

TEACHING SELF-SOVEREIGN IDENTITY

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

Laia Rus Bordas

In partial fulfilment

of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Juan Bautista Hernández Serrano

Barcelona, June 2022

1

Title of the thesis: TEACHING SELF-SOVEREIGN IDENTITY

Author: Laia Rus Bordas

Advisor: Juan Bautista Hernández Serrano

Keywords: Self-Sovereign Identity, Decentralized Identifier, Verifiable Credential,

Selective Disclosure, Verifiable Presentation, Veramo, W3C

1. Abstract

For service providers, secure and reliable identification of users is essential to provide its

services.

From a user perspective, traditional identifiers are currently solved by centralized entities

who have the capacity to control not only the creation of the identifier, but also the

withdrawal. Moreover, in most cases more personal information is being provided than

needs to be demonstrated.

A blockchain-based Self-Sovereign Identity (SSI) provides a secure and reliable

identification method for service providers, gives the user self-control of the identifier, and

enables a way to provide just the essential information that is needed to get the service.

This paper aims to make two practical documents; the first one being an introductory

practice to get started with this topic and the second one that consists of developing a

simple SSI login system for web services offered to university students.

2

2. Acknowledgements

I would like to thank Juan Bautista Hernández Serrano for his insightful reviews and

fruitful discussions in the creation of this work.

3

3. Revision History and Approval Record

Revision Date Purpose

0 14/05/2022 Document creation

1 01/06/2022 Document revision

2 24/06/2022 Document finalization

3 29/06/2022 Document approval

Written by: Reviewed and approved by:

Date 24/06/2022 Date 29/06/2022

Name Laia Rus Name Juan Hernández

Position Project Author Position Project Supervisor

4

4. Table of Contents

1. Abstract ... 1

2. Acknowledgements ... 2

3. Revision History and Approval Record .. 3

4. Table of Contents .. 4

5. List of Figures .. 5

6. Introduction .. 6

6.1. Objectives .. 7

6.2. Requirements and Specifications ... 7

6.3. Work Plan ... 8

7. State-of-the-Art of Self-Sovereign Identity.. 10

7.1. Distributed Identifiers .. 10

7.2. Verifiable Credentials ... 12

7.3. Zero Knowledge ... 14

7.4. SSI Technologies ... 15

8. Methodology and Used Technologies .. 16

8.1. Veramo ... 17

8.2. Blockchain Setup .. 19

9. Practical Approaches ... 20

9.1. Manage DIDs in a Blockchain Environment .. 20

9.1.1. Initial Design .. 20

9.1.2. Implemented Application ... 21

9.2. Login with SSI .. 24

9.2.1. Initial Design .. 24

9.2.2. Implemented Application ... 30

10. Conclusions and future development ... 38

11. References .. 39

12. Glossary ... 40

5

5. List of Figures

Figure 1 - A simple example of a DID ... 11

Figure 2 - Ecosystem for VCs ... 13

Figure 3 - Plugins Architecture .. 17

Figure 4 - Ecosystem of the second practical work ... 25

Figure 5 - Sequence diagram of the second practical work ... 26

Figure 6 - Monsters University login page ... 35

Figure 7 - Monsters University's web page ... 35

Figure 8 - Monsters University web page. Red alert ... 36

Figure 9 - Monsters University web page. Green alert .. 36

Figure 10 - Monsters Gym web page .. 37

6

6. Introduction

Today’s login systems have some inconvenience for both, service providers and end-

users.

From a service provider point of view, it is needed to store users’ credentials if they log in

the service with usernames and passwords. It is true that saving salted hashed

passwords prevents an attacker getting the password in raw if there is a data leakage.

However, in many cases people use very simple passwords, which follow very common

patterns and are, therefore, very easy to guess. This poses a risk to the company that

stores the passwords, and it must also take the necessary steps to comply with the

GDPR.

From a user point of view, they should use a secure password for every service they use,

but it is infeasible. That is why OAuth and OpenID Connect appeared; to facilitate this

task to the user.

However, after all, users do not control their account. It is the service provider the one

who manages its creation and its withdrawal. For example, Google Account is used to

sign into other applications or services. That means that if Google decides to invalid

someone’s Google Account, this person ends up without an identifier. Another possible

situation is that for some reason Google stops working. In that case, many people lose

their identifier, too.

A solution to prevent the system from being centralized is to use non-controlled identities

in a blockchain, which works as a decentralized cloud service that stores addresses and

related information for user identification.

The concept of Self-Sovereign Identity (SSI) has emerged with the aim that the user is

the only one to have the full control over their own identity.

Apart from having more control over their own identity, SSI allow users accessing many

different services using the same anonymous credential, so this solution also facilitates

this task to users, since they do not need to remember the credentials for every service

provider.

It is also interesting for the end user to provide only the essential information needed to

get the desired service. In most cases more personal information is being provided than

needs to be demonstrated. For example, if a person goes to a nightclub and is asked for

his national identity document to prove that he is of legal age, he is not only giving the

data of the day he was born and, therefore, the age he currently has, but also informs

about where he lives, where he was born, what is his name and what is the name of his

parents. With SSI this person could have an identifier associated with a verifiable

credential whose single claim is being more than 18 years old.

This solution not only has more benefits for users because they achieve more privacy,

but it is also beneficial for the company because it deals with the minimum possible data,

and this meets a requirement of the GDPR called Data Minimization.

In SSI, a digital identity is built upon a public-private key pair that is unique to that identity.

The public key is used to create the public identity, and the private one to prove

ownership of that identity. The key pair is created and managed by the users themselves

usually using what is called a Wallet application.

7

All in all, SSI provides a secure and reliable identification method for service providers,

allows end users to disclose just the needed information to get the service, and retains

control over their identifiers back to end users.

However, it should be noted that users having control over their identifiers implies that if

they lose their secret keys, there will be no other alternative than to create new ones,

since no one will be able to recover them.

6.1. Objectives

The aim of this thesis is to make teaching practices for the explanation and

understanding of SSI, based on the use of blockchain Distributed Identifiers (DIDs) and

Verifiable Credentials (VCs), which are explained in more detail in section State-of-the-

Art of Self-Sovereign Identity.

Specifically, the goal is to make two practical documents:

• The first one to develop a program capable of creating, listing, modifying, and

deleting DIDs in a blockchain environment.

• And the second one to make a website of a university in which logged in students

can access a service following the SSI protocol.

6.2. Requirements and Specifications

Regarding the practical documents, they must introduce the topic, so that students get

familiar with it, and the statement must be understandable to make it easy for them to

comprehend the task they must do.

With respect to the practical work, the requirements are the following:

• Basic cyber-security knowledge is needed

• It is assumed that the student has previously completed the Express with

Passport practice of the subject (see Annex I).

• The working environment can be their host computer or a Virtual Machine (VM).

• The programming language must be JavaScript and TypeScript for both the

frontend and the backend.

• React framework must be used for the frontend

• Node.js with Express and Passport must be used for the backend.

• The software npm must be used to manage the JavaScript packages.

