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Abstract 

During last years, space missions have evolved from monolithic spacecrafts architectures, 

to distributed ones, which are known as Distribute Satellite Systems (DSS). This spacecraft 

architecture has changed the space paradigm, as it has appeared the need of establishing 

communications between satellites to achieve the mission objectives. Despite this the need 

of simulating and emulating the communications between satellites, none of the available 

tools have complete inter-satellite communications capabilities. 

This final degree thesis presents contributions to the already existing simulator developed 

by NanoSat Lab. The contributions consist in the implementation of the Electric Power 

Supply (EPS) subsystem. Moreover, this thesis also contributes to the development of a 

Satellite Contact Emulator, developed by i2Cat, focusing on the development of the central 

PC that orchestrates the emulation. 
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Resum 

Recentment, les missions espacials han evolucionat d’una arquitectura basada en un sol 

satèl·lit, a una arquitectura distribuïda. Aquest tipus d’arquitectura és coneguda com a 

Distribute Satellite Systems” (DSS). L’aparició d’aquesta nova estructura ha provocat un 

canvi en el paradigma de l’espai, ja que ha sorgit la necessitat d’establir comunicació entre 

els satèl·lits per assolir els objectiu marcats de les missions. Tot i haver la necessitat 

d’emular i simular les comunicacions enter satèl·lits, cap de les eines actuals té suficients 

funcionalitats implementades per assolir aquesta emulació i simulació.  

Aquest treball de fi de grau presenta les contribucions fetes a un simulador ja existent, el 

qual ha estat desenvolupat pel NanoSat Lab de la UPC. La contribució feta consisteix en 

la implementació d’un subsistema que modeli una EPS. A més a més, aquest treball de fi 

de grau també contribueix en el desenvolupament d’un Satellite Contact Emulator, el qual 

ha estat desenvolupat per i2Cat. En aquesta contribució es farà menció especial en 

l’ordinador central que executa l’emulació.  
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Resumen 

Recientemente, las misiones espaciales han evolucionado de una arquitectura basada en 

un solo satélite, a una arquitectura distribuida. Este tipo de arquitectura es conocida como 

Distribute Satellite Systems” (DSS). La aparición de esta nueva estructura ha provocado 

un cambio en el paradigma espacial, ya que ha surgido la necesidad de establecer 

comunicación entre los satélites para conseguir los objetivos de las misiones. Aunque 

exista la necesidad de emular y simular las comunicaciones entre satélites, ninguna de las 

actuales herramientas tiene las funcionalidades suficientes para conseguir dicha 

emulación y simulación. 

Este trabajo de fin de grado presenta las contribuciones hechas a un simulador ya 

existente, el cual ha sido desarrollado por el NanoSat Lab de la UPC. La contribución 

hecha consiste en la implementación de un subsistema que modela una EPS. Además, 

este trabajo de fin de grado también contribuye al desarrollo de un Satellite Contact 

Emulator, el cual ha sido desarrollado por i2Cat. Esta contribución pone un énfasis 

especial en el ordenador central que ejecuta la emulación.    
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1. Introduction 

 

Monolithic satellites have been ruling the space by providing a custom design that 

accomplishes a specific mission. However, this kind of satellites where only one spacecraft 

is deployed have some drawbacks associated with them, mainly related with re-visit time 

and coverage range (depending on the orbiting plane). To mitigate the limitations 

associated with monolithic spacecrafts, the concept evolved to Distributed Satellite 

Systems (DSS), which are networks of heterogeneous or homogenous satellites with a 

common mission. Six main architectures of DSS can be distinguished according to [1], 

constellations, satellite trains, clusters, satellite swarms, and innovative mission concepts 

such as fractionated spacecraft and Federated Satellite Systems (FSS). Some of these 

architectures perform communication with other spacecraft in order to avoid collisions, such 

in the case of clusters or swarms, or to exchange data, as in the case of fractionated 

spacecraft or FSS. 

This performed communication is known as inter-satellite links (ISL), which are point to 

point communications between two or more satellites. As exposed in [2],[3]; when ISLs 

have a routing protocol associated, it is known as Internet of Satellites (IoSat). This change 

in the paradigm has created the need of tools that help engineers to design and test the 

new communication protocols derived from IoSat needs. However, currently there are not 

many tools available that performs these operations, as it will be discussed in Sections 2.1 

and 2.4, so i2CAT1 Space Communications research group is currently developing two 

projects to fill the void on that field. 

First of the projects was born at NanoSat Lab2, which is an initiative of the CommsSensLab3 

research center of the Department of Signal Theory and Communications, with the support 

of the Barcelona School of Telecommunications Engineering. It is research laboratory 

focused on the exploration of innovative small spacecraft system concepts and developing 

and integrating subsystems and payloads notably for Earth Observation. The project is a 

simulation engine [4] known as Distributed Satellite System Simulator (DSS-SIM) that aims 

the design and testing of DSS interconnected by ISL. A more accurate description of how 

it works is performed at Section 3.1.  

The other project held at i2Cat is a Satellite Contact Emulator, which aims to provide an 

interface to emulate contacts between satellites for NB-IoT and ISL scenarios. This project 

started from scratch with the development of this thesis, so its development is still in an 

early phase. However, a more description od the projects is done in Section 3.2. 

 

 

 

 

 
1 i2CAT - The Internet Research Center 
2 NanoSat Lab 
3 CommSensLab 

https://i2cat.net/
https://nanosatlab.upc.edu/en
https://www.tsc.upc.edu/en/research/research-groups/commsenslab/
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1.1. Objectives 

 

This final degree thesis aims the to address the lack of tools to simulate and emulate ISLs 

by contributing to the already existing DSS-SIM and creating a Satellite Contact Emulator 

(SCE). 

The contributions to the first topic (extensions of DSS-SIM) will be: 

1. The implementation of a module that simulates energy storage devices, in particular 

batteries or supercapacitors. 

2. The implementation of a module that models solar cells, as the energy generation 

of spacecrafts. 

3. The implementation of a module that implements an electric power system (EPS) 

for a satellite 

 

The contribution to the second topic is: 

1. Creation of a prototype that allows communications between two end-devices, 

connected into a network composed by Software Defined Radios (SDR) and a 

central PC that performs the ISL emulation. 

It must be mentioned that the SCE is developed together with the student Arnau Dolz. This 

final degree thesis presents the central PC of the network, which propagates orbits and 

computes the parameters that affect the communications channels, such as attenuation, 

Doppler effect, and delay. Dolz final degree thesis [5] is focused on how the SDR processes 

the data, and how the communications channel is executed in the SDR from the 

parameters computed by the central PC.  

 

1.2. Thesis outline  

 

As explained, this final degree thesis presents two different projects, but both have the 

same motivation. Because of that, some of the chapters of the thesis will be divided into 

two subsections, where each of the subprojects are explained. The general structure is: 

1. Introduction: Provides an overview of the project, where the rationale of the final 

degree thesis is clearly described 

2. State of the art: Section provides a review of the current technologies to address 

the presented objectives is done. A review is conducted to assert the motivation of 

the projects. 

3. Methodology and development phases: Section is divided into the two major 

constituents of this final degree thesis. The designed and implemented solutions 

for each, as well as the project phases are explained in this section. 

4. Tests and results: As Section is divided into the two projects., and the performed 

tests and the resulting results are presented. 
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5. Conclusions and future development: Section presents a review of the initial 

objectives is done, explaining if they have been met or not for each of the projects. 

An overview of the future development of the projects is also performed. 

 

The management features of the project are presented into the appendices, in order to 

keep the main body of the text just focused on the technical development. Appendices 

follow the next structure: 

 

A. Management: The development phases of the projects are defined in detail, 

defining work packages, and including the initial and the final work plans, and their 

difference. Also, the list of requirements for each project is presented in this 

appendix.  

B. Budget: The economic impact of the projects is considered here, including direct 

and indirect costs. 

C. Environmental impact: A study of the projects’ impact on the environment is 

performed at this appendix.  
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2. State of the art of the technology used or applied in this 

thesis: 

2.1. Review of existing ISL simulators 

 

Typically, the simulation of spacecrafts has been done using some licensed software, such 

as the well-known Systems Tool Kits4 (STK). However, the space sector has suffered a 

remarkable change in recent years, which has increased the interest on ISL 

communications. Unfortunately, STK, as well as similar products, do not consider the 

capability of simulating communications protocols at ISL, so the tool falls short when 

addressing the simulation of DSS. To achieve the desired behaviour of simulators, there is 

the need to use network simulators. Some well-known open-source ones are Network 

Simulator 3 (NS-3)5, OPNET6, NetSim7 or QualNet8. 

As it is clear, there is the need of a tool that combines both software in order of simulating 

a complete DSS into just one software. According to [4], three approaches can be done. 

One approach consists of running first the space simulator to obtain the desired parameters 

and use them as inputs for the network simulator. Another approach is the integration of 

both simulation engines into a single simulator that runs them in parallel. This approach 

was chosen by NASA [6], where they used QualNet and STK. Despite the promising 

approach, the resulting core resulted inefficient, because the constant communication 

between both simulation engines adds delay into the execution.  

Finally, a third approach, and the most interesting one because of its versatility and 

resource management, is a fully integrated simulator. This approach consists of the 

implementation of a custom simulator that, with just one simulation engine (and non-using 

different software at same time) all the simulation parameters can be computed. In [7], a 

simulator based on NS-3 is presented. This project demonstrates the feasibility of the 

approach, despite it failed at demonstrating the re-usability of the software to simulate 

instrument and resources defined by the user. 

To overcome the problems found in other approaches, a simulation tool is presented in [4]. 

The DSS-SIM is a simulation engine that aims to simulate the impact of ISL over spacecraft 

resources, enable the implementation of high-level spacecraft interactions and provide an 

adaptable tool where users can define physical models that represent spacecraft 

components and instruments. The simulator is constructed over NS-3, which manages the 

simulation of a defined scenario by the DSS-SIM. NS-3 is a free and open-source discrete-

event network simulator that also provide some communication protocols which can be 

used in in the ISL context. 

 

 

 
4 Systems Tool Kit (STK) 
5 NS-3 
6 OPNET 
7 NetSim 
8 QualNet 

https://www.agi.com/products/stk
https://www.nsnam.org/
https://opnetprojects.com/opnet-network-simulator/
https://www.tetcos.com/
https://www.scalable-networks.com/products/qualnet-network-simulation-software/
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2.2. Review of existing solar cells models 

 

In space, the most accessible energy from environment is solar power, and the modules in 

charge of converting the sun irradiance into electricity at the solar cells. Its behaviour is 

difficult to describe because it is based on how electrons of the semiconductor material 

interact with hitting photons from solar cells [8]. Therefore, there are some models that 

describe its behaviour in simpler ways. 

