.  

Soil depth 
(cm) 

pH TOC 
(%) 

NO3
--N 

(mg 
kg− 1) 

NH4
+-N 

(mg 
kg− 1) 

LL 
(cm3 

cm− 3) 

DUL 
(cm3 

cm− 3) 

SAT 
(cm3 

cm− 3) 

Ks (mm day− 1) BD (g cm− 3) Soil texture 

CT CA CT CA Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Rajshahi               
0–15  7.7  1.22  23.4  6.32  0.14  0.31  0.37  25.9  25.9  1.53  1.45  30  44  26 
15–30  7.7  1.19  5.70  3.16  0.11  0.33  0.34  5.00  10.0  1.61  1.53  31  46  23 
30–60  8.1  1.14  1.40  3.16  0.14  0.36  0.39  36.2  36.2  1.48  1.48  19  56  25 
60–90  8.2  1.05  0.80  0.79  0.16  0.39  0.41  4.50  4.50  1.36  1.36  9  54  37 
90–120  8.0  0.84  0.53  2.37  0.21  0.38  0.42  4.60  4.60  1.49  1.49  7  54  39 
120–150  7.9  0.64  0.36  0.79  0.23  0.39  0.41  5.76  5.76  1.46  1.46  6  48  46 
150–180  7.5  0.56  0.22  3.95  0.27  0.39  0.42  4.56  4.56  1.49  1.49  6  39  55 
Dinajpur               
0–15  4.9  0.73  0.06  7.10  0.08  0.22  0.34  16.6  16.6  1.58  1.50  55  28  17 
15–30  5.4  0.50  0.46  0.10  0.11  0.26  0.31  10.0  20.0  1.67  1.59  48  27  25 
30–60  5.7  0.23  0.26  4.00  0.12  0.24  0.31  53.1  53.1  1.35  1.35  53  23  24 
60–90  5.6  0.10  1.14  0.80  0.08  0.27  0.30  69.1  69.1  1.37  1.37  70  19  11 
90–120  5.5  0.08  1.12  6.30  0.05  0.30  0.36  111  111  1.34  1.34  76  18  6 
120–150  5.6  0.06  1.73  0.80  0.03  0.17  0.33  253  253  1.35  1.35  90  8  2 
150–180  5.7  0.05  1.57  2.40  0.02  0.17  0.33  282  282  1.34  1.34  94  5  1 

LL – volumetric water content at lower limit, DUL – volumetric water content at drained upper limit, SAT – volumetric water content at saturation, Ks – percolation 
rate, BD – bulk density, TOC – total organic carbon. 
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thresher and fresh grain weight was measured using a digital balance. 
Grain moisture content was determined by a grain moisture meter 
(model: GMK-303RS, Korea) for calculation of dry grain yield. Measured 
crop biomass partitioning data at different growth stages of rice, wheat, 
and mungbean growth were used to define assimilate partitioning ratios 
and their associated input parameters at different phenological stages. 

2.5.3. Soil water content, and soil NO3
--N measurements 

Volumetric soil water content was determined on a daily basis using 
digital soil moisture sensors (model: GS1 dielectric soil moisture sensor, 
Decagon Devices Inc., USA) at 22.5 cm and 67.5 cm depths in 3 repli-
cates of treatments with N120 sub-plots. This represented water dy-
namics of all the main treatments. The details of the soil water content 
data used for model evaluation have been described in detail in Chaki 
(2021). 

In addition to this, soil samples were collected from the experimental 
sites in 3 replicates of treatments CS1N3, CS2N3, and CS3N3 in two 
layers (0–15 and 15–30 cm soil depth, 3 times during the wheat phase 
only) and processed for soil NO3

--N measurements through colorimetric 
analysis of soil extracts (SEAL AQ2 + colorimetric analyser with cad-
mium reduction column) (APHA, 2017). 

2.5.4. Adjustment of APSIM-Soils and APSIM-Manager specifications to 
represent CA vs CT 

The initial soil condition was similar for both CT and CA treatments 
in these experiments. However, due to subsequent experimental in-
terventions of different tillage, residue, and crop rotations, the soil 
conditions are expected to vary between CT and CA with time. Modifi-
cations to soil properties (particularly BD and Ks), crop rooting param-
eters (root hospitality factor (kl), and relative rate of root advance (xf)) 
and soil microorganism activity (the fraction of soil micro-organisms 
(Fbiom) and inert humic material (Finert) in soil organic matter (Probert 
et al., 1998)) were performed to better capture the CA environment. 

2.5.4.1. Soil properties. Puddling in rice fields reduces the effective Ks 
and increases BD due to compaction and subsequent formation of a hard 
plough pan zone in a subsurface layer at around 20–30 cm depth (San-
chez, 1973; Humphreys et al., 1996; Kukal and Aggarwal, 2002). Due to 
practicing CA in the rice-wheat system, there is an increase of effective 
Ks and a decrease of BD with time in comparison with the CT system 
(Sharma et al., 2005; Gathala et al., 2011). Soil physical properties are 
treated as fixed system attributes in the current version of APSIM. To 
capture the tillage effect on soil property changes (Ks and BD), an in-
crease of Ks (100%) and decrease of BD (5%) in CA compared with CT 
was specified in APSIM-SOIL according to the findings of Sharma et al. 
(2005) and Gathala et al. (2011). For the CT system, the Ks and BD 
values remained the same as initial measurements. During the rice 
phase, bund height (APSIM resettable parameter max-pond) was set to 
15 cm on the date it was established (prior to rice transplanting) and 
reset to zero on the date of rice field drainage via APSIM-Manager logic. 

