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Abstract

This paper presents an analytical model to predict the stress redistribution around broken

fibres in hybrid polymer composites. The model is used under the framework of a progres-

sive failure approach to study the load redistribution around breaks in hybrid composites.

The outcomes of the model are validated by comparing it with a spring element model.

Moreover, the approach is further used to study the tensile behaviour of different hybrid

composites. The results obtained show that the load redistribution around breaks depends

on the stiffness ratio between both fibres as well as the matrix behaviour considered and

the hybrid volume fraction. Furthermore, the different material parameters have a large

effect on the tensile behaviour, with an increase of ductility achieved if the failure process

of the two fibres is gradual.
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1. Introduction1

Fibre hybridization is a potential solution to the quasi-brittle behaviour of fibre rein-2

forced polymers (FRP), resulting in fibre tensile failure with hardly any previous damage3

symptoms [1–5]. In a hybrid composite, a Low Elongation (LE) fibre is combined with4

a High Elongation (HE) fibre. This combination may lead to a larger failure strain of5
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baseline composites based on LE fibres, resulting in a hybrid effect. Moreover, the failure6

process of the material can become gradual leading to an increase of ductility [6, 7]. It is7

currently accepted that progressive failure, dynamic effects, and thermal residual stresses8

are the main reasons to explain the hybrid effect [4, 8, 9].9

The strength of the fibres is not deterministic and follows a statistical distribution.10

When a fibre fails, the fibre locally loses its loading capability, which is recovered by shear11

transfer in the matrix over a distance called ineffective length. In this region the neighbour12

intact fibres are subjected to stress concentrations. As the load is incremented, clusters of13

broken fibres are created increasing the stress concentration in intact fibres even further.14

In a non-hybrid composite this process quickly leads to final failure, whilst in a hybrid15

composite the stress redistribution around broken fibres is altered due to the presence of16

fibres with different mechanical and geometrical properties [10]. These differences may17

alter and delay the formation of clusters leading to hybrid effects [11–13]. However, it18

remains to be understood if final failure happens either by the accumulation of damage19

and clusters or by the unstable propagation of a large critical cluster [4].20

Different models that attempt to represent the failure process of composite materials21

and the stress redistribution around breaks are available in the literature. These models22

can be classified as Global Load Sharing (GLS) and Local Load Sharing (LLS). In GLS23

models, the stress loss by a broken fibre is redistributed equally among all intact fibres24

[1, 14–17]. As a consequence, such models cannot predict the formation of clusters,25

which in general leads to a large overprediction of the failure strength. Nonetheless, GLS26

models can capture some trends affecting the failure process such as fibre fragmentation27

or the effect of the fibre strength variation [18, 19].28

In the LLS models, the load of broken fibres is redistributed into the closest intact29

fibres allowing to capture the formation of clusters. In these models, different modelling30

approaches exist [20]: analytical models [21–23], spring element models [24–26], fibre31

bundle models [2, 11] and micromechanical finite element models [18, 27, 28]. Though32

all methods, in general, predict the failure strength accurately, all predict different cluster33

formation and evolution due to the different modelling strategies. Moreover, all models34

omit the dynamic effects and overpredict the fibre break density compared with experi-35

ments [3, 4].36
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Currently there is not any analytical model that can predict accurately the Stress37

Concentration Factor (SCF) around clusters of broken fibres in hybrid composites tak-38

ing into account the differences in elastic and geometrical properties of the two fibres in39

the hybrid [10]. Moreover, in depth parametric analysis of the load redistribution around40

breaks in hybrid composites, and their effect on the tensile response still remain scarce41

[2, 11, 12, 18, 24]. Furthermore, recent simulations showed that the load redistribution42

around breaks in non-hybrid composites is heavily influenced by the matrix behaviour43

[20]. However, such effects have not been studied with hybrid composites. It is, there-44

fore, vital to further understand the load redistribution and to improve the available tools45

to predict this load redistribution as this is believed to be the main mechanism that triggers46

final failure of composites.47

In this work, a new analytical model to compute the load redistribution around a clus-48

ter of broken fibres in a hybrid composite is presented. The model is an extension of the49

non-hybrid model presented in St-Pierre et al. [22]. The analytical model is used within50

the framework of a progressive failure model approach [2] to study the load redistribution51

around broken fibres in different hybrid composites using both a plastic and an elastic52

matrix. The model is validated by comparing with the extension of the Spring Element53

Model (SEM) to hybrid composites proposed by Tavares et al. [24]. Furthermore, the ten-54

sile failure of different hybrid composites is simulated using the same approach with the55

objective of understanding the influence of the modelling parameters on the macroscopic56

response. These simulations are also validated and compared with the SEM.57

2. Modelling strategy58

In this work, a new analytical model to predict the SCF around broken fibres in hybrid59

composites is presented. The analytical model is used within the framework of a Progres-60

sive Failure Model (PFM) [2]. In the PFM, a three dimensional Representative Volume61

Element (RVE) containing a random distribution of fibres is used. By applying known62

functions to predict the load redistribution around broken fibres, the PFM can simulate63

the tensile failure process of composite materials, capturing fibre clustering, fibre frag-64

mentation and stiffness loss. This model is reviewed in the next sections where also the65

new analytical model to predict the SCF around breaks is presented.66
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To validate the new proposed model used in PFM, the obtained results are compared67

with the SEM. The SEM was firstly developed by Okabe et al. [25, 26, 29] and was68

recently extended to hybrid composites, damageable interfaces, and random fibre mi-69

crostructures by Tavares et al. [24]. The SEM consists of a more complex three di-70

mensional RVE where the fibres are longitudinal tensile springs connected by transverse71

springs representing the matrix. Unlike the PFM, the SEM can predict the load redistri-72

bution around breaks inherently from the equilibrium equations, being a finite element73

model. However, SEM is computationally more expensive than PFM. Further details of74

the SEM can be seen in Tavares et al. [24].75

2.1. Progressive Failure Model76

The PFM consists of a RVE of width a, height b and length L containing a random77

distribution of fibres of a given radius. The fibres are divided into elements of length l78

along their longitudinal direction, leading to a succession of planes. Each fibre is denoted79

with the sub-index q ∈
[
1, ..., Nq

]
, while each plane is denoted with the sub-index p ∈80 [

1, ..., Np

]
, where Nq and Np are the number of fibres and planes respectively, see Figure81

1. Each element has a different strength according to a statistical distribution. Once an82

element fails, a damage distribution is applied over the ineffective length of the broken83

fibre, whereas stress concentration is applied into the neighbouring intact fibre elements.84

