

Contributions to satellite subsystem models and
communications link emulation

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Antonio Romero Aguirre

In partial fulfilment

of the requirements for the degree in

TELECOMMUNICATIONS TECHNOLOGIES AND

SERVICES ENGINEERING

Advisor: Adriano José Camps Carmona

Joan A. Ruiz-de-Azua

Barcelona, June 2022

 i

Abstract

During last years, space missions have evolved from monolithic spacecrafts architectures,

to distributed ones, which are known as Distribute Satellite Systems (DSS). This spacecraft

architecture has changed the space paradigm, as it has appeared the need of establishing

communications between satellites to achieve the mission objectives. Despite this the need

of simulating and emulating the communications between satellites, none of the available

tools have complete inter-satellite communications capabilities.

This final degree thesis presents contributions to the already existing simulator developed

by NanoSat Lab. The contributions consist in the implementation of the Electric Power

Supply (EPS) subsystem. Moreover, this thesis also contributes to the development of a

Satellite Contact Emulator, developed by i2Cat, focusing on the development of the central

PC that orchestrates the emulation.

 ii

Resum

Recentment, les missions espacials han evolucionat d’una arquitectura basada en un sol

satèl·lit, a una arquitectura distribuïda. Aquest tipus d’arquitectura és coneguda com a

Distribute Satellite Systems” (DSS). L’aparició d’aquesta nova estructura ha provocat un

canvi en el paradigma de l’espai, ja que ha sorgit la necessitat d’establir comunicació entre

els satèl·lits per assolir els objectiu marcats de les missions. Tot i haver la necessitat

d’emular i simular les comunicacions enter satèl·lits, cap de les eines actuals té suficients

funcionalitats implementades per assolir aquesta emulació i simulació.

Aquest treball de fi de grau presenta les contribucions fetes a un simulador ja existent, el

qual ha estat desenvolupat pel NanoSat Lab de la UPC. La contribució feta consisteix en

la implementació d’un subsistema que modeli una EPS. A més a més, aquest treball de fi

de grau també contribueix en el desenvolupament d’un Satellite Contact Emulator, el qual

ha estat desenvolupat per i2Cat. En aquesta contribució es farà menció especial en

l’ordinador central que executa l’emulació.

 iii

Resumen

Recientemente, las misiones espaciales han evolucionado de una arquitectura basada en

un solo satélite, a una arquitectura distribuida. Este tipo de arquitectura es conocida como

Distribute Satellite Systems” (DSS). La aparición de esta nueva estructura ha provocado

un cambio en el paradigma espacial, ya que ha surgido la necesidad de establecer

comunicación entre los satélites para conseguir los objetivos de las misiones. Aunque

exista la necesidad de emular y simular las comunicaciones entre satélites, ninguna de las

actuales herramientas tiene las funcionalidades suficientes para conseguir dicha

emulación y simulación.

Este trabajo de fin de grado presenta las contribuciones hechas a un simulador ya

existente, el cual ha sido desarrollado por el NanoSat Lab de la UPC. La contribución

hecha consiste en la implementación de un subsistema que modela una EPS. Además,

este trabajo de fin de grado también contribuye al desarrollo de un Satellite Contact

Emulator, el cual ha sido desarrollado por i2Cat. Esta contribución pone un énfasis

especial en el ordenador central que ejecuta la emulación.

 iv

Acknowledgements

I would like to thank the thesis advisors, Adriano Camps and Joan A. Ruiz-de-Azua the

support showed towards me. Moreover, I would like to also thank them the given

opportunity to discover the space sector, which was mostly unknown by myself before

starting this thesis.

Also, I would like to recognize the Nanosat Lab team for the received treatment, as well as

the i2Cat Space Communications group. Special mention also for Nanosat Lab and i2cat

institutions for letting me use their installation to develop this final degree thesis.

 v

Revision history and approval record

Revision Date Purpose

0 15/03/2022 Document creation

1 25/05/2022 Document revision

2 11/06/2022 Document revision

3 18/06/2022 Document revision

4 21/06/2022 Document final revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Antonio Romero Aguirre antonio.romero.aguirre@estudiantat.upc.edu

 Adriano José Camps Carmona camps@tsc.edu

 Joan A. Ruiz-de-Azua joan.ruizdeazua@i2cat.net

Written by: Reviewed and approved by:

Date 21/06/2022 Date 21/06/2022 Date 21/06/2022

Name Antonio Romero Name Adriano Camps Name Joan A. Ruiz-

de-Azua

Position Project Author Position Project

Supervisor

Position Project

supervisor

 vi

Table of contents

Abstract ... i

Resum .. ii

Resumen ... iii

Acknowledgements ... iv

Revision history and approval record .. v

Table of contents ... vi

List of Figures ...viii

List of Tables: .. ix

Acronyms ... x

1. Introduction .. 1

1.1. Objectives .. 2

1.2. Thesis outline ... 2

2. State of the art of the technology used or applied in this thesis: 4

2.1. Review of existing ISL simulators ... 4

2.2. Review of existing solar cells models .. 5

2.3. Review of existing battery models .. 6

2.3.1. Shepherd model .. 7

2.3.2. Copetti model .. 8

2.3.3. Modified Shepherd model .. 9

2.3.4. Extended modified Shepherd model .. 10

2.4. Existing SCE .. 11

2.5. Orbital models .. 12

3. Methodology and project development: ... 13

3.1. Contributions to DSS-SIM ... 13

3.1.1. NS-3 energy framework ... 17

3.1.2. Solar cells .. 19

3.1.3. Battery ... 20

3.1.4. Energy subsystem interface .. 21

3.2. Satellite Contact Link Emulator ... 22

3.2.1. Orbit propagation ... 22

3.2.2. ISL channels effects .. 23

3.2.3. Control message structure... 25

3.2.4. Integration of central PC via Ethernet .. 26

 vii

4. Tests and results ... 28

4.1. DSS-SIM .. 28

4.1.1. Solar cells .. 28

4.1.2. Energy subsystem interface .. 29

4.2. Satellite Contact Link Emulator ... 30

4.2.1. Orbit determination and channel effects calculations 30

4.2.2. Transmission of the channel effects parameters via Ethernet 32

4.2.3. Software integration on SDRs ... 34

5. Conclusions and future development: .. 35

Bibliography: ... 36

Appendices ... xii

A. Management ..xiii

A.1. DSS-SIM ...xiii

A.1.1. Requirements and specifications ...xiii

A.1.2. Work packages description ... xiv

A.1.3. Gantt diagrams ... xix

A.1.4. Deviations from initial proposal ... xix

A.2. Satellite Contact Emulator .. xix

A.2.1. Requirements and specifications .. xix

A.2.2. Work packages description .. xx

A.2.3. Gantt diagrams .. xxiv

A.2.4. Deviations from initial proposal .. xxv

B. Budget ... xxvi

B.1. DSS-SIM ... xxvi

B.2. Satellite Contact Emulator .. xxvii

C. Environmental report .. xxix

 viii

List of Figures

Figure 1: Single and double diode model .. 5

Figure 2: Different ECM [12] ... 7

Figure 3: DSS-SIM workflow ... 14

Figure 4: DSS-SIM Model workflow .. 15

Figure 5: High-level architecture of DSS-SIM ... 16

Figure 6: UML diagram of physical module ... 17

Figure 7: NS-3 Energy framework... 18

Figure 8: Real vs proposed models for solar cells ... 19

Figure 9: ns3::EnergyHarvester module with implemented solar cells 20

Figure 10: Comparison between proposed battery models ... 20

Figure 11: UML diagram for designed EPS ... 21

Figure 12: SCE initial scheme ... 22

Figure 13: Doppler shift parameters relation ... 25

Figure 14: Parameters matrix ... 25

Figure 15: Custom message structure .. 26

Figure 16: Sockets structure with multithreading ... 26

Figure 17: Central PC workflows... 27

Figure 18: Solar cells fitting into real I-V curves .. 29

Figure 19: Solar cells model error ... 29

Figure 20: Contact and attenuation matrices .. 30

Figure 21: Attenuation, Doppler, and delay matrices... 31

Figure 22: FSPL MATLAB model .. 31

Figure 23: Server-Client parameters transmission .. 33

Figure 24: Final testbeds .. 34

Figure 25: DSS-SIM work breakdown structure .. xviii

Figure 26: DSS-SIM initial Gantt diagram .. xix

Figure 27: DSS-SIM final Gantt diagram .. xix

Figure 28: SCE work breakdown structure .. xxiv

Figure 29: SCE initial Gantt diagram ... xxiv

Figure 30: SCE final Gantt diagram .. xxiv

 ix

List of Tables:

