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Abstract

A general framework for wave separation in the frequency domain is presented

and evaluated with successful results using theoretical examples of nonlinear

waves. This framework consists of a qualitative and a quantitative analysis.

The qualitative analysis is a novel approach that provides useful information

about the existing wave trains within a wave field. This information includes an

estimation of the number of wave trains, their direction of propagation (seaward

or shoreward), their nature (free or bound) and their relative importance. The

quantitative analysis consists in a revisited wave separation method applicable

to separate free and bound wave trains travelling seaward and shoreward for

both high and low frequencies propagating over uneven bathymetries. This

versatility represents an improvement compared to existing methods. The

presented separation method is low-sensitive to noise and its robustness is

tested for a range of wave separation settings. The potential application of

the separation method to random waves is discussed.
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1. Introduction

The water surface elevation is formed by a number of individual wave trains

of very different characteristics (i.e., ingoing, outgoing, free, bound) operating at

different frequencies. Therefore, the wave separation of water surface elevation

signals into individual wave trains is a relatively common process when analysing5

field or laboratory data and numerical simulations.

Considering a cross-shore projection of the wave field, wave trains travelling

towards the shoreline (ingoing) may coexist with wave trains travelling seawards

(outgoing). For primary frequencies, the incident wave train is an Ingoing

Free Wave (IFW ). This free wave travels with the wave celerity given by the10

dispersion relationship. For superharmonics or subharmonics of the primary

frequencies, the incident wave train is an Ingoing Bound Wave (IBW ). This

bound wave is the quadratic difference interaction of a pair of primary waves.

Consequently, this bound wave travels with the wave structure of the primary

waves (Biésel, 1952; Longuet-Higgins and Stewart, 1962). Wave trains travelling15

seawards are usually Outgoing Free Waves (OFW ) caused by the reflection

or radiation of waves generally occurring landward the surf zone. In sloping

beaches, OFW become more important at low frequencies. For low frequencies,

the reflection coefficients are typically large as observed by Elgar et al. (1994);

Baquerizo et al. (1997); Van Dongeren et al. (2007). For high frequencies,20

the reflection coefficients are typically low and most of the energy content

of the incident primary waves is dissipated at the surf zone (Elgar et al.,

1994). Consequently, the existence of an Outgoing Bound Wave (OBW ) at

superharmonics or subharmonics of the primary frequencies is usually negligible

(Kostense, 1985; Battjes et al., 2004; Van Dongeren et al., 2007).25

More than one wave train propagating with the same frequency, but different

celerities, give rise to a clear undulating pattern of the spatial envelope. The

classical example of these spatial undulations is the envelope of the well known

standing waves, where two waves of the same frequency and amplitude propagate

in opposite direction. Similar undulating patterns may also be identified within30

2



a variety of wave fields under different combinations of IBW , OBW , IFW and

OFW . For low frequencies, spatial undulations due to the combination [IBW ,

OFW ] are observed at the group frequency in Baldock et al. (2000) (Figures

9-12), Alsina and Cáceres (2011) (Figure 5), Alsina et al. (2016) (Figures 10-

11) and Padilla and Alsina (2017) (Figure 9). Spatial undulations due to35

the combination [IBW , IFW , OFW ] are seen in Padilla and Alsina (2018)

(Figures 5-6) when a moving breakpoint radiates long waves both seaward and

shoreward. Symonds et al. (1982) proposed this moving breakpoint mechanism,

whereas Padilla and Alsina (2018) analysed the associated spatial undulating

patterns within the surf zone and outside the surf zone. Within the surf zone,40

an undulating pattern related to [IBW , IFW , OFW ] is observed. Outside

the surf zone, a different undulating pattern related to the pair [IBW , OFW ]

is observed. For high frequencies, spatial undulations may appear at primary

frequencies and superharmonics of primary frequencies, as seen by Goda and

Suzuki (1976) (Figure 8). However, spatial undulations at high frequencies have45

tradiationally received less attention than spatial undulations at low frequencies.

Different wave separation methods where only measurements of the water

surface elevation are used have been presented during the last decades, e.g.,

Goda and Suzuki (1976); Mansard and Funke (1980); Kostense (1985); Frigaard

and Brorsen (1995); Baldock and Simmonds (1999); Suh et al. (2001); Lin and50

Huang (2004); Battjes et al. (2004); Van Dongeren et al. (2007); Andersen

et al. (2017). The aim of these methods is the distribution of the wave energy

budget into potential wave trains. To do so, these methods account for the

relative differences in the spatial evolution of those wave trains during their

propagation. Some of the above mentioned methods are applied in the time55

domain, e.g., Frigaard and Brorsen (1995) and Baldock and Simmonds (1999),

whereas most of the existing methods are applied in the frequency domain.

The basis of the methods applied in the frequency domain was developed by

Thornton and Calhoun (1972) and Goda and Suzuki (1976), where incident and

reflected waves were computed from two locations in line with the direction60

of wave propagation. This preliminary version (called The 2-point Method)
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was built upon monochromatic waves, but it was highly sensitive to noise and

had serious limitations related to the frequency range, which depends on the

spacing between the probes. The 2-point Method was improved by Mansard

and Funke (1980) increasing the number of probes from two to three and65

reducing the sensitivity to noise by including the least square method. However,

further improvements came with Zelt and Skjelbreia (1993) and Baquerizo

(1995). Zelt and Skjelbreia (1993) proposed the increase in the number of

probes from three to a larger and arbitrary number. This increase is currently

common practice in a number of methods, e.g., Battjes et al. (2004), Lin and70

Huang (2004), Van Dongeren et al. (2007) or Andersen et al. (2017), among

others. Baquerizo (1995) provided a more solid mathematical background to the

separation method proposed by Mansard and Funke (1980). Since then, much

effort has been done in order to adapt the separating methods to the target wave

field. For low frequencies, Kostense (1985) adapted the separation method to75

include group-bound incident waves propagating on a flat bed. Battjes et al.

(2004) and Van Dongeren et al. (2007) extended the separation of incident

bound waves and outgoing free waves over an sloping bed. For high frequencies,

the separation method proposed by Lin and Huang (2004) and Andersen et al.

(2017) provides satisfactory results limited to flat beds. Particular effects like80

amplitude dispersion or the existence of a known current are only considered in

Andersen et al. (2017) and Suh et al. (2001), respectively.