2.5.4.2. Crop rooting. Conservation agriculture practices encourage 
increased root length densities as well as deeper rooting (due to better 
soil structure) thus allowing water and nutrient uptake from deeper 
layers (Aggarwal et al., 1995; Sadras and Calvino, 2001; Qin et al., 
2006). The root hospitality (kl in APSIM) and relative rate of root 
advance (xf in APSIM) were modified to capture CA performance. These 
values were adjusted iteratively (up to 20% increase) to produce a close 
match between the observed and simulated soil water extraction pat-
terns. The temporal progression of the roots (xf) was not modified across 
CA treatments, nor was the root hospitality factor (kl). The changes to 
these factors between CA and CT systems were made to all the Rabi 
(winter) crops. 

2.5.4.3. Soil microorganism activity. Soil microorganism activity in CA is 

assumed to be higher than in CT in the upper soil layers due to improved 
soil structure (Choudhary et al., 2018). This was captured in APSIM by 
increasing Fbiom (fraction of soil organic matter present as microbial 
biomass) and decreasing Finert (the inert fraction of soil organic matter) 
values in the upper two soil layers. The values of Fbiom and Finert were 
calibrated for CT and CA using data from zero-N treatments (CS2N1 to 
represent CT, and CS3N1 to represent CA). The source of mineral N in 
the zero-N treatments was assumed to come slightly from rainfall and/or 
irrigation water, and considerably from mineralisation of soil organic 
matter (Gaydon et al., 2017). These values (Fbiom and Finert) were varied 
within reasonable bounds (Probert et al., 1998) (around 20% change) to 
produce a good match between the observed and simulated crop yields 
in these zero-N treatments. 

2.6. APSIM validation 

The well parameterised and calibrated (using first year’s data from 
selected treatments) APSIM model was validated against the experi-
mental datasets from the rest of the treatments of the first year and all 
treatments of the second year to check the veracity of the model’s 
calibration. Simulated model outputs were compared with the observed 
data set for all the three crops (rice, wheat, and mungbean) for a range of 
output variables including crop phenology dates, accumulated biomass 
over time, grain yield, soil NO3

--N dynamics in top two soil layers 
(0–15 cm and 15–30 cm), and soil water content in two soil layers 
(15–30 cm and 60–75 cm). 

2.7. Statistical tests used 

The coefficient of determination (r2), slope (α), and intercept (β) 
values from the linear regression of observed versus simulated data (1:1 
graph) were used for the evaluation of the calibrated model. The model 
performance was also assessed using the Student’s t-test of means 
assuming unequal variance P(t), and by comparing the absolute root 
means square error (RMSE, Eq. (1)) and normalised root means square 
error (RMSEn, Eq. (2)) between simulated and observed values with the 
observed experimental variability. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Si − Oi)

2

n

√
√
√
√
√

(1)  

RMSEn (%) =

(
Absolute RMSE

Mean of the observed

)

× 100 (2)  

Where Si is simulated, Oi is observed value, n is the number of pairs. 
When the RMSE values are smaller or around the same quantum as 

the average standard deviation of the observed values, P(t) is larger than 
0.05, together with high r2 values, it indicates acceptable agreement 
between the observed and simulated outputs. Effectively, this demon-
strates that the model is simulating system performance within the 
bounds of experimental uncertainty, and this is all you can expect a 
model to do (Gaydon et al., 2017). 

3. Results 

Observed crop performance (as well as the observed dynamics of soil 
and water, and irrigation requirement) varied between CT and CA 
practices across the two sites. This was detailed in Chaki et al. (2021a, 
2021b) but is summarised here in Fig. S1 which illustrates this non 1:1 
correlation relationship for a range of variables. This clearly indicates a 
performance difference between the two systems which models like 
APSIM must be capable of simulating. Results for relevant modelled 
aspects are detailed below. 
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3.1. Crop phenology 

The model was calibrated for the fully fertilized and irrigated system 
(CS3N3), and then validated using the remainder of treatments. Fig. 2 
illustrates the performance of APSIM in simulating crop phenological 
development in the rice-wheat-mungbean system (CA and CT cropping 
systems, each with three N levels are shown as an example). The crop 
phenology was successfully calibrated and validated under diverse 
tillage, irrigation, and N management (Figs. 2 and S4 shown as an 
example). 

3.1.1. Rice phenological responses to N-stress 
There was a good agreement between observed and simulated 

phenological stages of rice for the fully fertilised (full N) treatments. 
However, discrepancies were noted in capturing the rice phenological 
stages under N-stress treatments. We, therefore, set the phenological 
parameters independently for each different N-stress treatment to better 
capture the observed phenological stages of rice under that N-stress 
treatment (Figs. 2 and S4) as suggested by Gaydon et al. (2017). 