• The W3C’s SSI protocol must be followed to access the website of the gym

service.

https://www.javascript.com/
https://www.typescriptlang.org/
https://reactjs.org/
https://nodejs.org/en/
https://expressjs.com/
https://www.passportjs.org/
https://www.npmjs.com/
https://www.w3.org/

8

6.3. Work Plan

The tasks have been planned and done as shown in the following Gantt chart:

February March April May June July

Project Task Prior Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Week 25 Week 26 Week 27 Week 28

A) Meetings - █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █

B) Study DID,

VC, Veramo

library -

██████

C) Install and get

used to Node.js,

npm, VS Code,

ExpressJS B

██████

D) Use Veramo

with Node.js

Express for

creation, deletion

of a DID B,C

██████

E) Add a service

description,

download a DID

document, add a

service paying

GAS, change

DID's key B-D

██████

F) Create and

verify a VC B-E

██████

G) Get used to

Markdown -

██████

H) Develop a

project with

issuer, prover

and verifier B-F

██████ ██████ ██████ ██████ ██████ ██████ ██████

I) Make the

practice

document

B-F,

H

██████ ██████ ██████ ██████

J) Make report

and presentation

B-F,

H,I

██████ ██████ ██████ ██████

Each task is explained below:

9

A) Meetings. Once a week, advisor and student meet online to assess the work

done so far and to plan the following tasks.

B) Study DID, VC, Veramo library. As the student is not initially familiar with these

concepts, she needs to spend some time studying them to understand them

correctly.

C) Install and get used to Node.js, npm, VS Code, ExpressJS. Before

implementing the final goals, it is necessary to have completed the Express with

Passport practice of Annex I.

D) Use Veramo with Node.js Express for creation, deletion of a DID. It refers to

the development of the first practical work mentioned in section 6.1. Objectives;

that of creating, modifying, and deleting DIDs in a blockchain environment.

E) Add a service description, download a DID document, add a service paying

GAS, change DID's key. This consists of finishing the first practical work.

F) Create and verify a VC. This means implementing an Express server capable of

creating and verifying a VC to get some practice before implementing the second

practical work mentioned in section 6.1. Objectives.

G) Get used to Markdown. Since the statement of the practice will be written in

Markdown, it is necessary to know how to use it

H) Develop a project with issuer, prover, and verifier. It refers to the

implementation of the second practical work mentioned in section 1.1.

Objectives.

I) Make the practice document. This task consists of writing the statement of the

two practices: DID Management (Annex II) and Self-Sovereign Identity Login

System (Annex III).

J) Make report and presentation. It means writing this thesis and preparing the

final presentation.

https://www.markdownguide.org/

10

7. State-of-the-Art of Self-Sovereign Identity

7.1. Distributed Identifiers

Data exchange is likely to require verification of the involved peers' identities, or at least

of some claims proving them. However, the traditional authentication strategy based on

usernames and passwords does not scale properly. Users must use different passwords

for each individual service to provide enough security to the system. This is inconvenient,

hard to manage, and prone to security risks. Moreover, from the server point of view, the

management of customers' identities comes with a lot of associated risks in terms of data

leaks and compliance with the GDPR.

That is why during the last years there has been a natural evolution towards the use of

external identity providers, such as Google or Facebook, to prove ownership of a given

identity (or pseudo-identity). De facto standards on the Internet today are OAuth2

RFC6749 and, above all, OpenID Connect Saki14. However, users still depend on these

external services to create and manage their identities, and providers are the ones having

full control of the users alter egos.

In contraposition, SSI gives the control of their own identities back to the users. The need

for trusted identity providers can now be removed since users themselves oversee the

creation and the management of their own identities.

In SSI, a digital identity is built upon a public-private key pair that is unique to that identity.

The public key is used to create the public identity, and the private one to prove

ownership of that identity. The key pair is created and managed by the users themselves

usually using what is called a Wallet application.

Once a user has an identity, different entities can issue verifiable credentials for that

identity. A verifiable credential, which can represent the same information as a traditional

physical credential, is a tamper-evident credential whose authorship can be

cryptographically verified with digital signatures.

Although the approach guarantees that users are in control of their identities, it comes

with a huge risk: if a private key is lost, compromised, or just needs to be updated, the

user will lose control on the associated identity, and all the verifiable credentials issued

for it.

As a result, state-of-the-art SSI approaches create immutable identifiers that are just

pointers to identities - that is to say, public keys or addresses - in a way that one can

update the identity keys without changing the identity’s identifier. This is the main idea

behind the use of DIDs, which point to DID Documents. DID Documents are sets of data

that contain the public key for the corresponding DID, any other public credentials the

identity owner wishes to disclose, and the network addresses for interaction. The identity

owner controls the DID Document with the associated private key.

DIDs are the first globally unique verifiable identifiers that require no registration authority.

They are a globally resolvable, and a cryptographically verifiable open standard

proposed by the World Wide Web Consortium (W3C); the main international standards

organization for the World Wide Web.

https://w3c.github.io/did-core/

11

A DID is a simple text string consisting of three parts: the did URI scheme identifier, the

identifier for the DID method, and the DID method-specific identifier, as shown in Figure

1:

Figure 1 - A simple example of a DID

Source: https://www.w3.org/TR/did-core/#a-simple-example

The example DID above resolves to a DID document. A DID document contains

information associated with the DID, such as ways to cryptographically authenticate a

DID controller.

A DID Document is a JSON-LD object that contains information about an identity, such as

credentials and about how to contact it.

JSON-LD (semantic web) allows to understand the structure of an object to easily

interpret the data.

Below there is an example of a simple DID Document:

The fact that the DID Document is resolved using a network that is not controlled by

anyone, allows the user to be the sole owner of the identity and have control over it. That

is why a public blockchain is used to store the DID Documents.

A public blockchain is not controllable by any entity (governments, consortia nor CAs)

and it can be used as a technology for anchoring the identity registry, since it provides

fully decentralized, cryptographically verifiable, and publicly available registries. It uses a

consensus algorithm operating over many different machines and replicated by many

different entities.

With a public blockchain for DIDs, anyone can issue a digitally signed credential, and

anyone else can verify it.

{

 "@context": [

 "https://www.w3.org/ns/did/v1",

 "https://w3id.org/security/suites/ed25519-2020/v1"

],

 "id": "did:example:123456789abcdefghi",

 "authentication": [{

 "id": "did:example:123456789abcdefghi#keys-1",

 "type": "Ed25519VerificationKey2020",

 "controller": "did:example:123456789abcdefghi",

 "publicKeyMultibase": "zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"

 }]

}

https://www.w3.org/TR/did-core/#a-simple-example
https://en.wikipedia.org/wiki/Consensus_(computer_science)

12

7.2. Verifiable Credentials

Trust for DIDs is based on VCs that other entities endorse. VCs define credentials or

claims issued for DIDs and they can be considered as the core technologies for SSI

today.

VCs are expected to be useful in an ecosystem composed of the following roles:

The issuer, which is an entity that oversees the following operations:

1. Asserting claims about one or more subjects

2. Creating a VC from these claims

3. Transmitting the VC to a holder.

Example issuers include corporations, non-profit organizations, trade associations,

governments, and individuals.

The holder, who possesses one or more VCs and generates VPs from them. Example

holders include students, employees, and customers.

The subject is an entity about which claims are made. Example subjects include human

beings, animals, and things. In many cases the holder of a VC is the subject, but in

certain cases it is not. For example, a parent (the holder) might hold the verifiable

credentials of a child (the subject), or a pet owner (the holder) might hold the verifiable

credentials of their pet (the subject).

The verifier is an entity that receives one or more VCs, optionally inside a Verifiable

Presentation (VP), for processing. Example verifiers include employers, security

personnel, and websites.