The fact that there is not a single wave separation method, but a variety

of them, indicates a generalized lack of versatility. These methods provide

satisfactory outcomes only for the wave fields they were designed for. Therefore,85

selecting the suitable separation method for the target wave condition becomes

significantly important. Moreover, even having the wave separation done, being

able to analyse if the outcomes from the wave separation are physically consistent

is also important. Unfortunately, a qualitative analysis to identify certain hints

of the existing wave trains from the observed spatial undulating patterns does90

not exist yet.

This paper aims to provide a new general framework for wave separation in
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the frequency domain. The framework consists of a qualitative and quantitative

analysis. The qualitative analysis is a new approach based on the observation

of the undulating patterns of the cross-shore wave amplitude at the target95

frequency. This qualitative analysis estimates the number of existing wave

trains, their nature and their relative importance before applying the quantitative

analysis. The quantitative analysis consists in a highly-versatile wave separation

method in the frequency domain. This framework for wave separation has

already been applied to laboratory conditions (Alsina et al., 2016; Padilla and100

Alsina, 2017, 2018), but can be also applied to numerical simulations or field data

having a minimal spatial resolution. This paper is organized as follows. Section

2 presents the qualitative analysis. Section 3 presents the quantitative analysis.

Section 4 shows the validity of this general framework for wave separation

on theoretical wave cases with satisfactory results. Section 5 discusses the105

qualitative and quantitative analyses alongside with the sensitivity to white

noise and robustness of the method. The potential application of the separation

method to random waves is also discussed. Finally, the conclusions are presented

in section 6.

2. Qualitative analysis110

2.1. Spatial undulations of the wave envelope

The superposition of different wave trains has direct observable effects on the

resultant surface elevation. When two wave crests meet at the same time-space,

they are in phase and the resulting crest is the linear sum of the individual

crests. In this case, their interference is constructive (see Figure 1a). When a115

wave crest and a wave trough meet at the same space-time, the two features

are in antiphase and they cancel out (if their amplitudes are the same). In this

case, their interference is destructive (see Figure 1b). Therefore, the sequence of

constructive and destructive interferences is a common process between propagating

wave trains with different celerities or different propagation direction.120
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Figure 1: Sketch of constructive (plot a) and destructive (plot b) wave interferences.

When two wave trains propagate with the same frequency but different

celerities, the spatial distribution of their relative phases is stationary, i.e., the

wave field η varies in time beneath a spatial envelope |η̂| that remains constant.

In particular, the linear superposition of two wave trains with the same wave

amplitude (i.e., A1 = A2 = A) and propagating in opposite direction with the125

same celerity give rise the well known standing wave pattern (Figure 2a). At

locations where the wave trains are in phase (constructive interference), the

vertical motion of a water particle is maximum (A1 + A2 = 2A). At locations

where the wave trains are in antiphase (destructive interference), the vertical

motion is null (A1 − A2 = 0). Therefore, the spatial envelope |η̂| presents an130

undulation (see Figure 2a) where the locations with maximum and null vertical

motion are called antinodes and nodes, respectively. Furthermore, the fact that

the wave trains travel in opposite direction suppresses any spatial motion of the

total superposed wave motion. When A1 6= A2 the resulting wave field is no

longer a standing wave. The minimal vertical elevation is now |A1 − A2| 6= 0135
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Figure 2: Sketch of the wave field η at three different time instants and their spatial envelope

|η̂| for wave trains with the same amplitude (A1 = A2 in plot a) and different amplitude

(A1 6= A2 in plot b). Plot a shows a standing wave pattern where the spatial undulation

of |η̂| is formed of nodes and antinodes, whereas the undulation of |η̂| in plot b is formed of

quasi-nodes and -antinodes.
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and the spatial envelope |η̂| presents an undulation formed of quasi-nodes and

quasi-antinodes (see Figure 2b). As a result, there is a progressive wave motion

in the direction of the dominant wave train. In general, when A1 6= A2 and the

wave trains propagate with different celerities, the spatial envelope presents an

undulation with quasi-antinodes and quasi-nodes.140

Note that the “node-antinode” notation should only be applied to standing

waves. However, henceforth, the locations where two wave trains are in phase

will be called antinodes. The locations where two wave trains are in antiphase

will be called nodes.

2.2. Nodes and antinodes in pairs of wave trains145

The spatial envelope of two wave trains with the same frequency but different

propagation characteristics (celerities) always displays one undulating pattern

consisting of nodes and antinodes. Therefore, the simultaneous propagation of

n different wave trains will develop N different node-antinode patterns, whose

expression:150

N =
n!

2!(n− 2)!
, (1)

accounts for the number of combinations of unordered subsets of two wave trains

within a certain set of n propagating wave trains. For instance, the spatial

envelope of three different wave trains displays three different cross-shore node-

antinode patterns, whereas the spatial envelope of five different wave trains

displays ten different node-antinode patterns. Instead of analysing all the node-155

antinode patterns in one, a practical approach for the purpose of this paper is to

individually analyse the resulting node-antinode pattern of pairs of wave trains.

In the following subsections, the location of a set of nodes and antinodes

belonging to a pair of wave trains is analytically solved in the x-y space. The

problem is addressed first for a flat bed (h = const) using linear wave theory.160

The analytical solution is then extended to a pair of wave trains propagating

over changing water depths in the cross-shore direction (h = h(x)).
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Figure 3: Sketch of the geometry for flat bed. Plot a shows the resultant envelope, a(~x, 0),

of the superposition of two wave trains travelling in the direction of their respective wave

number vectors ( ~k1 in orange, ~k2 in blue). The locations of the antinodes and nodes at the

x-axis are [xanti, xnode], whereas the locations of the antinodes and nodes at the y-axis are

[yanti, ynode]. Lx and Ly are the distances between consecutive nodes (or antinodes) in the

x and y axes, respectively. Plot b shows the cross-shore bathymetry h = const.
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2.2.1. Flat bed

Figure 3 shows the general situation of two wave trains in the x-y space,

whose angular frequency is ω, propagating in the direction of their respective165

wave number vectors [ ~k1, ~k2] over a flat bed (h = const). For each wave train,

if θ is the angle of incidence, defined as the angle between the x-axis and the

wave-train direction, then kx = |~k| cos(θ) and ky = |~k| sin(θ) (See Figure 3).