 

According to [9], the most used models are (1) the single diode mode, (2) the double diode 

model, (3) the modified double diode model, and (4) the three-diode mode. Nevertheless, 

the most widespread model is the double diode. The problem of this model is its complexity, 

as it takes a long simulation time to compute its parameters because of the differential 

relations between them. Because of that, researchers agree [9] that the use of a single 

diode model is sufficient to describe the behaviour of a solar cell, despite its lower accuracy. 

The single and double diode models can be found described at [10], [11], from where the 

next figure and equations are extracted: 

 

Figure 1: Single and double diode model 

The equations that describe the single are: 

 
𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 · (𝑒

𝑉+𝐼·𝑅𝑠
𝑛·𝑉𝑡 − 1) −

𝑉 + 𝐼 · 𝑅𝑠
𝑅𝑠ℎ

 (1) 

 

 
𝐼𝑝ℎ = 𝐼𝑝ℎ0 ·

𝐼𝑟
𝐼𝑟𝑜

 (2) 

 

where: 

• 𝐼𝑝ℎ = Solar-induced current 

• 𝐼𝑟 = Light irradiance (W/m2) 

• 𝐼𝑝ℎ0= Measured generate current for irradiance 𝐼𝑟0  

• 𝐼𝑑 = Saturation current of diode 

(a) (b) 
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• 𝑉𝑡 =
𝑘·𝑇

𝑞
 = Thermal voltage, where  

• 𝑁 = Quality factor of the diode 

• 𝑅𝑠 = Resistor in series 

• 𝑅𝑠ℎ = Shunt resistor 

 

2.3. Review of existing battery models 

 

In the previous section it has been explained how spacecrafts obtain energy from the 

environment. As this energy is external to the spacecraft, there is no possibility to control 

the generated power. Because of that, there is the need to store the unused energy in 

batteries for a later use. As in the solar cells case, the exact equations of how a battery 

charges and discharges are difficult to obtain because they are based on chemicals 

processes that take place inside it. So, there is a need to simplify those equations by 

approximations known as models.  

Battery modelling is useful as it can predict batteries basic parameters such as the current 

state of charge (SoC) or state of health (SoH) of the battery. Depending on the desired 

application, the accuracy of these parameters can be critical. In the DSS-SIM case, 

determining the SoC and SoH are important, but not critical, as the main objective of the 

simulation is the communications. However, it is important to represent how them impact 

the power modules. Typically, three types of models are distinguished: electrochemical, 

analytical/empirical, and circuit based [12].  

The electrochemical models are based on the chemical processes that take place in the 

battery. Although these models describe the battery processes very accurately, they also 

have a higher degree of complexity than other methods because they might include high-

order differential equations and the need of chemical parameters to describes battery’s 

dynamics, which are usually difficult to obtain. Another limitation associated to these 

models is that, because of their complexity, it can take long simulation time to compute the 

parameters of interest. This limitation is really strong, as it only makes the models suitable 

for applications where high accuracy is needed, and makes them undesirable for the rest 

of applications, since many times speed is preferred over accuracy.   

In Electric Circuit Models (ECM), the electrochemical reactions are replaced by circuits 

components such as resistors or capacitors that emulates the relation between the input 

parameters, SoC and current, and the voltage in terminals of a battery. Usually, the 

resistors represent the internal self-discharge of a battery, while RC networks represent 

the diffusion process in electrolyte and porous electrodes and the charge transfer in the 

electrode [12]. This type of models gives the developer a high degree of freedom designing 

a custom model for a desired application. Despite that, obtaining the parameters to emulate 

the relation between an ECM and an electrochemical model is complex. Some typical 

models are: 

𝑘 = Boltzmann constant 

𝑇 = Temperature of operation 

𝑞 = Charge on an electron 
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Figure 2: Different ECM [12] 

  

The analytical or empirical models are considered as a simplified electrochemical model. 

In this model the high-order differential equations from electrochemical models disappears, 

and it are replaced by reduced order polynomials or mathematical expressions. This type 

of model leads to simpler expressions, which also is more efficient in terms of simulation 

time. The limitation is that accuracy is reduced because the expressions are 

approximations of the original one. 

Considering the strengths and limitations of the different kinds of battery models, this case 

of study will only consider some of the analytical models.  

 

2.3.1. Shepherd model 

 

In 1965, Shepherd [13] presented a battery model designed from the charge/discharge 

curves: 

 

 
𝑉 = 𝑉0 −𝐾 ·

𝑄

𝑄 − ∫ 𝑖 · 𝑑𝑡
· 𝑖 + 𝐴 · 𝑒−𝐵·∫ 𝑖·𝑑𝑡 − 𝑅 · 𝑖 (3) 

 

where: 

(a) Rint model (b) Thevenin model 

(c) PNGV model (d) GNL model 
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• 𝑉 = Battery voltage (V) 

• 𝑉0 = Battery constant voltage (V) 

• 𝐾 = Polarisation voltage (V) 

• 𝑄 = Battery capacity (A·h) 

• ∫ 𝑖 · 𝑑𝑡 = Actual battery charge (A·h) 

• 𝐴 = Exponential zone amplitude (V) 

• 𝐵 = Exponential zone time constant inverse (A·h)-1 

• 𝑅 = Internal resistance (Ω) 

• 𝑖 = Battery current (A) (Positive if discharging, or negative if charging) 

 

The first term of the equation represents the constant battery voltage. The second one is 

the current density plus the polarisation of the cell. The third one represents the effect at 

the beginning of the discharge curve, where the voltage drop is exponential. The last one 

is the voltage drop due to the internal resistance of the cell. 

On one hand, the benefits of this model are that it is also an easy model in terms of 

computing and implementation, as the equations that describe the model are not differential 

or complex expressions. Also, the model is suitable for all battery technologies, as it has 

been demonstrated later [14], despite when it was proposed some of them did not exist. 

Moreover, the model is described using just one equation, only the current’s direction 

changes, which simplifies its use.   

On the other hand, the second term of the equation is non-linear, which adds some 

programming issues, such an algebraic loop, which is a closed loop where outputs are 

directly dependent on their inputs. If an algebraic loop exists, the simulation gets stuck 

because none of the components in the loop can generate output to break it. Also, the 

model does not consider some factors that affect the capacity of the battery, such as SoH 

or the external temperature. The strongest limitation is that the model is not well suited to 

describe the dynamic behaviour of batteries.  

 

2.3.2. Copetti model 

 

After reviewing some proposed models, Copetti [15] presented a new model, with the 

coefficients adapted to the current state of the technology at the time the model was 

presented. Copetti proposed the following equations: 

Charge equation 

 
𝑉𝐶 = [2 + 0,16 · 𝑆𝑂𝐶] +

1

𝐶10
·  (

6

1 + 𝐼0,86
+

0,48

(1 − 𝑆𝑂𝐶)1,2
+ 0,036) · (1 − 0,025 · ∆𝑇) (4) 

 

Discharge equation 
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𝑉𝐶 = [2,085 − 0,12 · (1 − 𝑆𝑂𝐶)] −

1

𝐶10
· (

4

1 + 𝐼1,3
+

0,27

𝑆𝑂𝐶1,5
+ 0,02) · (1 − 0,007 · ∆𝑇) (5) 

 

where: 

• 𝐶10 = 10 hour rated capacity 

• ∆𝑇 = 𝑇 − 𝑇𝑅𝑒𝑓 = 𝑇 − 𝑇25℃ 

 

On one hand, the benefits of this model are that it is an easy model in terms of computing 

and implementation, as the equations that describe the model are not differential or 

complex expressions. Also, the model considers external factors such as temperature to 

describe the dynamics of the battery.  

On the other hand, this model is only suitable for lead-acid batteries. Also, the model uses 

two equations to describe the behaviour of the battery, which is not desired for our 

application. 

 

2.3.3. Modified Shepherd model 

 

Although the Shepherd model is very interesting, the problem of the algebraic loop makes 

it not suitable for most of types of batteries. To correct that, Tremblay, Dessaint and 

Dekkiche [14]  proposed a modified Shepherd model (MSM), which is the following one: 

 
𝑉 = 𝑉0 − 𝐾 ·

𝑄

𝑄 − ∫ 𝑖 · 𝑑𝑡
+ 𝐴 · 𝑒−𝐵·∫ 𝑖·𝑑𝑡 − 𝑅 · 𝑖 (6) 

 

where: 

• 𝑉 = Battery voltage (V) 

• 𝑉0 = Battery constant voltage (V) 

• 𝐾 = Polarisation voltage (V) 

• 𝑄 = Battery capacity (A·h) 

• ∫ 𝑖 · 𝑑𝑡 = Actual battery charge (A·h) 

• 𝐴 = Exponential zone amplitude (V) 

• 𝐵 = Exponential zone time constant inverse (A·h)-1 

• 𝑅 = Internal resistance (Ω) 

• 𝑖 = Battery current (A) (Positive if discharging or negative if charging) 

 



 

 10 

As it can be seen, the term  𝐾 ·
𝑄

𝑄−∫ 𝑖·𝑑𝑡
· 𝑖  of equation (3) has been substituted by  𝐾 ·

𝑄

𝑄−∫ 𝑖·𝑑𝑡
  

in order to avoid the algebraic loop. Although this new term does not represent the 

behaviour of the battery as accurately as the original one, it can be use without a significant 

accuracy loss. 

The benefits and limitations of the model are the same as the previous ones, but with this 

model the algebraic loop issue has been avoided. 

 

2.3.4. Extended modified Shepherd model 

 

The same authors as 2.3.3 in modified their own algorithm some years later and presented 

the extended modified Shepherd model (eMSM) [16].  

Charge equation for Lead-Acid, NiMH and NiCd technology 

 
𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑖 · 𝑡 − 0,1 · 𝑄
· 𝑖∗ − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· 𝑖 · 𝑡 + 𝑒𝑡 (7) 

 

Discharge equation for Lead-Acid, NiMH and NiCd technology 

 
𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· (𝑖 · 𝑡 + 𝑖∗) + 𝑒𝑡 (8) 

 

Charge equation for Li-Ion technology 

 
𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑖 · 𝑡 − 0,1 · 𝑄
· 𝑖∗ − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· 𝑖 · 𝑡 + 𝐴 · 𝑒−𝐵·𝑖·𝑡 (9) 

 

Discharge equation for Li-Ion technology 

 
𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· (𝑖 · 𝑡 + 𝑖∗) + 𝐴 · 𝑒−𝐵·𝑖·𝑡 (10) 

 

where: 

• 𝑉 = Battery voltage (V) 

• 𝑉0 = Battery constant voltage (V) 

• 𝐾 = Polarisation voltage (V) 

• 𝑄 = Battery capacity (A·h) 

• 𝑖 · 𝑡 = ∫ 𝑖 · 𝑑𝑡 = Actual battery charge (A·h) 

• 𝐴 = Exponential zone amplitude (V) 
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• 𝐵 = Exponential zone time constant inverse (A·h)-1 

• 𝑅 = Internal resistance (Ω) 

• 𝑖 = Battery current (A) (Positive is discharging or negative if charging) 

• 𝑖∗ = Filtered current (A) 

 

On one hand, the benefits of this model are that it is a more accurate model than the 

previous versions, and it is suitable for all battery technologies, despite using different 

equations to describe the different modules.  