3.1.2. Capturing phenology of observed crop failure in rainfed rice 
APSIM-Oryza successfully simulated the phenology of observed crop 

failure (as the crop was highly water-stressed for a prolonged period, 
and high percolation rate in absence of puddling) in the second rice 
season in UPTR rice (CS6, rainfed) at Dinajpur (Fig. S4d–f). The model 
was able to capture the crop failure by increasing the simulated soil- 
water tension (water-stress factor WSTRESS in APSIM-Oryza, 1 means 
no stress, and 0 means maximum water-stress), which ceased the crop 
growth at the flowering stage and eventually crop death. The model was 
equally good for simulating rice phenological stages of the rainfed UPTR 
rice when the crop was moderately water-stressed (first season at 
Dinajpur) or non-water stressed (both seasons at Rajshahi) (Fig. S4a–f). 
This indicates APSIM-Oryza can capture the rice phenology in associa-
tion with biomass accumulation (including crop death, details in Section 
3.2.1) under a wide range of water-stress environments. 

3.2. Grain and biomass yields of crops grown in a sequence without resets 

The observed and simulated yields for crops were compared as a time 
series for all the treatments imposed in the trials. Figs. 3A and S5 
illustrate the performance of APSIM in simulating crop production in the 
rice-wheat-mungbean system (CA and CT cropping systems, each with 
three N levels are shown as an example). Figs. 3A and S5 demonstrate a 
good model response in capturing diverse cropping systems with vari-
able N rates, tillage, and residue decomposition without resetting system 
variables between crops. 

3.2.1. Capturing crop failure (failed to produce grain, stunted biomass 
growth) in rainfed rice 

APSIM-Oryza successfully simulated the observed crop failure to 
produce grain yield and stunted biomass growth in the second rice 
season in UPTR rice (rainfed- water-stressed) at Dinajpur (Fig. 3B(d–f)), 
as it captured the phenology of this water-stressed treatment. The model 
also performed well in simulating the above-ground biomass and grain 
yield of the rainfed rice under moderately water-stressed or non-water 
stressed conditions (Fig. S4B(a–f)). 

3.2.2. Irrigation effects in wheat at shallow water table environment 
(Rajshahi) 

The wheat crop did not suffer from water deficit stress under any 
irrigation treatments (fully irrigated to rainfed) at the shallow water 
table site (Rajshahi). Therefore, there was no observed yield (grain and 
biomass) difference among the imposed irrigation treatments in both 
wheat seasons (Chaki, 2021). APSIM-Wheat simulated the above-ground 
biomass and grain yield close to the observed values in each of the 
irrigation treatments (fully irrigated Fig. 3A and rainfed treatments 

Fig. 3B(a–c) shown as an example). The simulated crop utilised water 
from the shallow water table, consistent with observations. 

3.2.3. Irrigation effects in wheat at deep-water table environment 
(Dinajpur) 

The grain and biomass yield of wheat responded significantly under 
imposed irrigation treatments at the deep-water table site (Dinajpur) 
(Chaki, 2021). There was a good agreement between the simulated and 
observed above-ground biomass and grain yield for all imposed irriga-
tion treatments (fully irrigated Fig. S5(a–f) and rainfed treatments 
Fig. 3B(d–f) shown as an example). 

3.3. Soil NO3
--N 

The simulated changes in soil NO3
--N over time for the fully fertilised 

(full N) and fully irrigated (CS1 to CS3) treatments are illustrated in  
Fig. 4 (Rajshahi site) and Fig. S6 (Dinajpur site). During the ponded rice 
phase, the soil NO3

--N was close to zero, and then the soil NO3
--N started 

to build up at the beginning of the upland wheat phase each year. The 
model was capable of simulating the soil NO3

--N close to the boundary of 
experimental uncertainty among the replicates across the sites without 
resetting any system variables. In general, the model captured the dy-
namics of soil NO3

--N better in the 15–30 cm soil layer than the 0–15 cm 
soil layer across the treatments and sites (Figs. 4 and S6). There was 
greater variability in the measured soil NO3

--N data among the repli-
cates at 0–15 cm soil layer (pooled standard deviation was 10.3 kg ha− 1) 
compared to the 15–30 cm soil layer (pooled standard deviation was 
6.45 kg ha− 1). This might be due to the complex mechanism of distri-
bution of NO3

--N in topsoil layer (influenced much due to top dressing of 
N fertiliser) and thus shortcomings in sampling strategy for soil NO3

--N 
(Probert et al., 1998). 

3.4. Soil water dynamics 

At Rajshahi, the soil water was measured using data-logging equip-
ment in the first season and following the gravimetric method in the 
second season during the wheat phase only. Due to the presence of a 
shallow perched water table (Fig. S3), the wheat crop was not water- 
stressed under any irrigation treatment imposed (Chaki, 2021). The 
SOILWAT2 module in APSIM captured the soil water dynamics 
throughout the soil profile (compared at 15–30 cm and 60–75 cm soil 
depths) (Figs. 5A and S7A) in this shallow water table environment and 
associated crop production (grain and biomass yields) across the irri-
gation treatments (Table 2). The RMSE values ranged from 0.010 to 
0.015 cm3 cm− 3 and RMSEn was ≤ 5% at 15–30 cm, the RMSE values 
ranged from 0.014 to 0.019 cm3 cm− 3 and RMSEn was ≤ 5% at 
60–75 cm soil layer across the irrigation treatments (Table S1). 