The resultant potential is

φ(~x, z, t) = <
{
−i g
ω

(
A1Kp,1(z) e−i(ωt−

~k1 ~x+ψ1) +A2Kp,2(z) e−i(ωt−
~k2 ~x+ψ2)

)}
,

(2)

where [A1, A2] are the respective wave amplitudes, [ψ1, ψ2] are the respective170

initial phases, Kp(z) = cosh(k(z+h))/ cosh(k h) with k = |~k|, g is the gravitorial

acceleration and i is the imaginary unit. Equation (2) may be rewritten in terms

of the functions a(~x, z) and ϕ(~x) as

φ(~x, z, t) = <
{
−i g
ω
a(~x, z) e−i(ω t+ϕ(~x))

}
, (3)

whose resulting surface elevation is

η(~x, t) = −1

g

∂φ

∂t

∣∣∣∣
z=0

= a(~x, 0) cos (ωt+ ϕ(~x)) . (4)

From Equation (4), a(~x, 0) is the envelope of the surface elevation. Using the175

identity eiα = cos(α) + i sin(α), where α is a convenient variable, the expression

of the envelope a(~x, 0) that satisfies Equation (3) is

[a (~x, 0)]
2

=
[
A1 cos

(
− ~k1 ~x+ ψ1

)
+A2 cos

(
− ~k2 ~x+ ψ2

)]2
+

[
A1 sin

(
− ~k1 ~x+ ψ1

)
+A2 sin

(
− ~k2 ~x+ ψ2

)]2
= A1

2 +A2
2 + 2A1A2 cos

(
−( ~k1 − ~k2) ~x+ (ψ1 − ψ2)

)
. (5)

By definition, a(~x, 0) is maximum at the antinodes, whereas a(~x, 0) is minimal

at the nodes. Based on Equation (5), a(~x, 0) is maximum and minimal when
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cos
(
−( ~k1 − ~k2) ~x+ (ψ1 − ψ2)

)
= ±1, respectively. Therefore, the spatial locations180

of the antinodes are given by the following families of curves:

− (k1,x − k2,x) x− (k1,y − k2,y) y = 2πm− (ψ1 − ψ2) with m ∈ Z, (6)

whereas for nodes:

− (k1,x − k2,x) x− (k1,y − k2,y) y = π(2m+ 1)− (ψ1 − ψ2) with m ∈ Z. (7)

Using Equations (6) and (7), the locations of the antinodes and nodes at the

x-axis, i.e., y = 0 (see Figure 3), are respectively:

xanti =
2πm− (ψ1 − ψ2)

− (k1,x − k2,x)
with m ∈ Z, (8)

xnode =
π(2m+ 1)− (ψ1 − ψ2)

− (k1,x − k2,x)
with m ∈ Z, (9)

whose distance between consecutive antinodes Lx (identical distance between185

consecutive nodes) is

(Lx)2 =

(
2π

− (k1,x − k2,x)

)2

. (10)

Note that, in general, the distance between consecutive antinodes (or nodes)

over flat beds does not depend on the amplitude of the involved wave trains,

but depends on their propagation characteristics only, i.e., their wave numbers.

Furthermore, according to Equations (8) and (9), the observation of the undulation190

resultant of the linear superposition of two wave trains over a flat bed provides

information of their wave phases and wave numbers. Likewise, similar expressions

for yanti and ynode at the y-axis may be obtained, whose distance between

consecutive antinodes (or nodes) is Ly (See Figure 3).

2.2.2. Changing water depths195

The immediate effect of wave trains propagating on a sloping bed is the

progressive reduction of their phase velocity as the water depth reduces. Therefore,

the celerity of propagating wave trains changes as a function of the bathymetry.

As a consequence, a wave train not propagating normal to the shoreline undergoes
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refraction, i.e., the differential celerity along the wave front makes the angle of200

incidence θ to progressively reduce and the wave train tends to propagate normal

to the shoreline. In particular, considering a bathymetry where h = h(x),

being the x-axis normal to the beach, a wave train with initial celerity c0 and

initial angle of incidence θ0 describes a curvilinear trajectory θ(x) during its

shoreward propagation due to a progressively changing wave number vector.205

The components of the average wave number (k̃x and k̃y) accounting for the

time required for a wave train with celerity c(x) to travel a certain cross-shore

distance x are:

k̃x(x) =

 ω
c0

cos(θ0) if x = 0,

ω
x

∫ x
0

1
c(x) cos(θ(x)) dx, if x > 0,

(11)

k̃y(x) =
ω

c(x)
sin(θ(x)) = const, (12)

where the cross-shore evolution of the angle of incidence, θ(x), is given by

Equation (12), which is the Snell’s law.210

For changing water depths in the way h = h(x), Equations (6) and (7)

still apply on defining the location of the nodes and antinodes if the cross-

shore evolution of the wave number vectors is accounted, i.e., kx = k̃x(x) and

ky = k̃y(x). As a result, the following implicit expressions are a generalization

of Equations (8) and (9), respectively:215 ∫ xanti

0

(
cos(θ1(x))

c1(x)
− cos(θ2(x))

c2(x)

)
dx = −2πm− (ψ1 − ψ2)

ω
with m ∈ Z,(13)∫ xnode

0

(
cos (θ1(x))

c1(x)
− cos(θ2(x))

c2(x)

)
dx = −π(2m+ 1)− (ψ1 − ψ2)

ω
with m ∈ Z,(14)

where xanti and xnode are the location of the antinodes and nodes at the x-axis

(y = 0) when h = h(x). Likewise, similar expressions for yanti and ynode at the

y-axis (x = 0) on changing water depths may be obtained (not showed).

2.3. Scheme of the qualitative analysis

The following steps summarize the qualitative analysis applied to a stationary220

signal at the target frequency. These steps provide information about the
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number of existing wave trains, their propagation nature (free or bound), their

ingoing or outgoing nature and their relative importance:

1. Computation of the number of wave trains (n). Given water surface

elevation time series at different cross-shore locations with enough resolution225

(commented below), N is the number of existing node-antinode patterns

within the cross-shore wave amplitude. N∗ is the number of node-antinode

patterns that an observer may identify within that cross-shore wave amplitude.