Table 1: DSS-SIM requirements ...xiii

Table 2: SCE requirements ... xx

Table 3: DSS-SIM personal cost .. xxvii

Table 4: DSS-SIM hardware tools costs .. xxvii

Table 5: DSS-SIM software tools costs .. xxvii

Table 6: SCE prototyping cost .. xxviii

Table 7: SCE hardware tools cost... xxviii

Table 8: SCE personal cost .. xxviii

Table 9: Computer CO2 emissions ... xxix

 x

Acronyms

ADCS Attitude Determination and Control System

COTS Commercial off-the-shelf

DSS Distributed Satellite System

DSS-SIM Distributed Satellite System Simulator

eMSM Extended Modified Shepherd Model

EPS Energy Power System

IoSat Internet of Satellites

IoT Internet of Things

ISL Inter-Satellite Link

LEO Low Earth Orbit

MSM Modified Shepherd Model

NB Narrow Band

NB-IoT Narrow Band-Internet of Things

NS-3 Network Simulator 3

SCE Satellite Contact Emulator

SDP Simplified Deep Space Perturbation

SDR Software Defined Radio

SGP Simplified General Perturbation

SoC State of Charge

SoH State of Health

 1

1. Introduction

Monolithic satellites have been ruling the space by providing a custom design that

accomplishes a specific mission. However, this kind of satellites where only one spacecraft

is deployed have some drawbacks associated with them, mainly related with re-visit time

and coverage range (depending on the orbiting plane). To mitigate the limitations

associated with monolithic spacecrafts, the concept evolved to Distributed Satellite

Systems (DSS), which are networks of heterogeneous or homogenous satellites with a

common mission. Six main architectures of DSS can be distinguished according to [1],

constellations, satellite trains, clusters, satellite swarms, and innovative mission concepts

such as fractionated spacecraft and Federated Satellite Systems (FSS). Some of these

architectures perform communication with other spacecraft in order to avoid collisions, such

in the case of clusters or swarms, or to exchange data, as in the case of fractionated

spacecraft or FSS.

This performed communication is known as inter-satellite links (ISL), which are point to

point communications between two or more satellites. As exposed in [2],[3]; when ISLs

have a routing protocol associated, it is known as Internet of Satellites (IoSat). This change

in the paradigm has created the need of tools that help engineers to design and test the

new communication protocols derived from IoSat needs. However, currently there are not

many tools available that performs these operations, as it will be discussed in Sections 2.1

and 2.4, so i2CAT1 Space Communications research group is currently developing two

projects to fill the void on that field.

First of the projects was born at NanoSat Lab2, which is an initiative of the CommsSensLab3

research center of the Department of Signal Theory and Communications, with the support

of the Barcelona School of Telecommunications Engineering. It is research laboratory

focused on the exploration of innovative small spacecraft system concepts and developing

and integrating subsystems and payloads notably for Earth Observation. The project is a

simulation engine [4] known as Distributed Satellite System Simulator (DSS-SIM) that aims

the design and testing of DSS interconnected by ISL. A more accurate description of how

it works is performed at Section 3.1.

The other project held at i2Cat is a Satellite Contact Emulator, which aims to provide an

interface to emulate contacts between satellites for NB-IoT and ISL scenarios. This project

started from scratch with the development of this thesis, so its development is still in an

early phase. However, a more description od the projects is done in Section 3.2.

1 i2CAT - The Internet Research Center
2 NanoSat Lab
3 CommSensLab

https://i2cat.net/
https://nanosatlab.upc.edu/en
https://www.tsc.upc.edu/en/research/research-groups/commsenslab/

 2

1.1. Objectives

This final degree thesis aims the to address the lack of tools to simulate and emulate ISLs

by contributing to the already existing DSS-SIM and creating a Satellite Contact Emulator

(SCE).

The contributions to the first topic (extensions of DSS-SIM) will be:

1. The implementation of a module that simulates energy storage devices, in particular

batteries or supercapacitors.

2. The implementation of a module that models solar cells, as the energy generation

of spacecrafts.

3. The implementation of a module that implements an electric power system (EPS)

for a satellite

The contribution to the second topic is:

1. Creation of a prototype that allows communications between two end-devices,

connected into a network composed by Software Defined Radios (SDR) and a

central PC that performs the ISL emulation.

It must be mentioned that the SCE is developed together with the student Arnau Dolz. This

final degree thesis presents the central PC of the network, which propagates orbits and

computes the parameters that affect the communications channels, such as attenuation,

Doppler effect, and delay. Dolz final degree thesis [5] is focused on how the SDR processes

the data, and how the communications channel is executed in the SDR from the

parameters computed by the central PC.

1.2. Thesis outline

As explained, this final degree thesis presents two different projects, but both have the

same motivation. Because of that, some of the chapters of the thesis will be divided into

two subsections, where each of the subprojects are explained. The general structure is:

1. Introduction: Provides an overview of the project, where the rationale of the final

degree thesis is clearly described

2. State of the art: Section provides a review of the current technologies to address

the presented objectives is done. A review is conducted to assert the motivation of

the projects.

3. Methodology and development phases: Section is divided into the two major

constituents of this final degree thesis. The designed and implemented solutions

for each, as well as the project phases are explained in this section.

4. Tests and results: As Section is divided into the two projects., and the performed

tests and the resulting results are presented.

 3

5. Conclusions and future development: Section presents a review of the initial

objectives is done, explaining if they have been met or not for each of the projects.

An overview of the future development of the projects is also performed.

The management features of the project are presented into the appendices, in order to

keep the main body of the text just focused on the technical development. Appendices

follow the next structure:

A. Management: The development phases of the projects are defined in detail,

defining work packages, and including the initial and the final work plans, and their

difference. Also, the list of requirements for each project is presented in this

appendix.

B. Budget: The economic impact of the projects is considered here, including direct

and indirect costs.

C. Environmental impact: A study of the projects’ impact on the environment is

performed at this appendix.

 4

2. State of the art of the technology used or applied in this

thesis:

2.1. Review of existing ISL simulators

Typically, the simulation of spacecrafts has been done using some licensed software, such

as the well-known Systems Tool Kits4 (STK). However, the space sector has suffered a

remarkable change in recent years, which has increased the interest on ISL

communications. Unfortunately, STK, as well as similar products, do not consider the

capability of simulating communications protocols at ISL, so the tool falls short when

addressing the simulation of DSS. To achieve the desired behaviour of simulators, there is

the need to use network simulators. Some well-known open-source ones are Network

Simulator 3 (NS-3)5, OPNET6, NetSim7 or QualNet8.

As it is clear, there is the need of a tool that combines both software in order of simulating

a complete DSS into just one software. According to [4], three approaches can be done.

One approach consists of running first the space simulator to obtain the desired parameters

and use them as inputs for the network simulator. Another approach is the integration of

both simulation engines into a single simulator that runs them in parallel. This approach

was chosen by NASA [6], where they used QualNet and STK. Despite the promising

approach, the resulting core resulted inefficient, because the constant communication

between both simulation engines adds delay into the execution.

Finally, a third approach, and the most interesting one because of its versatility and

resource management, is a fully integrated simulator. This approach consists of the

implementation of a custom simulator that, with just one simulation engine (and non-using

different software at same time) all the simulation parameters can be computed. In [7], a

simulator based on NS-3 is presented. This project demonstrates the feasibility of the

approach, despite it failed at demonstrating the re-usability of the software to simulate

instrument and resources defined by the user.

To overcome the problems found in other approaches, a simulation tool is presented in [4].

The DSS-SIM is a simulation engine that aims to simulate the impact of ISL over spacecraft

resources, enable the implementation of high-level spacecraft interactions and provide an

adaptable tool where users can define physical models that represent spacecraft

components and instruments. The simulator is constructed over NS-3, which manages the

simulation of a defined scenario by the DSS-SIM. NS-3 is a free and open-source discrete-

event network simulator that also provide some communication protocols which can be

used in in the ISL context.

4 Systems Tool Kit (STK)
5 NS-3
6 OPNET
7 NetSim
8 QualNet

https://www.agi.com/products/stk
https://www.nsnam.org/
https://opnetprojects.com/opnet-network-simulator/
https://www.tetcos.com/
https://www.scalable-networks.com/products/qualnet-network-simulation-software/

 5

2.2. Review of existing solar cells models

In space, the most accessible energy from environment is solar power, and the modules in

charge of converting the sun irradiance into electricity at the solar cells. Its behaviour is

difficult to describe because it is based on how electrons of the semiconductor material

interact with hitting photons from solar cells [8]. Therefore, there are some models that

describe its behaviour in simpler ways.

According to [9], the most used models are (1) the single diode mode, (2) the double diode

model, (3) the modified double diode model, and (4) the three-diode mode. Nevertheless,

the most widespread model is the double diode. The problem of this model is its complexity,

as it takes a long simulation time to compute its parameters because of the differential

relations between them. Because of that, researchers agree [9] that the use of a single

diode model is sufficient to describe the behaviour of a solar cell, despite its lower accuracy.