A VP is data derived from one or more verifiable credentials and issued by one or more

issuers. This data is shared with a specific verifier, who processes it using cryptography.

The verifiable data registry mediates the creation and verification of identifiers, keys,

and other relevant data, such as verifiable credential schemas, revocation registries,

issuer public keys, and so on, which might be required to use verifiable credentials.

Example verifiable data registries include trusted databases, decentralized databases,

government ID databases, and distributed ledgers.

Figure 2 illustrates the relationship between those roles:

13

Figure 2 - Ecosystem for VCs

Based on the one at: https://www.w3.org/TR/vc-data-model/#ecosystem-overview

A VC is also a JSON-LD object, and it follows a standard data model and representation

format for cryptographically VCs. It is a JSON Web Signature (JWS), and it is commonly

sent with a structure composed by three fields: the credential metadata, one or more

claims and one or more proofs.

VCs are designed to be compatible with a variety of proof formats, most of which can only

reveal all (or none) of their attributes.

https://www.w3.org/TR/vc-data-model/#ecosystem-overview

14

7.3. Zero Knowledge

Zero-Knowledge Proofs (ZKPs) are a cryptographic technique or a proof format that

enables data-minimization features in VPs, such as selective disclosure (SD) and

predicate proofs. Moreover, ZKP’s VPs do not contain, the original VC.

SD means that a holder can decide which claims to reveal to prove a specific statement

or request and predicate proofs are a cryptographic solution to proving something about

an item of data without revealing the data itself.

For example, people go to a bar, but instead of showing their ID, which reveals their

name, the day they were born and more, they only prove that they are old enough to get

in. In this specific case, with SD holders reveal the specific claim that says they are of

legal age, and with predicate proofs they prove this claim without revealing any more

personal information.

When ZKP is not used in SSI, users need to provide the entire VC. That is why it is

convenient to create credentials with a single claim when no cryptographic techniques

are used.

To the contrary, when ZKP is used, users can have a VC with many different claims and

proof with predicate proofs that they comply only a specific claim.

Zk-Snarks, that stands for Zero-Knowledge Succinct Non-Interactive Argument of

Knowledge, is an implementation of ZKP that allows one party to prove it possesses

certain information without revealing that information and it is used as part of the protocol

for a cryptocurrency called Zcash.

Zk-Snarks was developed because some lack of privacy was perceived in Bitcoin, since it

is proved that it is relatively easy to re-identify people who gives pseudonymous data to

multiple sources. This study was published in 2019 in an article called Estimating the

success of re-identifications in incomplete datasets using generative models.

https://www.w3.org/TR/vc-imp-guide/#zero-knowledge-proofs
https://z.cash/technology/zksnarks/
https://z.cash/
https://www.nature.com/articles/s41467-019-10933-3
https://www.nature.com/articles/s41467-019-10933-3

15

7.4. SSI Technologies

In this section it is described some of the most popular already available SSI technologies.

There is a protocol for SSI called Sovrin that was created by Sovrin Foundation, a non-

profit organization supported by a team of dedicated volunteers and experts from around

the world. Sovrin wants to meet high standards of privacy using ZKP working on a

blockchain infrastructure. Blockchain works as a decentralized self-service registry for

public keys, and ZKP becomes the standard for all interactions between identity owners.

Evernym is a company that builds and deploys self-sovereign identity solutions. It is the

creator of Sovrin Foundation and its public service utility. Evernym has developed a

flagship credential exchange platform, a web application for verifiable credential

exchange, a digital wallet app for storing, managing, and sharing digital credentials and a

Software Development Kit (SDK) to integrate verifiable credentials into any iOS or

Android app.

Trinsic is a full stack platform built for Ethereum blockchain-based Smart Contracts

(SCs) that offers an infrastructure for sending verifiable data between digital identity

wallets, an ecosystem to authenticate users and share data safely, an easy-to-use

dashboard for organizations and a wallet SDK.

uPort project began in 2015. It was an SSI solution based on the Ethereum blockchain

and they provided JavaScript libraries so that developers could integrate uPort’s

functionalities to their application. Later, uPort was divided into two new projects: Serto

and Veramo.

Serto is an ecosystem that provides decentralized identity and connected data solutions

for enterprises. It is compatible with Ethereum, easy-to-use and no code is needed.

Veramo are modular APIs for Verifiable Data and SSI backed by TypeScript. It is

compatible with Node, React and React Native, and it is the technology used in this

thesis.

Civic is a company that offers an integrated permissioning tool for businesses to control

the access to their decentralised applications (dApps). Civic works on the Solana

blockchain and it uses identity’s open-source and blockchain-based ecosystem to verify

credentials.

Validated ID is a company that, among other services, offers an SSI service based on

blockchain to provide people control over their identity and facilitate secure user access

to online services.

ID_Alastria is a theoretical SSI model for digital identity based on Ethereum that will

allow transactions on the Alastria network to be legally valid and comply with Spanish and

European regulations. Currently, they have a Minimum Viable Product (MVP) which is

available for consultation and use in Alastria’s GitHub.

Gataca is a company that has developed a credential issuance tool for trusted authorities,

a credential verification tool for service providers and an identity wallet to store encrypted

identity credentials. Gataca offers a set of APIs for multiple blockchain networks, and it

currently supports Ethereum public network and private networks based on Hyperledger

Fabric, Hyperledger Besu or Quorum.

https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://www.evernym.com/
https://trinsic.id/
https://www.uport.me/
https://www.serto.id/
https://veramo.io/
https://www.civic.com/
https://www.identity.com/home-3/
https://es.validatedid.com/
https://alastria.io/en/id-alastria/
https://github.com/alastria/alastria-identity/wiki
https://gataca.io/

16

8. Methodology and Used Technologies

The development of this project has been done progressively every day.

The working environment is a computer running Windows 11 and all programming has

been performed in Visual Studio Code.

Both the frontend and the backend are programmed in JavaScript and TypeScript.

Specifically, a framework called React has been used for the frontend (everything

displayed by the browser), and it has been combined with Material UI (MUI) for its design.

As for the backend (everything that runs in the APIs), Node.js with Express and

Passport has been used. Before implementing the backend, the Passport practice of

Annex I has been followed.

React is a JavaScript-based User Interface (UI) development library that can be used as

a base in the development of single-page application and mobile application (React

Native).

MUI is an open-source component library that follows Google’s guidelines for rendering

components.

Node.js is an open-source server environment running on the V8 JavaScript engine, the

same one used by Chromium-based web browsers (Chrome, Opera, Edge, Brave, etc.).

Express and Passport are two popular packages for Node.js today. The former is a web

development framework for Node.js, and the de-facto standard for the majority of Node.js

applications; and the latter is an authentication middleware whose sole purpose is to

authenticate requests, and that perfectly integrates with Express.

The packets of the project are managed with npm, which is Node.js’s default package

manager, which facilitates the management of the software dependencies of the project.

Veramo is used as a JavaScript library to generate VCs, DIDs and to connect to the

blockchain; being the chosen blockchain the Ropsten public testnet.

https://www.javascript.com/
https://www.typescriptlang.org/
https://reactjs.org/
https://mui.com/
https://nodejs.org/en/
https://expressjs.com/
https://www.passportjs.org/
https://www.npmjs.com/
https://ropsten.etherscan.io/

17

8.1. Veramo

W3c descriptions have been implemented with Veramo, a flexible, modular, and scalable

JavaScript/TypeScript framework that makes it easy for developers to use

cryptographically verifiable data in their applications.