The difference between N and N∗ will be clearly seen below in Figure

7 and explained with more detail in Section 4.1.2. In Figure 7, only230

two clear node-antinode patterns are identified (N∗ = 2), whereas three

node-antinode patterns actually exist (N = 3). Therefore, if an observer

identifies exactly N different node-antinodes patters (N∗ = N), then,

using Equation (1), the number n of existing wave trains is the positive

solution of the equation n2 − n− 2N = 0, i.e.,235

n =
1 +
√

1 + 8N

2
. (15)

However, since N∗ ≤ N in practice, the number of existing wave trains n

based on the observation of N∗ different node-antinode patterns is

n ≥ d0.5 (1 +
√

1 + 8N∗)e, (16)

where the operator d·e rounds the element to the nearest higher integer.

2. Identification of the free or bound nature of the wave trains and their

propagation direction. Two wave trains can propagate in the same direction240

or in opposite direction to each other. Therefore, assuming the relatively

common combination [IBW , IFW , OFW ], the following pairs may exist

at the target frequency: [IFW , OFW ], [IBW , IFW ], [IBW , OFW ].

Each of the previous pairs builds a node-antinode pattern and, therefore,

identifying which of the above pairs is responsible for a certain undulating245

pattern may be achieved using Equations (13) and (14), or just using

Equation (10) as a valid approximation of the mean distance between

consecutive antinodes for each existing undulating pattern.
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3. Relative importance of the wave trains. Assuming the relatively common

combination [IBW , IFW , OFW ], the overall trajectory of the surface250

elevation crests at the target frequency in the time-space contour plot

matches with the trajectory of the dominant wave train. For instance,

if IBW is observed to be the dominant wave train, then the relative

importance between the remaining wave trains (IFW and OFW ) is given

by the relative amplitude of the resulting undulations of the pairs [IBW ,255

IFW ] and [IBW , OFW ]. If the amplitude of the undulation built by

[IBW , IFW ] is observed to be larger than the one built by [IBW , OFW ],

then IFW > OFW in terms of wave amplitude. Consequently, the

relative importance of the above wave trains is: IBW > IFW > OFW .

Similar reasoning will be applied below to Figures 5-7.260

Reliable information based on steps 1-3 requires a dense cross-shore resolution

over a minimal spatial domain. Therefore, in order to identify any node-antinode

pattern whose mean distance between antinodes is L, the cross-shore resolution

of the data set (∆x) must satisfy ∆x < L/2. Note that ∆x � L/2 is highly

recommended when possible. Moreover, the spatial domain must include at265

least one node and one antinode, i.e., the distance between the first instrument

(x1) and the last instrument (xend) of the experimental setup must satisfy

|xend − x1| ≥ L/2.

3. Quantitative analysis

3.1. The problem of wave separation270

The wave separation method presented in this section is addressed in the

frequency domain and applied over a number of cross-shore locations along

changing water depths in the x-axis, i.e., h = h(x). Therefore, at the target

frequency f , the wave field ηf formed of n wave trains is

ηf (x, t) = <


 n∑
j=1

Zj(x)

 e−i(2πft)
 = <

{
Z(x) e−i(2πft)

}
, (17)
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where Zj(x) is the cross-shore complex amplitude for each wave train j, whereas275

Z(x) is the cross-shore measured complex amplitude by Fourier-transformation

of the wave field ηf (x, t). The wave separation method basically consists in

obtaining Zj(x) for each wave train. As seen in Kostense (1985), Lin and Huang

(2004) or Andersen et al. (2017), among many others, the typical separation

method focuses on distributing the wave energy budget at the target frequency280

f among the n wave trains (e.g., IBW , OBW , IFW and OFW ) based on their

different propagation characteristics along a number P of wave gauges forming

a local array. Within this local array, the wave separation at a reference gauge

r (Zjr ) is computed by solving the following linear system that involves local

wave data measured at each gauge p (Zp) (see Figure 4-a):285

Zp =

n∑
j=1

(
Qjr,p Z

j
r

)
with p ∈ R : 1 ≤ p ≤ P, (18)

where Qjr,p = Kj
r,p · e−iΦ

j
r,p represents the propagation coefficient of each wave

train j travelling from the reference gauge r to each gauge p (subscript r, p).

Consequently, K and Φ are factors that perform the cross-shore evolution of the

amplitude and the phase, respectively, based on the nature of the wave train.

These factors will be properly addressed below.290

Note that the local array do not have to be formed of consecutive gauges,

but different spatial resolutions for the wave separation (∆xsep) may be defined

as showed in Figure 4-b. The performance of the wave separation according to

the spacing between the gauges forming the local array (controlled by the ratio

∆xsep/∆x) will be discussed below.295

The wave separation method presented in this section can be applied to any

frequency adapting the method to the number of existing wave trains and their

propagation characteristics. Consequently, there is not a single definition of

the separation method. In this paper, the proposed wave separation method

accounts for the general combination: [IBW , OBW , IFW , OFW ]. The300
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Figure 4: Plot a: Schematic layout of the wave separation method where Equation (18) is

visually explained: the measured surface elevation at the wave gauge p, Zp, is the sum of the

wave trains at the reference gauge r, Zj
r , propagated to the target gauge p by means of the

propagation coefficient Qj
r,p. Plot b: Example of a local array with P = 3 for ∆xsep/∆x =

1, 2 and 3.

overdetermined version of the system presented in Equation (18) is

QIBWr,1 QOBWr,1 QIFWr,1 QOFWr,1

QIBWr,2 QOBWr,2 QIFWr,2 QOFWr,2

: : : :

QIBWr,p QOBWr,p QIFWr,p QOFWr,p

: : : :

QIBWr,P QOBWr,P QIFWr,P QOFWr,P




ZIBWr

ZOBWr

ZIFWr

ZOFWr

 =



Z1

Z2

:

Zp

:

ZP


. (19)

For free waves (IFW and OFW ), the wave celerity decreases as the water

depth reduces following the Dispersion Equation. Therefore, the cross-shore

amplitude evolves following the theoretical linear shoaling, i.e., the energy flux

is preserved during cross-shore propagation. Consequently, the amplitude and305

phase propagation factors for j being the IFW and OFW are:

Kj
r,p =

(
cg,r
cg,p

)1/2

, (20)