The single and double diode models can be found described at [10], [11], from where the

next figure and equations are extracted:

Figure 1: Single and double diode model

The equations that describe the single are:

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 · (𝑒

𝑉+𝐼·𝑅𝑠
𝑛·𝑉𝑡 − 1) −

𝑉 + 𝐼 · 𝑅𝑠
𝑅𝑠ℎ

 (1)

𝐼𝑝ℎ = 𝐼𝑝ℎ0 ·

𝐼𝑟
𝐼𝑟𝑜

 (2)

where:

• 𝐼𝑝ℎ = Solar-induced current

• 𝐼𝑟 = Light irradiance (W/m2)

• 𝐼𝑝ℎ0= Measured generate current for irradiance 𝐼𝑟0

• 𝐼𝑑 = Saturation current of diode

(a) (b)

 6

• 𝑉𝑡 =
𝑘·𝑇

𝑞
 = Thermal voltage, where

• 𝑁 = Quality factor of the diode

• 𝑅𝑠 = Resistor in series

• 𝑅𝑠ℎ = Shunt resistor

2.3. Review of existing battery models

In the previous section it has been explained how spacecrafts obtain energy from the

environment. As this energy is external to the spacecraft, there is no possibility to control

the generated power. Because of that, there is the need to store the unused energy in

batteries for a later use. As in the solar cells case, the exact equations of how a battery

charges and discharges are difficult to obtain because they are based on chemicals

processes that take place inside it. So, there is a need to simplify those equations by

approximations known as models.

Battery modelling is useful as it can predict batteries basic parameters such as the current

state of charge (SoC) or state of health (SoH) of the battery. Depending on the desired

application, the accuracy of these parameters can be critical. In the DSS-SIM case,

determining the SoC and SoH are important, but not critical, as the main objective of the

simulation is the communications. However, it is important to represent how them impact

the power modules. Typically, three types of models are distinguished: electrochemical,

analytical/empirical, and circuit based [12].

The electrochemical models are based on the chemical processes that take place in the

battery. Although these models describe the battery processes very accurately, they also

have a higher degree of complexity than other methods because they might include high-

order differential equations and the need of chemical parameters to describes battery’s

dynamics, which are usually difficult to obtain. Another limitation associated to these

models is that, because of their complexity, it can take long simulation time to compute the

parameters of interest. This limitation is really strong, as it only makes the models suitable

for applications where high accuracy is needed, and makes them undesirable for the rest

of applications, since many times speed is preferred over accuracy.

In Electric Circuit Models (ECM), the electrochemical reactions are replaced by circuits

components such as resistors or capacitors that emulates the relation between the input

parameters, SoC and current, and the voltage in terminals of a battery. Usually, the

resistors represent the internal self-discharge of a battery, while RC networks represent

the diffusion process in electrolyte and porous electrodes and the charge transfer in the

electrode [12]. This type of models gives the developer a high degree of freedom designing

a custom model for a desired application. Despite that, obtaining the parameters to emulate

the relation between an ECM and an electrochemical model is complex. Some typical

models are:

𝑘 = Boltzmann constant

𝑇 = Temperature of operation

𝑞 = Charge on an electron

 7

Figure 2: Different ECM [12]

The analytical or empirical models are considered as a simplified electrochemical model.

In this model the high-order differential equations from electrochemical models disappears,

and it are replaced by reduced order polynomials or mathematical expressions. This type

of model leads to simpler expressions, which also is more efficient in terms of simulation

time. The limitation is that accuracy is reduced because the expressions are

approximations of the original one.

Considering the strengths and limitations of the different kinds of battery models, this case

of study will only consider some of the analytical models.

2.3.1. Shepherd model

In 1965, Shepherd [13] presented a battery model designed from the charge/discharge

curves:

𝑉 = 𝑉0 −𝐾 ·

𝑄

𝑄 − ∫ 𝑖 · 𝑑𝑡
· 𝑖 + 𝐴 · 𝑒−𝐵·∫ 𝑖·𝑑𝑡 − 𝑅 · 𝑖 (3)

where:

(a) Rint model (b) Thevenin model

(c) PNGV model (d) GNL model

 8

• 𝑉 = Battery voltage (V)

• 𝑉0 = Battery constant voltage (V)

• 𝐾 = Polarisation voltage (V)

• 𝑄 = Battery capacity (A·h)

• ∫ 𝑖 · 𝑑𝑡 = Actual battery charge (A·h)

• 𝐴 = Exponential zone amplitude (V)

• 𝐵 = Exponential zone time constant inverse (A·h)-1

• 𝑅 = Internal resistance (Ω)

• 𝑖 = Battery current (A) (Positive if discharging, or negative if charging)

The first term of the equation represents the constant battery voltage. The second one is

the current density plus the polarisation of the cell. The third one represents the effect at

the beginning of the discharge curve, where the voltage drop is exponential. The last one

is the voltage drop due to the internal resistance of the cell.

On one hand, the benefits of this model are that it is also an easy model in terms of

computing and implementation, as the equations that describe the model are not differential

or complex expressions. Also, the model is suitable for all battery technologies, as it has

been demonstrated later [14], despite when it was proposed some of them did not exist.

Moreover, the model is described using just one equation, only the current’s direction

changes, which simplifies its use.

On the other hand, the second term of the equation is non-linear, which adds some

programming issues, such an algebraic loop, which is a closed loop where outputs are

directly dependent on their inputs. If an algebraic loop exists, the simulation gets stuck

because none of the components in the loop can generate output to break it. Also, the

model does not consider some factors that affect the capacity of the battery, such as SoH

or the external temperature. The strongest limitation is that the model is not well suited to

describe the dynamic behaviour of batteries.

2.3.2. Copetti model

After reviewing some proposed models, Copetti [15] presented a new model, with the

coefficients adapted to the current state of the technology at the time the model was

presented. Copetti proposed the following equations:

Charge equation

𝑉𝐶 = [2 + 0,16 · 𝑆𝑂𝐶] +

1

𝐶10
· (

6

1 + 𝐼0,86
+

0,48

(1 − 𝑆𝑂𝐶)1,2
+ 0,036) · (1 − 0,025 · ∆𝑇) (4)

Discharge equation

 9

𝑉𝐶 = [2,085 − 0,12 · (1 − 𝑆𝑂𝐶)] −

1

𝐶10
· (

4

1 + 𝐼1,3
+

0,27

𝑆𝑂𝐶1,5
+ 0,02) · (1 − 0,007 · ∆𝑇) (5)

where:

• 𝐶10 = 10 hour rated capacity

• ∆𝑇 = 𝑇 − 𝑇𝑅𝑒𝑓 = 𝑇 − 𝑇25℃

On one hand, the benefits of this model are that it is an easy model in terms of computing

and implementation, as the equations that describe the model are not differential or

complex expressions. Also, the model considers external factors such as temperature to

describe the dynamics of the battery.

On the other hand, this model is only suitable for lead-acid batteries. Also, the model uses

two equations to describe the behaviour of the battery, which is not desired for our

application.

2.3.3. Modified Shepherd model

Although the Shepherd model is very interesting, the problem of the algebraic loop makes

it not suitable for most of types of batteries. To correct that, Tremblay, Dessaint and

Dekkiche [14] proposed a modified Shepherd model (MSM), which is the following one:

𝑉 = 𝑉0 − 𝐾 ·

𝑄

𝑄 − ∫ 𝑖 · 𝑑𝑡
+ 𝐴 · 𝑒−𝐵·∫ 𝑖·𝑑𝑡 − 𝑅 · 𝑖 (6)

where:

• 𝑉 = Battery voltage (V)

• 𝑉0 = Battery constant voltage (V)

• 𝐾 = Polarisation voltage (V)

• 𝑄 = Battery capacity (A·h)

• ∫ 𝑖 · 𝑑𝑡 = Actual battery charge (A·h)

• 𝐴 = Exponential zone amplitude (V)

• 𝐵 = Exponential zone time constant inverse (A·h)-1

• 𝑅 = Internal resistance (Ω)

• 𝑖 = Battery current (A) (Positive if discharging or negative if charging)

 10

As it can be seen, the term 𝐾 ·
𝑄

𝑄−∫ 𝑖·𝑑𝑡
· 𝑖 of equation (3) has been substituted by 𝐾 ·

𝑄

𝑄−∫ 𝑖·𝑑𝑡

in order to avoid the algebraic loop. Although this new term does not represent the

behaviour of the battery as accurately as the original one, it can be use without a significant

accuracy loss.

The benefits and limitations of the model are the same as the previous ones, but with this

model the algebraic loop issue has been avoided.

2.3.4. Extended modified Shepherd model

The same authors as 2.3.3 in modified their own algorithm some years later and presented

the extended modified Shepherd model (eMSM) [16].