In this thesis Veramo is used to manage DIDs, to create VCs and to connect to a testnet

through Infura.

To do all these actions, it is needed to design an agent that works as the entry point into

the Veramo framework. This agent can be customized by using their core plugins.

There are some relationships between the core agent, interfaces, plugins, and external

protocols, as shown in Figure 3:

Figure 3 - Plugins Architecture

Source: https://veramo.io/docs/veramo_agent/plugins

IKeyManager is an interface that has a set of methods that allow making actions with the

keys of the identifiers. For example, it grants signing an Ethereum transaction, signing a

JWT, deleting a key, and others.

IDataStore is another interface that allows storing and getting information about verifiable

credentials and presentations to/from a database.

IDIDManager interface has multiple methods to perform different actions to identifiers,

such as creating, deleting, listing, and modifying them.

IResolver allows getting the DID Document of the specified DID.

ICredentialIssuer has two methods: one for generating VCs and the other to generate

VPs.

https://veramo.io/docs/veramo_agent/plugins/
https://veramo.io/docs/veramo_agent/plugins

18

W3C presents a large list of different possible DID methods. DID methods are used to

resolve the corresponding DID Document and Veramo core plugins support three of

them: did:ethr, did:key, and did:web.

did:ethr allows any Ethereum key pair to become an identity and it gives any Ethereum

address the ability to collect on-chain and off-chain data. This DID method relies on the

ethr-did-registry; a SC that facilitates public key resolution for on-chain and off-chain

authentication, key rotation, delegate assignment and revocation to allow third party

signers, as well as setting and revoking off-chain attribute data. The identifier is the SC

itself.

As the target system is the Ethereum network, where the ERC1056 is deployed,

blockchains like Mainnet, Ropsten, Rinkeby, and Kovan can be used.

did:key is a very light-weight self-certifying DID method that does not require any

external utility such as a blockchain. A Key-DID is created by generating a cryptographic

key pair and it always resolves the same DID Document. The DID Document is

immutable, so is not possible to add service endpoints and other keys.

did:web allows the owner of a web origin to turn it into a DID. After creating the DID

Document, it is hosted under an URL, and it must be available through HTTPS GET

every time the DID is resolved. As no blockchain is required to create a DID, it must be

considered that the security of a Web-DID is rooted in the existing Internet PKI by

enforcing TLS. The URL where the DID Document is hosted can be either a web domain,

like www.example.com/.well-known/did.json, or a specific sub-path. Using sub-paths

allows hosting multiple DIDs under one web domain. This approach can also be used to

allow a web application to create Web-DIDs for their users, e.g.,

www.example.com/users/username/.well-known/did.json.

https://www.w3.org/TR/did-spec-registries/#did-methods

19

8.2. Blockchain Setup

There are different Distributed Ledgers Technologies (DLTs), like Bitcoin, Ethereum,

HyperLedger Fabrik, Polygon, and others.

Among all these technologies Ethereum has been chosen.

Ethereum is a decentralized blockchain platform that establishes a peer-to-peer network.

Its cryptocurrency is called Ether (ETH) and transactions are paid with a fee called Gas.

Small fractions of the cryptocurrency ETH are referred to as Gwei or Nanoeth.

The building blocks of Ethereum applications are the SC and they carry out the

transactions over the network.

The operation of a DLT requires running the technology in a real infrastructure; a cost

that is translated to users usually in the form of fees per operation, which require paying

with real cryptocurrencies. However, there are as well public testnets allowing testing of

developed technologies for free, before moving to a mainnet.

There are many testnets based on the Ethereum technology, like Ropsten, Rinkeby and

Kovan. In this project Ropsten is the one being used because of the convenience of its

Faucet service, which allows getting Ropsten Ethers for free.

Changing an Ethereum-based project from a testnet to a mainnet only implies changing

the configuration to the network and to assume that payments will be done with real

currencies.

A cryptocurrency wallet is a device, physical medium, program, or a service that stores

public and/or private keys for cryptocurrency transactions and it usually offers the

functionality of encrypting and/or signing information. Electrum, Mycelium, Exodus, and

Metamask are examples of cryptocurrency wallets.

If the product of this thesis were to be marketed, a cryptocurrency wallet would be used.

As it is a teaching practice, for the sake of simplicity, keys will be stored in the browser's

localStorage, and cryptographic operations will be performed using browser JavaScript.

SQLite is used to store the public and private keys for the DID management in the

server-side.

There are websites like Etherscan that let you check the balance and the transaction

made in Ethereum networks. The Ropsten Etherscan service has been used for the first

practical work presented in section 1.1.1. Objectives.

In order to operate with a blockchain testnet, a network node is needed to connect the
application to it. The node can be created manually or using an API. In this project, an
API called Infura is used because it facilitates the connection to the Ropsten testnet

https://bitcoin.org/en/
https://ethereum.org/en/
https://www.hyperledger.org/use/fabric
https://polygon.technology/
https://ropsten.etherscan.io/
https://www.rinkeby.io/#stats
https://kovan-testnet.github.io/website/
https://faucet.egorfine.com/
https://electrum.org/#home
https://wallet.mycelium.com/
https://www.exodus.com/
https://metamask.io/
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://www.sqlite.org/index.html
https://ropsten.etherscan.io/address/0x9f116F16aCC713EC33f8B80D49dc205dc0D57E66
https://infura.io/

20

9. Practical Approaches

In this section it is explained the two practical works developed for this thesis.

The first one is called DID Management and it can be found in this GitHub repository. It

is an introductory program that let the student understand and get used to most of the

technologies needed for the next practical work.

The second one is called Self-Sovereign-Identity Login System and it is located in this

GitHub repository. It is the main practical work, and it allows the student to deeply

understand the concept and the utility of Self-Sovereign-Identity in a use case that could

be extrapolated to a real-world application.

9.1. Manage DIDs in a Blockchain Environment

Before implementing the actual work, a design is needed to plan and consider how it

should be.

In this section it is presented the proposed design and the resulting implementation.

9.1.1. Initial Design

The idea is to create a TypeScript program capable of managing DIDs in a blockchain

environment. Specifically, the program must be able to create, list, modify and delete

DIDs. Modifying DIDs implies adding a service and/or a key. To do all this actions, the

program must be able to store the created DIDs and SQLite will be the database to do so.

It is enough to interact with the program through a console, so no graphical interface is

needed.

Ropsten is going to be the testnet used for this project because it is free (it uses Ethers

as digital coins, but they are not real), and many people around the world participate in

the network.

In a mainnet, making changes on the blockchain has a cost. To avoid paying some fee

every time that someone creates a DID, it was defined a base DID document called

Minimal DID Document, that can be generated without writing on the blockchain. This

document is basically a public key that is stored nowhere in the blockchain and that can

be read by a specific SC. The did:ethr method is solved using a SC deployed in Ropsten

and follows this strategy.

Regarding the functionalities of this project, creating, listing, and deleting DIDs do not

make a transaction in the blockchain (they are free).

A DID is a pointer or link to a DID Document, so when users want to modify it, did:ether

method contacts with the SC that manages the respective DID Document and tells it what

it needs to change. This change does imply making a transaction in the blockchain, so

some fee (Gas, in this case) must be paid. Therefore, adding a service and/or a key do

require making a transaction in the blockchain.