On the other hand, the model introduces the concept of filtered current, which is not trivial 

to understand and obtain. Also, the model does not consider some factors that affect the 

capacity of the battery, such as the SoH, or the external temperature. However, its 

strongest limitation is that it uses different equations for charge and discharge, and it also 

uses different equations depending on the technology of the battery. 

 

2.4. Existing SCE 

 

The problem of being at an early stage of a technology development is that not many tools 

are available, as it’s the case of satellite channel emulators. Three main branches have 

tried to assess the lack of products in this field: researchers, commercial brands, and 

governmental organizations.  

An interesting approach in the research field is done in [17]. This approach consists of a 

set of SDRs interconnected through Ethernet, and also connected to Pc where the channel 

emulation is performed. However, this paper is based on the use of LabView, which is a 

paid software.  

Currently, there exists some commercial alternatives such as S8825A9 Channel Emulation 

Toolset developed by Keysight, or SLE90010 Satellite Link Emulator developed by dBm 

Corp. However, this type of products has two main drawbacks associated: 

• Cost: Commercial SCE are not affordable, as the cost is very expensive [18]. 

• Scalability: Commercial SCE have limited a limited input and output ports, 

which makes them not suitable for testing big satellites networks using just 

one of them. 

Besides the research and commercial alternatives, some governmental organizations had 

also focused on the development of SCE. European Spatial Agency (ESA) inside ARTES 

framework, has developed two projects relate SCE. The projects are Real-time Satellite 

Network Emulator11 and Emulator of Satellite-Terrestrial 5G Radio Channels12, that are 

currently being developed. The architecture of the first project consists of three mains 

components: 

 
9  S8825A Channel Emulation Toolset 
10 SLE900 
11 Real-time Satellite Network Emulator 
12 Emulator of Satellite-Terrestrial 5G Radio Channels 

https://www.keysight.com/us/en/product/S8825A/satellite-and-aerospace-channel-emulation-toolset.html
http://dbmcorp.com/satellite-link-emulator/
https://artes.esa.int/projects/realtime-satellite-network-emulator
https://artes.esa.int/projects/emulator-satelliteterrestrial-5g-radio-channels
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• STK: Performs the design of the satellite system, as well as the orbital 

simulation (generation of satellite movement, visibilities, and link budget). 

• NS-3: Simulates application traffic and related communication protocols on 

top of the satellite constellation. 

• Orchestrator: Generates the STK scenario configuration files for the 

network simulator. 

Also, NASA has some projects to achieve the channel emulation. An interesting one is the 

presented at [19]. This project aims to integrate a software toolset, which can be considered 

as a simulation, with hardware toolset, which is an emulator. 

Once reviewed the available tools, it can be said that none of them fulfils the requirements 

for the SCE project. The institutional and commercial approach have the cost limitation, 

while the solution based on SDR uses a determined software to perform the operation.  

 

2.5. Orbital models 

 

Propagators are models that their objective is determining the position of a spacecraft at 

any instance of time given its initial state, which includes acceleration and velocity. 

According to Newton’s laws, the motion of a body is determined by its initial state and the 

forces that act on it. Regarding that, if spherical Earth is assumed, the only force that acts 

on the system is the gravity, so the problem would be easy to solve. But real world is none 

like that, and the motion of a body is affected by some other factors such as Earth 

oblateness, gravitational fields from other celestial bodies or atmospheric drag. So, to 

determine orbits, there exists many models, that can e classified into numerical, semi-

analytical and analytical [20].   

On one hand, analytical models compute the analytical equations that describe the motion 

to obtain the final position. As these equations have some terms are complex to obtain, so 

many integrable expression are approximated. This approach leads into a reduced 

accuracy, but in the other hands helps with simulation times. On the other hand, numerical 

models compute the equations that describe the model without any approximation, which 

increase the accuracy of the model while sacrificing speed during computation. Also exists 

a third approach which is a combination of both. Semi-analytical models approximate some 

expression and compute the other ones. Its accuracy is less than numerical but have a 

higher performance.  

Some of them are [21]: 

• Two body elements: This model assume there are only two bodies in space, 

the Earth and orbiting satellite, and the only force that acts on the system is 

the gravitational force acting between them. 

• J2: This model considers the perturbations introduced in the orbit due to 

Earth oblateness. 

• J4: Considers the same effect (Earth oblateness) as J2 propagator but 

compute them with more coefficients (first and second order effects of J2 

and the first-order effects of J4), leading into a more accurate model.  
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• SGP: Simplified General Perturbations (SGP) were developed by Hilton and 

Kuhlman in 1966 and is used for near-Earth satellites. This model assumes 

that the eccentricity is low, and that the perigee's altitude is constant.  

• SGP4: Is an evolution of SGP, used for near-Earth satellites, when period 

is less than 225 minutes. It considers secular and periodic variations due to 

Earth oblateness, solar and lunar gravitational effects, gravitational 

resonance effects and orbital decay using a simple drag model. 

• SDP4: Is an extension of SGP4 to be used for deep-space satellites when 

the period is superior of 225 minutes. 

• SGP8: The SGP8 model propagator considers same effects as SGP4, but 

the calculation methods are different, which results in more accurate results. 

• SDP8: The SDP8 model is an extension of SGP8 to be used for deep-space 

satellites. The deep-space effects are modelled in SDP8 with the same 

equations used in SDP4, but the calculations methods are more accurate.  

3. Methodology and project development:  

 

This section presents the design of both developments. Two sections are defined, 

corresponding to each of the developed projects. In the first subsection, a brief explanation 

of how DSS-SIM works will be done, as well as a detailed explanation of solar cells modules 

and battery modules, and how they will interact in order to model the behaviour of an EPS. 

In the second subsystem, an overview of designed SCE structure will be done to truly 

understand the project, and a more detailed explanation of the modules implemented by 

myself will be done. As it has been previously said, this second project is carried out 

between Arnau Dolz and me.   

 

3.1. Contributions to DSS-SIM 

 

An overview of DSS-SIM operations can be done by taking a look into its workflow diagram 

Figure 3. There three main phases can be distinguished during the simulation: 

 

• Simulator scenario: It is built from user configuration files, where it is 

defined all parameters that describe the behaviour of each node. The 

configuration is done by three differentiated files type: component 

configuration, satellite definition and system definition. First of the files 

contains the description of custom satellite classes and their internal 

behaviour (e.g., description of battery parameters). Second type of files 

describe the spacecrafts model. In these files are described the networking 

components, such as protocols stack. Finally, last type of configurators 

describes the global system configuration, by determining orbit propagator 

characteristics for each node or the structure of the nodes (if they are inside 

a constellation or a monolithic satellite) With this approach of configuration, 
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users can model heterogeneous systems with both heavy multi-instrument 

satellites and single instrument small spacecraft. 

• Execution of the simulation scenario:  The simulator scenario is run by 

NS-3. Two main metrics are computed during the emulation: the position of 

the spacecrafts, which it is updated depending on the defined resolution, 

and event-based metrics (such transmission between nodes), which depend 

on the computed position of the spacecrafts.  

• Results of the simulation: Two operations for data processing are 

performed during this stage. One of them fetches the data to visualize it 

using external tools, while the other operation analyzes system metrics 

across time.  

 

Figure 3: DSS-SIM workflow 

 

The integration of new modules that describe the behaviour of a spacecraft shall be done 

using the class Model, which is inside the physical module (Figure 5), as this class provides 

the necessary tools for a correct implementation. Next is going to be done a brief 

explanation of the already implemented Model class, as well as all the different classes 

that interact with it. How these classes interact with each other is shown at Figure 6. 

 

• Model: Generic abstract class to implement spacecraft components. Models are 

used to represent spacecraft states, physical components or devices, subsystems, 
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or payloads. This class is provided to simulator users that wish to model their 

specific components. 

 

• ModelConfig: Provides options and the list of parameters, it also manages them. 

This class is used to pass the model parameters.  

 

• ModelFactory: Generic abstract class to implement spacecraft components. It 

returns a new instance of a Model. It has the method create() to create a new model. 

 

• MInput: Templated class that represents the input to a Model. It stores a smart 

pointer that points to an output of a Model object from which it reads its value.  

 

• MOutput: Templated class that represents the output of a Model. The output of the 

model contains a value of type T and a Boolean flag that indicates if the value is set 

or not. 

 

• MLinkedIVariable: An externally accessible input variable of a Model. 

MLinkedIVariables are connected to other variables to allow model objects to read 

the outputs and provide inputs to other models. 

 

• MLinkedOVariable: An externally accessible output variable of a Model. 

MLinkedOVariables are connected to other variables to allow model objects to read 

the outputs and provide inputs to other models. 

 

• MState: Templated class that stores a state variable of a Model. 

 

A more specific explanation of how the class Model is shown with the workflow diagram at 

Figure 4. 

 

 

Figure 4: DSS-SIM Model workflow 

First initialize() is called. As it names suggests, this function initializes the Model object. It 

is called once, before starting the update cycle loop. Model-derived classes should initialize 

the state of their variables and internal states in this function, while externally accessible 

variables will be linked right after the execution of this function.  
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Once the Model is initialized, update cycle loop begins. Custom Models awaits until one of 

its variables or one of its linked variables detect a change. When this occurs, it starts the 

update cycle, which consists of four function: transition(), verify() and update(). The first 

function transitions the Model’s states into its next state. Once this is done, the method 

verify() is called to ensure that changed input variables are safe to read, in order to not 

read a variable that has not been changed yet. Then the system calls update(), which is 

the main function of the Model object. This method reads all its input variables, perform 

some operations to them and update the values of its output variables. Moreover, the 

function can be also invoked by a self-update event. A more detailed explanation of this 

module is done at [22]. 

 

Figure 5: High-level architecture of DSS-SIM 
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Figure 6: UML diagram of physical module 

 

 

3.1.1. NS-3 energy framework 

 

Now that the main module of the project has been presented into more detail, it is important 

to explain more accurately the NS-3. Its main functionalities and uses had already been 

explained in the previous section, so now a revision of the already implemented modules 

that concerns our case of study is going to be done. In [23] it is proposed an energy 

framework for NS-3 that consisted of two modules: an energy source that represents the 

power supply of a network node, and a device energy model, which implements the energy 

consumption model. Later, in 2014, Tapparello, Ayatollahi and Heinzelam [24] extended 

the energy framework, and its main contribution was the integration of an energy harvester, 

which represents the collection of energy from external resources. Some other 

contributions had been done to the framework during the following years, but none of them 

changed the structure in a significant way. The current energy framework structure is 

presented at Figure 7. 