Charge equation for Lead-Acid, NiMH and NiCd technology

𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑖 · 𝑡 − 0,1 · 𝑄
· 𝑖∗ − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· 𝑖 · 𝑡 + 𝑒𝑡 (7)

Discharge equation for Lead-Acid, NiMH and NiCd technology

𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· (𝑖 · 𝑡 + 𝑖∗) + 𝑒𝑡 (8)

Charge equation for Li-Ion technology

𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑖 · 𝑡 − 0,1 · 𝑄
· 𝑖∗ − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· 𝑖 · 𝑡 + 𝐴 · 𝑒−𝐵·𝑖·𝑡 (9)

Discharge equation for Li-Ion technology

𝑉 = 𝑉0 − 𝑅 · 𝑖 − 𝐾 ·

𝑄

𝑄 − 𝑖 · 𝑡
· (𝑖 · 𝑡 + 𝑖∗) + 𝐴 · 𝑒−𝐵·𝑖·𝑡 (10)

where:

• 𝑉 = Battery voltage (V)

• 𝑉0 = Battery constant voltage (V)

• 𝐾 = Polarisation voltage (V)

• 𝑄 = Battery capacity (A·h)

• 𝑖 · 𝑡 = ∫ 𝑖 · 𝑑𝑡 = Actual battery charge (A·h)

• 𝐴 = Exponential zone amplitude (V)

 11

• 𝐵 = Exponential zone time constant inverse (A·h)-1

• 𝑅 = Internal resistance (Ω)

• 𝑖 = Battery current (A) (Positive is discharging or negative if charging)

• 𝑖∗ = Filtered current (A)

On one hand, the benefits of this model are that it is a more accurate model than the

previous versions, and it is suitable for all battery technologies, despite using different

equations to describe the different modules.

On the other hand, the model introduces the concept of filtered current, which is not trivial

to understand and obtain. Also, the model does not consider some factors that affect the

capacity of the battery, such as the SoH, or the external temperature. However, its

strongest limitation is that it uses different equations for charge and discharge, and it also

uses different equations depending on the technology of the battery.

2.4. Existing SCE

The problem of being at an early stage of a technology development is that not many tools

are available, as it’s the case of satellite channel emulators. Three main branches have

tried to assess the lack of products in this field: researchers, commercial brands, and

governmental organizations.

An interesting approach in the research field is done in [17]. This approach consists of a

set of SDRs interconnected through Ethernet, and also connected to Pc where the channel

emulation is performed. However, this paper is based on the use of LabView, which is a

paid software.

Currently, there exists some commercial alternatives such as S8825A9 Channel Emulation

Toolset developed by Keysight, or SLE90010 Satellite Link Emulator developed by dBm

Corp. However, this type of products has two main drawbacks associated:

• Cost: Commercial SCE are not affordable, as the cost is very expensive [18].

• Scalability: Commercial SCE have limited a limited input and output ports,

which makes them not suitable for testing big satellites networks using just

one of them.

Besides the research and commercial alternatives, some governmental organizations had

also focused on the development of SCE. European Spatial Agency (ESA) inside ARTES

framework, has developed two projects relate SCE. The projects are Real-time Satellite

Network Emulator11 and Emulator of Satellite-Terrestrial 5G Radio Channels12, that are

currently being developed. The architecture of the first project consists of three mains

components:

9 S8825A Channel Emulation Toolset
10 SLE900
11 Real-time Satellite Network Emulator
12 Emulator of Satellite-Terrestrial 5G Radio Channels

https://www.keysight.com/us/en/product/S8825A/satellite-and-aerospace-channel-emulation-toolset.html
http://dbmcorp.com/satellite-link-emulator/
https://artes.esa.int/projects/realtime-satellite-network-emulator
https://artes.esa.int/projects/emulator-satelliteterrestrial-5g-radio-channels

 12

• STK: Performs the design of the satellite system, as well as the orbital

simulation (generation of satellite movement, visibilities, and link budget).

• NS-3: Simulates application traffic and related communication protocols on

top of the satellite constellation.

• Orchestrator: Generates the STK scenario configuration files for the

network simulator.

Also, NASA has some projects to achieve the channel emulation. An interesting one is the

presented at [19]. This project aims to integrate a software toolset, which can be considered

as a simulation, with hardware toolset, which is an emulator.

Once reviewed the available tools, it can be said that none of them fulfils the requirements

for the SCE project. The institutional and commercial approach have the cost limitation,

while the solution based on SDR uses a determined software to perform the operation.

2.5. Orbital models

Propagators are models that their objective is determining the position of a spacecraft at

any instance of time given its initial state, which includes acceleration and velocity.

According to Newton’s laws, the motion of a body is determined by its initial state and the

forces that act on it. Regarding that, if spherical Earth is assumed, the only force that acts

on the system is the gravity, so the problem would be easy to solve. But real world is none

like that, and the motion of a body is affected by some other factors such as Earth

oblateness, gravitational fields from other celestial bodies or atmospheric drag. So, to

determine orbits, there exists many models, that can e classified into numerical, semi-

analytical and analytical [20].

On one hand, analytical models compute the analytical equations that describe the motion

to obtain the final position. As these equations have some terms are complex to obtain, so

many integrable expression are approximated. This approach leads into a reduced

accuracy, but in the other hands helps with simulation times. On the other hand, numerical

models compute the equations that describe the model without any approximation, which

increase the accuracy of the model while sacrificing speed during computation. Also exists

a third approach which is a combination of both. Semi-analytical models approximate some

expression and compute the other ones. Its accuracy is less than numerical but have a

higher performance.

Some of them are [21]:

• Two body elements: This model assume there are only two bodies in space,

the Earth and orbiting satellite, and the only force that acts on the system is

the gravitational force acting between them.

• J2: This model considers the perturbations introduced in the orbit due to

Earth oblateness.

• J4: Considers the same effect (Earth oblateness) as J2 propagator but

compute them with more coefficients (first and second order effects of J2

and the first-order effects of J4), leading into a more accurate model.

 13

• SGP: Simplified General Perturbations (SGP) were developed by Hilton and

Kuhlman in 1966 and is used for near-Earth satellites. This model assumes

that the eccentricity is low, and that the perigee's altitude is constant.

• SGP4: Is an evolution of SGP, used for near-Earth satellites, when period

is less than 225 minutes. It considers secular and periodic variations due to

Earth oblateness, solar and lunar gravitational effects, gravitational

resonance effects and orbital decay using a simple drag model.

• SDP4: Is an extension of SGP4 to be used for deep-space satellites when

the period is superior of 225 minutes.

• SGP8: The SGP8 model propagator considers same effects as SGP4, but

the calculation methods are different, which results in more accurate results.

• SDP8: The SDP8 model is an extension of SGP8 to be used for deep-space

satellites. The deep-space effects are modelled in SDP8 with the same

equations used in SDP4, but the calculations methods are more accurate.

3. Methodology and project development:

This section presents the design of both developments. Two sections are defined,

corresponding to each of the developed projects. In the first subsection, a brief explanation

of how DSS-SIM works will be done, as well as a detailed explanation of solar cells modules

and battery modules, and how they will interact in order to model the behaviour of an EPS.

In the second subsystem, an overview of designed SCE structure will be done to truly

understand the project, and a more detailed explanation of the modules implemented by

myself will be done. As it has been previously said, this second project is carried out

between Arnau Dolz and me.

3.1. Contributions to DSS-SIM

An overview of DSS-SIM operations can be done by taking a look into its workflow diagram

Figure 3. There three main phases can be distinguished during the simulation:

• Simulator scenario: It is built from user configuration files, where it is

defined all parameters that describe the behaviour of each node. The

configuration is done by three differentiated files type: component

configuration, satellite definition and system definition. First of the files

contains the description of custom satellite classes and their internal

behaviour (e.g., description of battery parameters). Second type of files

describe the spacecrafts model. In these files are described the networking

components, such as protocols stack. Finally, last type of configurators

describes the global system configuration, by determining orbit propagator

characteristics for each node or the structure of the nodes (if they are inside

a constellation or a monolithic satellite) With this approach of configuration,

 14

users can model heterogeneous systems with both heavy multi-instrument

satellites and single instrument small spacecraft.

• Execution of the simulation scenario: The simulator scenario is run by

NS-3. Two main metrics are computed during the emulation: the position of

the spacecrafts, which it is updated depending on the defined resolution,

and event-based metrics (such transmission between nodes), which depend

on the computed position of the spacecrafts.

• Results of the simulation: Two operations for data processing are

performed during this stage. One of them fetches the data to visualize it

using external tools, while the other operation analyzes system metrics

across time.

Figure 3: DSS-SIM workflow

The integration of new modules that describe the behaviour of a spacecraft shall be done

using the class Model, which is inside the physical module (Figure 5), as this class provides

the necessary tools for a correct implementation. Next is going to be done a brief

explanation of the already implemented Model class, as well as all the different classes

that interact with it. How these classes interact with each other is shown at Figure 6.

• Model: Generic abstract class to implement spacecraft components. Models are

used to represent spacecraft states, physical components or devices, subsystems,

 15

or payloads. This class is provided to simulator users that wish to model their

specific components.

• ModelConfig: Provides options and the list of parameters, it also manages them.

This class is used to pass the model parameters.

• ModelFactory: Generic abstract class to implement spacecraft components. It

returns a new instance of a Model. It has the method create() to create a new model.

• MInput: Templated class that represents the input to a Model. It stores a smart

pointer that points to an output of a Model object from which it reads its value.

• MOutput: Templated class that represents the output of a Model. The output of the

model contains a value of type T and a Boolean flag that indicates if the value is set

or not.

