

Chap.7. Raman Systems

Francesc Rocadenbosch

ETSETB, Dep. TSC, EEF Group Campus Nord, D4-016 roca@tsc.upc.edu

RAMAN LIDAR

MEASUREMENTS:

 Direct: Concentration of chemical species in the atmosphere such as

 SO_2 , NO, CO, H_2S , C_2H_4 , CH_4 , H_2CO , H_2O , N_2 , O_2 ...

 Indirect: Temperature, Humidity, α, β, S_M

LASER TYPES:

- Ruby (λ = 694.3 nm, 347.2 nm)
- $N_2 (\lambda = 337 \text{ nm})$
- <u>Nd:YAG</u> (λ = 1060 nm, 532 nm, 266 nm)
- Excimer ($\lambda \sim 350$ nm)

SIGNAL THEORY AND COMMUNICATIONS ЧО DEP.

OPERATIONAL PRINCIPLE

1) In contrast to elastic systems, the return wavelength, λR , is shifted from the incident one, $\lambda 0$.

2) Wavelength shift, κ , depends on each molecular species.

$$\lambda_R = \frac{\lambda_0}{1 - \kappa \lambda_0}$$

3) Very faint returns.

- requires photon counting
- very often, night-time operation

Fig. ADAPTED FROM: Inaba, H. Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence. In *Laser Monitoring of the Atmosphere*, Hinkley, E. D., Ed.; Springer-Verlag: New York, 1976; Chap. 5, 153-236.

RAMAN LIDAR

RAMAN SPECTRUM CHARACTERISTICS

The Raman shift, κ:

1) does not depend on the excitation wavelength λ_0 and,

2) it is specific of the chemical species

A) Laser need not be tunable

B) The Raman spectrum is characteristic of each molecule

Overview of the lidar backscatter signals for 532-nm laser excitation wavelength.

Fig. SOURCE: Behrendt, A., et al., "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient", *Appl. Opt.* **41** (36), 7657-7666, (2002).

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

KEY CONCEPTS

Common Raman shifts:

N 2	2331 cm ⁻¹	H ₂ O	3654 cm ⁻¹
0 ₂	1556 cm ⁻¹		

Fig. SOURCE: Inaba, H. Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence. In *Laser Monitoring of the Atmosphere,* Hinkley, E. D., Ed.; Springer-Verlag: New York, 1976; Chap. 5, p.162.

1) Raman components

- Stokes lines
 - molecule gains energy from the radiation field
 - scattered radiation is at $\lambda_R > \lambda_0$
- Anti-Stokes lines ($\lambda_R < \lambda_0$)

2) Motivation for the "wavenumber" concept (with κ , the Raman shift):

$$\frac{1}{\lambda_{\rm R}} = \frac{1}{\lambda_0} - \kappa, \quad \kappa \left[{\rm cm}^{-1} \right]$$

- 3) Raman cross-sections
 - dependency $\propto \lambda^{-4}$

RAMAN LIDAR

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

RAMAN LIDAR LINK-BUDGET

CATE GORY	PARAME TER	VALUE (CODE 0)	UNITS	
LASER	Energy	160	mJ	
	PRF	20	Hz	
TELESCOPE	Primary lens diameter	0,2032	m	
ELASTIC CHANNEL	PHOTODIODE, Multiplication factor	150	no units	
	PHOTODIODE, Excess-noise factor	4,5	no units	
RAMAN CHANNEL	INTERFERENCE FILTER, bandwidth	3	nm	
	PMT, Multiplication factor	3,00E+06	no units	
	Anode dark current		nA	
	Anode radiant sensitivity	3,00E+04	AM	
ATMOSPHERE	Msibility margin	39,12	km	
1	Lidar ratio, SM	25	র	
	Boundary-layer height	3	km	
	System operation (question 2)	night-time		

KEY

Raman signatures are direct measures of the relative populations among the internal molecular modes

 (In termal equilibrium) → fundamental def. of temperature

METHODS

- 1) Rotational Raman (RR)
 - Comparison of the envelope shape of all the lines
 - Intensity ratio of selected spectral regions of the band

Suitable for atmospheric profiling

2) Vibrational Raman (VR)

- +
- Intensity ratio between Stokes and anti-Stokes components
- Width of a specific Q-branch

Suitable for high-temperature diagnostics (e.g. flames)

Fig. SOURCE: Inaba, H. Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence. In *Laser Monitoring of the Atmosphere,* Hinkley, E. D., Ed.; Springer-Verlag: New York, 1976; Chap. 5, 153-236.