At Dinajpur, the soil water was measured daily using data-logging 
equipment throughout the experimental period which provides an op-
portunity to compare a large number of data points (n = 760). The crops 
(rice and wheat) responded to the irrigation treatments in terms of 
reduced grain and biomass production with the increment of water 
stress in wheat, and even a crop failure in the second season in rainfed 
rice. There was a wide diversity in the observed soil water datasets 
(across the treatments) including saturated to very dry soil conditions. 
The SOILWAT2 module in APSIM was capable of simulating these dy-
namic soil water changes over time adequately, including capturing the 
rewetting of the soil profile for irrigation and rainfall events and the 
subsequent drying of the soil (quite visible in the graphs). The crop 
response (in terms of grain and biomass production) to plant available 
water content was also captured well in the APSIM simulation, illus-
trated by high correlation (R2), low bias (α, β), no significant difference 
between observed and simulated populations (as per student’s T-test) 
and the RMSE being of similar quantum as the observed standard de-
viation (Tables 2, 4). The model simulated the changes in soil water 
content reasonably for the fully irrigated to deficit irrigated treatments 
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Fig. 2. Performance of APSIM in simulating crop phenological development in the rice-wheat-mungbean system. Simulated data are shown as continuous lines, 
measured data as discrete points. The wheat and mungbean crops refer to Y1 axis (APSIM crop stage – 0–11), with the rice crop on the Y2 axis (ORYZA crop stage – 
0–2.5). The Y axis number refers to crop growth stages, with “0” being sowing, “11′′ and “2.5′′ being harvest for wheat/mungbean and rice, respectively. Graph (a to 
c) refer to CS3 system at Rajshahi; and (d to f) CS3 system at Dinajpur with three N rate (0, half and full of recommended N). 
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Fig. 3A. RAJSHAHI: Performance of APSIM in simulating crop production in the rice-wheat-mungbean system. Simulated data are shown as continuous lines (solid 
line- grain yield; broken line- above-ground biomass), measured data as discrete points (blue - biomass; red - grain yield) with associated error bars (one standard 
deviation either side of the mean). Graph (a to c) refer to CT system; and (d to f) CA system with three N rate (0, half and full of recommended N). 
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Fig. 3B. Performance of APSIM in simulating crop production in the rice-wheat-mungbean system in rainfed environment. Simulated data are shown as continuous 
lines (solid line- grain yield; broken line- above-ground biomass), measured data as discrete points (blue - biomass; red - grain yield) with associated error bars (one 
standard deviation either side of the mean). Graph (a to c) refer to CS6 system at Rajshahi; and (d to f) CS6 system at Dinajpur with three N rate (0, half and full of 
recommended N). The stunted crop development in the second season rice crop (c to d) at Dinajpur is an observed crop failure, which APSIM successfully simulated. 
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Fig. 4. RAJSHAHI: Comparison between measured and simulated soil NO3
--N in top two soil layers (0–15 cm and 15–30 cm) during the wheat growing season in 

2016–17 and 2017–18 in fully fertilized and irrigated cropping systems (CS1 = PTR Rice – CT Wheat, CS2 = PTR Rice – CT Wheat – CT Mungbean and CS3 = UPTR 
Rice – ZT Wheat – ZT Mungbean). Simulated data are shown as solid lines, measured data as discrete points with associated error bars (one standard deviation either 
side of the mean). 
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Fig. 5A. RAJSHAHI: Comparison between measured and simulated soil water content (cm3 cm− 3) in two soil layers (15–30 cm and 60–75 cm) during the wheat 
growing season in 2016–17 across the fully fertilized cropping system treatments evaluated in the field experiment (CS1 = PTR Rice – CT Wheat, CS2 = PTR Rice – 
CT Wheat – CT Mungbean, CS3 = UPTR Rice – ZT Wheat (3 irrig.) – ZT Mungbean, CS4 = UPTR Rice – ZT Wheat (2 irrig.) – ZT Mungbean, CS5 = UPTR Rice – ZT 
Wheat (1 irrig.) – ZT Mungbean and CS6 = UPTR rainfed Rice – ZT Wheat (0 irrig.) – ZT rainfed Mungbean). Simulated data are shown as solid lines, measured data 
as broken lines with associated error bars (one standard deviation either side of the mean). 
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(CS1 to CS5), however, slightly underestimated the soil water content in 
the upper soil layer (15–30 cm depth) and slightly overestimated in the 
deeper soil layer (60–75 cm depth) (Figs. 5B and S7B). The RMSE values 
ranged from 0.027 to 0.036 cm3 cm− 3 and RMSEn was ≤ 15% across the 
soil depths and deficit irrigation treatments (CS1 to CS5), the RMSE 
values for the rainfed treatment (CS6) ranged from 0.041 to 0.044 cm3 

cm− 3 and RMSEn was 17–19% across the soil depths (Table S1). 
The simulated soil water content at 0–15 cm soil depth was influ-

enced by differences in the surface residue retained between the two 
systems (CT and CA) which was reflected in our analysis (Fig. S8; non 
1:1 trendline slope). 

3.5. Performance across all treatments 

The model performance was evaluated by plotting observed versus 
simulated grain and biomass yield. The overall model performance in 
capturing the systems dynamic of nitrogen, tillage, residue decomposi-
tion, and water without resetting system variables indicate good model 
calibration and validation. Fig. 6 shows the comparison of observed 
versus simulated grain and biomass yield (Fig. 6a, c) for the calibration 
and (Fig. 6b, d) for the validation datasets across all the treatments, and 
Table 2 shows associated statistics. The RMSE of 336 kg ha− 1 at Raj-
shahi and 554 kg ha− 1 at Dinajpur for the grain yield of the calibration 
dataset are close to the observed standard deviation among the experi-
mental replicates (419 kg ha− 1 at Rajshahi and 264 kg ha− 1 at 

Table 2 
Statistical analysis of APSIM performance for observed versus simulated grain and biomass yields across the treatments evaluated in the field experiments.  