 



 

 18 

 

Figure 7: NS-3 Energy framework 

 

As it can be seen in Figure 7, and as it has been briefly explained, NS-3 Energy Framework 

consists of three main modules. NS-3 API13 defines each of the modules as: 

 

• The Energy Source represents the power supply of each node. Connecting 

an energy source to a node where a device energy model had also been 

connected, implies that the corresponding device draws power from the 

source. On the other hand, connecting an energy source to a node where 

an energy harvester implies that the corresponding harvester generates 

power to the source. The basic functionality of the Energy Source is to 

provide energy to devices of the node. When energy is completely drained 

from the Energy Source, it notifies the devices of the node so that each 

device can react to this event. This module has implemented a battery based 

on [25], [26]. This model has not been taken into account in Section 2.3 

because, despite it uses just 2 parameters, they are not easily obtainable. 

 

• The Device Energy Model is the energy consumption model of a device 

installed on a node. It is designed to be a state-based model where each 

device is assumed to have several states, and each state is associated with 

a power consumption value. Whenever the state of the device changes, the 

corresponding Device Energy Model will notify the Energy Source of the new 

current draw of the device. The Energy Source will then calculate the new 

total current draw and update the remaining energy. 

 

• The Energy Harvester represents the elements that collect energy from the 

environment and recharge the Energy Source to which it is connected. TS. 

  

To complete the explanation of the framework, each of the modules consists of the main 

class, a helper that is used to install the module into a node, and containers that store every 

module installed to a node (each node have associated one container for Energy Source 

modules, another for Energy Harvester modules and another one for Device Models). 

 
13 ns-3 Documentation 

https://www.nsnam.org/doxygen/
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3.1.2. Solar cells 

 

The single diode model presented at Section 2.2 is very complete, as it considers so many 

parameters that describe the behaviour of a solar cells. However, the objective of this 

module is implementing a generic model that allows implementing any kind of solar cell or 

solar cells array. Because of that, the single diode model has been discarded and a custom 

model (which is explained through this section) has been implemented. 

 

Regarding the V-I characteristic of a solar cell at Figure 8(a), it can be approximated into 

Figure 8(b). 

 

Figure 8: Real vs proposed models for solar cells 

 

As it can be seen, the proposed design simplifies the I-V characteristic in a way that there 

is no need of a high demand of resources to perform the calculation, which leads to a 

reduced simulation time. So, the behaviour of the solar cell is described with a non-linear 

function, which consists of two lines with a discontinuity point at Maximum Power Point 

(MPP). The equation that describes those lines is: 

 

 

𝐼 =

{
 

 
𝐼𝑀𝐴𝑋 − 𝐼𝑆𝐶
𝑉𝑀𝐴𝑋

· 𝑉 + 𝐼𝑆𝐶     𝑓𝑜𝑟  0 < 𝑉 < 𝑉𝑀𝐴𝑋

−𝐼𝑀𝐴𝑋
𝑉𝑂𝐶 − 𝑉𝑀𝐴𝑋

· (𝑉 − 𝑉𝑀𝐴𝑋) + 𝐼𝑀𝐴𝑋    𝑓𝑜𝑟  𝑉𝑀𝐴𝑋 < 𝑉 < 𝑉𝑂𝐶

 (11) 

 

Besides the need of implementing this function, there are also various approaches to 

design the integration of this module to DSS-SIM. One approach could be done condidering 

the solar cells as a DSS-SIM Model. This approach considers the solar as a DSS-SIM 

(a)  Real solar cell V-I characteristic (b)  Proposed solar cell V-I characteristic 
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Model object, what accomplishes the operation principle of the simulator. Despite that, 

another approach can also be taken in consideration. As there already exists a native NS-

3 implementation for energy harvesters, this class can be inherited and aggregate the solar 

into module into the solar cells into the Energy Framework environment. Another 

consideration to take into account is that an interface that adapts Energy Framework to 

DSS-SIM will be performed at Section 3.1.4, so there is no need to adapt twice the model. 

 Finally, and as consequence of the exposed information, finally the next designed has 

been adopted: 

 

Figure 9: ns3::EnergyHarvester module with implemented solar cells 

 

The results for the chosen design for modelling a solar cell will be exposed at Section 4.1.1 

 

3.1.3. Battery 

 

With all the presented battery models at Section 2.3, we need to build up a table to evaluate 

all the requirements described at Section A.1.1.  Table [] presents the requirements related 

to battery model, reviewing if each requirement is accomplished for the proposed models. 

This will allow us choosing a model based on which is more suitable for our case of study. 

In addition to the requirements, in the table will also appear if the model is already 

implemented in a NS-3 library. 

Requirement ID 
Shepherd 
model 

Copetti 
model 

MSM eMSM 

Suitability + single 
equation 

X  X  

Easy obtainable 
parameters 

X X X X 

Overcharging protection 
    

NS-3 implementation 
  X  

Figure 10: Comparison between proposed battery models 

Looking at the table, the model that best suits our case of study is the MSM. The main 

characteristics of this model are that the charge/discharge equation is the same for both 

states, and the only difference is the current direction, as it has been explained in Section 

2.3.3. Another important characteristic is that it is already implemented in the NS-3 energy 

frame, which simplifies the project as there is no need of re-implementing the class again. 
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3.1.4. Energy subsystem interface 

 

Once the NS-3 energy framework has been presented in Section 3.1.1, the designed solar 

cells in Section 3.1.2, and the chosen battery model in Section 3.1.3, it is time to present 

how they interact with each other and with the DSS-SIM.  

As there is no relation between a NS-3 model and the DSS-SIM, an interface shall be 

designed to include the energy framework from NS-3 into the DSS-SIM. This interface 

consists of three small interfaces, each one for each of the modules implemented in the 

energy framework. Figure 11 shows the designed interface: 

 

Figure 11: UML diagram for designed EPS 

 

As it can be seen, the interface preserves the operation of the energy framework as in [23], 

[24] EnergySourceInterface has four input variables, two from EnergyHarvesterInterface 

and two more from DeviceEnergyModelInterface, represent the provided and consumed 

power and current from the harvesters and the devices. In a real application, the energy 

source would have as input the harvested current, as it charges the source, and would 

have as output the consumed energy, as it discharges the source. The designed 

application does not work this way, as the energy source needs to know the consumption 

of the model in order to calculate the remaining energy stored. Because of either the 

harvesting current/power and the consuming current/power can change during a simulation, 

the variables have been defined as inputs, so EnergySourceInterface is able to detect 

changes on them. 

This designed interface allows to interconnect Model created objects directly into the 

interface. Despite that, and as all the EPS modules are inherited from NS-3, the final 

implementation of the interface relies on EnergySource::UpdateEnergySource method, 

which already retrieves the providers and consumers from the NS-3 containers where they 

are stored. Because of that, functionality of the linked variables between interfaces is just 

notifying the EnergySourceInterface when a current changes, so the interface can call 

EnergySource::UpdateEnergySource method. 

The obtained results for this approach are shown in Section 4.1.2. 
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3.2. Satellite Contact Link Emulator 

 

As it has been mentioned, this project has been developed from the ground. The first 

approach done is presented in Figure 12. 

 

Figure 12: SCE initial scheme 

The main idea of this approach can be split into two main modules: the central PC and the 

SDRs. The functionality of the central PC is detecting all the devices connected into the 

network and propagating its orbits. Once the orbits are propagated, there is the need to 

compute if there is a contact between the nodes, and then determine the attenuation, 

Doppler shift, and delay between them. The operation of propagating the orbit and the 

calculation of the parameters must be done every time step (to be determined), in order to 

emulate the contacts “continuously”. Once all these parameters are calculated, this 

computed matrix is passed via Ethernet to the SDRs. They receive this matrix and use it to 

compute the existing communications channel between the other nodes. Once built the 

communications channel, SDR can use the network to exchange data, which must be 

constantly converted from analog to digital and vice versa. As it has been said, this thesis 

would focus on the development of the first module, while [5] will focus on the development 

of the second module. 

 

3.2.1. Orbit propagation 
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In Section 2.5, the current orbital models have been described. Among all of them, the 

most complete ones are SGP4 and SGP8, as they take into consideration more 

phenomena that affect the orbit trajectory. The most widely used is the SGP4, and the main 

difference between SGP4 and SGP8 is the re-entry calculation (which is not relevant for 

SCE), SGP4 will be the one implemented in this project. To implement its equations, we 

have searched for already implemented SGP4 libraries or software. An interesting library 

is Astrodynamics Software14, which is a software developed by Vallado using its SGP4 

propagator described in [27], [28]. This library is coded in various programming languages, 

such as C++. Despite the freedom to choose the programming language, there is not much 

documentation, and functions are defined at a very low-level.  

Another available software which implements that orbit propagator is Satellite Toolbox15. 

This library is programmed in Julia, which is a high-level dynamic programming language. 

The toolbox allows the simulation of different orbitals models such as J2, J4, and SGP4, 

but its high-level code makes it simpler to use. Another feature to consider is the 

performance of Julia as programming language, which is high despite being a dynamic 

programming language [29]. Reviewing the toolbox API, an orbit can be propagated by 

three functions: 

• propagate!: The orbit will be propagated by t (s) from the orbit epoch, which 

is defined in the initialization. This function returns a tuple with three values, 

but only two are of our interest: the position vector, and the velocity vector 

represented in the inertial reference frame. 

• propagate_to_epoch!: The input argument is an epoch (Julian Day) to which 

the orbit will be propagated. The returned elements are the same as in first 

method, 

• step!: The orbit is propagated by Δt (s) from the last propagation instant. 

This function returns the same information as in the first described method. 

 

Analyzed all the orbit determination functions, the last one is the most suitable for our use-

case, as determining the obit will be constantly done. Before the call to these functions, an 

orbit propagator must be defined, and depending on the choice some other inputs will be 

required. For our use case, the SGP4 will be the propagator, so it requires the Two-Line 

elements (TLE) as inputs.  

The election of this toolbox to achieve the orbit determination influences the whole project, 

as it will be carried out in Julia programming language. Despite the advantages of Julia, it 

has also some limitations associated, mainly related to the lack of maintained libraries. 

 

3.2.2. ISL channels effects 

 

The main goal of the project is emulating a ISL communication channel. To achieve that, it 

will be modelled as functions of three parameters: attenuation, delay, and Doppler shift. 