DEP. OF SIGNAL THEORY AND COMMUNICATIONS LIDAR (LASER RADAR)

TEMPERATURE MEASUREMENT (II)

Fig. SOURCE: Behrendt, A., et al., "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient", *Appl. Opt.* **41** (36), 7657-7666, (2002).

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

DISCUSSION PARAMETERS (RASC lidar LAYOUT)

Wavelength $(nm)^b$	Parameter	BS1	BS2	BS3	BS4a and BS4b Combined	BS5	IF2a and IF2b Combined
	AOI (°)	45	45	5.8	7.4	5.5	0
	CWL (nm)			532.25	530.70	529.20	660.3
	FWHM (nm)			0.74	0.55	1.20	2.6
589 (s)	ρ	>0.95					
660	τ	≈ 0.70					≈0.3
	ρ		>0.95				
532.11 (p or s)	τ	≈0.80	≈ 0.85	0.83	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-8}$
	ρ			0.11			
530.70	т	≈ 0.80	≈0.85		0.38	${<}2 imes10^{-4}$	
	ρ			>0.95			
529.20	τ	≈ 0.80	≈0.85			0.75	
	ρ			>0.96	>0.96		

^{*a*}AOI, angle of incidence; CWL, central wavelength; FWHM, full width at half maximum; ρ , reflectivity; τ , transmission. Transmission values $\tau < 10^{-3}$ are estimations by the manufacturer. ^{*b*}s, perpendicular polarized; p, parallel polarized.

Note:

ND filters are used to cope with saturation effects in the RR channels in the lower troposfere (correction of photon-counter receiver dead-time effects).

Tab. SOURCE: Behrendt, A., et al., "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient", *Appl. Opt.* **41** (36), 7657-7666, (2002).

THEORY AND COMMUNICATIONS

SIGNAL

ЧО

DEP

SIGNAL THEORY AND COMMUNICATIONS LIDAR (LASER RADAR) ЧО DEP.

Specific RR Temperature approaches:

Use of two RR channels with opposite temperature dependency

- + 3rd RR channel (isosbestic point) as reference or,
- combine them to obtain a temperature-indep. reference

$$Q(T) = \frac{N_{RR2}(T)}{N_{RR1}(T)}$$
$$N_{ref}(z) = N_{RR1}(z) + cN_{RR2}(z)$$

- calibrate Q(T) with a radiosonde
 - find c for minimum temp. variation

Fig. SOURCE: Behrendt, A., et al., "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient", *Appl. Opt.* **41** (36), 7657-7666, (2002).

OF SIGNAL THEORY AND COMMUNICATIONS LIDAR (LASER RADAR) DEP.

TEMPERATURE MEASUREMENT (V)

Problem: Elastic cross-talk with the RR channel

<u>Action:</u> Calibrate on a cirrus cloud using $N_{res}(T)$

$$Q(T) = \frac{N_{RR2}(T)}{N_{RR1}(T) - \varepsilon N_{El}(z)}$$

Fig. SOURCE: Behrendt, A., et al., "Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient", *Appl. Opt.* **41** (36), 7657-7666, (2002).

CONCEPTS:

1) The absolute concetration of each molecular species can be performed by comparing the Raman backscattered intensity with that of the Raman line from N_2 which occupy the same volume.

1A) Raman-backscattered signal:

$$P_{\lambda_{R}}(R) = K_{\lambda_{R}} \frac{O(R)}{R^{2}} F_{R}(T, \Delta \lambda_{R}) \left[N_{R}(R) \frac{d\sigma_{\lambda_{R}}(\pi)}{d\Omega} \right] \times \exp\left\{-\int_{0}^{R} \left[\alpha_{\lambda_{0}}^{tot}(\xi) + \alpha_{\lambda_{R}}^{tot}(\xi)\right] d\xi\right\}$$