• MLinkedIVariable: An externally accessible input variable of a Model.

MLinkedIVariables are connected to other variables to allow model objects to read

the outputs and provide inputs to other models.

• MLinkedOVariable: An externally accessible output variable of a Model.

MLinkedOVariables are connected to other variables to allow model objects to read

the outputs and provide inputs to other models.

• MState: Templated class that stores a state variable of a Model.

A more specific explanation of how the class Model is shown with the workflow diagram at

Figure 4.

Figure 4: DSS-SIM Model workflow

First initialize() is called. As it names suggests, this function initializes the Model object. It

is called once, before starting the update cycle loop. Model-derived classes should initialize

the state of their variables and internal states in this function, while externally accessible

variables will be linked right after the execution of this function.

 16

Once the Model is initialized, update cycle loop begins. Custom Models awaits until one of

its variables or one of its linked variables detect a change. When this occurs, it starts the

update cycle, which consists of four function: transition(), verify() and update(). The first

function transitions the Model’s states into its next state. Once this is done, the method

verify() is called to ensure that changed input variables are safe to read, in order to not

read a variable that has not been changed yet. Then the system calls update(), which is

the main function of the Model object. This method reads all its input variables, perform

some operations to them and update the values of its output variables. Moreover, the

function can be also invoked by a self-update event. A more detailed explanation of this

module is done at [22].

Figure 5: High-level architecture of DSS-SIM

 17

Figure 6: UML diagram of physical module

3.1.1. NS-3 energy framework

Now that the main module of the project has been presented into more detail, it is important

to explain more accurately the NS-3. Its main functionalities and uses had already been

explained in the previous section, so now a revision of the already implemented modules

that concerns our case of study is going to be done. In [23] it is proposed an energy

framework for NS-3 that consisted of two modules: an energy source that represents the

power supply of a network node, and a device energy model, which implements the energy

consumption model. Later, in 2014, Tapparello, Ayatollahi and Heinzelam [24] extended

the energy framework, and its main contribution was the integration of an energy harvester,

which represents the collection of energy from external resources. Some other

contributions had been done to the framework during the following years, but none of them

changed the structure in a significant way. The current energy framework structure is

presented at Figure 7.

 18

Figure 7: NS-3 Energy framework

As it can be seen in Figure 7, and as it has been briefly explained, NS-3 Energy Framework

consists of three main modules. NS-3 API13 defines each of the modules as:

• The Energy Source represents the power supply of each node. Connecting

an energy source to a node where a device energy model had also been

connected, implies that the corresponding device draws power from the

source. On the other hand, connecting an energy source to a node where

an energy harvester implies that the corresponding harvester generates

power to the source. The basic functionality of the Energy Source is to

provide energy to devices of the node. When energy is completely drained

from the Energy Source, it notifies the devices of the node so that each

device can react to this event. This module has implemented a battery based

on [25], [26]. This model has not been taken into account in Section 2.3

because, despite it uses just 2 parameters, they are not easily obtainable.

• The Device Energy Model is the energy consumption model of a device

installed on a node. It is designed to be a state-based model where each

device is assumed to have several states, and each state is associated with

a power consumption value. Whenever the state of the device changes, the

corresponding Device Energy Model will notify the Energy Source of the new

current draw of the device. The Energy Source will then calculate the new

total current draw and update the remaining energy.

• The Energy Harvester represents the elements that collect energy from the

environment and recharge the Energy Source to which it is connected. TS.

To complete the explanation of the framework, each of the modules consists of the main

class, a helper that is used to install the module into a node, and containers that store every

module installed to a node (each node have associated one container for Energy Source

modules, another for Energy Harvester modules and another one for Device Models).

13 ns-3 Documentation

https://www.nsnam.org/doxygen/

 19

3.1.2. Solar cells

The single diode model presented at Section 2.2 is very complete, as it considers so many

parameters that describe the behaviour of a solar cells. However, the objective of this

module is implementing a generic model that allows implementing any kind of solar cell or

solar cells array. Because of that, the single diode model has been discarded and a custom

model (which is explained through this section) has been implemented.

Regarding the V-I characteristic of a solar cell at Figure 8(a), it can be approximated into

Figure 8(b).

Figure 8: Real vs proposed models for solar cells

As it can be seen, the proposed design simplifies the I-V characteristic in a way that there

is no need of a high demand of resources to perform the calculation, which leads to a

reduced simulation time. So, the behaviour of the solar cell is described with a non-linear

function, which consists of two lines with a discontinuity point at Maximum Power Point

(MPP). The equation that describes those lines is:

𝐼 =

{

𝐼𝑀𝐴𝑋 − 𝐼𝑆𝐶
𝑉𝑀𝐴𝑋

· 𝑉 + 𝐼𝑆𝐶 𝑓𝑜𝑟 0 < 𝑉 < 𝑉𝑀𝐴𝑋

−𝐼𝑀𝐴𝑋
𝑉𝑂𝐶 − 𝑉𝑀𝐴𝑋

· (𝑉 − 𝑉𝑀𝐴𝑋) + 𝐼𝑀𝐴𝑋 𝑓𝑜𝑟 𝑉𝑀𝐴𝑋 < 𝑉 < 𝑉𝑂𝐶

 (11)

Besides the need of implementing this function, there are also various approaches to

design the integration of this module to DSS-SIM. One approach could be done condidering

the solar cells as a DSS-SIM Model. This approach considers the solar as a DSS-SIM

(a) Real solar cell V-I characteristic (b) Proposed solar cell V-I characteristic

 20

Model object, what accomplishes the operation principle of the simulator. Despite that,

another approach can also be taken in consideration. As there already exists a native NS-

3 implementation for energy harvesters, this class can be inherited and aggregate the solar

into module into the solar cells into the Energy Framework environment. Another

consideration to take into account is that an interface that adapts Energy Framework to

DSS-SIM will be performed at Section 3.1.4, so there is no need to adapt twice the model.

 Finally, and as consequence of the exposed information, finally the next designed has

been adopted:

Figure 9: ns3::EnergyHarvester module with implemented solar cells

The results for the chosen design for modelling a solar cell will be exposed at Section 4.1.1

3.1.3. Battery

With all the presented battery models at Section 2.3, we need to build up a table to evaluate

all the requirements described at Section A.1.1. Table [] presents the requirements related

to battery model, reviewing if each requirement is accomplished for the proposed models.

This will allow us choosing a model based on which is more suitable for our case of study.

In addition to the requirements, in the table will also appear if the model is already

implemented in a NS-3 library.

Requirement ID
Shepherd
model

Copetti
model

MSM eMSM

Suitability + single
equation

X X

Easy obtainable
parameters

X X X X

Overcharging protection

NS-3 implementation
 X

Figure 10: Comparison between proposed battery models

Looking at the table, the model that best suits our case of study is the MSM. The main

characteristics of this model are that the charge/discharge equation is the same for both

states, and the only difference is the current direction, as it has been explained in Section

2.3.3. Another important characteristic is that it is already implemented in the NS-3 energy

frame, which simplifies the project as there is no need of re-implementing the class again.

 21

3.1.4. Energy subsystem interface

Once the NS-3 energy framework has been presented in Section 3.1.1, the designed solar

cells in Section 3.1.2, and the chosen battery model in Section 3.1.3, it is time to present

how they interact with each other and with the DSS-SIM.

As there is no relation between a NS-3 model and the DSS-SIM, an interface shall be

designed to include the energy framework from NS-3 into the DSS-SIM. This interface

consists of three small interfaces, each one for each of the modules implemented in the

energy framework. Figure 11 shows the designed interface:

Figure 11: UML diagram for designed EPS

As it can be seen, the interface preserves the operation of the energy framework as in [23],

[24] EnergySourceInterface has four input variables, two from EnergyHarvesterInterface

and two more from DeviceEnergyModelInterface, represent the provided and consumed

power and current from the harvesters and the devices. In a real application, the energy

source would have as input the harvested current, as it charges the source, and would

have as output the consumed energy, as it discharges the source. The designed

application does not work this way, as the energy source needs to know the consumption

of the model in order to calculate the remaining energy stored. Because of either the

harvesting current/power and the consuming current/power can change during a simulation,

the variables have been defined as inputs, so EnergySourceInterface is able to detect

changes on them.

This designed interface allows to interconnect Model created objects directly into the

interface. Despite that, and as all the EPS modules are inherited from NS-3, the final

implementation of the interface relies on EnergySource::UpdateEnergySource method,

which already retrieves the providers and consumers from the NS-3 containers where they

are stored. Because of that, functionality of the linked variables between interfaces is just

notifying the EnergySourceInterface when a current changes, so the interface can call

EnergySource::UpdateEnergySource method.

The obtained results for this approach are shown in Section 4.1.2.

 22

3.2. Satellite Contact Link Emulator

As it has been mentioned, this project has been developed from the ground. The first

approach done is presented in Figure 12.