 
14 CelesTrak: Astrodynamics Software by David Vallado 
15 Satellite Toolbox 

https://celestrak.com/software/vallado-sw.php
https://juliaspace.github.io/SatelliteToolbox.jl/stable/
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As we want to emulate an ISL channel, the propagation medium is free space, so Free 

Space Path Losses (FSPL) will be modelled [30]:  

 
𝐹𝑆𝑃𝐿 = (

4𝜋𝑑

𝜆
)
2

= (
4𝜋𝑑𝑓

𝑐
)
2

 (12) 

where: 

• 𝑑 = Distance between satellites 

• 𝜆 = Signal wavelength 

• 𝑓 = Signal frequency 

• 𝑐 = Speed of Light 

 

Another formulation of equation (12) is expressing the result in decibels:  

 
𝐹𝑆𝑃𝐿 (𝑑𝐵)  = 10 · log10 (

4𝜋𝑑𝑓

𝑐
)
2

= 20 log10(𝑑) + 20 log10(𝑓) + 20 log10 (
4𝜋

𝑐
) (13) 

 

The propagation delay uses this simple equation, considering the speed of light of speed 

as propagation speed: 

 
𝑡 =

𝑑

𝑐
 (14) 

 

Finally, modelling the Doppler shift is done as explained at [31]:  

 
∆𝑓1 =

𝑓𝑐
𝑐
· (|𝑣1⃗⃗⃗⃗ | · cos(𝜗1) − |𝑣2⃗⃗⃗⃗ | · cos(𝜗2)) (15) 

 

where: 

• ∆𝑓1 = Shift observed by device 1 

• 𝑓𝑐 = Carrier frequency 

• 𝑣1⃗⃗⃗⃗  = Velocity vector of device 1  

• 𝑣2⃗⃗⃗⃗  = Velocity vector of device 2 

• 𝜗1 = Angle formed by velocity of device 1 and  𝑟2⃗⃗  ⃗ − 𝑟1⃗⃗⃗   

• 𝜗2 = Angle formed by velocity of device 2 and  𝑟2⃗⃗  ⃗ − 𝑟1⃗⃗⃗   
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The implementation of this function has been done in Julia from scratch, as there are no 

libraries that computes them. The validation of the implemented functions is done in 

Section 4.2.1. 

3.2.3. Control message structure 

Now the way the channel parameters are obtained has been explained, is needed an 

explanation of how these parameters are serialized into messages. The matrix formed by 

all these parameters is presented next: 

 

Figure 14: Parameters matrix 

Rows of the matrix represent the receiver SDR parameters, while columns represent the 

transmitters For example, row 1 contains all the parameters to emulate the communication 

channel when SDR1 receives data. However, matrices are still not the final message 

strcture. 

To control this message strcuture, some serialization formats have been  implemented, as 

it figures out at requirements (Annex A.2.1). During the implemenatation of the serializers, 

it was found out that its use was trivial, so finally embedded serializers like JSON or MsgPck 

have finally not been implemented. Because of that, a custom architecture to control 

messages has been adpoted. Basically, the implemented architecture consists on 

retrieving each row of the matrices, following the order Attenuation->Doppler->Delay, and 

putting them following the other inside a vector. The resulting vector results in: 

𝑣2⃗⃗⃗⃗  

𝜗1 
𝜗2 

𝑣1⃗⃗⃗⃗  

Device 1 Device 2 

𝑟1⃗⃗⃗   𝑟2⃗⃗  ⃗ 

𝑟2⃗⃗  ⃗ − 𝑟1⃗⃗⃗   

(b) Doppler matrix (a) Attenuation matrix (c) Delay matrix 

Figure 13: Doppler shift parameters relation 
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Figure 15: Custom message structure 

3.2.4. Integration of central PC via Ethernet 

 

After reviewing how the orbits determination is done, and how the parameters are obtained 

and converted into messages, it is time to discuss how the PC will be integrated over 

Ethernet. PC only sends control messages, but it never intervenes on the data flow 

between the SDRs. To be sure that control messages do not intervene on data messages, 

another design was proposed as it can be seen in Figure 16. That design relied on that 

SDRs allowed two digital inputs, but the selected devices only have one, what made 

discarding that design. 

 

The connection between SDRs and the central PC is performed by sockets. The design 

structure to control messages sets the PC as a server, and all the devices as clients. To 

accomplish this approach, the SDRs must implement multithreading, as one thread must 

be always listening for control data coming the central PC, because the parameters matrix 

is constantly being updated and sent to the SDRs.  

 

Figure 16: Sockets structure with multithreading 

But the SDRs have a limited performance, which is even more limited when using just the 

processor and not the FPGA, as it is explained at [5]. Because of that limitation, 

multithreading will not be finally implemented, and that change of structure has a major 

impact on the functionality of the system. The original and final workflow of the central PC 

are shown next:  
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As it can be seen, the original design included a continuous loop where orbit determination 

and parameter calculations are performed. However, due to the problems associated to 

multithreading, this approach was discarded, and a simpler design has been finally 

implemented: it does not include the loop, and it only determines the orbits and the 

parameters once. This is not a real SCE, but this design demonstrates the feasibility of the 

project. 

 

  

(a) Original central PC workflow (b) Final central PC workflow 

Figure 17: Central PC workflows 
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4. Tests and results 

This section presents the tests and the obtained results for the implement designs. The 

section is divided in two parts, Section 4.1 presents the performed test to validate the DSS-

SIM implementation, while Section 4.2 presents the validation methods for SCE. 

4.1. DSS-SIM 

 

To consider that implementation of a module is correct, unit tests for each implemented 

module must be performed. This kind of tests verifies every function of the module. These 

tests are done using Google Test (GTest)16. 

4.1.1. Solar cells 

 

Due to the complexity of current existing solar cells models, the final implemented model 

has been designed especially for obtaining an approximation of the I-V characteristics. To 

validate the design, two main tests have been performed: 

 

1. A custom dataset of expected results has been built in order to check the function 

that has been implemented. This dataset has been constructed using GeoGebra17, 

by graphically describing the implemented function and obtaining a set of outputs 

for some input points. This test was passed successfully. 

 

2. Furthermore, another test has been performed to check the accuracy of the 

implemented model. This has been done by comparing an already solar cell module 

in MATLAB with the implemented. The results are shown in Figure 19, which 

represents the curve fitting, and in Figure 18, which represents the error produced 

by the model. As it can be seen, the error is not very high (< 0,5 A) before MPP, but 

after that point, the error is considerable, as it may be up to 2,25 A.  

 

 
16 GoogleTest 
17 Calculadora gráfica - GeoGebra 

https://github.com/google/googletest
https://www.geogebra.org/graphing?lang=es
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Figure 18: Solar cells fitting into real I-V curves 

 

Figure 19: Solar cells model error 

 

4.1.2. Energy subsystem interface 

In order to validate the designed interface, two tests have been performed: 

 

1. Linking each interface input/output variables to check if the links are constructed 

correctly. Unfortunately, this test has not been passed because the variables are 

not linked, which makes useless the designed interfaces. However, this does not 

mean that the interface structure is wrong, it just means that the creation of the 

variables is done wrong. 
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2. A set of simulation scenarios (i.e., solar cell as harvester with a battery as energy 

source) have been defined in order to test the designed interface structure. 

However, this test has not been performed, as it depends on the first performed. 

So, the interface structure has not been validated by any method. 

 

Probably with some more time the linking issues would have been solved, allowing to test 

the implemented interface structure. 

 

4.2. Satellite Contact Link Emulator 

 

Three main tests have been performed to ensure that the designed central PC works 

correctly, which consist of: 

1. Test the orbit propagation and the parameters calculation 

2. Test the sending of parameters matrix to the local host  

3. Test the integration of sockets, and a continuous orbit propagation and parameter 

calculation into the SDRs. 

4.2.1. Orbit determination and channel effects calculations 

 

The first test to be performed has been the determination of the orbit, as well as the 

calculations of attenuation, Doppler shift, and delay. To perform that, a set of TLEs are 

obtained from Celestrak18, as they are needed to initiate the orbit propagator. The used 

TLEs to perform this test can be found at Annex[]. The other parameters that define this 

scenario are: 𝑓𝑐 = 860 𝑀𝐻𝑧 and 𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠 = 4. The outputs matrices of the performed tests 

are: 

            

Figure 20: Contact and attenuation matrices 

 

 
18 CelesTrak 

(a) Contact matrix (b) Distance matrix 

https://celestrak.com/
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Figure 21: Attenuation, Doppler, and delay matrices 

 

The contact and the distances matrices are included into the results to verify the correct 

functioning of the test, as if there is no contact (a ‘0’ in Figure 20(a)), none of the parameters 

are calculated (only distances for verifying purposes). This also occurs for self-contact 

positions, which are the values stored at the main diagonal. The distance matrix, Figure 

20(b), is used to validate the calculation of attenuation. 

The main parameters to validate are Doppler and attenuation, as the equations that 

describe them are more complex, and because the orbit determination is done by a reliable 

toolbox, so no validation is needed. Figure 21(a) shows the obtained attenuation matrix. 

As the FSPL model is used to compute its parameters, MATLAB in-built function fspl()19 

has been used to generate some graphics and compare them with obtained results: 

 

Figure 22: FSPL MATLAB model 

 
19 FSPL-MATLAB 

(a) Attenuation matrix (b) Doppler matrix 

(c) Delay matrix 

https://es.mathworks.com/help/comm/ref/fspl.html
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The attenuation obtained in the MATLAB model is the same as the obtained from the 

attenuation matrix, so it can be said that the implementation of the attenuation model has 

been successful. 

Figure 21(b) shows the Doppler shift obtained with the implemented model. Unfortunately, 

a proper data set or in-built function has not been found to validate these results. However, 

Table 1 at [31] presents some Doppler shifts for 600 km distance. Based on that table, the 

obtained Doppler shift have the same order as the presented there. So, besides not making 

a validation 100% accurate, it can be said that the implemented Doppler function does not 

have a high deviation. 

Finally, Figure 21: Attenuation, Doppler, and delay matricesFigure 21(c) presents the 

obtained delay matrix. The delays are less than the delay produced by the network, so this 

effect can not be represented with the designed architecture.   

 

By reviewing the test carried out, it can be said that the determination of the orbit and the 

calculation of the parameters are done properly. 

 

4.2.2. Transmission of the channel effects parameters via Ethernet 

 

The second performed test has been the implementation of a server-client architecture to 

transmit the computed parameters to the SDRs. However, before implementing the 

architecture in the SDR, the chosen sockets have been tested in order to ensure its correct 

functioning. This test consists in the implementation of a server coded in Julia, that also 

performs the orbit propagation and the calculation of the parameters, and sends them to 

an implemented client in C (which is the programming language chosen for SDRs code 

implementation [5]). The server is run at the PC, while the client runs at local host. When 

the client receives the message, send an ACK to confirm the reception.  

The emulation scenario is the same as the previous test, so the send parameters will be 

the same presented at Figure 20. The results are: 
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Figure 23: Server-Client parameters transmission 

 

The matrix parameters are serialized as explained in Section 3.2.4. Parameters are 

correctly transmitted with no error, as it can be checked by comparing transmitted and 

received bytes. Both are 192 bytes, which correspond to the number of elements (3·N2 = 

48 in this scenario with 4 devices), multiplied by the length of the variable which is used to 

store the parameters. In this case, the parameters are stored in floats, whose length is 4 

bytes. Moreover, the correct functioning can also be checked by the transmission of the 

ACK by the client. 