Variable n Xsim Xobs (SD) P (t * ) α β R2 RMSE RMSEn (%) 

Rajshahi  
Calibration          
Grain  10  3121  3241 (419)  0.90  0.95  52  0.98  336  10 
Biomass  55  4892  4758 (571)  0.86  0.99  196  0.91  1261  27 
Validation          
Grain  92  3490  3133 (339)  0.19  0.98  406  0.94  590  19 
Biomass  323  5393  4844 (718)  0.09  1.06  274  0.92  1375  28 
Dinajpur  
Calibration          
Grain  10  2585  2693 (264)  0.89  0.98  -65  0.90  554  21 
Biomass  55  4323  4091 (656)  0.76  0.90  638  0.89  1335  33 
Validation          
Grain  92  2675  2524 (276)  0.56  1.02  94  0.95  438  17 
Biomass  323  4097  3779 (666)  0.26  0.96  460  0.89  1257  33 

n, number of data pairs; Xsim, mean of simulated values; Xobs, mean of observed values; SD, standard deviation; P(t * ), significance of Student’s paired t-test assuming 
non-equal variances; α, slope of linear regression between simulated and observed values; β, y-intercept of linear regression between simulated and observed values; 
RMSE, absolute root mean squared error; RMSEn, normalized root mean squared error. 

Table 3 
Statistical analysis of APSIM performance for observed versus simulated yield at zero N rate across the cropping system treatments evaluated in the field experiments.  

Variable n Xsim Xobs (SD) P (t * ) α β R2 RMSE RMSEn (%) 

Rajshahi  
Grain                   
CS1  4  2775  2714 (331)  0.96  1.10  -211  0.89  559  21 
CS2  6  2258  2220 (370)  0.97  0.88  295  0.89  526  24 
CS3  6  2612  2379 (239)  0.81  0.98  274  0.93  470  20 
CS4  6  2622  2366 (399)  0.79  1.03  181  0.94  469  20 
CS5  6  2610  2412 (308)  0.83  1.03  119  0.86  604  25 
CS6  6  2590  2350 (337)  0.80  1.03  162  0.91  517  22 
Biomass                   
CS1  16  4468  3965 (657)  0.72  1.17  -168  0.90  1567  40 
CS2  22  4003  3765 (486)  0.82  1.11  -184  0.92  1131  30 
CS3  22  4438  4179 (509)  0.82  1.10  -149  0.92  1183  28 
CS4  22  4452  4009 (693)  0.69  1.13  -95  0.86  1602  40 
CS5  22  4449  4113 (763)  0.76  1.15  -288  0.89  1418  34 
CS6  22  4439  4070 (635)  0.74  1.13  -143  0.89  1410  35 
Dinajpur  
Grain                   
CS1  4  2551  2875 (337)  0.83  1.25  -1054  0.92  730  25 
CS2  6  1976  2161 (267)  0.86  1.07  -340  0.89  621  29 
CS3  6  2080  1918 (322)  0.85  1.31  -424  0.94  520  27 
CS4  6  2073  1851 (311)  0.81  1.14  -45  0.99  310  17 
CS5  6  2091  1859 (338)  0.80  1.07  109  0.99  274  15 
CS6  6  1306  917 (191)  0.48  1.05  346  0.73  615  67 
Biomass                   
CS1  16  3531  4354 (687)  0.56  1.02  -891  0.86  1706  39 
CS2  22  3173  3597 (444)  0.69  0.94  -206  0.83  1518  42 
CS3  22  3479  2685 (576)  0.40  1.33  -84  0.92  1510  56 
CS4  22  3448  2488 (521)  0.30  1.44  -126  0.96  1562  63 
CS5  22  3463  2678 (715)  0.41  1.31  -32  0.96  1297  48 
CS6  22  3126  2462 (511)  0.34  1.08  470  0.88  1068  43 

n, number of data pairs; Xsim, mean of simulated values; Xobs, mean of observed values; SD, standard deviation; P(t * ), significance of Student’s paired t-test assuming 
non-equal variances; α, slope of linear regression between simulated and observed values; β, y-intercept of linear regression between simulated and observed values; 
RMSE, absolute root mean squared error; RMSEn, normalized root mean squared error. 
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Dinajpur). The overall R2 value for grain yield of the calibration dataset 
is 0.98, with low bias (α = 0.95, β = 52) at Rajshahi and R2 value of 
0.90, with low bias (α = 0.98, β = − 65) at Dinajpur indicating accept-
able model calibration. The RMSE of 590 kg ha− 1 at Rajshahi and 
438 kg ha− 1 at Dinajpur for the grain yield of the calibration dataset are 
close to the observed standard deviation among the experimental rep-
licates (339 kg ha− 1 at Rajshahi and 276 kg ha− 1 at Dinajpur). The 
overall R2 value for grain yield of the validation dataset across the 
treatments is 0.98, with low bias (α = 0.98, β = 406) at Rajshahi and an 
R2 value of 0.95, with low bias (α = 1.02, β = 94) at Dinajpur indicating 
strong evidence for successful model validation over the variety of 
datasets (n = 92 at each site) tested. The performance of APSIM cali-
bration and validation for biomass yield over a wide range of datasets 
(n = 55 for calibration, and n = 323 for validation at each site) also 
indicate acceptable model performance (Fig. 6 and Table 2). 