Φjr,p =

∫ xp

xr

k(x) cos(θj(x)) dx, (21)

where cg is the group celerity and k(x) cos(θj(x)) is the cross-shore component

of the wave number vector.
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The bound waves (IBW and OBW ) require particular considerations. Their

cross-shore amplitudes are assumed to follow a function of the local depth raised310

to a power α, e.g., AIBW ∝ h−α, as observed for subharmonic bound waves

by Battjes et al. (2004) and Van Dongeren et al. (2007), among others. The

celerities of the IBW and OBW (cIBW and cOBW ) depend on the bound waves

being superharmonics or subharmonics of the primary wave frequencies. For a

superharmonic being the sum interaction of primary frequencies (f1 +f1 = 2f1),315

the resulting superharmonic bound waves propagate with the celerity of the

primary frequency, i.e., cIBW = cOBW = cf1 . However for a subharmonic

being the difference interaction of primary frequencies (f1 − f2 = ∆f), the

resulting subhamonic bound waves propagate with the group velocity of the

mean primary frequency, i.e., cIBW = cOBW = cg,fp , where fp = (f1 + f2)/2320

(Janssen et al., 2003; Padilla and Alsina, 2017). As a result, the amplitude and

phase propagation factors for j being the IBW and OBW are:

Kj
r,p =

(
hr
hp

)αj

, (22)

Φjr,p = 2πf

∫ xp

xr

1

cj(x)
cos(θj(x)) dx. (23)

The α-value is initially set to 1 for the IBW and OBW and after a first

separation solving the Linear System (19), the resulting cross-shore amplitude

of the IBW and OBW (AIBW (x) and AOBW (x)) are immediately used to re-325

compute their α values, respectively. Using the functionAj(x) = Aj0 (h0/h(x))
αj

as a good estimation of j being the IBW and OBW , αj is the best fit parameter

over the cross-shore bound wave amplitude in every iteration.

4. Results

4.1. Analysis of propagating wave trains330

In this section, theoretical wave cases of wave trains with the same frequency

but different propagation characteristics are analysed in Figures 5 - 7. These

theoretical wave cases aim to reproduce the cross-shore behaviour of usual wave
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trains at the primary frequency f1 and its superharmonic 2f1. These wave

trains are limited to one dimensional propagation (x-axis). For the wave trains335

propagating shoreward (IBW and IFW ), the angle of incidence (θ) is 0. For

the wave trains propagating seaward (OBW and OFW ), θ = π. Wave reflection

is assumed to occur across the swash zone.

At the primary frequency f1, the combination of wave trains is [IFW ,

OFW ]. The resultant wave amplitude at f1 is showed in Figure 5, where340

the undulation induced by the combination [IFW , OFW ] is displayed. At the

superharmonic 2f1, the combination of wave trains is [IBW , OFW ]. The IBW

propagates bound to the primary frequency f1, whereas the OFW propagates

seaward as a free wave. The resultant wave amplitude at 2f1 is showed in

Figure 6, where the undulation induced by the combination [IBW , OFW ]345

is displayed. Alternatively, the superharmonic 2f1 might be, under certain

circumstances, the result of the combination of three wave trains: [IBW , IFW ,

OFW ]. This situation is displayed in Figure 7. Note that although the same

notation (OFW and IFW ) is used for the free waves at the frequencies f1 and

2f1, those are completely different wave trains. The notation OFW and IFW350

only accounts for their free nature and their propagation direction, regardless

the target frequency.

For the theoretical examples displayed in Figures 5 - 7, the above type of

wave trains (IBW , IFW and OFW ) have been modelled in the following way:

IBW (x, t) = AIBW0

(
h0

h

)α
cos(2πf t− k̃IBWx x+ ψIBW0 ), (24)

IFW (x, t) = AIFW0

(
cg,0
cg,x

)1/2

cos(2πf t− k̃IFWx x+ ψIFW0 ), (25)

OFW (x, t) = AOFW0

(
cg,0
cg,x

)1/2

cos(2πf t− k̃OFWx x+ ψOFW0 ), (26)

where f = f1 in Figure 5, whereas f = 2f1 in Figures 6 and 7. Furthermore,355

[AIBW0 , AIFW0 , AOFW0 ] and [ψIBW0 , ψIFW0 , ψOFW0 ] are the initial amplitudes

and phases of the IBW , IFW and OFW , respectively. The used theoretical

amplitudes and phases at x0 (x = 0) for wave trains at f1 and 2f1 in Figures 5

- 7 are displayed in Table 1. The used cross-shore bathymetry represents a 1:60
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sloping bed, which is displayed in each figure. The used spatial resolution (∆x)360

is 0.05m.

Being h = h(x), the average wave number k̃jx for each wave train j is

computed as presented in Equation (11). For free waves at f1, k̃
IFW (f1)
x and

k̃
OFW (f1)
x are computed using the wave number given by dispersion relationship

at f1. For free waves at 2f1, k̃
IFW (2f1)
x and k̃

OFW (2f1)
x are computed using365

the wave number given by the dispersion relationship at 2f1. In contrast,

the IBW at 2f1 travels bound to the primary frequency f1 and, consequently,

k̃
IBW (2f1)
x = 2 k̃

IFW (f1)
x .

The cross-shore variation in amplitude of the free waves accounts for the

cross-shore energy flux conservation. Therefore, the IFW and OFW evolve370

following linear shoaling with the coefficient (cg,0/cg)
1/2

, where cg = cg(x) is

the group celerity. Conversely, the IBW amplitude growth during shoreward

propagation follows a function of the local water depth raised to a power α, i.e.,

AIBW ∝ h−α. The IBW growth rate (α) used in Figures 6 and 7 is 0.9 (Table

1).375

Table 1: Wave amplitudes and phases at x0 (x = 0) of the IBW , IFW and OFW for the

theoretical simulations in Figures 5 - 7. α is the IBW growth rate.

Figure 5 Figure 6 Figure 7

f = f1 = 0.45Hz f = 2f1 = 0.9Hz f = 2f1 = 0.9Hz

AIBW0 (m) - 1·10−3 1·10−3

ψIBW0 (rad) - 1.5 1.5

α - 0.9 0.9

AIFW0 (m) 5·10−3 - 4·10−4

ψIFW0 (rad) 2.7 - 5.7

AOFW0 (m) 3·10−3 6·10−4 6·10−4

ψOFW0 (rad) 5.1 5.1 5.1
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Figure 5: Theoretical propagation of two wave trains (IFW and OFW ) at the primary

frequency f1 = 0.45Hz. Plot a shows the cross-shore evolution of the Total, IFW and OFW

amplitudes (theoretical all of them). xanti [IFW , OFW ] is the set of computed locations of

the antinodes using Equation (13). LIFW,OFW (shaded area) is the flat-bed approximation

of the mean distance between antinodes. Plot b shows the water surface elevation ηf1 at

two different time instants alongside with its envelope. Plot c shows the ηf1 contour plot

where the time-space trajectories of IFW and OFW are highlighted. Plot d illustrates the

cross-shore water depth (1:60 sloping bed).
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Figure 6: Theoretical propagation of two wave trains (IBW and OFW ) at 2f1 = 0.9Hz. Plot

a shows the cross-shore evolution of the Total, IBW and OFW wave amplitudes (theoretical

all of them). xanti [IBW , OFW ] is the set of computed locations of the antinodes using