 

During this test, the external tools ZeroMQ and MsgPack tried to be implement. However, 

it was not possible to integrate the tools, so their implementation was finally discarded due 

to lack of time. 

 

Attenuation 

Delay 

Doppler shift 

(a) Server side (b) Client side 

Attenuation 

Delay 

Doppler shift 
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4.2.3. Software integration on SDRs 

 

Last performed test has been the continuous transmission of the parameters over the 

SDRs. It is the same test as the performed in Section 4.2.3, but the client runs at the SDRs 

instead of local host. Two different architectures to perform the test have been 

implemented: 

 

Figure 24: Final testbeds 

    

From the point of view of central PC, both testbeds are the same, because in Figure 24(b) 

only one of the SDRs receive the transmitted parameters. The results of this test have been 

that the connection between central PC and one SDR had been achieved. Despite that, 

the test can be considered as unsuccessful because the continuous retransmission of the 

parameters has not been achieved. The reason not achieving that operation is related to 

multithreading issues explained during Section 3.2.4 

 

 

  

(a) 1 SDR testbed (b) 2 SDR testbed 
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5. Conclusions and future development:  

This final degree thesis aimed to contribute to ISL simulation by extending the DSS-SIM 

capabilities, by creating an EPS model that included battery models and solar cells model. 

Moreover, it also aimed to develop an SCE due to the lack of cost-effective alternatives. 

However, not all the proposed objectives have been met. 

 Focusing on the development of the EPS, it was decided to adapt the NS-3 Energy 

Framework to the simulation engine instead of designing an own EPS from scratch, as 

most functionalities of the EPS were already implemented on it. This decision also 

considered the NS-3 community, as the functionalities of the framework would probably be 

extended by the in the future. However, the chosen framework does not support solar cells, 

so they had to be implemented. The chosen model is a simplification of the real behaviour 

of solar cells, but it is enough to represent the impact of ISL on an EPS. 

Regarding the DSS-SIM list of objectives in Section 1.1, two of them have been achieved, 

while the other one has not. The achieved objectives have been the implementation of 

solar cells (1), which have been validated by testing, and the implementation of a battery 

(2), which has been implemented by adapting the NS-3 Energy Framework. However, the 

integration of both modules into an EPS (3) has been implemented, but its validation failed; 

so, it can be considered as partially achieved. Probably, the validation would have been 

done if there were more time to develop the project.  

The future development of this project will be related to the validation of the designed 

interface, and then design the descoped modules presented in Annex A.1.1, which are a 

memory model and an Earth traffic model. 

Reviewing the development done in terms of the SCE, the project was divided into three 

small testbeds to gradually extend its functionalities. At the first testbed, the calculation of 

the channel effects was performed. At the second one, the transmission of the channel 

effects parameters to a localhost was performed. At the final testbed, these computed 

parameters were transmitted to the SDR. 

The defined objective of the SCE was the “creation of a prototype that allows 

communications between two end-devices, connected into a network composed by 

Software Defined Radios (SDR) and a central PC that performs the ISL emulation”. It can 

be said that it has been achieved, as a basic prototype has been proved in Section 4.2.3. 

However, this is a limited prototype, as no continuous transmission is performed by the 

central PC. 

The future development is related to achieving this continuous retransmission, which would 

be the operation of a real SCE. 
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A. Management 

In this appendix an explanation of how the projects had been planned will be done. As both 

projects can be considered independent from each other, they have also been planned 

independently. Because of that, and as at the Gantt diagrams (Appendix A.1.3 and 

Appendix A.2.3) show, every working week has been dedicated to one of the projects, in 

order to achieve maximum performance in each one.  

A.1. DSS-SIM 

DSS-SIM project has been the most restricting one in terms of time. At the beginning of the 

project, a memory model (aiming to extend DSS-SIM capabilities in terms of physical 

modules), and a traffic model were proposed to implement. Despite reviewing the state of 

the art of each, and beginning the design of them, it was decided that they will be descoped. 

The reasons why this decision was made are explained at Appendix A.1.4. However, the 

non-implemented modules are still present on Gantt diagrams and Work packages, in order 

to demonstrate how the whole project was planned. 

 

A.1.1. Requirements and specifications 

Requirements define how the product will achieve the desired functionalities. The list of 

requirements for this project are presented at Table 1, including its type (functional or 

performance), and its validation method, which can be visual inspection of code (I), design 

revision (R), analysis (A) or test (T). 

 

Table 1: DSS-SIM requirements 

ID Title Type Description 
Verification 
Method 
[I/R/A/T] 

BATTERY_010 Battery model F 

The chosen battery model shall be able 
to represent any type of battery 
technology and just using a single 
equation T 

BATTERY_020 
Battery model 
inputs F 

The inputs of the chosen model shall 
be obtainable from the battery charge 
and discharge curves or from the 
manufacturer datasheet. R 

BATTERY_030 Overcharging F 

An additional protection method shall 
be implemented in order to avoid the 
overcharging of the battery if the 
chosen battery model does not take it 
into account. T 

BATTERY_040 Battery database F 

The output variable stored in the 
database shall be the variation of 
voltage during the simulation, the 
variation of inputs currents during the 
simulation T 



 

 xiv 

BATTERY_050 
Battery 
discharged F 

A notification to all connected systems 
shall be done when the battery is 
completely discharged. When this 
happen, the systems connected to the 
battery must now that there is no more 
available energy, so they shall turn off. T 

BATTERY_060 Battery outputs F 
The battery shall provide voltage and 
current as outputs T 

ENERGY_070 Energy model F 

The energy model shall allow the user 
to create events of a change of the 
input current of the batteries whenever 
he/she desires. T 

ENERGY_080 
Energy model 
consumption F 

It shall allow setting each state 
consumption or taking into account 
each module consumption T 

ENERGY_SOURCE_090 
Solar cells 
models F 

The chosen battery model shall be able 
to represent any type of solar cells 
technology T 

ENERGY_SOURCE_100 
Solar cells 
efficiency F 

The chosen model for solar cells shall 
take into account the efficiency of the 
cells. This efficiency will be set by the 
user. T 

ENERGY_SOURCE_110 Solar cell inputs F 

The input of solar cells shall be either 
come from the sun vectors or from an 
input light irradiance set by the user T 

ENERGY_SOURCE_120 
Periodic 
irradiance F 

The user shall be able to set a period 
for the irradiance, in order to simulate 
eclipses. T 

ENERGY_SOURCE_130 
Solar cells 
outputs F 

The output of the solar cells model 
shall be current T 

ENERGY_SOURCE_140 
Basic energy 
source F 

It shall implement a basic energy 
source, where the input current will be 
fixed and chosen by the user T 

ENERGY_SOURCE_150 
Energy source 
inputs F 

It shall be possible to choose between 
the basic model source or the solar 
cells T 

 

A.1.2. Work packages description 

Once reviewed the state of the art of each module, and before starting the design, thesis 

advisors asked to plan how the project was going to be carried put. Because of that, the 

project was divided into different Work packages: 

Project: DSS Simulator WP ref.: WP1 

Major constituent: Review of the state of the art Sheet 1 of 5 

Brief description:  

Review of current technologies used to achieve the 

implementation of the objectives modules. 

Planned start date: 

31/01/2022 

Planned end date: 

01/02/2022 



 

 xv 

Start event: 31/01/2022 

End event: 01/02/2022 

Internal task WP1.1: 

NS-3 + DSS-SIM: Review NS-3 API and DSS-SIM 

documentation to learn how the simulator works.  

 

Internal task WP1.2: 

Solar cell: Research for already implemented solutions 

to achieve the modelling of solar cells. 

 

Internal task WP1.3: 

Battery models: Review of existing battery models. 

 

Internal task WP1.4: 

Traffic model: Review of proposed models that describe 

the Earth traffic model. 

Deliverables: 

- 

Dates: 

- 

 

Project: DSS Simulator WP ref.: WP2 

Major constituent: Design Sheet 2 of 5 

Brief description: 

Design the modules to implement. 

Planned start date: 14/02/2022 

Planned end date: 18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP2.1: 

Module description: Define the final functionalities that 

the module shall have.  

 

Internal task WP2.2: 

List of requirements: Define the requirements that the 

implemented modules shall have. 

 

Internal task WP2.3: 

Deliverables: 

Design report 

which 

includes  

Dates: 

21/03/2022 
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Module high-level architecture: Define the final high-

level architecture of the module 

 

Internal task WP2.4: 

UML diagram: Define how all the components of a 

module interacts with each other,  

 

Internal task WP2.5: 

Workflow diagram: Define a workflow diagram, where 

must appear all the functionalities that the modules 

must have. 

 

Project: DSS Simulator WP ref.: WP3 

Major constituent: Implementation Sheet 3 of 5 

Brief description: 

Implement the designed modules in WP2. 

Planned start date: 

14/02/2022 

Planned end date: 

18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP3.1: 

Solar cells: Implement the solar cells module, based on 

the designed made. 

 

Internal task WP3.2: 

Energy interface: Implement the energy interface 

module, based on the designed made. 

 

Internal task WP3.3: 

Memory model: Implement the memory module, based 

on the designed made. 

 

Internal task WP3.4: 

Solar cells: Implement the solar cells module, based on 

the designed made.  

Deliverables: 

- 

Dates: 

- 
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Project: DSS Simulator WP ref.: WP4 

Major constituent: Testing Sheet 4 of 5 

Brief description: 

The models implemented at the previous Work 

package. 

Planned start date: 

14/02/2022 

Planned end date: 

18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP4.1: 

Solar cells: Test the solar cells implementation. Once 

tests are passed successfully, a revision of coding 

conventions shall be done before proceeding into pull-

request submission.  

 

Internal task WP4.2: 

Energy interface: Test the energy interface 

implementation. Once tests are passed successfully, a 

revision of coding conventions shall be done before 

proceeding into pull-request submission.  

 

Internal task WP4.3: 

Memory model: Test the memory model 

implementation. Once tests are passed successfully, a 

revision of coding conventions shall be done before 

proceeding into pull-request submission.  

 

Internal task WP4.4: 

Traffic model: Test the traffic model implementation. 

Once tests are passed successfully, a revision of coding 

conventions shall be done before proceeding into pull-

request submission.  

 

Deliverables: 

Pull-request 

of each 

module  

Dates: 

- 

 

Project: DSS Simulator WP ref.: WP5 
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Major constituent: Documentation  Sheet 5 of 5 

Brief description: 

Generation of a final review which includes the design, 

testing, and implementation of the modules. 