Figure 12: SCE initial scheme

The main idea of this approach can be split into two main modules: the central PC and the

SDRs. The functionality of the central PC is detecting all the devices connected into the

network and propagating its orbits. Once the orbits are propagated, there is the need to

compute if there is a contact between the nodes, and then determine the attenuation,

Doppler shift, and delay between them. The operation of propagating the orbit and the

calculation of the parameters must be done every time step (to be determined), in order to

emulate the contacts “continuously”. Once all these parameters are calculated, this

computed matrix is passed via Ethernet to the SDRs. They receive this matrix and use it to

compute the existing communications channel between the other nodes. Once built the

communications channel, SDR can use the network to exchange data, which must be

constantly converted from analog to digital and vice versa. As it has been said, this thesis

would focus on the development of the first module, while [5] will focus on the development

of the second module.

3.2.1. Orbit propagation

 23

In Section 2.5, the current orbital models have been described. Among all of them, the

most complete ones are SGP4 and SGP8, as they take into consideration more

phenomena that affect the orbit trajectory. The most widely used is the SGP4, and the main

difference between SGP4 and SGP8 is the re-entry calculation (which is not relevant for

SCE), SGP4 will be the one implemented in this project. To implement its equations, we

have searched for already implemented SGP4 libraries or software. An interesting library

is Astrodynamics Software14, which is a software developed by Vallado using its SGP4

propagator described in [27], [28]. This library is coded in various programming languages,

such as C++. Despite the freedom to choose the programming language, there is not much

documentation, and functions are defined at a very low-level.

Another available software which implements that orbit propagator is Satellite Toolbox15.

This library is programmed in Julia, which is a high-level dynamic programming language.

The toolbox allows the simulation of different orbitals models such as J2, J4, and SGP4,

but its high-level code makes it simpler to use. Another feature to consider is the

performance of Julia as programming language, which is high despite being a dynamic

programming language [29]. Reviewing the toolbox API, an orbit can be propagated by

three functions:

• propagate!: The orbit will be propagated by t (s) from the orbit epoch, which

is defined in the initialization. This function returns a tuple with three values,

but only two are of our interest: the position vector, and the velocity vector

represented in the inertial reference frame.

• propagate_to_epoch!: The input argument is an epoch (Julian Day) to which

the orbit will be propagated. The returned elements are the same as in first

method,

• step!: The orbit is propagated by Δt (s) from the last propagation instant.

This function returns the same information as in the first described method.

Analyzed all the orbit determination functions, the last one is the most suitable for our use-

case, as determining the obit will be constantly done. Before the call to these functions, an

orbit propagator must be defined, and depending on the choice some other inputs will be

required. For our use case, the SGP4 will be the propagator, so it requires the Two-Line

elements (TLE) as inputs.

The election of this toolbox to achieve the orbit determination influences the whole project,

as it will be carried out in Julia programming language. Despite the advantages of Julia, it

has also some limitations associated, mainly related to the lack of maintained libraries.

3.2.2. ISL channels effects

The main goal of the project is emulating a ISL communication channel. To achieve that, it

will be modelled as functions of three parameters: attenuation, delay, and Doppler shift.

14 CelesTrak: Astrodynamics Software by David Vallado
15 Satellite Toolbox

https://celestrak.com/software/vallado-sw.php
https://juliaspace.github.io/SatelliteToolbox.jl/stable/

 24

As we want to emulate an ISL channel, the propagation medium is free space, so Free

Space Path Losses (FSPL) will be modelled [30]:

𝐹𝑆𝑃𝐿 = (

4𝜋𝑑

𝜆
)
2

= (
4𝜋𝑑𝑓

𝑐
)
2

 (12)

where:

• 𝑑 = Distance between satellites

• 𝜆 = Signal wavelength

• 𝑓 = Signal frequency

• 𝑐 = Speed of Light

Another formulation of equation (12) is expressing the result in decibels:

𝐹𝑆𝑃𝐿 (𝑑𝐵) = 10 · log10 (

4𝜋𝑑𝑓

𝑐
)
2

= 20 log10(𝑑) + 20 log10(𝑓) + 20 log10 (
4𝜋

𝑐
) (13)

The propagation delay uses this simple equation, considering the speed of light of speed

as propagation speed:

𝑡 =

𝑑

𝑐
 (14)

Finally, modelling the Doppler shift is done as explained at [31]:

∆𝑓1 =

𝑓𝑐
𝑐
· (|𝑣1⃗⃗⃗⃗ | · cos(𝜗1) − |𝑣2⃗⃗⃗⃗ | · cos(𝜗2)) (15)

where:

• ∆𝑓1 = Shift observed by device 1

• 𝑓𝑐 = Carrier frequency

• 𝑣1⃗⃗⃗⃗ = Velocity vector of device 1

• 𝑣2⃗⃗⃗⃗ = Velocity vector of device 2

• 𝜗1 = Angle formed by velocity of device 1 and 𝑟2⃗⃗ ⃗ − 𝑟1⃗⃗⃗

• 𝜗2 = Angle formed by velocity of device 2 and 𝑟2⃗⃗ ⃗ − 𝑟1⃗⃗⃗

 25

The implementation of this function has been done in Julia from scratch, as there are no

libraries that computes them. The validation of the implemented functions is done in

Section 4.2.1.

3.2.3. Control message structure

Now the way the channel parameters are obtained has been explained, is needed an

explanation of how these parameters are serialized into messages. The matrix formed by

all these parameters is presented next:

Figure 14: Parameters matrix

Rows of the matrix represent the receiver SDR parameters, while columns represent the

transmitters For example, row 1 contains all the parameters to emulate the communication

channel when SDR1 receives data. However, matrices are still not the final message

strcture.

To control this message strcuture, some serialization formats have been implemented, as

it figures out at requirements (Annex A.2.1). During the implemenatation of the serializers,

it was found out that its use was trivial, so finally embedded serializers like JSON or MsgPck

have finally not been implemented. Because of that, a custom architecture to control

messages has been adpoted. Basically, the implemented architecture consists on

retrieving each row of the matrices, following the order Attenuation->Doppler->Delay, and

putting them following the other inside a vector. The resulting vector results in:

𝑣2⃗⃗⃗⃗

𝜗1
𝜗2

𝑣1⃗⃗⃗⃗

Device 1 Device 2

𝑟1⃗⃗⃗ 𝑟2⃗⃗ ⃗

𝑟2⃗⃗ ⃗ − 𝑟1⃗⃗⃗

(b) Doppler matrix (a) Attenuation matrix (c) Delay matrix

Figure 13: Doppler shift parameters relation

 26

Figure 15: Custom message structure

3.2.4. Integration of central PC via Ethernet

After reviewing how the orbits determination is done, and how the parameters are obtained

and converted into messages, it is time to discuss how the PC will be integrated over

Ethernet. PC only sends control messages, but it never intervenes on the data flow

between the SDRs. To be sure that control messages do not intervene on data messages,

another design was proposed as it can be seen in Figure 16. That design relied on that

SDRs allowed two digital inputs, but the selected devices only have one, what made

discarding that design.

The connection between SDRs and the central PC is performed by sockets. The design

structure to control messages sets the PC as a server, and all the devices as clients. To

accomplish this approach, the SDRs must implement multithreading, as one thread must

be always listening for control data coming the central PC, because the parameters matrix

is constantly being updated and sent to the SDRs.

Figure 16: Sockets structure with multithreading

But the SDRs have a limited performance, which is even more limited when using just the

processor and not the FPGA, as it is explained at [5]. Because of that limitation,

multithreading will not be finally implemented, and that change of structure has a major

impact on the functionality of the system. The original and final workflow of the central PC

are shown next:

 27

As it can be seen, the original design included a continuous loop where orbit determination

and parameter calculations are performed. However, due to the problems associated to

multithreading, this approach was discarded, and a simpler design has been finally

implemented: it does not include the loop, and it only determines the orbits and the

parameters once. This is not a real SCE, but this design demonstrates the feasibility of the

project.

(a) Original central PC workflow (b) Final central PC workflow

Figure 17: Central PC workflows

 28

4. Tests and results

This section presents the tests and the obtained results for the implement designs. The

section is divided in two parts, Section 4.1 presents the performed test to validate the DSS-

SIM implementation, while Section 4.2 presents the validation methods for SCE.

4.1. DSS-SIM

To consider that implementation of a module is correct, unit tests for each implemented

module must be performed. This kind of tests verifies every function of the module. These

tests are done using Google Test (GTest)16.

4.1.1. Solar cells

Due to the complexity of current existing solar cells models, the final implemented model

has been designed especially for obtaining an approximation of the I-V characteristics. To

validate the design, two main tests have been performed:

1. A custom dataset of expected results has been built in order to check the function

that has been implemented. This dataset has been constructed using GeoGebra17,

by graphically describing the implemented function and obtaining a set of outputs

for some input points. This test was passed successfully.

2. Furthermore, another test has been performed to check the accuracy of the

implemented model. This has been done by comparing an already solar cell module

in MATLAB with the implemented. The results are shown in Figure 19, which

represents the curve fitting, and in Figure 18, which represents the error produced

by the model. As it can be seen, the error is not very high (< 0,5 A) before MPP, but

after that point, the error is considerable, as it may be up to 2,25 A.