Equation (13). LIBW,OFW (shaded area) is the flat-bed approximation of the mean distance

between antinodes. Plot b shows the η2f1 contour plot where the time-space trajectories of

IBW and OFW are highlighted. Plot c illustrates the cross-shore water depth (1:60 sloping

bed).
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4.1.1. Case of two wave trains

Figure 5 presents the combination of the two wave trains [IFW , OFW ]

at the primary frequency f1 = 0.45Hz. The IFW propagates shoreward,

whereas the OFW travels seaward. The wave amplitude (blue line in plot

a) and the envelope of the surface elevation |η̂| (blue line in plot b) display an380

undulating pattern resultant of the wave interaction of the pair [IFW , OFW ].

As the water depth reduces, the wave amplitude grows (shoaling) and the

distance between consecutive antinodes progressively decreases. As observed

in Figure 5-a, the locations of these antinodes are in very good agreement with

the estimation computed by Equation (13) marked with red arrows. Actually,385

LIFW,OFW = 2.3m (shaded area in plot a) shows that Equation (10) may be a

good a estimation of the average distance between the antinodes at the deepest

end. For this wave case, the dominance of IFW overOFW , i.e., AIFW > AOFW

is seen in Figure 5-c. The time-space evolution of ηf1 highlights a dominant

ingoing propagation in agreement with the time-space trajectory of the IFW .390

Figure 6 presents the combination of the two wave trains [IBW , OFW ]

at 2f1 (0.9Hz). The incident wave train (IBW ) travels bound to the primary

frequency, whereas the OFW is a reflected wave train travelling seawards. In

Figure 6-a, the wave amplitude (blue line) illustrates an undulating pattern

resultant of the wave interaction of the pair [IBW , OFW ]. The location of the395

antinodes is well determined by Equation (13) marked with red arrows, whereas

the average distance between antinodes (LIBW,OFW = 1.01m) is accurate using

Equation (10). Furthermore, Figure 6-a also shows a progressive wave amplitude

growth higher than the typical shoaling of free waves. In this case, the growth

rate of IBW (α = 0.9) is higher than the amplitude growth of OFW , i.e.,400

the IBW dominates over the OFW . This dominance is also noticeable in

Figure 6-b, where the time-space evolution of η2f1 highlights a dominant ingoing

propagation in agreement with the time-space trajectory of the IBW .
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Figure 7: Theoretical propagation of three wave trains (IBW , IFW and OFW ) at 2f1 =

0.9Hz. Plot a shows the cross-shore evolution of the total and respective amplitudes

(theoretical all of them). xanti [IBW , OFW ] and xnode [IBW , IFW ] are the set of computed

locations (using Equations (13) and (14), respectively) of the antinodes and nodes belonging

the pairs [IBW , OFW ] and [IBW , IFW ], respectively. LIBW,OFW (light shaded area) is the

flat-bed approximation of the mean distance between antinodes for [IBW , OFW ], whereas

LIBW,IFW (light shaded area) applies for [IBW , IFW ]. Plot b shows the η2f1 contour plot

where the time-space trajectories of IBW , IFW and OFW are highlighted. Plot c illustrates

the cross-shore water depth (1:60 sloping bed).
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4.1.2. Case of three wave trains

Figure 7 presents the combination of the three wave trains [IBW , IFW ,405

OFW ] at 2f1 (0.9Hz), which is an alternative situation to the one presented in

Figure 6. The incident wave that travels bound to the primary wave (IBW )

propagates shoreward alongside with an incident free wave (IFW ). The remaining

energy propagates seaward as a free wave (OFW ).

In Figure 7-a, the cross-shore wave amplitude shows two clear undulating410

patterns and confirms the coexistence of at least three wave trains. The first

undulating pattern involves the IBW and the OFW and is the one formed by

antinodes marked in red arrows. The location of these antinodes (xanti [IBW ,

OFW ]) is estimated by Equation (13). Note that this undulating pattern has

already been explained in Figure 6. The second undulating pattern involves415

the IBW and IFW and is the one formed by nodes marked in black arrows.

The location of those nodes (xnode [IBW , IFW ]) is successfully estimated by

Equation (14).

The validity of Equation (10) over an sloping bed reduces with increasing

distances, i.e., L = O(10)m accumulates far more error than L = O(1)m.420

For [IBW , OFW ], the distance between consecutive antinodes progressively

decreases as the water depth reduces, but LIBW,OFW = 1.01m (darker shaded

area in Figure 7-a) using Equation (10) is still a good approximation. For

[IBW , IFW ], the distance between consecutive nodes progressively increases

as the water depth reduces. However, LIBW,IFW = 8.56m (lighter shaded area425

in Figure 7-a) underestimates the real distance of 10.41m between the first and

second node for the pair [IBW , IFW ].

A third undulating pattern potentially develops associated to the pair [IFW ,

OFW ]. The resultant average distance between consecutive nodes should be

around LIFW,OFW = 0.91m. However, this third pattern is not noticeable in430

Figure 7-a because the wave amplitudes of both IFW and OFW are far lower

than the IBW amplitude. Therefore, this third undulating pattern is masked

by the previous two undulating patterns. The dominance of IBW over IFW
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and OFW is also confirmed by Figure 7-b, where the dominant propagation

trajectory of η2f1 is shoreward following the celerity of the IBW , i.e., the celerity435

of the primary frequency f1.