Planned start date: 14/02/2022 

Planned end date: 18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP5.1: 

Generate documentation: Generation of a final review 

which includes the design, testing, and implementation 

of the modules. 

Deliverables: 

Final report  

Dates: 

21/06/2022 

 

 

Figure 25: DSS-SIM work breakdown structure 
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A.1.3. Gantt diagrams 

 

Figure 26: DSS-SIM initial Gantt diagram 

 

Figure 27: DSS-SIM final Gantt diagram 

A.1.4. Deviations from initial proposal 

As it has been said, more modules were planned to be implemented at the beginning of 

the thesis. However, and as it can be seen at Figure 27, they have not been finally 

implemented. The main reason for not achieving the original objectives has been a too 

optimistic estimation of the required time, as the complexity of those objectives was under-

estimated during planning. This error can also be seen at the implemented module, as they 

not fulfil all the original objectives. 

 

A.2. Satellite Contact Emulator 

A.2.1. Requirements and specifications 

The list of requirements for this project are presented at, including its type and its validation 

method. 

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the 

state of the art

1.1 NS-3 + DSS-SIM 31/01/2022 01/02/2022 10 -

1.2 Solar cells 02/02/2022 02/02/2022 5 -

1.3 Battery models 03/03/2022 03/02/2022 5 -

1.4 Traffic model 04/02/2022 04/02/2022 5 -

2 Module design

2.1

Module 

description 14/02/2022 14/02/2022 5 -

2.2

List of 

requirements 15/02/2022 16/02/2022 10 -

2.3

High-level 

architecture 17/02/2022 17/02/2022 5 -

2.4 UML diagram 17/02/2022 17/02/2022 5 -

2.5

Workflow 

diagram 18/02/2022 18/02/2022 5 -

3 Implementation

3.1 Solar cells 28/02/2022 03/03/2022 25 -

3.2 Energy interface 17/03/2022 31/03/2022 35 -

3.3 Memory model 25/04/2022 28/04/2022 20 -

3.4 Traffic model 12/05/2022 24/05/2022 20 -

4 Testing

4.1 Solar cells testing 04/03/2022 16/03/2022 20 -

4.2 Energy interface 01/04/2022 14/04/2022 30 -

4.3 Memory model 29/04/2022 11/05/2022 20 -

4.4 Traffic model 25/05/2022 07/06/2022 20 -

5 Final review

5.1

Generate 

docuemnattion 08/06/2022 21/06/2022 25 -

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 23 (6/6-10/6) WEEK 25 (20/6-24/6)WEEK 17 (25/4-29/4) WEEK 19 (9/5-13/5) WEEK 21 (23/5-27/5)WEEK 11 (14/3-18/3) WEEK 13  (28/3-1/4) WEEK 15 (11/4-15/4)WEEK 5 (31/1-4/2) WEEK 7 (14/2-18/2) WEEK 9 (28/2-4/3)WPS 

NUMBER
TASK TITLE

START 

DATE
DUE DATE

DURATION 

(In hours)

PCT OF 

TASK 

COMPLETE

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the state 

of the art

1.1 NS-3 + DSS-SIM 31/01/2022 01/02/2022 10 100%

1.2 Solar cells 02/02/2022 02/02/2022 5 100%

1.3 Battery models 03/03/2022 03/02/2022 5 100%

1.4 Traffic model 04/02/2022 04/02/2022 5 100%

2 Module design

2.1 Module description 14/02/2022 14/02/2022 5 100%

2.2 List of requirements 15/02/2022 16/02/2022 10 100%

2.3

High-level 

architecture 17/02/2022 17/02/2022 5 100%

2.4 UML diagram 17/02/2022 17/02/2022 5 100%

2.5 Workflow diagram 18/02/2022 18/02/2022 5 100%

3 Implementation

3.1 Solar cells 28/02/2022 15/03/2022 40 100%

3.2 Energy interface 31/03/2022 29/04/2022 60 100%

3.3 Memory model - - - 0%

3.4 Traffic model - - - 0%

4 Testing

4.1 Solar cells testing 15/03/2022 30/03/2022 35 100%

4.2 Energy interface 09/05/2022 27/05/2022 50 100%

4.3 Memory model - - - 0%

4.4 Traffic model - - - 0%

5 Final review

5.1

Generate 

docuemntation 08/06/2022 21/06/2022 30 100%

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 17 (25/4-29/4) WEEK 19 (9/5-13/5) WEEK 21 (23/5-27/5) WEEK 23 (6/6-10/6) WEEK 25 (20/6-24/6)WEEK 5 (31/1-4/2) WEEK 7 (14/2-18/2) WEEK 9 (28/2-4/3) WEEK 11 (14/3-18/3) WEEK 13  (28/3-1/4) WEEK 15 (11/4-15/4)
WPS NUMBER TASK TITLE START DATE DUE DATE

DURATION (In 

days)

PCT OF TASK 

COMPLETE
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Table 2: SCE requirements 

ID Name Type Description 
Validation Method 
[I, R, A, T] 

PC_010 Effects F 

It shall implement the 
following effects: 
Attenuation, Doppler shift 
and delay. T 

PC_020 
Orbit 
propagation F 

It shall propagate the orbit 
following a SGP4 orbit 
propagators. T 

PC_030 
Real-time 
calculations F 

It shall compute the 
desired channel effects in 
real-time. T 

PC_040 Mobility F 

It shall propagate the orbit 
/ position of the hardware 
devices in real-time. T 

PC_050 
Scenario 
Settings F 

It shall enable to configure 
the scenario to be 
emulated. (Orbit and 
channel settings) T 

PC_060 
Device 
configuration F 

It shall be to configure 
devices as satellites or 
ground-stations T 

PC_070 
Orbit 
parameters F 

It shall enable to assign an 
orbit or geographic 
coordinates to a connected 
hardware T 

PC_080 Earth rotation F 

It shall be decided if the 
GS should take into 
account the rotation of the 
Earth. T 

PC_090 Plot Tools F 

It shall provide tools to plot 
and export the different 
metrics. T 

PC_100 
DSS-SIM 
compatibility F 

It shall be able to interact 
with the DSS-SIM engine. T 

EMULATOR_010 Operation range F 

It shall operate from 400 
MHz to 60 GHz. T 

EMULATOR_020 Input power F 

It shall support input power 
of at least 33 dBm (TBC) 
look for those devices that 
allow this power T 

 

A.2.2. Work packages description 

Project: SCE WP ref.: WP1 

Major constituent: Review of the state of the art Sheet 1 of 5 
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Brief description:  

Review of current technologies used to achieve the 

implementation of the desired functionalities. 

Planned start date: 

31/01/2022 

Planned end date: 

01/02/2022 

Start event: 31/01/2022 

End event: 01/02/2022 

Internal task WP1.1: 

Orbit propagator: Research for already implemented 

libraries to achieve the propagation of the orbits.  

 

Internal task WP1.2: 

Determination of attenuation, Doppler, and delay: 

Research for already implemented solutions to achieve 

the determination of those parameters. 

 

Internal task WP1.3: 

ZeroMQ review: Review of the tool ZeroMQ, what it is 

and how to use it. 

 

Internal task WP1.4: 

MsgPack review: Review of the tool MsgPck, what it is 

and how to use it. 

Deliverables: 

- 

Dates: 

- 

 

Project: SCE WP ref.: WP2 

Major constituent: Design Sheet 2 of 5 

Brief description: 

Design the tests to implement. 

Planned start date: 14/02/2022 

Planned end date: 18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP2.1: 

Module description: Define the final functionalities that 

the SCE shall have.  

 

Deliverables: 

Design report 

which 

includes  

Dates: 

21/03/2022 
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Internal task WP2.2: 

List of requirements: Define the requirements that the 

SCE shall have. 

 

Internal task WP2.3: 

Module high-level architecture: Define the final high-

level architecture of the SCE. 

 

Internal task WP2.4: 

Workflow diagram: Define a workflow diagram, where 

must appear all the functionalities that the must SCE 

have. 

 

Project: SCE WP ref.: WP3 

Major constituent: 1st test Sheet 3 of 5 

Brief description: 

Implement a first test to achieve some of the 

functionalities and requirements designed in WP2. 

Planned start date: 

14/02/2022 

Planned end date: 

18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP3.1: 

Orbit propagation: Achieve the propagation of the orbits 

 

Internal task WP3.2: 

Compute parameters: Apply the review methods to 

compute attenuation, Doppler and delay. 

 

Internal task WP3.3: 

Connection with local host: Achieve the transmission of 

the parameters between the PC and the local host.  

Deliverables: 

Report 

Dates: 

- 

 

Project: SCE WP ref.: WP4 
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Major constituent: 2nd test Sheet 4 of 5 

Brief description: 

Extend the functionalities of the test performed in WP4. 

Planned start date: 

14/02/2022 

Planned end date: 

18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP4.1: 

Connection PC-SDR: Achieve the connection via 

sockets between the PC and the SDR. Moreover, the 

transmission of the parameters must be also performed. 

 

Internal task WP4.2: 

Implementation of external tools: Implement the 

reviewed tools in WP1, in order to extend the 

functionalities of the network.  

Deliverables: 

Report  

Dates: 

- 

 

Project: SCE WP ref.: WP5 

Major constituent: Final test  Sheet 5 of 5 

Brief description: 

Perform a final test to achieve the defined 

requirements. 

Planned start date: 14/02/2022 

Planned end date: 18/02/2022 

Start event: 14/02/2022 

End event: 18/02/2022 

Internal task WP5.1: 

Final test: Perform a similar test than the done in WP4, 

but continuous operation of orbit propagation and 

parameters calculations is performed. 