1B) (Oversimplified) Gas-to-N₂ normalised ratio $\frac{P_{\lambda_{X}}(R)}{P_{\lambda_{N}}(R)} = \frac{O_{X}(R)}{O_{N}(R)} \frac{F_{X}(T, \Delta\lambda_{X})}{F_{N}(T, \Delta\lambda_{N})} \frac{N_{X}(R)}{N_{X}(R)} \left[\frac{d\sigma_{\lambda_{X}}(\pi)/d\Omega}{d\sigma_{\lambda_{N}}(\pi)/d\Omega} \right] \frac{\xi(\lambda_{X})}{\xi(\lambda_{N})} \Delta \tau(\lambda_{X}, \lambda_{N}, R),$ solve for N_x(R)
where $\Delta \tau(\lambda_{X}, \lambda_{N}, R) = \exp\left\{-\int_{0}^{R} \left[\alpha_{\lambda_{X}}^{tot}(\xi) - \alpha_{\lambda_{N}}^{tot}(\xi)\right] d\xi\right\}$

1C) (Estimation of the) Differential Transmission term:

- Molecular extinction \rightarrow US-std. atmosphere model + radiosonde
- Aerosol extinction \rightarrow Cooperative elastic-Raman channel (N2)
 - Only in hazy conditions (See Elastic-Raman inversion Sect. in Chap.7)
- Angström coefficient \rightarrow E.g. Sun photometer calibration

2) The (VR) spectrum is preferred to the (RR)

- RR lines of major atmospheric constituents overlap,
- large Rayleigh-Mie cross-talk.
- In contrast, VR crosssections are usually lower than RR ones.

DEP. OF SIGNAL THEORY AND COMMUNICATIONS LIDAR (LASER RADAR)

Fig.1

340

SPECTRAL

0.6 nm

350

360

WAVELENGTH, λ (nm)

RAYLEIGH AND MIE SCATTERING

MOLECULAR SPECIES (GAS) DETECTION (III)

SOME MEASUREMENT EXAMPLES

- Fig.1 Raman spectroscopy from the ordinary atmosphere
- Fig.2 Molecular species in an oil smoke plume

CO2

Fig. SOURCE: Inaba and Kobayasi, Opto-Electron 4, 101 (1972).

380

N2

370

WATER-VAPOR (WV) KEYS:

- Influences convective stability (likelihood of storm initiation)
- Most active green-house gas
 - it absorbs terrestrial radiation more strongly than does CO_2
- Water-vapor mixing ratio (w)

$$w = \frac{MW_{H_2O}}{MW_{DryAir}} \frac{N_{H_2O}(R)}{N_{DryAir}(R)} \approx \frac{MW_{H_2O}}{MW_{DryAir}} \frac{N_{H_2O}(R)}{N_{N_2}(R)/0.78} \approx 0.485 \frac{N_{H_2O}(R)}{N_{N_2}(R)}$$

- where MW_x stands for molecular weight (≈ 18 g/mol for H₂O and ≈ 28.94 g/mol for dry air) and N_x stands for molecule number concentration.
- *Importance of the mixing ratio:*
 - It is conserved in atmospheric processes that do not involve condensation or evaporation
 - Serves well as a tracer of the movement of air parcels in the atmosphere

DERIVATION FROM THE RAMAN CHANNELS

From Eq.(1B) in Slide 12

 $\frac{P_{\lambda_{H}}(R)}{P_{\lambda_{N}}(R)} = \frac{O_{H}(R)}{O_{N}(R)} \frac{F_{H}(T, \Delta\lambda_{R})}{F_{N}(T, \Delta\lambda_{R})} \frac{N_{H}(R)}{N_{N}(R)} \left[\frac{d\sigma_{\lambda_{H}}(\pi)/d\Omega}{d\sigma_{\lambda_{N}}(\pi)/d\Omega} \right] \frac{\xi(\lambda_{H})}{\xi(\lambda_{N})} \Delta\tau(\lambda_{H}, \lambda_{N}, R)$

and the definition of the mixing ratio (w)

- where $P_x(R)$ are background-substracted quantities.

In summary,

$$w = k_L^*(R) \frac{F_N(T, \Delta \lambda_N)}{F_H(T, \Delta \lambda_H)} R_w(R) \Delta \tau(\lambda_N, \lambda_H, R) \qquad R_w = \frac{P_H(R)}{P_N(R)}$$

(C) F. Rocadenbosch 2005-2006

EXAMPLE

• In the UV (λ_L =355 nm), Raman channels: λ_N =387 nm, λ_H =408 nm

$w = k^* (R) \frac{F_N(T, \Delta \lambda_N)}{P_H(R)} \frac{P_H(R)}{\Delta \tau} \lambda$	R
$W = \kappa_{355}(R) \frac{1}{F_H(T, \Delta \lambda_H)} \frac{1}{P_N(R)} \frac{\Delta U(\kappa_N, \kappa_H, R)}{P_N(R)}$	L X