The performance of APSIM in simulating crop production with zero 
N fertiliser applied (nutrition solely from indigenous soil N sources) and 
full N rate across the cropping systems with associated statistics are 
given in Tables 3 and 4. The overall high correlation (R2), low bias (α, β), 
no significant difference between observed and simulated populations 
with all values greater than 0.05 according to student’s T-test and the 
RMSE being of similar quantum as the observed standard deviation, 
indicates acceptable model performance. 

4. Discussion 

4.1. Model performance 

The APSIM model was evaluated over a range of cropping system 
management interventions in the rice-wheat system, including CA vs CT, 
irrigation, N rate, residue allocation for two diverse environments 
(differing in soil types, water table dynamics, and agro-climate) in the 
EGP of South Asia. The study was conducted without resetting any 

APSIM state variables each year, and this is important because it dem-
onstrates that the dynamics of system processes are being well-simulated 
(Gaydon et al., 2017). The performance of APSIM in simulating both the 
above-ground (e.g., crop phenology, crop production) and 
below-ground processes (e.g., soil water dynamics, soil NO3

--N dy-
namics) was reasonably good across the cropping system treatments 
over the sites. 

4.1.1. Crop phenology 
The model’s ability to correctly simulate the crop phenological 

development stages largely determine the simulated crop production, 
and therefore treated as the first aspect of model calibration (Gaydon 
et al., 2018). The simulated crop phenology dates of wheat and mung-
bean were close to those observed across the treatments (under varied N 
rates, and irrigation management), confirming that APSIM crop modules 
sensibly consider the accumulation of thermal time (cumulative degree 
days) to move from one crop developmental phase to the next phase. 
However, due to the inability of APSIM-Oryza to capture the phenology 
response of rice crops to soil N variation (Bouman and Van Laar, 2006; 
Gaydon et al., 2017), we created three ‘rice varieties’ in APSIM for each 
N rate treatment (zero, half, and full N rate) as it was worked-around 
with modified crop phenology parameters by Gaydon et al. (2017) to 
overcome this issue. The N-stress rice phenology issue is not a big deal 
because normally the crop will have recommended N applied and will be 
unstressed. It only mattered for our calibration-validation exercise when 
we purposely N-stressed the crops. 

4.1.2. Grain and biomass yield of crops grown in a sequence without resets 
Simulation of crop production (grain and biomass) under diverse 

cropping system interventions (with variable N rates, tillage, residue 
allocation, irrigation management, soil types, and water table dy-
namics), and without resetting system variables indicated the strong 
capability of APSIM in simulating crop response to those factors. The 

Table 4 
Statistical analysis of APSIM performance for observed versus simulated yield at full N rate across the cropping system treatments evaluated in the field experiments.  

Variable n Xsim Xobs (SD) P (t * ) α β R2 RMSE RMSEn (%) 

Rajshahi  
Grain                   
CS1  4  5218  4825 (448)  0.56  0.60  2325  0.74  615  13 
CS2  6  3866  3613 (307)  0.85  0.87  708  0.94  614  17 
CS3  6  3933  3737 (452)  0.88  0.96  340  0.99  303  8 
CS4  6  3932  3780 (309)  0.91  0.92  437  0.98  383  10 
CS5  6  3932  3694 (537)  0.86  0.93  502  0.98  408  11 
CS6  6  3933  3824 (331)  0.94  0.94  318  0.99  265  7 
Biomass                   
CS1  16  6872  5931 (657)  0.55  1.02  802  0.94  1459  25 
CS2  22  5752  5568 (665)  0.89  0.93  597  0.91  1328  24 
CS3  22  5941  5607 (750)  0.81  0.98  450  0.92  1331  24 
CS4  22  5940  5635 (845)  0.83  0.97  486  0.91  1420  25 
CS5  22  5937  5316 (859)  0.65  1.03  460  0.94  1275  24 
CS6  22  5936  5535 (855)  0.77  1.01  360  0.95  1128  20 
Dinajpur  
Grain                   
CS1  4  4785  4559 (353)  0.79  0.80  1128  0.76  555  12 
CS2  6  3513  3308 (322)  0.87  1.02  146  0.96  451  14 
CS3  6  3540  3212 (301)  0.79  1.02  272  0.95  553  17 
CS4  6  3330  3118 (258)  0.86  1.02  159  0.92  561  18 
CS5  6  3067  3031 (284)  0.98  1.06  -142  0.97  344  11 
CS6  6  1694  1670 (195)  0.98  0.88  221  0.93  371  22 
Biomass                   
CS1  16  5884  6156 (1000)  0.87  0.81  867  0.88  1723  28 
CS2  22  4862  5062 (784)  0.88  0.83  670  0.91  1451  29 
CS3  22  5001  4316 (684)  0.59  1.02  602  0.96  1106  26 
CS4  22  4805  4134 (738)  0.58  1.01  634  0.94  1167  28 
CS5  22  4628  4033 (737)  0.60  1.00  596  0.94  1126  28 
CS6  22  3746  3669 (788)  0.93  0.81  759  0.86  1117  30 