16 GoogleTest
17 Calculadora gráfica - GeoGebra

https://github.com/google/googletest
https://www.geogebra.org/graphing?lang=es

 29

Figure 18: Solar cells fitting into real I-V curves

Figure 19: Solar cells model error

4.1.2. Energy subsystem interface

In order to validate the designed interface, two tests have been performed:

1. Linking each interface input/output variables to check if the links are constructed

correctly. Unfortunately, this test has not been passed because the variables are

not linked, which makes useless the designed interfaces. However, this does not

mean that the interface structure is wrong, it just means that the creation of the

variables is done wrong.

 30

2. A set of simulation scenarios (i.e., solar cell as harvester with a battery as energy

source) have been defined in order to test the designed interface structure.

However, this test has not been performed, as it depends on the first performed.

So, the interface structure has not been validated by any method.

Probably with some more time the linking issues would have been solved, allowing to test

the implemented interface structure.

4.2. Satellite Contact Link Emulator

Three main tests have been performed to ensure that the designed central PC works

correctly, which consist of:

1. Test the orbit propagation and the parameters calculation

2. Test the sending of parameters matrix to the local host

3. Test the integration of sockets, and a continuous orbit propagation and parameter

calculation into the SDRs.

4.2.1. Orbit determination and channel effects calculations

The first test to be performed has been the determination of the orbit, as well as the

calculations of attenuation, Doppler shift, and delay. To perform that, a set of TLEs are

obtained from Celestrak18, as they are needed to initiate the orbit propagator. The used

TLEs to perform this test can be found at Annex[]. The other parameters that define this

scenario are: 𝑓𝑐 = 860 𝑀𝐻𝑧 and 𝑁𝑑𝑒𝑣𝑖𝑐𝑒𝑠 = 4. The outputs matrices of the performed tests

are:

Figure 20: Contact and attenuation matrices

18 CelesTrak

(a) Contact matrix (b) Distance matrix

https://celestrak.com/

 31

Figure 21: Attenuation, Doppler, and delay matrices

The contact and the distances matrices are included into the results to verify the correct

functioning of the test, as if there is no contact (a ‘0’ in Figure 20(a)), none of the parameters

are calculated (only distances for verifying purposes). This also occurs for self-contact

positions, which are the values stored at the main diagonal. The distance matrix, Figure

20(b), is used to validate the calculation of attenuation.

The main parameters to validate are Doppler and attenuation, as the equations that

describe them are more complex, and because the orbit determination is done by a reliable

toolbox, so no validation is needed. Figure 21(a) shows the obtained attenuation matrix.

As the FSPL model is used to compute its parameters, MATLAB in-built function fspl()19

has been used to generate some graphics and compare them with obtained results:

Figure 22: FSPL MATLAB model

19 FSPL-MATLAB

(a) Attenuation matrix (b) Doppler matrix

(c) Delay matrix

https://es.mathworks.com/help/comm/ref/fspl.html

 32

The attenuation obtained in the MATLAB model is the same as the obtained from the

attenuation matrix, so it can be said that the implementation of the attenuation model has

been successful.

Figure 21(b) shows the Doppler shift obtained with the implemented model. Unfortunately,

a proper data set or in-built function has not been found to validate these results. However,

Table 1 at [31] presents some Doppler shifts for 600 km distance. Based on that table, the

obtained Doppler shift have the same order as the presented there. So, besides not making

a validation 100% accurate, it can be said that the implemented Doppler function does not

have a high deviation.

Finally, Figure 21: Attenuation, Doppler, and delay matricesFigure 21(c) presents the

obtained delay matrix. The delays are less than the delay produced by the network, so this

effect can not be represented with the designed architecture.

By reviewing the test carried out, it can be said that the determination of the orbit and the

calculation of the parameters are done properly.

4.2.2. Transmission of the channel effects parameters via Ethernet

The second performed test has been the implementation of a server-client architecture to

transmit the computed parameters to the SDRs. However, before implementing the

architecture in the SDR, the chosen sockets have been tested in order to ensure its correct

functioning. This test consists in the implementation of a server coded in Julia, that also

performs the orbit propagation and the calculation of the parameters, and sends them to

an implemented client in C (which is the programming language chosen for SDRs code

implementation [5]). The server is run at the PC, while the client runs at local host. When

the client receives the message, send an ACK to confirm the reception.

The emulation scenario is the same as the previous test, so the send parameters will be

the same presented at Figure 20. The results are:

 33

Figure 23: Server-Client parameters transmission

The matrix parameters are serialized as explained in Section 3.2.4. Parameters are

correctly transmitted with no error, as it can be checked by comparing transmitted and

received bytes. Both are 192 bytes, which correspond to the number of elements (3·N2 =

48 in this scenario with 4 devices), multiplied by the length of the variable which is used to

store the parameters. In this case, the parameters are stored in floats, whose length is 4

bytes. Moreover, the correct functioning can also be checked by the transmission of the

ACK by the client.

During this test, the external tools ZeroMQ and MsgPack tried to be implement. However,

it was not possible to integrate the tools, so their implementation was finally discarded due

to lack of time.

Attenuation

Delay

Doppler shift

(a) Server side (b) Client side

Attenuation

Delay

Doppler shift

 34

4.2.3. Software integration on SDRs

Last performed test has been the continuous transmission of the parameters over the

SDRs. It is the same test as the performed in Section 4.2.3, but the client runs at the SDRs

instead of local host. Two different architectures to perform the test have been

implemented:

Figure 24: Final testbeds

From the point of view of central PC, both testbeds are the same, because in Figure 24(b)

only one of the SDRs receive the transmitted parameters. The results of this test have been

that the connection between central PC and one SDR had been achieved. Despite that,

the test can be considered as unsuccessful because the continuous retransmission of the

parameters has not been achieved. The reason not achieving that operation is related to

multithreading issues explained during Section 3.2.4

(a) 1 SDR testbed (b) 2 SDR testbed

 35

5. Conclusions and future development:

This final degree thesis aimed to contribute to ISL simulation by extending the DSS-SIM

capabilities, by creating an EPS model that included battery models and solar cells model.

Moreover, it also aimed to develop an SCE due to the lack of cost-effective alternatives.

However, not all the proposed objectives have been met.

 Focusing on the development of the EPS, it was decided to adapt the NS-3 Energy

Framework to the simulation engine instead of designing an own EPS from scratch, as

most functionalities of the EPS were already implemented on it. This decision also

considered the NS-3 community, as the functionalities of the framework would probably be

extended by the in the future. However, the chosen framework does not support solar cells,

so they had to be implemented. The chosen model is a simplification of the real behaviour

of solar cells, but it is enough to represent the impact of ISL on an EPS.

Regarding the DSS-SIM list of objectives in Section 1.1, two of them have been achieved,

while the other one has not. The achieved objectives have been the implementation of

solar cells (1), which have been validated by testing, and the implementation of a battery

(2), which has been implemented by adapting the NS-3 Energy Framework. However, the

integration of both modules into an EPS (3) has been implemented, but its validation failed;

so, it can be considered as partially achieved. Probably, the validation would have been

done if there were more time to develop the project.

The future development of this project will be related to the validation of the designed

interface, and then design the descoped modules presented in Annex A.1.1, which are a

memory model and an Earth traffic model.

Reviewing the development done in terms of the SCE, the project was divided into three

small testbeds to gradually extend its functionalities. At the first testbed, the calculation of

the channel effects was performed. At the second one, the transmission of the channel

effects parameters to a localhost was performed. At the final testbed, these computed

parameters were transmitted to the SDR.

The defined objective of the SCE was the “creation of a prototype that allows

communications between two end-devices, connected into a network composed by

Software Defined Radios (SDR) and a central PC that performs the ISL emulation”. It can

be said that it has been achieved, as a basic prototype has been proved in Section 4.2.3.

However, this is a limited prototype, as no continuous transmission is performed by the

central PC.

The future development is related to achieving this continuous retransmission, which would

be the operation of a real SCE.

 36

Bibliography:

[1] C. Araguz, E. Bou-Balust, and E. Alarcón, “Applying autonomy to distributed satellite

systems: Trends, challenges, and future prospects”, doi: 10.1002/sys.21428.

[2] J. A. R. de Azua, A. Calveras, and A. Camps, “Internet of Satellites (IoSat): Analysis

of Network Models and Routing Protocol Requirements,” IEEE Access, vol. 6, pp.

20390–20411, Apr. 2018, doi: 10.1109/ACCESS.2018.2823983.

[3] J. A. Ruiz de Azúa, “Contribution to the development of autonomous satellite

communications networks : the internet of satellites,” Universitat Politècnica de

Catalunya, 2020. [Online]. Available: http://hdl.handle.net/2117/346653

[4] J. A. Ruiz-De-Azúa, C. Araguz, A. Calveras, E. Alarcón, and A. Camps, “Towards

an integral model-based simulator for autonomous earth observation satellite

networks,” International Geoscience and Remote Sensing Symposium (IGARSS),

vol. 2018-July, pp. 7403–7406, Oct. 2018, doi: 10.1109/IGARSS.2018.8517811.