4.2. Performance of the wave separation method

As described by the Linear System (19), the separation of the combination of

wave trains [IBW , OBW , IFW , OFW ] depends on the size of the local array

(P ), spatial resolution of the local array (∆xsep) and the α-parameter (Equation440

(22)). Formally, a local array consisting of four different gauges (P = 4) is

enough to solve the Linear System (19). However, the separation method may

become numerically unstable and highly sensitive to noise if the phase difference

across the gauges forming the local array is relatively small. Therefore, Battjes

et al. (2004) suggest that a minimum array length is necessary to obtain a stable445

outcome when separating an experimentally measured wave field. Alternatively,

the phase difference across the local array may be increased if ∆xsep increases,

i.e., increase the distance between the solving gauges of the local array without

increasing P (see Figure 4-b). Once P and ∆xsep are defined, the separation

method is computed iteratively until convergence of the α-parameter.450

In order to test the robustness of the wave separation method, Figure 8

illustrates the wave separation outcomes for the example case in Figure 7 with

Gaussian White Noise (GWN) scaled to 1% of the wave height (see Appendix

A). This wave separation in Figure 8 is accomplished using the following wave

separation settings: [P = 4, ∆xsep = 0.1m] in plots a-b and [P = 4, ∆xsep =455

0.3m] in plots c-d. When P = 4 and ∆xsep = 0.1m, the observed error

in the separated wave trains is noise-dependent (Figure 8-a). When P =

4 and ∆xsep = 0.3m, the error associated to the added GWN is negligible

in the separated wave trains as seen in Figure 8-c. Similar outcomes with

negligible error are obtained when P increases to eleven, keeping ∆xsep = 0.1m460

(showed below in Figure 9). For the separation settings presented in Figure

8, α converged in no more than three iterations (plots b and d, respectively),

although a far better estimation of α is obtained when the influence of noise
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reduces.

Figure 9 illustrates the influence of P and ∆xsep on reducing the relative465

error associated to IBW , IFW and OFW for the example in Figure 7. The

robustness of the wave separation method is also tested in Figure 9, where the

separation is applied to the theoretical water surface elevation signal in Figure

7 with and without GWN (scaled to 1%). The relative error is computed as the

Root-Mean-Square deviation:470

RMSD (%) =

√
E[(ATh −ASp)2]

ATh,0
· 100 (27)

where E[·] denotes the expected value, and ATh and ASp represent the cross-

shore wave amplitudes of the Theoretical and Separated signals corresponding

to IBW , IFW and OFW in each case.

A drastic decrease in the relative error is seen in Figure 9 when P increases

from four to six for ∆xsep = 0.1m (∆xsep/λ ≈ 0.055). Similar error reduction is475

seen when ∆xsep increases from 0.1m to 0.15m (i.e., ∆xsep/λ ≈ 0.083) for P = 4.

Likewise, subsequent increases of P above eleven regardless ∆xsep/λ or increases

of ∆xsep above 0.3m (∆xsep/λ ≈ 0.166) regardless P do not really improve

noticeably the wave separation outcomes. As expected, higher instability due to

the noise is seen when P is low (P = 4). The effect of the noise is highly reduced480

when the number of solving gauges P increases from four to six, being practically

suppressed when P = 9. Furthermore, the robustness of the separation method

must be highlighted when no GWN is added (blue markers in Figure 9). In

this case, the relative error is practically null for any wave separation setting

considered.485

5. Discussion

The separation of wave trains (ingoing, outgoing) for nonlinear and long

waves is a fundamental task in many analyses of water surface time series.

Different methods have been presented for linear incident waves over a plane bed

(Goda and Suzuki, 1976; Mansard and Funke, 1980; Kostense, 1985; Frigaard490
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Figure 8: Separated wave trains of the example in Figure 7 with GWN (β = 1%) under

two different wave separation settings: [P = 4; ∆xsep = 0.1m] in plots a-b, and [P = 4;

∆xsep = 0.3m] in plots c-d. Plots a and c show the cross-shore wave amplitude evolution of

the theoretical (Th) and the separated (Sp) wave trains, whereas plots b and d illustrate the

convergence of the α-parameter associated to the IBW .
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Figure 9: Relative error (RMSD) of the separated wave trains IBW (plot a), IFW (plot b)

and OFW (plot c) for a range of wave separation settings involving P and ∆xsep. Time series

of the example in Figure 7 with (β = 1%; black) and without (β = 0%; blue) GWN have been

used.
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and Brorsen, 1995), sloping bed (Baldock and Simmonds, 1999; Battjes et al.,

2004; Van Dongeren et al., 2007), with some exceptions including wave non-

linearity (Lin and Huang, 2004; Andersen et al., 2017). Other presented methodologies

(Battjes et al., 2004; Van Dongeren et al., 2007) consider long waves only.

Existing methods generally use an array of wave gauges to compute the different495

wave trains either on the time or frequency domain. However, those methods

require a previous knowledge of the existing wave trains and their nature, which

is often assumed.

The qualitative analysis of the spatial undulating patterns of the cross-shore

wave amplitude at the target frequency can provide very useful information500

about the number of existing wave trains, their nature (bound or free), propagation

direction and relative importance. The qualitative analysis presented in section

2.3 and applied in Figures 5 - 7 is, in principle, applicable to any frequency

(long or short waves) of field, numerical or experimental wave data when certain

requirements about the spatial domain are fulfilled (∆x� L/2 and |xend−x1| ≥505

L/2).

In this paper, we have analysed the cross-shore behaviour of usual wave

trains at the primary frequency f1 and its superharmonic 2f1. However, no such

analysis has been presented for low frequencies, like the difference interaction

of primary frequencies (∆f = f1 − f2). The reason for not having presented510

the case of low frequencies is that no remarkable differences would be observed

between, for example, Figure 6 and the corresponding figure to the pair [IBW ,

OFW ] at ∆f , but just a larger distance between consecutive nodes for ∆f . The

application of this general framework for wave separation at the subharmonics

of experimental data has already been accomplished in Alsina et al. (2016),515

Padilla and Alsina (2017, 2018) and Ruffini et al. (2019).

The quantitative analysis presents a revisited wave separation method that

allows the separation of ingoing and outgoing wave trains at any given frequency.

This method is highly versatile because it accounts for the general combination

of [IBW , OBW , IFW , OFW ]. Therefore, this method is suitable for nonlinear520

waves and long waves propagating over beach-like environments. The separation
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method assumes that superharmonics propagate with the velocity of primary

frequencies, whereas subharmonics propagate with the group velocity associated

to the primary frequencies. Although the information provided by the qualitative

analysis is desirable, it is not fully essential. However, if the qualitative analysis525

suggests a more complicated combination of wave trains, then the linear system

(19) should be accordingly modified.