Other actions that do require paying Gas, but that are not implemented in this project are

revoking it or changing its owner.

https://github.com/LaiaRus/DID-management
https://github.com/LaiaRus/Self-Sovereign-Identity
https://github.com/LaiaRus/Self-Sovereign-Identity

21

9.1.2. Implemented Application

Each functionality (creating, deleting, and modifying DIDs) has been implemented in a

different TypeScript document to make the structure of the project easier to understand.

Six different commands have been programmed to execute the functionalities of this

application and they are explained below:

Creating a DID: the program can create a DID associated with an alias that allows a

person to identify it easier. Every created DID is stored in the SQLite database. This

functionality is executed with the following command:

Creating a DID does not require making any connection with the blockchain, since they

are saved locally and what is generated is a DID Document by default.

Listing all DID Documents: this functionality lists all created (and not already deleted)

DIDs with its associated alias, service, keys and DID Document:

Listing identifiers does not require making a transaction in the blockchain, either.

$ npm run id:create --alias <alias>

$ npm run id:list

/* @example

* ```typescript

* const identifier = await agent.didManagerCreate({

* alias: 'charlie',

* provider: 'did:ethr:rinkeby',

* kms: 'local'

* })

* ```

*/

didManagerCreate(args: IDIDManagerCreateArgs, context:

IAgentContext<IKeyManager>): Promise<IIdentifier>

/* @example

* ```typescript

* const rinkebyIdentifiers = await agent.didManagerFind({

* provider: 'did:ethr:rinkeby'

* })

* ```

*/

didManagerFind(args: IDIDManagerFindArgs): Promise<Array<IIdentifier>>

22

Deleting a specific DID: the alias is the argument used to refer to a specific identifier:

Deleting all DIDs: it is also possible to delete all identifiers in one command:

Deleting identifiers in another action that does not require a connection with the

blockchain.

Adding a service to a DID: the service is the following JSON, and it is an

implementation of Veramo’s IService:

This service is added to a DID Document with the following command:

As the code below shows, when a transaction is generated, it is returned an identifier of

this transaction, which can be a hash:

{

 "id": "did:web:veramo.dev#msg",

 "type": "Messaging",

 "serviceEndpoint": "https://veramo.dev/messaging",

 "description": "You can contact me by Telegram. My username is @Eu*********ta."

}

$ npm run id:delete --alias <alias>

$ npm run id:delete-all

$ npm run id:add-service --alias <alias>

/**

* Deletes identifier

*/

didManagerDelete(args: IDIDManagerDeleteArgs, context:

IAgentContext<IKeyManager>): Promise<boolean>

/**

* Adds a service to a DID Document

* @returns identifier provider specific response. Can be txHash, etc,

*/

didManagerAddService(args: IDIDManagerAddServiceArgs, context:

IAgentContext<IKeyManager>): Promise<any> //txHash?

https://veramo.io/docs/api/core.iservice

23

Adding a key to a DID: this functionality adds a random public key to the DID Document

of the DID specified with an alias.

This action also generates a transaction in the blockchain. Therefore, anything that

means modifying the DID Document (adding a service or a key, in this case), requires

paying some Gas.

$ npm run id:add-key --alias <alias>

/**

* Adds a service to a DID Document

* @returns identifier provider specific response. Can be txHash, etc,

*/

didManagerAddKey(args: IDIDManagerAddKeyArgs, context:

IAgentContext<IKeyManager>): Promise<any>

24

9.2. Login with SSI

In this section it is explained the initial design of the second practical work and the result

after implementing it.

9.2.1. Initial Design

The objective of this practical work is to create a very simple SSI system in which a user

with a DID can request a VC to guarantee an SD.

To put it in context, the system deals with a student who has a DID and who asks a

university to issue student credentials to be able to access external services, such as the

gym, the library, and the café.

An ecosystem composed by different roles is needed to manage VCs. Those roles are

the ones in Figure 2 from section 2. State-of-the-Art of Self-Sovereign Identity.

The issuer is the role in charge of declaring a claim or a set of claims and transmitting a

VC created from these claims to a holder. In this practical work, the issuer is the server

of the university.

The student is both, the holder, and the subject. The former possesses one or more

VCs and generates VPs from them, and the latter refers to the entity about which claims

are made.

The verifier is the entity that receives one or more VCs, optionally inside a verifiable

presentation, for processing. The university’s gym service is the verifier in this practice.

The verifiable data registry mediates the creation and verification of identifiers, keys,

and other relevant data, such as verifiable credential schemas, revocation registries,

issuer public keys, and so on. In this practical work the verifiable data registry is a public

distributed ledger (blockchain); specifically, testnet Ropsten, which is free. In a

marketable product, transactions would be handled by a cryptocurrency wallet, but

browser’s local storage will be used instead to keep the practice simple.

A Selective Disclosure Request (SDR) is implemented in Veramo as a message type

that is created and signed by a DID. It contains a request for specific Verifiable Credential

claims and can specify the issuer(s) of those credentials along with other criteria. The

subject of the request can respond by creating and signing a Verifiable Presentation to

include the requested claims.

The scenario of the practical work is composed by the following subjects:

• The university is called Monsters University. As it represents the trusted issuer,

it is responsible for the delivery of an anonymous credential (a VC) for every

logged in student that requests for it. It declares the following three claims:

o That the person who owns the VC is a student

o That the university where this student studies is called Monsters University

o And that it has not expired yet, since it becomes obsolete in 2022-08-01.

• Mike is an enrolled student in Monsters University. His username is mike and his

password is ILoveCelia. He is the one generating his VP.

25

• Monsters Gym is a service provided by Monsters University. Enrolled students

have the right to access this website if their VP has been verified by Monsters

Gym’s server.

The ecosystem of the project (Figure 4) follows the structure of the appropriate

ecosystem for VCs presented in Figure 2 from section 8.2. Verifiable Credentials.

Figure 4 - Ecosystem of the second practical work

26

The sequence diagram of Figure 5 describes the flow of the application:

Figure 5 - Sequence diagram of the second practical work

For Mike to be able to access Gym service, he must demonstrate that he is a student at

Monsters University. As all students at this university have an account for its webpage,

Mike logs in there with his username and password. This part will be developed following

the Express with Passport practice of Annex I.

27

Monsters University’s server already has a Selective Disclosure whose claims are that

the user that asks for a VC is currently a student at this university.

Mike does not notice it, but when he asks for a VC by clicking on a button, the client-site

of the application generates a DID automatically for him and stores it in the local storage

of his browser (not only the DID value is stored, but also its public and private keys. For

security, this information is encrypted).

After receiving the VC, the client’s JavaScript automatically verifies that the VC is correct

by checking the following:

• That the issuer of the VC equals to Monsters University’s DID

• That the subject of the VC is Mike’s DID

• That it claims that Mike is a student

• And that the VC has not expired yet

The VP stores the same three claims as Monsters University’s Selective Disclosure, and

it is sent to Monsters Gym’s server.

Then, Monsters Gym’s server verifies the following:

• That Mike’s DID equals to the subject of the VP

• That Mike is a student

• That the university where Mike studies is called Monsters University

• That Mike’s credential has not expired yet

If everything is alight, Monsters Gym’s server redirects Mike to its web service.

28

Next, the flow of the project is explained with mock-ups:

Mike goes in Monsters University’s login page and enters his credentials:

As he introduced his credentials correctly, he is allowed to access Monsters University’s

webpage, whose design is the following:

29

Mike asks for the anonymous credential (the VC) by clicking on the first button:

After clicking MONSTERS GYM button, he is automatically redirected to Monsters

University’s Gym webpage. The SSI protocol is executed to access there.