 $k_{355}^* \approx 0.22 \frac{O_N(R)}{O_H(R)} \frac{\xi(\lambda_N)}{\xi(\lambda_H)}$

	kappa	lambdaR (1)	lambdaR (2)	
SPECIES	(cm-1)	(nm)	(nm)	
Air	0	→ 354,7	532,1	
02	1556	375,4	580,1	
N2	2331	→ 386,7	607,4	
H2O	3654	→ 407,5	-660,5	
Excitation wavelength (lambda0)				
(1)	354,7	nm (Nd:YAG, THC	G)	
(2)	532,1	nm (Nd:YAG, SH	G)	

Cross sections are computed assuming a λ -4 dependency

i.e. higher in the UV than in the NIR

Water-Vapor Mixing Ratio Error

$$\frac{\sigma_w^2}{w^2} = \frac{\sigma_{k^*}^2}{k^{*2}} + \frac{\sigma_{R_w}^2}{R_w^2} + \frac{\sigma_{\Delta\tau}^2}{\Delta\tau^2} \approx \frac{\sigma_{R_w}^2}{R_w^2}; \qquad R_w = \frac{P_H(R)}{P_N(R)}$$

LIDAR (LASER RADAR)

ERROR SOURCES AND UNCERTAINTIES

- Water-Vapor Mixing Ratio Error
 - $\frac{\sigma_w^2}{w^2} = \frac{\sigma_{k^*}^2}{k^{*2}} + \frac{\sigma_{R_w}^2}{R_w^2} + \frac{\sigma_{\Delta\tau}^2}{\Delta\tau^2} \approx \frac{\sigma_{R_w}^2}{R_w^2}; \qquad R_w = \frac{P_H(R)}{P_N(R)}$
- k^* : Calibration factor \rightarrow Can be considered to be small
 - Calibrated using a radiosonde (e.g. VAISALA RS80-A) or a MW radiometer
- R_w: Signal-induced statistical error dominates the error budget
- $|\Delta \tau(\lambda_N, \lambda_H, R)| = Differential Transmission (DT).$
 - $-\lambda_{\rm N}$ and $\lambda_{\rm H}$ experience different amounts of attenuation on their return trips, caused mainly by Rayleigh scattering. The DT can be calibrated by using
 - 1) A *radiosonde* estimate the molecular number density (i.e, T(z), P(z))
 - 2) For hazy atmospheres (DT < 0.9 for τ_{PBL} > 2), the N₂-Raman channel is used to estimate the aerosol extinction (typ., λ^{-1} dependence)

See Sec. Inversion of Optical Parameters / Extinction inversion, $\alpha_{\lambda_{II}}^{aer}$, $\alpha_{\lambda_{NI}}^{aer}$ <u>Note:</u> WV absorbs weakly at $\lambda_{\rm H}$ =660 nm $\Rightarrow \lambda_{\rm L}$ =355 nm preferred to 532 nm

Fig. SOURCE: Inaba, H. Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence. In Laser Monitoring of the Atmosphere, Hinkley, E. D., Ed.; Springer-Verlag: New York, 1976; Chap. 5, p.162.

COMMUNICATIONS

AND

ШO

DEP

SIGNAL THEORY AND COMMUNICATIONS DEP. OF

WATER-VAPOR MEASUREMENT (V)

Fig. SOURCE: Goldsmith, J.E.M., et al., "Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols", *Appl. Opt.* **27** (21), 4979-4990, (1998).

(C) F. Rocadenbosch 2005-2006

RELATIVE HUMIDITY MEASUREMENT

KEY

- Water-vapor mixing ratio (wH2O) + Temperature profile \Rightarrow RH
- Derivation of the RH profile emerges from specific physical refs.1,2

$$RH(z) = \frac{e(z)}{e_w(z)}$$

where e(z) is the WV pressure, and $e_w(z)$ is the saturation pressure,

$$e(z) = \frac{P(z)w_{H_2O}(z)}{0.622 + w_{H_2O}(z)}, \qquad e_w(z) = 6.107 \exp\left\{\frac{M_A[T(z) - 273]}{M_B + [T(z) - 273]}\right\}$$

 $-\,$ M_A=17.84, 17.08 and M_B=245.4, 234.2 for T < and > 273 K, respectively.