2.1.1. Constitutive equation85

The constitutive equation relating the stress of each element, σp,q, and the strain εp is86

σp,q =
SCFp,q

Ωp
Eq

(
1 − Dp,q

)
εp (1)

where SCFp,q is the stress concentration factor of element p, q, Eq is the Young’s modulus87

of fibre q, Dp,q is the state damage variable, which is equal to 1 for broken elements,88

equal to 0 for intact elements and in between for elements in any stress recovery, εp is the89

strain of the plane (which is considered to be the same for all elements of plane p) and90

Ωp is a stress ratio which enforces load equilibrium by modifying the stress concentration91

according to the strain level. Readers are referred to Guerrero et al. [2] for an in-depth92

description of the model.93

The evolution of Dp,q and S CFp,q, depends on the model used to predict the ineffective94
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length and the SCF around breaks, respectively. Even though any model may be applied95

to predict both, it is important to use models that are consistent for both parameters. In96

the following section, the model to predict damage is explained, whereas the new model97

for predicting the SCF is explained in Section 2.1.3.98

2.1.2. Functions for ineffective length99

In this work two different behaviours to simulate damage are considered, i.e. the100

matrix is plastic or the matrix is elastic.101

When the matrix is plastic, a modified version of Kelly-Tyson shear-lag model [30] is102

adapted as given in St-Pierre et al. [22]. This approach adds a factor, H, which scales the103

ineffective length with cluster size. Here, two broken fibre elements belong to the same104

cluster (c), if the distance between the centres of both fibres is below four times the fibre105

radius and both elements are in the same plane p. Each cluster is represented with the sub-106

index p, c, with c ∈
[
1, ..., Nc

p

]
where Nc

p is the number of clusters at plane p. This means107

that the scaling effects depend on the element length, l. Nonetheless, it was verified that108

varying the element length does not significantly change neither the macroscopic response109

of the composite nor the damage development. The ineffective length of a broken fibre in110

cluster p, c is then111

Lin
p,q =

RqEq

2τq
Hp,cεp =

np,cπR2
qEq

Cp,cτq
εp (2)

where τq is the matrix shear yield stress, Rq is the fibre radius, Cp,c = 4s√np,c, where112

np,c is the number of broken fibres on cluster p, c and s is the mean centre-to-centre113

distance between each fibre and its closest neighbour. Here, it is estimated with s =114

((Rf1Vf1 + Rf2Vf2) /Vf)
√
π/Vf, where Rf1 and Rf2 are the fibre radius of fibre populations115

1 and 2 respectively, Vf is the overall fibre volume fraction and Vf1 and Vf2 are the fibre116

volume fraction of each population respectively (Vf = Vf1 + Vf2). It is worth mentioning117

that here, s, is not the average inter-fibre spacing of the cluster, but the average inter-fibre118

spacing of the overall RVE. That is, because the ineffective length should depend not only119

on the fibres in the broken cluster but also on the fibres that surround it.120

The damage of element p, q according to each break in the fibre q at each plane i121
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follows a linear recovery with122

Dp,q =


max

Lin
i,q − |i − p| l

Lin
i,q

 ∀i :
(
Di,q = 1

)
∪

(
|i − p| l < Lin

i,q

)
0 otherwise.

(3)

If the matrix behaves elastically, the Cox’s shear-lag model [31, 32] is adapted as in123

[20]. Then the ineffective length is124

Lin
p,q =

Hp,cEq

2Gm

(
s − 2

Rf1Vf1 + Rf2Vf2

Vf

)
(− ln 0.001)

√√√√√ 2GmRq

Eq

(
s − 2

Rf1Vf1 + Rf2Vf2

Vf

) (4)

where Gm is the matrix shear modulus. It should be noted that this length corresponds to125

a recovery of 99.9% of the fibre stress [20]. The damage is then computed with126

Dp,q =


max

exp

−
|i − p| l
Hp,cRq

√√√√√ 2GmRq

Eq

(
s − 2

Rf1Vf1 + Rf2Vf2

Vf

)

 ∀i :

(
Di,q = 1

)
∪

(
|i − p| l < Lin

i,q

)
0 otherwise.

(5)

2.1.3. Stress concentration factor model127

Different approaches have been used to predict the SCF around breaks [3, 22, 33, 34].128

Recently, St-Pierre et al. [22] presented a model capable of predicting the SCF around co-129

planar clusters of broken fibres in non-hybrid composites. St-Pierre’s et al. [22] approach130

is adapted and extended here to work with hybrid composite materials. The reason why131

this model was chosen over others is related to the fact that the model predicts the SCF132

around clusters instead of isolated fibre breaks, and it is built on a simple but solid physical133

background. The model assumes that the SCF around a cluster of broken fibres takes a134

power-law shape.135

In this work, the increment of SCF for an intact element p, q due to cluster i, c is136

represented with two functions, δ and λ, so that ∆S CF = δ ·λ. The function δ depends on137

the in-plane distance
(
rq−c

)
between the geometrical centre of coordinates of cluster i, c138

and intact element p, q, while λ depends on the plane position along the ineffective length.139

As each cluster may contain broken fibres of each type, an intact element may receive SCF140

from broken fibres of the same population or the other, leading to four combinations of δ141

δ11(q−c) = I11i,c

(
Ri,c

rq−c

)α
δ22(q−c) = I22i,c

(
Ri,c

rq−c

)α
δ12(q−c) = I12i,c

(
Ri,c

rq−c

)α
δ21(q−c) = I21i,c

(
Ri,c

rq−c

)α (6)
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where δ11(q−c) and δ22(q−c) represent the increment of SCF that an intact element of fibre142

population 1 and 2 respectively receives due to broken fibres of its own type in cluster143

i, c, while δ12(q−c) and δ21(q−c) are the increment of SCF that an element of fibre population144