Deliverables: 

Report  

Dates: 

21/06/2022 
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Figure 28: SCE work breakdown structure 

 

A.2.3. Gantt diagrams 

 

Figure 29: SCE initial Gantt diagram 

 

 

Figure 30: SCE final Gantt diagram 

 

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the 

state of the art

1.1

Orbit 

propagator 06/02/2022 07/02/2022 10 -

1.2

Determination 

of parameters 08/02/2022 10/02/2022 10 -

1.3

ZeroMQ 

review 11/02/2022 21/02/2022 10 -

1.4 MsgPck review 22/02/2022 23/02/2022 10 -

2 Design

2.1

Module 

description 24/02/2022 24/02/2022 5 -

2.2

List of 

requirements 25/02/2022 07/03/2022 10 -

2.3

High-level 

architecture 08/03/2022 09/03/2022 10 -

2.5

Workflow 

diagram 10/03/2022 21/03/2022 15 -

3 1st test

3.1

Orbit 

propagation 22/03/2022 25/03/2022 20 -

3.2

Compute 

parameters 04/04/2022 06/04/2022 15 -

3.3

Connection 

with local host 07/04/2022 08/04/2022 10 -

4 2nd test

4.1

Connection PC-

SDR 18/04/2022 04/05/2022 35 -

4.2

Implementatio

n of external 

tools 05/04/2022 20/05/2022 50 -

5 Final test

5.1

Continuous 

operation of 

test 2 30/05/2022 17/06/2022 60 -

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 18 (2/5-6/5) WEEK 20 (16/5-20/5) WEEK 22 (30/5-3/6) WEEK 24 (13/6-17/6)WEEK 6 (7/2-11/2) WEEK 8 (21/2-25/2) WEEK 10 (7/3-11/3) WEEK 12 (21/3-25/3) WEEK 14 (4/4-8/4) WEEK 16 (18/4-22/4)PCT OF 

TASK 

COMPLETE

WPS 

NUMBER
TASK TITLE

START 

DATE
DUE DATE

DURATION 

(In hours)

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the 

state of the art

1.1

Orbit 

propagator 06/02/2022 07/02/2022 10 100%

1.2

Determination 

of parameters 08/02/2022 10/02/2022 55 100%

1.3

ZeroMQ 

review 11/02/2022 08/04/2022 10 100%

1.4 MsgPck review 22/02/2022 23/02/2022 10 100%

2 Design

2.1

Module 

description 24/02/2022 24/02/2022 5 100%

2.2

List of 

requirements 25/02/2022 07/03/2022 10 100%

2.3

High-level 

architecture 08/03/2022 09/03/2022 10 100%

2.5

Workflow 

diagram 10/03/2022 21/03/2022 15 100%

3 1st test

3.1

Orbit 

propagation 18/04/2022 21/04/2022 35 100%

3.2

Compute 

parameters 02/05/2022 16/05/2022 45 100%

3.3

Connection 

with local host 17/05/2022 20/05/2022 20 100%

4 2nd test

4.1

Connection PC-

SDR 30/05/2022 17/06/2022 45 100%

4.2

Implementatio

n of external 

tools - - - 0%

5 Final test

5.1

Continuous 

operation of 

test 2 - - - 0%

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 18 (2/5-6/5) WEEK 20 (16/5-20/5) WEEK 22 (30/5-3/6) WEEK 24 (13/6-17/6)WEEK 6 (7/2-11/2) WEEK 8 (21/2-25/2) WEEK 10 (7/3-11/3) WEEK 12 (21/3-25/3) WEEK 14 (4/4-8/4) WEEK 16 (18/4-22/4)WPS 

NUMBER
TASK TITLE

START 

DATE
DUE DATE

DURATION 

(In hours)

PCT OF 

TASK 

COMPLETE
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A.2.4. Deviations from initial proposal 

The main delay of the project was the calculation of channel effects. After reviewing some 

information, a first model of them was made, but later it was discarded when testing it. 

Because of that, more information reviewing had to be done in order to compute the effects 

accurately. Despite achieving the calculations at the end, the delay has provoked that the 

continuous transmission of the parameters had not been done. If the calculations of the 

channel had been done on time, it would have remained time to address the multithreading 

issues and perform the continuous operation of the emulator. 
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B. Budget 

As there are both projects, the budget will be computed separately. The costs that will be 

considered are the prototyping cost and the designing cost, which is divided into personal 

cost and used tools cost. 

To compute the tool cost, the amortization of the is needed to be computed. This 

amortization is computed by following formula: 

 
𝐴 =

𝐶 − 𝑅 · 𝐶

𝐿
· 𝐻 (16) 

Where: 

• 𝐴 = Amortization (€) 

• 𝐶 = Purchase cost (€) 

• 𝑅 = Residual value (%) 

• 𝐿 = Lifspan (h)  

• 𝐻 = Tool usage (h) 

However, residual value is null for software tools, as well as for long lifespan hardware 
tools. 

 

B.1. DSS-SIM 

The main constituent of the project is a software, so it has non prototyping cost associated. 

To compute the cost of the personal it is assumed an average salary of a junior engineer 

of 24.949 €20 per year, which leads into a wage of 13,66 €/h, assuming an annual work of 

1826 h, which is the maximum annual working hours at Spain21. 

The main software tools used during the project were free software, but the documentation 

has been done using Microsoft Office tools, which have a price of 69 €/year22. Also, a 

computer has been needed which was provided by i2Cat. The computer itself was a Dell 

Inspiron 15, whose price is 808,99 €23 for the version with an i7 processor and 16 GB RAM.  

To sum up, the total designing cost has been of 4.287,43 €. The total cost calculation is 

done in Table 3, Table 4, and Table 5¡Error! No se encuentra el origen de la referencia.. 

 

 
20 Junior Engineer wage (June, 2022) 
21 Resolución de 13 de enero de 2022 
22 Microsoft 365 
23 Dell Inspiron 15 

https://www.glassdoor.es/Salaries/junior-engineer-salary-SRCH_KO0,15.htm?countryRedirect=true
https://noticias.juridicas.com/base_datos/CCAA/717615-convenio-colectivo-del-sector-empresas-cosecheras-y-productoras-de-fruta-uva.html
https://www.microsoft.com/es-es/microsoft-365/buy/compare-all-microsoft-365-products
https://www.dell.com/es-es/shop/port%c3%a1tiles-de-dell/port%c3%a1til-inspiron-15/spd/inspiron-15-5510-laptop/cn51530
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Table 3: DSS-SIM personal cost 

 
 

Table 4: DSS-SIM hardware tools costs 

 

Table 5: DSS-SIM software tools costs 

 

 

B.2. Satellite Contact Emulator 

 

The main constituent of this project is a prototype, so in this case prototyping costs must 

be computed. As explained in Section 4.2, the final testbed consists of 2xADALM Pluto 

SDRs24 and a switch25. A computer is also needed to perform the tests, but its use is 

computed as tools costs. 

Unlike DSS-SIM project, no paid software have been used to carry out this project. 

Regarding personal costs, same salary is considered as in Annex B.1. However, more 

hardware tools have been used to develop this project, including a signal generator and a 

spectrum analyzer. Unfortunately, no response has been obtained when asked for 

 
24 ADALM-PLUTO 
25 Netgear GS108PE-300EUS 

Activity Worked hours Total cost

WP1 25 h 341,50 €                                 

WP2 30 h 409,80 €                                 

WP3 100 h 1.366,00 €                             

WP4 85 h 1.161,10 €                             

WP5 30 h 409,80 €                                 

Total 3.688,20 €                             

Personal cost

Activity Worked hours Hardware used Purchase cost Lifespan Hardware cost

WP1 25 h Computer 808,99 €        5 years 55,38 €            

WP2 30 h Computer 808,99 €        5 years 66,46 €            

WP3 100 h Computer 808,99 €        5 years 221,52 €          

WP4 85 h Computer 808,99 €        5 years 188,29 €          

WP5 30 h Computer 808,99 €        5 years 66,46 €            

Total 598,10 €          

Hardware costs

Activity Worked hours Service used Purchase cost Lifespan Service cost

WP1 25 h - Free - -

WP2 30 h Draw.io Free - -

WP3 100 h Visual Studio Code, GitHub Free - -

WP4 85 h Visual Studio Code, GitHub Free - -

WP5 30 h Microsoft Office 365 69,00 €           1 years 1,13 €              

Total 1,13 €              

Services costs

https://www.mouser.es/ProductDetail/Analog-Devices/ADALM-PLUTO?qs=xbccQsLEe0ffoUoi%2FjfIWA%3D%3D
https://www.amazon.es/Netgear-GS108PE-300EUS-gestionable-alimentaci%C3%B3n-53/dp/B00LMXBOG8?th=1
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quotation, so a price of 4.75026 € per device has been suppose. The amortization of the 

products is computed taking into account a total lifespan of 5 years.   

The final cost of this project has been 546,83€ for prototyping the last testbed, while the 
designing cost has been of 5.717,03 €. Th detailed calculations are performed in Table 6, 
Table 7, and Table 8. 

 

Table 6: SCE prototyping cost 

 

 

Table 7: SCE hardware tools cost 

 

Table 8: SCE personal cost 

 

  

 
26 Spectrum Analyzers Rent - KWIPPED 

Device Price Quantity Total cost

ADALM Pluto 226,42 €     2 452,84 €     

Switch 93,99 €        1 93,99 €        

Total 546,83 €     

Prototyping cost

Activity Worked hours Hardware used Purchase cost (combined) Lifespan Hardware cost

WP1 75 h Computer 808,99 €                               5 years 166,14 €          

WP2 40 h Computer 808,99 €                               5 years 88,61 €            

WP3 100 h Computer 808,99 €                               5 years 221,52 €          

Computer, Spectrum Analyzer, Signal generator 808,99 €                               5 years 121,84 €          

WP4 55 h Spectrum Analyzer 4.750,00 €                            5 years 715,36 €          

Signal generator 4.750,00 €                            5 years 715,36 €          

Total 2.028,83 €       

Hardware costs

Activity Worked hours Total cost

WP1 75 h 1.024,50 €                                                                    

WP2 40 h 546,40 €                                                                        

WP3 100 h 1.366,00 €                                                                    

WP4 55 h 751,30 €                                                                        

Total 3.688,20 €                                                                    

Personal cost

https://www.kwipped.com/rentals/electronic-test/spectrum-analyzers/265
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C. Environmental report 

Despite being a final degree thesis focused on software development, some hardware 
tools have been used during its development, so it has generated some environmental 
pollution. This pollution is estimated in CO2 emissions. However, not only hardware 
devices cause those emissions, but software products also cause them, as the consumed 
electricity also produces emissions [32]. 

To compute the CO2 some products have associated a carbon footprint report, where it is 
specified the amount of pollution produced during its useful life, including the 
manufacturing and shipping. This is the case of Dell laptops, which is the one used to 
develop the project. Despite the exact model of the computer does not provide the carbon 
footprint, a similar one has been used to estimate the impact. 

The computer27 generates a total amount of 386 kg of CO2 emissions during its life, being 
a 91% of them related to manufacturing, transportation, and end of life residues. Knowing 
this information, the total impact of the computer can be assumed. However, more 
hardware has been used during the development of the thesis, such as SDRs, switches, 
signal generators and spectrum analyzers. Unfortunately, none of these products have an 
associated carbon footprint, so their CO2 emissions will not be computed. However, it 
must be kept in mind that they also generate pollution, as well as cloud applications such 
as GitHub (where the code is stored). 

The minimum is 353,44 kg of CO2 emission. The calculation is done in Table 9. Note that 
the  usage contribution considers the PC used hour, which are less than the total lifespan 
hours.  

 

Table 9: Computer CO2 emissions 

 

 

 
27 Dell Inspiron 16 - Carbon footprint 

Type Contribution Co2 Emissions

Manufacturing 87,20% 336,59

Usage 9,00% 2,57

Transport 3,30% 12,74

End of life residues 0,40% 1,54

TOTAL 353,44

Computer CO2 emissions

https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/dell-inspiron-16-5620-pcf-datasheet.pdf