30

9.2.2. Implemented Application

The system consists of three projects: one for the React application, one for the

University’s Express API and one for the Gym’s Express API.

The React application runs the frontend of the login page, the University’s page, and the

Gym’s page.

• The login page asks for the student’s username and password, and it has a

button to log in. When the login is successful, a JWT is written in a HTTP cookie

(Express with Passport practice) and it sends the credentials to University’s

Express API.

• University’s webpage has a button to get an anonymous credential or VC,

another one to go to Gym’s webpage and a last one to logout and be redirected to

the login page.

o After clicking on the button to get the VC, Mike’s DID is stored in the local

storage of the browser, together with the corresponding public and private

keys. Just for security, it is encrypted with a library called crypto-js. This

DID management has been implemented manually by the student of

this thesis, since Veramo can only manage the storage on Node or React

Native (and not React). This code will be provided in the practical

document’s statement.

o In case that Mike tries to access Gym’s webpage without previously getting

the anonymous credential, it appears an alert to inform about it.

o There are two other disabled buttons called MONSTERS LIBRARY and

MONSTERS CAFÉ that just represent other possible external services

that require a VC from Monsters University to login.

• Gym’s webpage shows a welcome sentence to highlight that the student has

been redirected there successfully.

University’s Express API performs the following tasks:

• It stores the traditional login credentials in a JSON file and passwords are

encrypted with a strong Key Derivation Function (KDF) called scrypt-pbkdf.

• It verifies the JWT

• It sends by POST the VC when the button GET ANONYMOUS STUDENT

CREDENTIAL is clicked by Mike.

Gym’s Express API verifies Mike’s VP.

https://www.npmjs.com/package/crypto-js
https://github.com/juanelas/scrypt-pbkdf

31

The actual data that is shared in this system is specified below:

Monsters University’s DID:

Mike’s DID:

Verifiable Credential:

did:ethr:ropsten:0x03d8fc8ec731cdc17f4046edaee7ad519f4c6bf2c3c1339ffd

119b020f4a870788

did:ethr:ropsten:0x03de15fbcc72382b54d554421b561dc054fac932a60eacae0e

e072892b8da112f4

{

 "credentialSubject": {

 "claims": {

 "universityName": "Monsters University",

 "student": true,

 "expDate": "2022-08-01T00:00:00.000Z"

 },

 "id": {

 "did":

"did:ethr:ropsten:0x03de15fbcc72382b54d554421b561dc054fac932a60eacae0ee072892b8da112f

4",

 "controllerKeyId":

"04de15fbcc72382b54d554421b561dc054fac932a60eacae0ee072892b8da112f46c622f7616ab4f9c9f

3270ef36fab479e4f8a3a1630c4231e5bf28e3c4152923",

 "keys": [

 {

 "type": "Secp256k1",

 "kid":

"04de15fbcc72382b54d554421b561dc054fac932a60eacae0ee072892b8da112f46c622f7616ab4f9c9f

3270ef36fab479e4f8a3a1630c4231e5bf28e3c4152923",

 "publicKeyHex":

"04de15fbcc72382b54d554421b561dc054fac932a60eacae0ee072892b8da112f46c622f7616ab4f9c9f

3270ef36fab479e4f8a3a1630c4231e5bf28e3c4152923",

 "meta": {

 "algorithms": [

 "ES256K",

 "ES256K-R",

 "eth_signTransaction",

 "eth_signTypedData",

 "eth_signMessage"

]

 },

 "kms": "local"

32

 }

],

 "services": [],

 "provider": "did:ethr:ropsten",

 "alias": "student"

 }

 },

 "issuer": {

 "id":

"did:ethr:ropsten:0x03d8fc8ec731cdc17f4046edaee7ad519f4c6bf2c3c1339ffd119b020f4a87078

8"

 },

 "type": [

 "VerifiableCredential"

],

 "@context": [

 "https://www.w3.org/2018/credentials/v1"

],

 "issuanceDate": "2022-06-18T11:03:51.000Z",

 "proof": {

 "type": "JwtProof2020",

 "jwt":

"eyJhbGciOiJFUzI1NksiLCJ0eXAiOiJKV1QifQ.eyJ2YyI6eyJAY29udGV4dCI6WyJodHRwczovL3d3dy53M

y5vcmcvMjAxOC9jcmVkZW50aWFscy92MSJdLCJ0eXBlIjpbIlZlcmlmaWFibGVDcmVkZW50aWFsIl0sImNyZW

RlbnRpYWxTdWJqZWN0Ijp7ImNsYWltcyI6eyJ1bml2ZXJzaXR5TmFtZSI6Ik1vbnN0ZXJzIFVuaXZlcnNpdHk

iLCJzdHVkZW50Ijp0cnVlLCJleHBEYXRlIjoiMjAyMi0wOC0wMVQwMDowMDowMC4wMDBaIn19fSwic3ViIjp7

ImRpZCI6ImRpZDpldGhyOnJvcHN0ZW46MHgwM2RlMTVmYmNjNzIzODJiNTRkNTU0NDIxYjU2MWRjMDU0ZmFjO

TMyYTYwZWFjYWUwZWUwNzI4OTJiOGRhMTEyZjQiLCJjb250cm9sbGVyS2V5SWQiOiIwNGRlMTVmYmNjNzIzOD

JiNTRkNTU0NDIxYjU2MWRjMDU0ZmFjOTMyYTYwZWFjYWUwZWUwNzI4OTJiOGRhMTEyZjQ2YzYyMmY3NjE2YWI

0ZjljOWYzMjcwZWYzNmZhYjQ3OWU0ZjhhM2ExNjMwYzQyMzFlNWJmMjhlM2M0MTUyOTIzIiwia2V5cyI6W3si

dHlwZSI6IlNlY3AyNTZrMSIsImtpZCI6IjA0ZGUxNWZiY2M3MjM4MmI1NGQ1NTQ0MjFiNTYxZGMwNTRmYWM5M

zJhNjBlYWNhZTBlZTA3Mjg5MmI4ZGExMTJmNDZjNjIyZjc2MTZhYjRmOWM5ZjMyNzBlZjM2ZmFiNDc5ZTRmOG

EzYTE2MzBjNDIzMWU1YmYyOGUzYzQxNTI5MjMiLCJwdWJsaWNLZXlIZXgiOiIwNGRlMTVmYmNjNzIzODJiNTR

kNTU0NDIxYjU2MWRjMDU0ZmFjOTMyYTYwZWFjYWUwZWUwNzI4OTJiOGRhMTEyZjQ2YzYyMmY3NjE2YWI0Zjlj

OWYzMjcwZWYzNmZhYjQ3OWU0ZjhhM2ExNjMwYzQyMzFlNWJmMjhlM2M0MTUyOTIzIiwibWV0YSI6eyJhbGdvc

ml0aG1zIjpbIkVTMjU2SyIsIkVTMjU2Sy1SIiwiZXRoX3NpZ25UcmFuc2FjdGlvbiIsImV0aF9zaWduVHlwZW

REYXRhIiwiZXRoX3NpZ25NZXNzYWdlIl19LCJrbXMiOiJsb2NhbCJ9XSwic2VydmljZXMiOltdLCJwcm92aWR

lciI6ImRpZDpldGhyOnJvcHN0ZW4iLCJhbGlhcyI6InN0dWRlbnQifSwibmJmIjoxNjU1NTUwMjMxLCJpc3Mi

OiJkaWQ6ZXRocjpyb3BzdGVuOjB4MDNkOGZjOGVjNzMxY2RjMTdmNDA0NmVkYWVlN2FkNTE5ZjRjNmJmMmMzY

zEzMzlmZmQxMTliMDIwZjRhODcwNzg4In0.8B1siefQlg6SnM9cGFmQYnQhZU305jvO5irQUPYi7z6IZ3qm6G

iAWQ42zqEt2ky-VPoLr-Q6uDKPAzfUQ70ftA"

 }

}

33

Verifiable Presentation:

As the VP contains the VC, keys, and values of the JSON of the VC are substituted with

<VERIFIABLE_CREDENTIAL_CONTENT>, so that the text is shorter and easier to

understand.