1 and 2 respectively receives due to broken fibres of different type in cluster i, c. Ri,c145

is the equivalent radius of the cluster, estimated with πR2
i,c = ni,cS 2

i,c, where S i,c is the146

average fibre spacing of the cluster, S i,c =
((

n1i,cRf1 + n2i,cRf2

)
/ni,c

) √
π/Vf, where n1i,c and147

n2i,c are the number of broken fibres of population 1 and 2 respectively in cluster i, c and148

ni,c = n1i,c +n2i,c . The exponent α is an input parameter which controls the maximum value149

of SCF and the shape of the curve. According to the literature, this value can be adopted150

as α = 2 for a plastic matrix and α = 3.8 for elastic matrix [20, 22]. The terms I are151

constants, which are determined later in this section, see Eq. (10).152

Similarly, as there are two fibre populations, each cluster i, c has two ineffective153

lengths, the ineffective length of broken elements of type 1, Lin
1i,c

, and that of broken ele-154

ments of type 2, Lin
2i,c

. Therefore, two functions appear for λ as155

λ1(p−i) =



Lin
1i,c
− l |i − p|

Lin
1i,c

∀(i, c) : l |i − p| < Lin
1i,c

Plastic matrix

exp

−
|i − p| lCi,c

2πni,cR2
f1

√√√√√ 2GmRf1

Ef1

(
s − 2

Rf1Vf1 + Rf2Vf2

Vf

)
 ∀(i, c) : l |i − p| < Lin

1i,c
Elastic matrix

λ2(p−i) =



Lin
2i,c
− l |i − p|

Lin
2i,c

∀(i, c) : l |i − p| < Lin
2i,c

Plastic matrix

exp

−
|i − p| lCi,c

2πni,cR2
f2

√√√√√ 2GmRf2

Ef2

(
s − 2

Rf1Vf1 + Rf2Vf2

Vf

)
 ∀(i, c) : l |i − p| < Lin

2i,c
Elastic matrix

(7)

where λ1(p−i) represents the evolution of δ11(q−c) and δ21(q−c) along Lin
1i,c

, while λ2(p−i) represents156

the evolution of δ22(q−c) and δ12(q−c) along Lin
2i,c

. Ef1 and Ef2 are the Young’s modulus of fibre157

type 1 and 2 respectively.158

Because of load equilibrium, the load loss of each fibre population in the cluster,159

must be redistributed into the remaining intact fibres at same plane. Thus, the following160

equilibrium equations arise161

πR2
f1n1i,cσ

∞
1 =

∫ Rt

Ri,c

I11i,c

(
Ri,c

rq−c

)α
σ∞1 Vf12πrq−c drq−c +

∫ Rt

Ri,c

I21i,c

(
Ri,c

rq−c

)α
σ∞2 Vf22πrq−c drq−c

πR2
f2n2i,cσ

∞
2 =

∫ Rt

Ri,c

I22i,c

(
Ri,c

rq−c

)α
σ∞2 Vf22πrq−c drq−c +

∫ Rt

Ri,c

I12i,c

(
Ri,c

rq−c

)α
σ∞1 Vf12πrq−c drq−c

(8)
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where Rt is the RVE equivalent radius, Rt =
√

(a · b) /π, while σ∞1 and σ∞2 are the stress162

at infinite for each fibre population respectively. Assuming that the strain is the same for163

both fibre populations, σ∞1 /Ef1 = σ
∞
2 /Ef2. In addition, it is assumed that two intact fibre164

elements of different type located at the exact same distance to the same break, receive165

the same increment of force due to the break. This assumption means that the overload166

transferred from a break to an intact fibre is independent of both the Young’s modulus167

and the fibre radius of the intact fibre. This fact is supported by the results presented in168

Swolfs et al. [10]. As isostrain conditions are considered, force equality implies that the169

increment of stress concentration solely depends on the stiffness and cross-sectional area170

of both fibres leading to171

I21i,c =
Ef1R2

f1

Ef2R2
f2

I11i,c I12i,c =
Ef2R2

f2

Ef1R2
f1

I22i,c (9)

These conditions imply that a fibre with lower stiffness located at the same distance to the172

break is subjected to a higher SCF than a fibre with a higher stiffness, which is consistent173

to the general observations seen in the literature [10, 12]. By substituting the relation174

between σ∞1 and σ∞2 and Eq. (9) into Eq. (8), the constants I11i,c , I22i,c , I12i,c and I21i,c are175

obtained as functions of α:176

I11i,c =


n1i,cR

2
f1R2

f2

2R2
i,c ln

(
Rt/Ri,c

) (
R2

f1Vf2 + R2
f2Vf1

) for α = 2

n1i,cR
2
f1R2

f2R−αi,c (α − 2)

2
(
R2

f1Vf2 + R2
f2Vf1

) (
R2

i,c
(
1/Ri,c

)α
− R2

t (1/Rt)α
) otherwise.

I21i,c =


Ef1n1i,cR

4
f1

2Ef2R2
i,c ln

(
Rt/Ri,c

) (
R2

f1Vf2 + R2
f2Vf1

) for α = 2

Ef1n1i,cR
4
f1R−αi,c (α − 2)

2Ef2

((
R2

f1Vf2 + R2
f2Vf1

) (
R2

i,c
(
1/Ri,c

)α
− R2

t (1/Rt)α
)) otherwise.

I22i,c =


n2i,cR

2
f1R2

f2

2R2
i,c ln

(
Rt/Ri,c

) (
R2

f1Vf2 + R2
f2Vf1

) for α = 2

n2i,cR
2
f1R2

f2R−αi,c (α − 2)

2
(
R2

f1Vf2 + R2
f2Vf1

) (
R2

i,c
(
1/Ri,c

)α
− R2

t (1/Rt)α
) otherwise.

I12i,c =


Ef2n2i,cR

4
f2

2Ef1R2
i,c ln

(
Rt/Ri,c

) (
R2

f1Vf2 + R2
f2Vf1

) for α = 2

Ef2n2i,cR
4
f2R−αi,c (α − 2)

2Ef1

((
R2

f1Vf2 + R2
f2Vf1

) (
R2

i,c
(
1/Ri,c

)α
− R2

t (1/Rt)α
)) otherwise.