REFERENCES:

1) R.R. Rogers and M.K. Yau, A Short Course in Cloud Physics (Pergamon, New York ,1988).

2) R.J. List, ed., Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D.C., 1951).

A COMPLETE RAMAN SYSTEM

LAYOUT

- 1-m telescope
 - 3 unshifted returns (1064, 532, 355 nm), NO polarization
 - 4 returns (Stokes and anti-Stokes portions) of the N₂ RR spectrum
 - 3 vibrational Raman returns (N_2 at 387, 607 nm and H_2O at 407 nm)
 - 2 returns from the parallel and cross-polarized unshifted 532 nm

Fig. SOURCE: Matthis, I, Ansmann, A et al., "Relative-humidity profiling in the troposphere with a Raman lidar", *Appl. Opt.* **41** (30), 6451-6462, (2002).

DEP. OF SIGNAL THEORY AND COMMUNICATIONS LIDAR (LASER RADAR)

(C) F. Rocadenbosch 2005-2006

∆U, %

RELATIVE HUMIDITY, %

PRINCIPLE

1) Two receiving channels: Besides the ELASTIC receiver, which is only sensitive to the elastic return, another receiver -i.e., the RAMAN receiveris spectrally tuned to the Raman-shifted wavelength (Q-branch) of any abundant species of known relative concentration (usually N_2).

2) From:

- radiosoundings or
- ground-level measurements of pressure and temperature + assumption of a standard atmosphere,

the N_2 concentration -as a function of the range to the lidar- is inferred.

Raman-backscattered signal:

 $P_{\lambda_R}(z) = K_{\lambda_R} \frac{O(z)}{z^2} \left[N_R(z) \frac{d\sigma_{\lambda_R}(\pi)}{d\Omega} \right] \times \exp\left\{ -\int_0^z \left[\alpha_{\lambda_0}^{mol}(\xi) + \alpha_{\lambda_0}^{aer}(\xi) + \alpha_{\lambda_R}^{mol}(\xi) + \alpha_{\lambda_R}^{aer}(\xi) \right] d\xi \right\}$

Scattering wavelength dependency: $\lambda^{-\kappa}$

 $\frac{\alpha_{\lambda_0}^{aer}}{\alpha_{\lambda_R}^{aer}} = \left(\frac{\lambda_0}{\lambda_R}\right)^{-\kappa}$

Raman-channel inverted extinction:

Backscatter inversion requires:

• combination of lidar returns from both elastic and Raman channels

$$\beta_{\lambda_{0}}^{aer}(z) = -\beta_{\lambda_{0}}^{mol}(z) + \left[\beta_{\lambda_{0}}^{aer}(z_{0}) + \beta_{\lambda_{0}}^{mol}(z_{0})\right] \times \frac{P_{\lambda_{R}}(z_{0})P_{\lambda_{0}}(z)N_{R}(z)}{P_{\lambda_{0}}(z_{0})P_{\lambda_{R}}(z)N_{R}(z_{0})} \times \frac{\exp\left\{-\int_{z_{0}}^{z} \left[\alpha_{\lambda_{R}}^{aer}(\xi) + \alpha_{\lambda_{R}}^{mol}(\xi)\right]d\xi\right\}}{\exp\left\{-\int_{z_{0}}^{z} \left[\alpha_{\lambda_{0}}^{aer}(\xi) + \alpha_{\lambda_{0}}^{mol}(\xi)\right]d\xi\right\}}; \qquad z \ge z_{0}$$

• a backscatter calibration at some height R_0 so that

$$\beta_{\lambda_0}^{mol}(R_0) >> \beta_{\lambda_0}^{aer}(R_0) \rightarrow \left[\beta_{\lambda_0}^{aer}(R_0) + \beta_{\lambda_0}^{mol}(R_0)\right] \quad \square \quad \beta_{\lambda_0}^{aer}(R) = f\left[\underbrace{P_{\lambda_0}, P_{\lambda_R}}_{channel}, \alpha_{\lambda_0}^{aer}, N_R, \underbrace{P, T}_{Rayleigh}_{comp.}\right]$$

The lidar ratio is found as

$$S_{\lambda_0}^{aer}(z) = \frac{\alpha_{\lambda_0}^{aer}(z)}{\beta_{\lambda_0}^{aer}(z)}$$

DEP. OF SIGNAL THEORY AND COMMUNICATIONS

(C) F. Rocadenbosch 2005-2006