n, number of data pairs; Xsim, mean of simulated values; Xobs, mean of observed values; SD, standard deviation; P(t * ), significance of Student’s paired t-test assuming 
non-equal variances; α, slope of linear regression between simulated and observed values; β, y-intercept of linear regression between simulated and observed values; 
RMSE, absolute root mean squared error; RMSEn, normalized root mean squared error. 
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Fig. 5B. DINAJPUR: Comparison between measured and simulated soil water content (cm3 cm− 3) in 15–30 cm soil layer during 2017–19 across the fully fertilized 
cropping system treatments evaluated in the field experiment (CS1 = PTR Rice – CT Wheat, CS2 = PTR Rice – CT Wheat – CT Mungbean, CS3 = UPTR Rice – ZT 
Wheat (3 irrig.) – ZT Mungbean, CS4 = UPTR Rice – ZT Wheat (2 irrig.) – ZT Mungbean, CS5 = UPTR Rice – ZT Wheat (1 irrig.) – ZT Mungbean and CS6 = UPTR 
rainfed Rice – ZT Wheat (0 irrig.) – ZT rainfed Mungbean). Simulated data are shown as solid lines, measured data as broken lines with associated error bars (one 
standard deviation either side of the mean). 
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performance of the APSIM model was markedly better in the full-N than 
in zero-N rate, but both are still considered acceptable. There was a 
tendency to over simulate biomass production in the zero N, particularly 
in the first season. This improved in the second season, indicating that 
the model was overcoming uncertainties in initial mineral soil N and 
moisture conditions, and reducing model error. This gives confidence in 
using the model for longer-term simulations. 

During the rice phase, there was an observed crop failure in rainfed 
rice in the second year at the sandy loam site (Dinajpur). The rice crop in 
this treatment (CS6) was highly water-stressed for a prolonged period 
which caused ceasing of crop growth at the flowering stage leading to no 
grain production (Chaki et al., 2021b), consistent with the findings of 
other researchers who reported rice crop failure due to drought stress in 
Asia (Naklang et al., 1996; Fukai, 1999). The APSIM-Oryza captured the 
crop failure very accurately which indicates the model’s ability to cap-
ture crop response under a wide range of water stress environments. Li 
et al. (2015) also used ORYZA2000 (which plugged in to the APSIM 
model) successfully in simulating drought stress impacts (including crop 
failure) of climate change on rainfed rice in South Asia. 

During the wheat phase, there was no yield response to irrigation 
treatments at the shallow water table site (Rajshahi), whereas, the wheat 
grain yield decreased consistently with increasing water stress at the 
deep-water table site (Dinajpur). The reason was that the wheat crop 
was not water-stressed as the wheat roots most likely utilised water from 
the shallow water table at the Rajshahi site, and the observed yield 
reduction at the Dinajpur site was due to the reduction of spike density 
and grain number in the lower water regime (Chaki, 2021). The model 
captured the response of the wheat crop to irrigation treatments by 
simulating the crop yield consistently as observed under these diverse 

water table environments. This demonstrated reliable performance of 
APSIM, and therefore could be used in assessing the impacts of irrigation 
scheduling options in wheat in a range of environments. 

Simulating production (grain and biomass) under CA and CT man-
agement in the rice-wheat system without annual resetting of soil pa-
rameters (soil, water, nutrients) at the diverse sites indicated the strong 
capacity of APSIM to simulate system processes in the CA and CT 
practices. Balwinder-Singh et al. (2015) also successfully simulated 
(using APSIM) the CA and CT practices in the irrigated and fully fertil-
ised rice-wheat system for the first time in the NW-IGP. However, our 
evaluation of APSIM under CA and CT practices considering a range of 
irrigation, residue, and N management at diverse sites is the unique 
attempt of using the cropping system simulation model in the EGP. The 
evaluation was robust as the model captured the differences between CA 
and CT management, and its ability to simulate reasonable response for 
the treatments applied in the two contrasting environments. 

4.1.3. Soil NO3
--N 

When a model simulates the below-ground processes (e.g., soil N 
dynamics, soil water) adequately in association with above-ground 
processes (e.g., crop production), we can say that the model could be 
widely applicable for investigating cropping systems options from 
different aspects. The performance of SOILN module in predicting the 
changes in soil NO3

--N was generally good, given that there were large 
uncertainties in measuring the soil NO3

--N (Figs. 4 and S6). The ability of 
SOILN in capturing the N mineralisation, crop N uptake under a range of 
manure and fertiliser application was also confirmed by laboratory in-
cubation and field studies conducted in India (Mohanty et al., 2011, 
2012). 

Fig. 6. Comparison between observed and simulated grain and biomass yield of rice, wheat and mungbean crop across all the cropping system and N rate treatments 
evaluated in the field experiments at Rajshahi and Dinajpur. 
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4.1.4. Soil water dynamics 
Simulating soil water is the foremost variable (especially for water- 

limited environments) which should be simulated quite sensibly for 
the analysis of trade-offs of water allocation using the cropping systems 
model. The SOILWAT2 module did an excellent job of simulating the 
dynamics of soil water under shallow water table environments, and 
also performed sensibly for the fully irrigated to deficit irrigated treat-
ments under deep-water table environments. The reason for the slight 
underestimation of soil water in the upper soil layer and slight over-
estimation in the deeper soil layer in the rainfed treatment (CS6) in 
deep-water table site (Dinajpur) is not fully understood. One reason 
might be due to the comparatively greater extraction of soil water from 
the upper soil layer, and less extraction from the deeper soil layer in the 
model than the actual crop water extraction from those soil layers. We 
tried to work out this by iteratively changing the root hospitality factor 
at different depths which improved the soil extraction pattern but might 
need more adjustment under high water-stressed conditions. Another 
possibility might be due to less accuracy in measuring soil water (using 
GS1 dielectric soil moisture sensor) in dry soil, possibly due to poor 
contact between soil and the soil moisture sensor from air interference. 
This possibility was confirmed by the fact that there were negative 
readings on a soil moisture sensor installed in the water-stressed treat-
ments, therefore we discarded those exceptional values. 