(10)

The model is very powerful as it takes into account the cluster size, RVE size, volume177
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fractions, fibre radius and elastic properties of each fibre population with simple analytical178

equations. Moreover, it can represent different matrix behaviours or effects not present179

into the model by adjusting the value of α.180

As there can be multiple clusters along the RVE, a superposition rule is considered.181

Therefore, the total SCF for an intact fibre element is obtained by linear superposition of182

the SCF of all clusters. Nonetheless, the SCF of a given element is bounded according183

to shear-lag transfer. This limitation ensures that there is a stress continuity between184

elements inside any ineffective length (elements where 0 < Dp,q < 1) that are not affected185

by SCF, and subsequent intact elements (Dp,q = 0), which can be affected by the SCF.186

Thus, the total SCF of an intact element p, q is given by187

SCFp,q =

 min
(
SCF0

p,q, SCFL
p,q

)
∀p, q : Dp,q = 0

1 otherwise,
(11)

where SCF0
p,q is the SCF predicted by the linear superposition of the contribution of all188

clusters using the previous δ and λ functions given by189

SCF0
p,q = 1 +

Np∑
i=1

Nc
i∑

c=1

δ11(q−c) λ1(p−i) + δ12(q−c) λ2(p−i) ∀i, c : ni,c > 0 & q ∈ f 1

SCF0
p,q = 1 +

Np∑
i=1

Nc
i∑

c=1

δ22(q−c) λ2(p−i) + δ21(q−c) λ1(p−i) ∀i, c : ni,c > 0 & q ∈ f 2

(12)

where f1 and f2 are fibre populations 1 and 2 respectively. SCFL
p,q is the SCF limitation for190

broken fibre q to achieve stress continuity. This limit for intact element p, q is calculated191

according to the slope of the stress gradient of the nearest ineffective length, 1/Lin
i,q, in the192

fibre q, multiplied by the distance between planes i and p:193

SCFL
p,q = min

 1
Lin

i,q

|i − p| l

 ∀i : Di,q = 1 (13)

It should be noted that the broken and damaged fibre elements are not excluded from194

Eq. (8). Therefore, the SCF of each intact element is computed independently of the195

percentage of broken and damaged elements. However, the percentage of broken and196

damaged elements is taken into account to compute the strain of each plane, εp, and the197

stress ratio, Ωp, which affect the final stress of the elements, σp,q. This is explained in198

detail in Guerrero et al. [2].199
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3. Methodology200

In a hybrid composite the stress redistribution around broken fibres depends mainly201

on the elastic and geometrical properties of both fibres, the matrix behaviour (plastic202

or elastic), the hybrid volume fraction as well as the local fibre arrangement [10, 11].203

All these properties will affect the creation and propagation of clusters that lead to final204

failure. In this work, the effects of the Young’s modulus of the fibres, matrix shear strength205

(plastic or elastic) and hybrid volume fraction on the stress redistribution around a broken206

fibre are investigated in detail. Later, their effect on the tensile failure behaviour are207

also evaluated. The simulations are performed with the PFM using the new SCF model208

presented in previous section 2.1.3. All simulations are compared with the SEM [24] to209

validate the results.210

A modified version of Melro’s et al. [35] random fibre generator is used to create a211

RVE of width, thickness and length of 75 × 75 × 300 times the fibre radius. The element212

length is always 2 times the fibre radius, with both fibres in the RVE having the same213

radius. The same RVE is used for both PFM and SEM when studying the same prob-214

lem. Note however that a new RVE is generated for each case in study. To observe the215

differences in load redistribution and failure process with different properties, three hy-216

brid composites are considered by combining different fibres. These hybrids correspond217

to AS4-Eglass, M50S-AS4 and AS4-T800G, whose properties are shown in Table 1. In218

all cases, the matrix corresponds to epoxy with elastic properties Em = 1260 MPa and219

Gm = 450 MPa. To understand the impact of the matrix behaviour, all cases are simulated220

with plastic (τq = 50 MPa) and elastic matrix (τq → ∞). In addition, each hybrid is sim-221

ulated with a hybrid volume fraction of 25%, 50% and 75%. Here, the Hybrid Volume222

Fraction (HVF) is referred to be as the percentage of HE fibre volume fraction, VHE, over223

the total fibre volume fraction, HVF = (VHE/Vf) · 100.224

In the case of SEM, the model calculates all unknown variables directly from the225

equilibrium equations, as a function of the material properties and RVE geometry, being226

a very robust tool. However, it is less efficient computationally than the PFM. For the227

PFM instead, the ineffective length and SCF need to be applied according to the matrix228

behaviour. In all cases where the matrix is plastic (τq , ∞), the ineffective length and229

damage are simulated within equations (2) and (3). In these cases, the SCF is calculated230
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using α = 2. However, when the matrix is elastic (τq = ∞), then the ineffective length231

and damage are simulated with equations (4) and (5) and α = 3.8. It is worth mentioning232

that, when the matrix is plastic, its behaviour is considered to be perfectly plastic in the233

PFM, whilst it is elastic-plastic in the SEM.234

To investigate the stress redistribution around breaks, a broken fibre is arbitrarily235

placed around the middle of the RVE for each hybrid composite. This broken fibre is236

either the fibre with lower Young’s modulus (LM) or the fibre with higher Young’s modu-237

lus (HM). Usually, the LM fibre corresponds to the fibre with larger failure strain, i.e. the238

HE fibre, whereas the HM fibre corresponds to the fibre with smaller failure strain, i.e. the239

LE fibre. Even tough the LE fibres will break before the HE fibres, it is important to study240

the HE fibre load redistribution as well as towards final failure the HE fibre also fails. A241

remote tensile strain, ε, of 2% is applied and the consequent obtained load redistribution242

around the broken fibre is characterized with three different metrics. The first one is the243

maximum SCF obtained on intact LM and HM fibres. The SCF is calculated as the ratio244

between the actual stress on the fibre over the stress if there were no breaks, i.e. Efε. The245

second metric is the ineffective length of the broken fibre, which is defined as the distance246

where the broken fibre recovers 90% of the nominal load, whereas the last metric is the247

radial influence length. This is defined as the maximum distance in the break plane in248

which the SCF is higher than 1%. The results shown for both the ineffective length and249

radial length are normalised by the fibre radius. Ten realisations are performed for each250

case, leading to a total of 360 simulations.251

To understand the influence of the modelling parameters on the tensile failure process,252

the same hybrid composites are simulated under fibre tensile loading. Moreover, non-253

hybrid composites of each fibre type are also simulated. To do so, a random strength,254

σult
p,q, is generated for each element in the RVE according to the Weibull distribution [36]255

with Pp,q = 1−exp
(
− (l/L0)