{

 "request": {

 "message": "Selective Disclosure created successfully!",

 "data":

"eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NksifQ.eyJpYXQiOjE2NTU1NTA5ODMsInR5cGUiOiJz

ZHIiLCJjbGFpbXMiOlt7ImNsYWltVHlwZSI6InN0dWRlbnQiLCJjbGFpbVZhbHVlIjoidHJ1ZSIs

ImVzc2VudGlhbCI6dHJ1ZX0seyJjbGFpbVR5cGUiOiJ1bml2ZXJzaXR5TmFtZSIsImNsYWltVmFs

dWUiOiJNb25zdGVycyBVbml2ZXJzaXR5IiwiZXNzZW50aWFsIjp0cnVlfSx7ImNsYWltVHlwZSI6

ImV4cERhdGUiLCJjbGFpbVZhbHVlIjoiMjAyMi0wOC0wMVQwMDowMDowMC4wMDBaIiwiZXNzZW50

aWFsIjp0cnVlfV0sImlzcyI6ImRpZDpldGhyOnJvcHN0ZW46MHgwMjYzNWQ2NTc3ZWUxNWYzNjRk

NTk4ZDNmYWU0NzE1NWQ4MjI0Y2FiZTJkYzI0YzY0ZjE5OTQxOGM3YTlhZWMyYjkifQ.1mrncSepB

hZOSCAgOUSDVfu_jEAILHD-soKL0THo4xwO0R37wzzGn5d6v-qwzsdu4BSx68-

n6N2yFyiP8kbtXA"

 },

 "verifiableCredential": [

 <VERIFIABLE_CREDENTIAL_CONTENT>

],

 "holder":

"did:ethr:ropsten:0x03de15fbcc72382b54d554421b561dc054fac932a60eacae0ee07289

2b8da112f4",

 "type": [

 "VerifiablePresentation"

],

 "@context": [

 "https://www.w3.org/2018/credentials/v1"

],

 "issuanceDate": "2022-06-18T11:16:23.000Z",

 "proof": {

 "type": "JwtProof2020",

 "jwt":