4.2. Model applicability, limitations, and scope of model improvement 

The majority of the farmers in the EGP followed the traditional 
method for practicing the rice-wheat system which is resource ineffi-
cient, and less productive. Several recent studies conducted in the EGP 
region indicated that CA-based management interventions could make 
the rice-wheat system more productive and resource-efficient with less 
environmental impacts (Islam et al., 2019; Gathala et al., 2020; Chaki 
et al., 2021a), however, the magnitude of benefits varied across sites 
(soil types, climates, and landscapes) (Chaki et al., 2021a). Compara-
tively less attention has been given to the CA research in the EGP, and 
thus there is a deficiency of long-term data on CA in the literature which 
could give greater insights into the performance of CA interventions and 
underlying mechanisms in these environments. 

Although CA vs CT systems have been simulated for irrigated rice- 
wheat systems in the NW-IGP (rarely), this is the first attempt in the 
EGP, and it was found to be successful. We have demonstrated that when 
certain principles about changing soil properties (e.g., Ks, BD) and crop 
rooting parameters (e.g., xf, kl in APSIM) between CA and CT are fol-
lowed then APSIM simulates the performance of these crop management 
practices well. The model’s ability to differentiate CA vs CT manage-
ment at diverse sites (varied soil types, water table dynamics, and agro- 
climates) under a range of irrigation (fully irrigated to rainfed), N 
management (fully fertilised to unfertilised), and residue management 
(partial residue retention to no-retention) by simulating system dy-
namics (e.g., system production, water, and N dynamics) without annual 
resets of model parameters (e.g., water, nutrients, soil) demonstrated 
APSIM’s capacity to reliably simulate the rice-wheat system under 
varied management conditions. Our evaluation of the APSIM model 
from a wide range of perspectives demonstrates robustness in how we 
have modified the key soil parameters (Ks, BD, kl, Fbiom, Finert) and gives 
confidence in using the model for future exploration of cropping system 
options and answering research questions related to CA management 
including better irrigation, N, residue managements, the suitability of 
CA in different environments, and impacts on soil and environmental 
factors. 

During the calibration and validation process of the APSIM (v7.5) 
model, we have modified soil variables and crop rooting manually 
(associated with tillage, to better capture the CA and CT environments), 
and also used three independent ‘rice variety’ each for full N, moderate 
N and zero N rate (to better capture the N-stress effect on rice 
phenology). For the benefit of wider APSIM users, improvements of the 

model are needed which could do these modifications on soil properties 
changes automatically for the respective management practices (CA, 
and CT). The primary innovation presented in this paper is that crop 
performance differences between CA and CT practices can be simulated 
across diverse sites by modification of key APSIM soil parameters by 
generic factors. This suggests that these cropping system differences can 
reliably be simulated across soil and climatic gradients through the use 
of these factors. 

5. Conclusions 

Simulation models must be well tested before being employed in 
scenario analyses. The APSIM model was calibrated and validated under 
varied tillage, residue, N rates, and irrigation practices in diverse envi-
ronmental conditions. The robustness of APSIM’s capacity to simulate 
rice-wheat cropping system performance with no annual variable resets, 
offers great confidence that the model can realistically capture diverse 
management practices followed in rice-wheat systems in the EGP of 
South Asia. Our validation testing with highly variable datasets (e.g., 
zero-N to full-N, zero irrigation to full irrigation, zero tillage to full 
tillage, zero crop yield to potential yield) from diverse environments 
(soil types, water table dynamics, and agro-climatic conditions) has 
allowed us to identify where APSIM performs well (e.g., capturing crop 
failure, response to full-N, crop rotations, water dynamics) and some 
areas where improvements could be focussed (e.g., N-stress effect on rice 
phenology, modifications on soil properties changes automatically for 
CA and CT). These findings are relevant to the wider APSIM and general 
crop modelling community. But primarily our study has demonstrated 
that when different values for key model input parameters are employed 
in simulating the differences between CA and CT practices in rice-wheat 
cropping systems (i.e. an increase of Ks (100%), a decrease of BD (5%), 
an increase of the crop rooting parameters (xf, kl- up to 20% increase) 
and soil microorganism activity (increasing Fbiom and decreasing Finert - 
around 20% change) in CA compared with CT), APSIM performance in 
differentiating the outcomes from CA vs CT management across wet, 
fine-textured soil environments, and dry coarse-textured soil environ-
ments in the EGP is good. This positions APSIM strongly to conduct 
future scenario analyses comparing CA and CT systems across different 
soil and climate gradients. Our research is the first examination and 
clarification of this issue for rice-wheat cropping systems in the EGP. The 
validated APSIM framework is now deemed suitable for scenario ana-
lyses which may include exploring long-term variability in crop yield 
and soil organic C, better irrigation and N management, greenhouse gas 
emission implications, and the effects of climatic change. 
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