(
σult

p,q/σ0

)m)
, where Pp,q is a random number between 0 and 1,256

while σ0, L0 and m are the corresponding Weibull parameters of the fibre element shown257

in Table 1. To compare the results between simulations, different metrics are proposed258

based on literature [37]. The first metric is the yield stress, σy, which is understood as259

the knee point where the stress-strain curve deviates from the initial linear elastic regime260

at a strain of 0.1%. The second metric is the ductile strain, εd, defined as the strain261
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difference between the strain at peak stress, and the initial slope line at the failure stress262

level
(
εd = εult − σult/E0

)
, where E0 is the initial Young’s modulus of the composite given263

by the rule of mixtures. The third metric is the peak stress, σult, whereas the fourth metric264

is the strain at peak stress, εult. These metrics are summarized in Figure 2. The fifth metric265

is the cluster size at peak stress, Nc. Here, two broken fibres belong to the same cluster if266

the distance between centres is smaller than 4 times the fibre radius and the axial distance267

between break planes is smaller than 10 times the fibre radius [3, 20, 24]. It should be268

noted that the definition of clusters used to assess the damage evolution explained in this269

section, is different than the one used for calculating the SCF and ineffective length shown270

in previous Section 2.1.2. This is done to allow a fair comparison between the analytical271

and numerical model, and other models in the literature. The sixth and final metric is the272

fibre break density at peak stress, δult
f . Five realisations are performed for each case in273

study, leading to 110 simulations in total.274

4. Stress redistribution around breaks275

In this section the stress redistribution around a broken fibre is analysed. A compari-276

son of the results between the SEM and the analytical SCF model used in the framework277

of the PFM is performed to asses the validity of the analytical model. The overall volume278

fraction considered was 60% for all cases studied. It should be noted that in this section,279

because the fibres have no strength, the HVF is referred to be as the percentage of LM280

fibre volume fraction over the total fibre volume fraction.281

4.1. Stress concentration factor282

The trends predicted by both PFM and SEM are the same for all hybrid materials283

and matrix behaviour, even though the absolute values are not the same. However, their284

relative difference is remarkably small considering the simplicity of the analytical model.285

These results justify the assumption done in Eq. 9.286

In Figure 3, the SCF around a broken HM fibre is shown with a plastic matrix and287

an elastic matrix as a function of the HVF for the different hybrids in study. The SCF288

calculated is larger for the LM fibres when compared with the HM fibres. As the LM289

fibres have a lower stiffness, their stress before the break was lower compared with the290
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HM fibre. Hence, the relative increase of stress is larger on the LM fibre causing a larger291

SCF [10].292

Interestingly, the SCF on HM fibres decreases when adding LM fibres, while the293

opposite happens for the SCF on LM fibres. That should be related to the fact that by294

increasing the LM fibre content, the distance of the HM fibre to the break increases,295

and the load to redistribute is mainly taken by the LM fibres. This will cause larger296

hybrid effects at smaller HM volume fractions as has already been reported in literature297

[2, 11, 12, 18]. Moreover, the SCF on HM fibres is not strongly affected by the LM298

stiffness, whereas the opposite happens with the SCF on LM fibres. The larger the ratio299

between the stiffness of the HM and LM fibre is, the larger is the SCF obtained on the LM300

fibres. This fact agrees well with the findings of Swolfs et al. [10].301

The matrix behaviour i.e. plastic or elastic changes the maximum value of SCF, being302

larger with elastic matrix, however, the trends are the same. The reason for this difference303

is the fact that, in an elastic matrix, there is no upper limit for shear stress transfer between304

fibre and matrix, hence causing a more localised effect and larger SCF.305

In Figure 4 the SCF around a broken LM fibre is shown with both plastic and elas-306

tic matrix for different HVF and materials. The SCF on HM fibres again decreases by307

increasing the content of LM fibres, whilst the opposite happens with the LM fibres. In-308

terestingly, the SCF on both HM and LM fibres are smaller than in the previous case. That309

is related to the fact that the LM fibre carried less load than the HM fibre before failure,310

hence resulting in smaller SCF. It should be noted however, that in reality the LM fibres311

usually fail after the failure of multiple HM fibres. Thus, the SCF obtained will be much312

larger than the ones predicted here, as the HM fibres no longer support load. The SCF313

on the LM fibre is not strongly affected by the stiffness of the HM fibre. Nonetheless,314

the SCF on the HM fibre is highly influenced by the stiffness of the LM fibre. A smaller315

stiffness ratio between HM and LM fibre leads to a larger SCF on the HM fibres, which316

is the opposite as observed in the previous case.317

Although the models are able to take into account fibres with different radii [2, 24], in318

this study the fibres were considered to always have the same radii. Otherwise, it would319

add another layer of complexity due to higher differences in the microstructures of the320

composites analysed.321
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4.2. Ineffective length322

In Figure 5 the ineffective length is shown for a broken HM fibre and a broken LM fi-323

bre with both plastic and elastic matrix as a function of the HVF for each material system.324

The ineffective length is larger for the HM fibre than for the LM fibre. That is due to its325

stiffness: a larger stiffness means that a larger load needs to be recovered, hence causing326

a larger ineffective length. Interestingly, the ineffective length is not significantly affected327

by the stiffness of the other fibre in the hybrid, which corresponds well to the findings328

of Swolfs et al. [10]. Similarly, the HVF has a small effect on the ineffective length.329

In Figure 5 d), a minimum can be observed for the SEM at HVF = 50%, however, the330

difference is small compared to other volume fractions. In the same way, in Figure 5 b)331

and c) a small increase of ineffective length is observed in the SEM for HVF = 75%. In332

any of these cases, the small difference in ineffective length due to the HVF should be333

related to the changes in the microstructure, as the ratio between HM and LM fibres is334

different.335

The ineffective length exhibits a large change between plastic and elastic matrix, the336

same trend that was observed for the SCF. The ineffective length is smaller for an elastic337

matrix, as there is no limit in shear stress transfer, making it possible for the stress to be338

recovered in the broken fibre in a shorter region. With the plastic matrix the shear transfer339

is limited by the matrix shear strength resulting in a larger ineffective length. In any case340

the trends remain the same for both matrix behaviours.341

In general, the results predicted between the SEM and the analytical models in PFM342

follow similar trends, although some differences are observed. In the PFM the ineffective343

length is always smaller than in SEM. This is specially evident for the plastic matrix cases.344

There are two main reasons which can explain this difference. Firstly, with a plastic345

matrix, the behaviour of the matrix is elastic-plastic in the SEM, whilst it is perfectly346

plastic in PFM. Because of this, the shear stress is constant along the ineffective length,347

causing an underprediction of the ineffective length. This issue could in principle be348

improved by using an elastic-plastic model in PFM instead of a perfectly plastic. The349

second reason could be related to the microstructure. In the SEM, the ineffective length350

of each broken fibre depends on the local stiffness around the broken fibre. This means351

that if the broken fibre is surrounded by more LM fibres (with lower stiffness), then the352
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ineffective length of the broken fibre is higher. This explains why the SEM predicts an353

increase in ineffective length at larger HVF. However, this effect is unlikely to be captured354

by a simple analytical model.355

4.3. Radial influence length356

The radial influence length for each material system, as a function of the HVF is357

shown in Figure 6.358

As it can be observed, the radial influence length is larger when a HM fibre is broken359

than when a LM fibre is. That is because the HM fibre has a larger stiffness, causing a360

larger load to be redistributed over intact fibres leading to a larger radial length. In most361

cases a small increase of the radial length can be observed by increasing the HVF. This362

increase is larger for the SEM than for the PFM, although overall the trends are similar.363