34

"eyJhbGciOiJFUzI1NksiLCJ0eXAiOiJKV1QifQ.eyJ2cCI6eyJAY29udGV4dCI6WyJodHRwczov

L3d3dy53My5vcmcvMjAxOC9jcmVkZW50aWFscy92MSJdLCJ0eXBlIjpbIlZlcmlmaWFibGVQcmVz

ZW50YXRpb24iXSwidmVyaWZpYWJsZUNyZWRlbnRpYWwiOlsiZXlKaGJHY2lPaUpGVXpJMU5rc2lM

Q0owZVhBaU9pSktWMVFpZlEuZXlKMll5STZleUpBWTI5dWRHVjRkQ0k2V3lKb2RIUndjem92TDNk

M2R5NTNNeTV2Y21jdk1qQXhPQzlqY21Wa1pXNTBhV0ZzY3k5Mk1TSmRMQ0owZVhCbElqcGJJbFps

Y21sbWFXRmliR1ZEY21Wa1pXNTBhV0ZzSWwwc0ltTnlaV1JsYm5ScFlXeFRkV0pxWldOMElqcDdJ

bU5zWVdsdGN5STZleUoxYm1sMlpYSnphWFI1VG1GdFpTSTZJazF2Ym5OMFpYSnpJRlZ1YVhabGNu

TnBkSGtpTENKemRIVmtaVzUwSWpwMGNuVmxMQ0psZUhCRVlYUmxJam9pTWpBeU1pMHdPQzB3TVZR

d01Eb3dNRG93TUM0d01EQmFJbjE5ZlN3aWMzVmlJanA3SW1ScFpDSTZJbVJwWkRwbGRHaHlPbkp2

Y0hOMFpXNDZNSGd3TTJSbE1UVm1ZbU5qTnpJek9ESmlOVFJrTlRVME5ESXhZalUyTVdSak1EVTBa

bUZqT1RNeVlUWXdaV0ZqWVdVd1pXVXdOekk0T1RKaU9HUmhNVEV5WmpRaUxDSmpiMjUwY205c2JH

VnlTMlY1U1dRaU9pSXdOR1JsTVRWbVltTmpOekl6T0RKaU5UUmtOVFUwTkRJeFlqVTJNV1JqTURV

MFptRmpPVE15WVRZd1pXRmpZV1V3WldVd056STRPVEppT0dSaE1URXlaalEyWXpZeU1tWTNOakUy

WVdJMFpqbGpPV1l6TWpjd1pXWXpObVpoWWpRM09XVTBaamhoTTJFeE5qTXdZelF5TXpGbE5XSm1N

amhsTTJNME1UVXlPVEl6SWl3aWEyVjVjeUk2VzNzaWRIbHdaU0k2SWxObFkzQXlOVFpyTVNJc0lt

dHBaQ0k2SWpBMFpHVXhOV1ppWTJNM01qTTRNbUkxTkdRMU5UUTBNakZpTlRZeFpHTXdOVFJtWVdN

NU16SmhOakJsWVdOaFpUQmxaVEEzTWpnNU1tSTRaR0V4TVRKbU5EWmpOakl5WmpjMk1UWmhZalJt

T1dNNVpqTXlOekJsWmpNMlptRmlORGM1WlRSbU9HRXpZVEUyTXpCak5ESXpNV1UxWW1ZeU9HVXpZ

elF4TlRJNU1qTWlMQ0p3ZFdKc2FXTkxaWGxJWlhnaU9pSXdOR1JsTVRWbVltTmpOekl6T0RKaU5U

UmtOVFUwTkRJeFlqVTJNV1JqTURVMFptRmpPVE15WVRZd1pXRmpZV1V3WldVd056STRPVEppT0dS

aE1URXlaalEyWXpZeU1tWTNOakUyWVdJMFpqbGpPV1l6TWpjd1pXWXpObVpoWWpRM09XVTBaamho

TTJFeE5qTXdZelF5TXpGbE5XSm1NamhsTTJNME1UVXlPVEl6SWl3aWJXVjBZU0k2ZXlKaGJHZHZj

bWwwYUcxeklqcGJJa1ZUTWpVMlN5SXNJa1ZUTWpVMlN5MVNJaXdpWlhSb1gzTnBaMjVVY21GdWMy

RmpkR2x2YmlJc0ltVjBhRjl6YVdkdVZIbHdaV1JFWVhSaElpd2laWFJvWDNOcFoyNU5aWE56WVdk

bElsMTlMQ0pyYlhNaU9pSnNiMk5oYkNKOVhTd2ljMlZ5ZG1salpYTWlPbHRkTENKd2NtOTJhV1Js

Y2lJNkltUnBaRHBsZEdoeU9uSnZjSE4wWlc0aUxDSmhiR2xoY3lJNkluTjBkV1JsYm5RaWZTd2li

bUptSWpveE5qVTFOVFV3T1RnekxDSnBjM01pT2lKa2FXUTZaWFJvY2pweWIzQnpkR1Z1T2pCNE1E

TmtPR1pqT0dWak56TXhZMlJqTVRkbU5EQTBObVZrWVdWbE4yRmtOVEU1WmpSak5tSm1NbU16WXpF

ek16bG1abVF4TVRsaU1ESXdaalJoT0Rjd056ZzRJbjAuTmRKd3JtMXNhbzVjNTBoNjg3Zm96T3RQ

LWtLYldaZFF1ZTNjelJreERscF9IRzFrSmxKbnViLWpnMTAyQTRjbzdCQ0RRbVRfNnNFa0JhOHFY

MzZlOWciXX0sInJlcXVlc3QiOnsibWVzc2FnZSI6IlNlbGVjdGl2ZSBEaXNjbG9zdXJlIGNyZWF0

ZWQgc3VjY2Vzc2Z1bGx5ISIsImRhdGEiOiJleUowZVhBaU9pSktWMVFpTENKaGJHY2lPaUpGVXpJ

MU5rc2lmUS5leUpwWVhRaU9qRTJOVFUxTlRBNU9ETXNJblI1Y0dVaU9pSnpaSElpTENKamJHRnBi

WE1pT2x0N0ltTnNZV2x0Vkhsd1pTSTZJbk4wZFdSbGJuUWlMQ0pqYkdGcGJWWmhiSFZsSWpvaWRI

SjFaU0lzSW1WemMyVnVkR2xoYkNJNmRISjFaWDBzZXlKamJHRnBiVlI1Y0dVaU9pSjFibWwyWlhK

emFYUjVUbUZ0WlNJc0ltTnNZV2x0Vm1Gc2RXVWlPaUpOYjI1emRHVnljeUJWYm1sMlpYSnphWFI1

SWl3aVpYTnpaVzUwYVdGc0lqcDBjblZsZlN4N0ltTnNZV2x0Vkhsd1pTSTZJbVY0Y0VSaGRHVWlM

Q0pqYkdGcGJWWmhiSFZsSWpvaU1qQXlNaTB3T0Mwd01WUXdNRG93TURvd01DNHdNREJhSWl3aVpY

TnpaVzUwYVdGc0lqcDBjblZsZlYwc0ltbHpjeUk2SW1ScFpEcGxkR2h5T25KdmNITjBaVzQ2TUhn

d01qWXpOV1EyTlRjM1pXVXhOV1l6TmpSa05UazRaRE5tWVdVME56RTFOV1E0TWpJMFkyRmlaVEpr

WXpJMFl6WTBaakU1T1RReE9HTTNZVGxoWldNeVlqa2lmUS4xbXJuY1NlcEJoWk9TQ0FnT1VTRFZm

dV9qRUFJTEhELXNvS0wwVEhvNHh3TzBSMzd3enpHbjVkNnYtcXd6c2R1NEJTeDY4LW42TjJ5Rnlp

UDhrYnRYQSJ9LCJuYmYiOjE2NTU1NTA5ODMsImlzcyI6ImRpZDpldGhyOnJvcHN0ZW46MHgwM2Rl

MTVmYmNjNzIzODJiNTRkNTU0NDIxYjU2MWRjMDU0ZmFjOTMyYTYwZWFjYWUwZWUwNzI4OTJiOGRh

MTEyZjQifQ.jz5PGx8ZusDdVZnMoef7Bu1SLKur6VmVRuIDB675dqqBcC9HwbB-

V3UQ4UiLPg0T6IM1tnPvkYRGX8ZopPl8fg"

 }

 }

35

The resulting website is shown in the screenshots below:

Monsters University login page, where Mike introduces his credentials (Figure 6):

Figure 6 - Monsters University login page

Monsters University’s web page, where Mike can access special services after getting an

anonymous credential from the trusted issuer (Figure 7):

Figure 7 - Monsters University's web page

36

If Mike tries to access to Monsters Gym without an anonymous credential, an alert

appears to inform about it (Figure 8):

Figure 8 - Monsters University web page. Red alert

A green alert appears when Mike obtains the VC successfully (Figure 9):

Figure 9 - Monsters University web page. Green alert

37

After Monsters Gym’s server verifies Mike’s VP, a welcome sentence is shown (Figure

10):

Figure 10 - Monsters Gym web page

38

10. Conclusions and future development

Two teaching practices have been created successfully. The first one is meant to let the

student understand the core architecture, the data model, and the representations of

Distributed Identifiers proposed by W3C and get used to basic management using

Veramo APIs.

The second one consists of a more complex work that applies the SSI protocol in a

system that could be deployed in a real-life use case. A VC is emitted to users

authenticated in the webpage of a university and they can use it to log in other systems.

To keep the second practical work simple, all information about DIDs is stored in the

browser local storage, but ideally it should be used a cryptographic wallet instead.

In the future it could be developed a project in which users can efficiently manage

different identities with cryptographic wallets. A new identity would be created every time

they get a VC.

Another interesting idea would be to integrate Zero Knowledge, so that users can provide

specific information derived from their claims. An example could be developing a system

in which users have a claim about the day they were born, and they can proof they are of

legal age without revealing any more information.

39

11. References

[1] Ethr DID. A Scalable Identity Method for Ethereum Addresses. [Online] Available:

https://developer.uport.me/ethr-did/docs/index

[2] Dr. Christian Lundkvist, Rouven Heck, Joel Torstensson, Zac Mitton, Michael Sena.

“UPORT: A PLATFORM FOR SELF-SOVEREIGN IDENTITY”. DRAFT VERSION,

February 2017. [Online] Available:

https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf 22/06

[3] GatacaID. “Gataca DID Method Specification”, April 2020 [Online] Available:

https://github.com/gataca-io/gataca-did-method

[4] W3C. “Decentralized Identifiers (DIDs) v1.0”, August 2021 [Online] Available:

https://www.w3.org/TR/did-core/

[5] W3C. “Verifiable Credentials Data Model v1.1”, March 2022 [Online] Available:

https://www.w3.org/TR/vc-data-model/

[6] Veramo (v3.1.2). [Online] Available: https://veramo.io/

[7] InvisionApp. [Online] Available: https://www.invisionapp.com/

[8] Mircea Nistor, Peter Grassberger, Zachary Carlin. “ETHR DID Method Specification”,

June 2022 [Online] Available: https://github.com/decentralized-identity/ethr-did-

resolver/blob/master/doc/did-method-spec.md

40

12. Glossary

• Self-Sovereign Identity (SSI)

• Distributed Identifier (DID)

• Verifiable Credential (VC)

• Virtual Machine (VM)

• World Wide Web Consortium (W3C)

• Verifiable Presentation (VP)

• JSON Web Signature (JWS)

• Zero-Knowledge Proofs (ZKPs)

• Software Development Kit (SDK)

• Decentralised Applications (dApps)

• Minimum Viable Product (MVP)

• User Interface (UI)

• Smart Contract (SC)

• Distributed Ledgers Technologies (DLTs)

• Ether (ETH)

• Selective Disclosure Request (SDR)

• Key Derivation Function (KDF)