If the qualitative analysis is carried out, the revealed information is a relatively

good estimation of what the wave trains should look like. This estimation

allows improvements in the separation outcomes by successive refinements of530

the wave separation settings, i.e., the number of wave gauges forming the local

array (P ) and their spatial resolution (∆xsep). Although P = 4 is formally

the minimum number of necessary wave gauges, a higher number has been

traditionally used in order to minimise noise-related errors and guarantee the

stability of the solution: five to nine gauges used by Battjes et al. (2004), ten535

gauges used by Lin and Huang (2004), seven gauges used by Van Dongeren

et al. (2007) and five gauges used by Andersen et al. (2017). Note that the

matrix Qj
r,p in the Linear System (19) becomes singular when ∆xsep → 0.

Therefore, the separation problem is said to be ill-conditioned for low ∆xsep/λ

as observed in Figure 9 when ∆xsep < 0.1m. Conversely, the problem becomes540

well-conditioned for increasing values of ∆xsep/λ. No noticeable improvement

is seen in Figure 9 for ∆xsep > 0.3. Therefore, a refinement of the spatial

resolution with ∆x ≤ 0.3m for the example case in Figure 7 does not really

offer any advantage from a wave separation perspective, but an increase in the

computational cost (when numerically) or a cost excess in resources and time545

(when experimentally). On top of that, note that further singularity problems

may arise when the resolution of the local array fulfils the following condition,

introduced by Goda and Suzuki (1976) and confirmed by Lin and Huang (2004)

(Equation 12c):
∆xsep
λ

=
m

2
with m ∈ Z, (28)

which is not the case in this paper since ∆xsep/λ� 0.5. In order to propose an550
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operative threshold for the spatial resolution of the local array, Goda and Suzuki

(1976) recommended that the ratio ∆xsep/λ should be between 0.05 and 0.45,

which is in agreement with the results in Figure 9. In general, a combination

of relatively high ∆xsep/λ (within the recommended threshold by Goda and

Suzuki (1976)) and sufficient number of solving gauges (P > 4) should provide555

good results, but the optimal separation settings will depend on the target wave

case.

This general framework for wave separation in the frequency domain is seen

to be effective when the number n of wave trains at the target frequency is

relatively low, i.e., n ≤ 4. However, its application may become complicated560

when n increases, which is likely to happen for irregular waves. For irregular

waves, there are multiple combinations of energetic frequencies whose nonlinear

interaction give rise to the same frequency. At that frequency, n increases

since there are many possible IBW trains, each of them travelling with its own

velocity. For instance, each nonlinear interaction between frequency components565

[fi, fj ] fulfilling fi − fj = ∆f would force a bound wave train IBWfi,fj at the

frequency ∆f . Each IBWfi,fj travels bound to its primary frequencies [fi, fj ].

Therefore, a possible combination of wave trains at ∆f (without considering

any OBW) could be [IFW , OFW , IBWf1,f2 , IBWf2,f3 , ... , IBWfi,fj ], with

n > 4. The superposition of this many wave trains builds a cross-shore wave570

amplitude where being able to identify the different undulating patterns will

depend on the relative importance of those wave trains, i.e., their relative

wave amplitudes. If the amplitudes of the bound wave trains are similar,

identifying the different spatial undulating patterns at ∆f will become very

difficult (N∗ � N as mentioned in section 2.3) and the estimation of n using575

Equation (16) becomes very inaccurate. Consequently, any proposed version of

the Linear system (19) built upon such a poor estimation of n results insufficient

to properly separate the wave trains at ∆f . If the amplitude of any of the bound

wave trains dominates over the others (e.g., IBWf1,f2 � IBWfi,fj ), then the

cross-shore wave amplitude at ∆f presents a spatial undulating pattern that580

can be explained by few dominant wave trains. In this case, [IFW , OFW ,
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IBWf1,f2 , IBWf2,f3 , ... , IBWfi,fj ] can be reduced, in practical terms, to

[IFW , OFW , IBWf1,f2 ], n is three effectively and the framework for wave

separation presented here can be applied. Irregular wave cases with n being

low are relatively common as observed in Battjes et al. (2004) and Alsina585

and Cáceres (2011), where the power spectrum of irregular waves is divided

in different frequency finite bands. Within each low frequency band, the cross-

shore wave amplitude shows clear spatial undulating patterns (see Figure 5 in

Alsina and Cáceres (2011)). Consequently, the framework for wave separation

presented here could be successfully used to separate the dominant wave trains590

within each frequency band.

6. Conclusions

A general framework for wave separation in the frequency domain is presented

to separate existing wave trains in the low and high frequency domain with

satisfactory results. When a number n of wave trains travel with different595

propagation characteristics, their linear superposition results in a number N

of different cross-shore undulating patterns formed of nodes and antinodes.

However, the actual number n of existing wave trains is usually an uncertainty.

The general framework for wave separation presented in this paper proposes a

qualitative analysis to identify the number of existing wave trains, their nature600

(free or bound), their direction of propagation (ingoing or outgoing) and their

relative importance. This analysis is based on the observation of the existing

undulations (nodes-antinode patterns) forming the cross-shore wave amplitude

structure at the target frequency and the observation of the main propagation

trajectory of the surface elevation in the time-space domain.605

The quantitative analysis of the framework is provided by a high versatile

wave separation method that improves existing wave separation methods. Satisfactory

results confirm its suitability to separate the general combination of wave trains:

IBW , OBW , IFW and OFW , at any frequency (long or short waves) over

uneven bathymetries. The robustness of the method is tested for a range of610
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wave separation settings [P , ∆xsep]. Satisfactory results are achieved when

0.1 < ∆xsep/λ < 0.3 for a sufficient number of wave gauges (P > 4). The low

sensitivity to noise of the method is tested using gaussian white noise over

theoretical wave fields. A fully operative version of the separation method

presented in this paper is available at GitHub (https://github.com/EMPadilla/WaveSeparation.git)615

alongside with the analysis and wave separation of the examples showed in this

paper.

Appendix A. Gaussian white noise

Gaussian White Noise (GWN) was added to the water surface elevation to

test the robustness of the wave separation method exactly in the same way as620

explained by Andersen et al. (2017). The noise signals are assumed spatially

uncorrelated and calculated by the central limit theorem according to:

GWN(x, t) =

(
−N

2
+

N∑
i=1

ξi

)√
12

N
βH, (A.1)

where ξi is a random number between 0 and 1, N is a sufficient large integer

value, and β is the scaling factor of the noise, being 1% of the wave height H.
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