In general, the radial influence length is slightly larger for the PFM than for SEM.364

Overall the radial length is affected by the stiffness of the fibres. A larger ratio of365

stiffness between HM and LM fibres causes a larger radial influence length when the366

HM fibre is broken. The opposite trend is observed when the LM fibre is broken. This367

observation corresponds well to what was observed with the SCF.368

Changing the matrix from elastic to plastic maintains the same trends as it was seen369

with the SCF and ineffective length. As expected, the radial length is smaller with an370

elastic matrix, which is again caused by the no upper limit in shear transfer between371

fibre and matrix. In any case, the radial influence length is heavily dependent on the372

microstructure and its average value for each realization performed presents an error of373

approximately ±1 mm/mm.374

5. Tensile behaviour375

In this section the tensile failure of the hybrid materials cases used in Section 4 is sim-376

ulated under strain controlled conditions. A comparison of results is performed between377

SEM and PFM. In this section, the total fibre volume fraction considered is 50%.378

A summary of all the results obtained for the hybrid materials with plastic matrix is379

presented in Table 2, while the results with elastic matrix are shown in Table 3. The results380

for the non-hybrid cases are summarized in Table 4. The presented results, correspond to381
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the average of 5 realisations for each case. The average computational time for performing382

one run of the cases studied was 1314 s for the SEM, whereas it was 114 s for the PFM.383

Therefore, the simplified model is approximately 10 times faster.384

The stress-strain curves obtained for all materials with a plastic matrix are shown385

in Figure 7. The tensile behaviour predicted by the two modelling approaches is in good386

agreement for all cases despite of the differences in the modelling assumptions. In general,387

the PFM overpredicts the final failure of the composite, leading to larger peak stresses,388

yield stresses, strain and break densities, when compared with the SEM.389

The failure process is seen to be very different for each hybrid configuration and varies390

greatly with the HVF. For the AS4-Eglass hybrid, no ductility is observed at the different391

HVF simulated. However, at a HVF = 75%, there is a larger stiffness loss when compared392

with HVF = 50% and HVF = 25% before the final load drop, which suggests that393

ductility could be present for HVF > 75%. This is also indicated by the fibre break394

density evolution presented in Figure 8. As it can be seen, the fibre break density increases395

exponentially for all hybrid volume fractions leading to a brittle failure, nonetheless, this396

increase is less abrupt for HVF = 75%.397

For the M50S-AS4 hybrid, brittle failures are also obtained at HVF of 25% and398

50%. Nonetheless, a rather large ductility of around 0.5% is predicted by the models for399

HVF=75%, meaning that for this composite material the failure process is gradual. This400

is clearly demonstrated by the evolution of fibre break density, which increases linearly401

but not exponentially, until final failure.402

Similarly, a ductility of around 0.7% is observed within the AS4-T800G hybridization403

at a HVF = 75%. However, by decreasing the HVF brittle failures are obtained. In the404

case of HVF = 25%, the failure is completely brittle whereas for the HVF = 50% two405

load drops can be observed. The first load drop corresponds to the failure of the LE fibres,406

whilst the second one corresponds to the failure of the HE fibres. Nevertheless this case407

cannot be considered as ductile because the failure is not really continuous.408

In general, the predicted cluster size is larger for the PFM than for SEM. The reason409

for this is likely to be related to the fact that final failure occurs later in PFM. In any case,410

the cluster size predicted are in general in good agreement with results of non-hybrid411

composites [3]. Similarly, the fibre break density is in general larger for the PFM for412
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the same reason, although in this case both models predict larger values than seen in the413

literature [3]. The fibre break density seems to increase with ductility. The larger is the414

ductile strain, the larger is the break density. This is caused by the fact that final failure415

is being delayed, leading to larger break densities. For the M50S-AS4 hybrid, the fibre416

break density at maximum stress for HVF = 75% is more than 2 times larger compared417

to HVF = 25%, being this increase from 4235 to 9692 mm−3 for SEM and from 7063418

to 16229 mm−3 for PFM. Similarly, for the AS4-T800G hybrid, the fibre break density at419

HVF = 75% is approximately 3 times larger than at HVF = 25%, with an increase from420

3831 to 10670 mm−3 and 6397 to 21340 mm−3 for SEM and PFM respectively. It is worth421

mentioning that both the cluster size and fibre break density are here being compared422

with results of non-hybrid composites, which are brittle and less damage tolerant than423

the analysed hybrids. Therefore, this comparison should be taken with care. Nonethe-424

less, although there is no certainty in the results for hybrid composites, the models seem425

to partially capture the results in non hybrid composites and their application to hybrid426

composites, although debatable, can lead to important insights.427

The predicted stress-strain curves using an elastic matrix are shown in Figure 9, while428

the fibre break density can be seen in Figure 10. Both models are again in good agreement429

for most material configurations, although now the PFM is in general underpredicting430

final failure compared to SEM. Nonetheless, the obtained stress-strain curves and failure431

process differ greatly from the ones observed by using a plastic matrix. Unlike the plastic432

matrix case, some ductility appears within the AS4-Eglass hybrid at a HVF = 75%.433

However, a very small ductility is predicted for the M50S-AS4 hybrid at a HVF = 75%434

compared to the plastic matrix case. The differences between plastic and elastic matrix435

are even larger for the AS4-T800G hybrid. With this material, the ductile strain at a436

HVF = 75% is of 1%, which is much larger than the 0.7% predicted for plastic matrix.437

Similarly, at a HVF = 50% a large ductility of 1.5% for SEM and 0.5% for PFM is438

predicted whilst no ductility was present with a plastic matrix.439

By further analysing the cluster evolution and break density with an elastic matrix,440

larger differences appear in comparison with the plastic matrix. For the ductile cases,441

the models with an elastic matrix predict a much larger break density than with a plastic442

matrix. The cluster size is also unrealistically large compared with experimental data [3].443
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This is especially evident for the AS4-T800G hybrid, in which the cluster size predicted444

by the models exceeds the number of fibres in the RVE for HVF = 75% and HVF = 50%.445

This means that in some cases, some fibres were broken more than once over the 10446

axial element lengths considered, corresponding to 20 times the fibre radius. Therefore,447

the same fibre was broken multiple times in the same cluster. This effect is even more448

exaggerated due to the small Weibull modulus, m, of the T800G fibre which causes a449

large strength variation for that fibre. However, it should be highlighted again that both450

the cluster size and fibre-break density are being compared with results of non-hybrid451

composites which are brittle and less damage tolerant than the simulated hybrids.452

For the cases of the non-hybrid composites the models are again in good agreement.453

For these materials the final failure is brittle for all cases, being similar between elastic454

and plastic matrix. However, the fibre break density and cluster size are again very large455

for some cases with elastic matrix and do not correspond well to data available in the456

literature [3].457

The large differences of results between plastic and elastic matrix highlight that the458

differences in load redistribution, seen in previous Section 4, lead to very different failure459

progression. In an elastic matrix, the shear stress transfer between fibre and matrix is not460

limited which causes the stress redistribution to be always very localized around the break.461

As a consequence, many isolated clusters along the model appear which need to grow462

very large in size to propagate unstably. This is the reason why the cluster size is usually463

larger for the elastic matrix cases. Similarly, it should also explain why larger ductilities464

are observed with an elastic matrix. In a real composite however, the shear stresses are465

limited by the matrix strength, like it is the case with a plastic matrix approach. Results466

of this work suggest that, while an elastic matrix may lead to similar failure prediction in467

non-hybrid composites compared to a plastic matrix, the use of an elastic matrix can lead468

to inaccurate results when modelling hybrid composites. Nonetheless, it is impossible to469

further validate the results due to the lack of experimental data. Furthermore, a better470

definition of cluster size is needed to avoid clusters larger than the number of fibres.471
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6. Conclusions472

In this work, a new analytical model for predicting the SCF around clusters of broken473

fibres in hybrid unidirectional composites was presented. The model was used within the474

framework of a PFM [2] to study the stress redistribution around breaks in different hybrid475

composites and their effect on the tensile response and failure process. The results were476

validated by comparing with the SEM [24].477

The predicted stress redistribution around broken fibres in hybrid composites was seen478

to vary with the stiffness ratio of the fibres on the hybrid, the matrix behaviour being479

plastic or elastic, the broken fibre stiffness as well as the hybrid volume fraction. Three480

different metrics were used to quantify this load redistribution: maximum SCF on HM481

and LM fibres, ineffective length and radial length.482

The SCF on an intact fibre with different stiffness than the broken fibre is affected by483

the stiffness ratio of both fibres. The larger the ratio, the larger the SCF when the HM484

fibre is broken, whereas the opposite happens when the LM fibre is broken. Adding LM485

fibres into the hybrid composite decreases the SCF on HM fibres, which should lead to486

larger hybrid effects. When a HM fibre is broken, the SCF is larger on the LM fibres than487

on the HM fibres. However, the SCFs are smaller in both populations when the LM fibre488

is broken. Changing the matrix from plastic to elastic has an important impact on the489

SCF. With an elastic matrix, the SCF is larger due to the fact that there is no limit in shear490

stress transfer. The new proposed analytical model predicted well the trends and stress491

redistribution in all cases and is in good agreement with the SEM. Moreover, assuming492

that the overload carried by an intact fibre due to a break does not depend on its Young’s493

modulus and radius, provides a good correlation between the analytical model and the494

SEM.495

The ineffective length was found to depend mainly on the stiffness of the broken fibre.496

The larger the stiffness, the larger the ineffective length. As a difference from the SCF, the497

stiffness of the hybridization fibre and the HVF has no significant impact on the ineffective498

length. However, the matrix behaviour has a strong effect, being the ineffective length499

smaller with an elastic matrix. Finally, the radial influence length follows the same trends500

as the SCF and is smaller with an elastic matrix.501

In addition, a simulation of the fibre tensile failure of different hybrid materials was502
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performed under strain controlled conditions. Different ductile responses were predicted503

for some composites at low HVF, whereas in other cases brittle and sudden failures were504

obtained. The ductile composites presented a gradual and progressive increase of fibre505

break density, whereas an exponential increase was obtained for the brittle materials.506

Large differences were again found between plastic and elastic matrix, meaning that507

the differences in load redistribution lead to different failure progression. When the matrix508

was considered elastic, many isolated clusters appeared along the model. These clusters509

needed to grow very large in size before unstable propagation. As a consequence, unreal-510

istically large cluster size and break densities were predicted for some simulations. This511

wasn’t the case with a plastic matrix, which presented more realistic results compared512

to experiments [3]. Therefore, results suggest that using an elastic matrix may lead to513

erroneous predictions when modelling hybrid composites. Additional experimental data514

is required to further validate and improve the different models for hybrid composites.515
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Figure 1: Schema of the RVE used in the PFM: a) 3D view, b) plane view.
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Figure 3: Maximum stress concentration factors around a broken HM fibre as a function of the hybrid
volume fraction for different hybridizations: a) on HM fibres with plastic matrix, b) on HM fibres with
elastic matrix, c) on LM fibres with plastic matrix, d) on LM fibres with elastic matrix. The average of 10
realisations are shown (τq = 50 MPa for plastic matrix). Note that in a) and b), all PFM results are the
same.
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Figure 4: Maximum stress concentration factors around a broken LM fibre as a function of the hybrid
volume fraction for different hybridizations: a) on HM fibres with plastic matrix, b) on HM fibres with
elastic matrix, c) on LM fibres with plastic matrix, d) on LM fibres with elastic matrix. The average of 10
realisations are shown (τq = 50 MPa for plastic matrix). Note that in c) and d), all PFM results are the
same.

27



20 40 60 800

20

40

60

80

100

In
ef

fe
ct

iv
e 

le
ng

th
 [-

]

a) Broken HM plastic matrix

20 40 60 80
Percentage of LM fibres [%]

0

20

40

60

80

100

In
ef

fe
ct

iv
e 

le
ng

th
 [-

]

c) Broken LM plastic matrix
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Figure 5: Normalised ineffective length at 90% of load recovery: a) broken HM fibre and plastic matrix, b)
broken HM fibre and elastic matrix, c) broken LM fibre and plastic matrix, d) broken LM fibre and elastic
matrix. The average of 10 realisations are shown (τq = 50 MPa for plastic matrix). Note that in c) and d),
the results for EHM/ELM = 480/230 PFM and EHM/ELM = 295/230 PFM are the same.
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c) Broken LM plastic matrix
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Figure 6: Normalised radial influence length: a) broken HM fibre and plastic matrix, b) broken HM fibre
and elastic matrix, c) broken LM fibre and plastic matrix, d) broken LM fibre and elastic matrix. The
average of 10 realisations are shown (τq = 50 MPa for plastic matrix).
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Figure 7: Simulated stress-strain curves for different hybrid materials at different hybrid volume fractions
(HVF) using a plastic matrix. (a) hybrid AS4-Eglass, (b) hybrid M50S-AS4, and (c) hybrid AS4-T800G.
The non-hybrid composites are also shown.
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Figure 8: Simulated break-density curves for different hybrid materials at different hybrid volume fractions
(HVF) using a plastic matrix. (a) hybrid AS4-Eglass, (b) hybrid M50S-AS4, and (c) hybrid AS4-T800G.
The non-hybrid composites are also shown.

29



0 1 2 3 4 5
Strain [%]

0

500

1000

1500

2000

2500

Ho
m

og
en

ize
d 

st
re

ss
 [M

Pa
]

(a)

0.0 0.5 1.0 1.5 2.0 2.5
Strain [%]

0

500

1000

1500

2000

2500 (b)

0 2 4 6
Strain [%]

0

1000

2000

3000

4000

5000

6000
(c)

PFM LE
SEM LE

PFM hybrid HVF=25%
SEM hybrid HVF=25%

PFM hybrid HVF=50%
SEM hybrid HVF=50%

PFM hybrid HVF=75%
SEM hybrid HVF=75%

PFM HE
SEM HE

Figure 9: Simulated stress-strain curves for different hybrid materials at different hybrid volume fractions
(HVF) using an elastic matrix. (a) hybrid AS4-Eglass, (b) hybrid M50S-AS4, and (c) hybrid AS4-T800G.
The non-hybrid composites are also shown.
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Figure 10: Simulated break-density curves for different hybrid materials at different hybrid volume fractions
(HVF) using an elastic matrix. (a) hybrid AS4-Eglass, (b) hybrid M50S-AS4, and (c) hybrid AS4-T800G.
The non-hybrid composites are also shown.
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Table 1: Fibre properties.

Fibre type
Fibre properties Weibull properties

Ef [GPa] Rf [mm] m [-] σ0 [MPa] L0 [mm]
AS4 230

3.5 · 10−3

10.7 4275 12.7
M50S 480 9 4600 10
T800G 295 4.8 6800 10
E-glass 70 6.34 1550 24

Table 2: Obtained results for all hybrid materials with plastic matrix.

Material
SEM PFM

HVF σy σult εd εult Nc δult
f σy σult εd εult Nc δult

f
[%] [MPa] [MPa] [%] [%] [-] [1/mm3] [MPa] [MPa] [%] [%] [-] [1/mm3]

Hybrid AS4-Eglass
25 1844 1858 0.101 2.026 5.2 2880 2009 2025 0.134 2.251 10.4 6195
50 1481 1494 0.101 2.067 4.4 2380 1624 1660 0.192 2.388 9.4 6712
75 1144 1153 0.124 2.201 4.0 2480 1239 1299 0.316 2.653 14.2 8141

Hybrid M50S-AS4
25 2163 2163 0.065 1.098 10.6 4235 2310 2321 0.091 1.199 8.6 7063
50 1955 1966 0.109 1.210 14.8 6435 2052 2060 0.119 1.275 7.0 6922
75 1680 1897 0.525 1.808 14.4 9692 1817 2020 0.517 1.893 60.2 16229

Hybrid AS4-T800G
25 2432 2444 0.115 2.076 7.2 3831 2604 2614 0.112 2.223 33.8 6397
50 2687 2720 0.157 2.213 7.0 4719 2880 2908 0.141 2.345 11.6 7439
75 2978 3222 0.646 2.949 8.8 10670 3213 3533 0.760 3.282 31.0 21340

674

675

676

677

Table 3: Obtained results for all hybrid materials with elastic matrix.

Material
SEM PFM

HVF σy σult εd εult Nc δult
f σy σult εd εult Nc δult

f
[%] [MPa] [MPa] [%] [%] [-] [1/mm3] [MPa] [MPa] [%] [%] [-] [1/mm3]

Hybrid AS4-Eglass
25 2001 2002 0.070 2.144 16.2 5661 1927 1927 0.022 2.038 9.4 2471
50 1627 1635 0.102 2.253 18.6 6585 1648 1652 0.061 2.246 77.2 5739
75 1247 1315 0.531 2.900 135.2 22360 1290 1349 0.221 2.648 132.6 17150

Hybrid M50S-AS4
25 2278 2313 0.074 1.180 30.8 7958 2237 2237 0.039 1.107 33.2 5979
50 2069 2090 0.157 1.327 34.8 13141 2060 2075 0.064 1.229 116.0 8625
75 1923 2078 0.299 1.706 42.8 19782 1876 1893 0.069 1.358 80.0 6977

Hybrid AS4-T800G
25 2602 2656 0.063 2.194 49.3 9242 2583 2585 0.042 2.130 115.2 6073
50 2969 3495 1.557 4.199 4745.0 92451 3006 3414 0.539 3.127 1136.0 56394
75 3447 4576 1.054 4.326 159.0 63661 3525 4484 0.991 4.192 3909.8 78179
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Table 4: Obtained results for all non-hybrid materials with plastic (τq = 50) and elastic matrix (τq = ∞).

Material
SEM PFM

τq σy σult εd εult Nc δult
f σy σult εd εult Nc δult

f
[MPa] [MPa] [MPa] [%] [%] [-] [1/mm3] [MPa] [MPa] [%] [%] [-] [1/mm3]

AS4
50 2252 2252 0.094 2.018 4.2 3265 2383 2391 0.105 2.172 14.2 5927
∞ 2397 2397 0.065 2.114 14.0 6482 2173 2173 0.009 1.887 8.2 1413

T800G
50 3605 3950 0.377 3.055 3.4 4940 3873 4388 0.416 3.376 6.0 7864
∞ 4615 5613 0.671 4.476 75.5 31195 4725 5708 0.935 4.785 1035.8 45807

M50S
50 2388 2388 0.059 1.054 5.2 3477 2590 2592 0.074 1.150 8.0 7187
∞ 2599 2599 0.058 1.141 17.4 7900 2385 2385 0.015 1.005 5.2 2604

E-glass
50 1043 1111 0.251 3.426 10.6 9479 1168 1263 0.316 3.859 22.0 18335
∞ 1222 1301 0.246 3.964 47.8 26062 1244 1311 0.217 3.895 177.0 25973
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