[5] A. Dolz Puig, “Contributions to simulation and emulation of Inter-Satellite Links,”

Universitat Politècnica de Catalunya, Barcelona, 2022.

[6] B. Barritt, K. Bhasin, W. Eddy, and S. Matthews, “Unified approach to modeling &

simulation of space communication networks and systems: Integrating network

stack and astronautical physics simulators,” 2010 IEEE International Systems

Conference Proceedings, SysCon 2010, pp. 133–136, 2010, doi:

10.1109/SYSTEMS.2010.5482493.

[7] J. Puttonen, B. Herman, S. Rantanen, F. Laakso, and J. Kurjenniemi, “Satellite

Network Simulator 3 Workshop on Simulation for European Space Programmes

(SESP)”.

[8] H. ~J. Hovel, “Solar cells,” NASA STI/Recon Technical Report A, vol. 76, p. 20650,

Jan. 1975.

[9] R. Abbassi, A. Abbassi, M. Jemli, and S. Chebbi, “Identification of unknown

parameters of solar cell models: A comprehensive overview of available

approaches,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 453–474,

Jul. 2018, doi: 10.1016/J.RSER.2018.03.011.

[10] J. A. Gow, “Development of a model for photovoltaic arrays suitable for use in

simulation studies of solar energy conversion systems,” pp. 69–74, Nov. 2005, doi:

10.1049/CP:19960890.

[11] F. Ghani, G. Rosengarten, M. Duke, and J. K. Carson, “The numerical calculation of

single-diode solar-cell modelling parameters,” Renewable Energy, vol. 72, pp. 105–

112, Dec. 2014, doi: 10.1016/J.RENENE.2014.06.035.

[12] J. Meng, G. Luo, M. Ricco, M. Swierczynski, D. I. Stroe, and R. Teodorescu,

“Overview of Lithium-Ion Battery Modeling Methods for State-of-Charge Estimation

in Electrical Vehicles,” Applied Sciences 2018, Vol. 8, Page 659, vol. 8, no. 5, p. 659,

Apr. 2018, doi: 10.3390/APP8050659.

[13] C. M. Shepherd, “Design of Primary and Secondary Cells,” Journal of The

Electrochemical Society, vol. 112, no. 7, p. 657, 1965, doi: 10.1149/1.2423659.

 37

[14] O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, “A generic battery model for the

dynamic simulation of hybrid electric vehicles,” VPPC 2007 - Proceedings of the

2007 IEEE Vehicle Power and Propulsion Conference, pp. 284–289, 2007, doi:

10.1109/VPPC.2007.4544139.

[15] J. B. Copetti, E. Lorenzo, and F. Chenlo, “A general battery model for PV system

simulation,” Progress in Photovoltaics: Research and Applications, vol. 1, no. 4, pp.

283–292, Oct. 1993, doi: 10.1002/PIP.4670010405.

[16] O. Tremblay and L. A. Dessaint, “Experimental Validation of a Battery Dynamic

Model for EV Applications,” World Electric Vehicle Journal 2009, Vol. 3, Pages 289-

298, vol. 3, no. 2, pp. 289–298, Jun. 2009, doi: 10.3390/WEVJ3020289.

[17] H. C. Bui and L. Franck, “Cost effective emulation of geostationary satellite channels

by means of software-defined radio,” 2014 IEEE International Workshop on

Metrology for Aerospace, MetroAeroSpace 2014 - Proceedings, pp. 538–542, 2014,

doi: 10.1109/METROAEROSPACE.2014.6865984.

[18] C. Trivedi Harsh, S. Gandhi, and R. K. Singh, “Design and Development of Dynamic

Satellite Link Emulator with Experimental Validation,” 2021 12th International

Conference on Computing Communication and Networking Technologies, ICCCNT

2021, 2021, doi: 10.1109/ICCCNT51525.2021.9579962.

[19] R. Murawski, K. Bhasin, D. Bittner, A. Sweet, R. Coulter, and D. Schwab, “Hardware

and Software Integration to Support Real-Time Space-Link Emulation”.

[20] D. J. Fonte, J. Orbital Analyst, C. Sabol Orbital Analyst, D. A. Danielson, and M. W.

R Dyar, “Comparison of Orbit Propagators in the Research and Development

Goddard Trajectory Determination System (R & D GTDS). Part I: Simulated Data,”

1995.

[21] F. R. Hoots and R. L. Roehrich, “Models for Propagation of NORAD Element Sets,”

Dec. 1980.

[22] C. Araguz López, “In pursuit of autonomous distributed satellite systems,”

Universitat Politècnica de Catalunya, 2019. Accessed: Jun. 13, 2022. [Online].

Available: http://hdl.handle.net/2117/175253

[23] H. Wu, S. Nabar, and R. Poovendran, “An Energy Framework for the Network

Simulator 3 (ns-3),” 2011.

[24] C. Tapparello, H. Ayatollahi, and W. Heinzelman, “Extending the Energy Framework

for Network Simulator 3 (ns-3),” Jun. 2014, doi: 10.1145/2675683.2675685.

[25] D. N. Rakhmatov and S. B. K. Vrudhula, “An analytical high-level battery model for

use in energy management of portable electronic systems,” IEEE/ACM International

Conference on Computer-Aided Design, Digest of Technical Papers, pp. 488–493,

2001, doi: 10.1109/ICCAD.2001.968687.

[26] D. Rakhmatov, S. Vrudhula, and D. A. Wallach, “Battery lifetime prediction for

energy-aware computing,” Proceedings of the International Symposium on Low

Power Electronics and Design, Digest of Technical Papers, pp. 154–159, 2002, doi:

10.1109/LPE.2002.146729.

 38

[27] D. A. Vallado and W. D. McClain, Fundamentals of astrodynamics and applications.

Kluwer Academic Publishers, 2001. Accessed: Jun. 16, 2022. [Online]. Available:

https://link.springer.com/book/9780792369035

[28] D. A. Vallado, P. Crawford, R. Hujsak, and T. S. Kelso, “Revisiting spacetrack report

#3,” Collection of Technical Papers - AIAA/AAS Astrodynamics Specialist

Conference, 2006, vol. 3, pp. 1984–2071, 2006, doi: 10.2514/6.2006-6753.

[29] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach to

Numerical Computing,” http://dx.doi.org/10.1137/141000671, vol. 59, no. 1, pp. 65–

98, Feb. 2017, doi: 10.1137/141000671.

[30] J. G. Proakis and M. Salehi, Digital Communications Fifth Edition, 5th ed. McGraw-

Hill, 2007. Accessed: Jun. 16, 2022. [Online]. Available: www.mhhe.com

[31] P. Pedrosa, D. Castanheira, A. Silva, R. DInis, and A. Gameiro, “A State-Space

Approach for Tracking Doppler Shifts in Radio Inter-Satellite Links,” IEEE Access,

vol. 9, pp. 102378–102386, 2021, doi: 10.1109/ACCESS.2021.3098562.

[32] J. R. Spradley and W. L. Fang, “The role of electricity in sustainable development,”

Natural Resources Forum, vol. 21, no. 1, pp. 61–67, Feb. 1997, doi: 10.1111/J.1477-

8947.1997.TB00673.X.

 xii

Appendices

 xiii

A. Management

In this appendix an explanation of how the projects had been planned will be done. As both

projects can be considered independent from each other, they have also been planned

independently. Because of that, and as at the Gantt diagrams (Appendix A.1.3 and

Appendix A.2.3) show, every working week has been dedicated to one of the projects, in

order to achieve maximum performance in each one.

A.1. DSS-SIM

DSS-SIM project has been the most restricting one in terms of time. At the beginning of the

project, a memory model (aiming to extend DSS-SIM capabilities in terms of physical

modules), and a traffic model were proposed to implement. Despite reviewing the state of

the art of each, and beginning the design of them, it was decided that they will be descoped.

The reasons why this decision was made are explained at Appendix A.1.4. However, the

non-implemented modules are still present on Gantt diagrams and Work packages, in order

to demonstrate how the whole project was planned.

A.1.1. Requirements and specifications

Requirements define how the product will achieve the desired functionalities. The list of

requirements for this project are presented at Table 1, including its type (functional or

performance), and its validation method, which can be visual inspection of code (I), design

revision (R), analysis (A) or test (T).

Table 1: DSS-SIM requirements

ID Title Type Description
Verification
Method
[I/R/A/T]

BATTERY_010 Battery model F

The chosen battery model shall be able
to represent any type of battery
technology and just using a single
equation T

BATTERY_020
Battery model
inputs F

The inputs of the chosen model shall
be obtainable from the battery charge
and discharge curves or from the
manufacturer datasheet. R

BATTERY_030 Overcharging F

An additional protection method shall
be implemented in order to avoid the
overcharging of the battery if the
chosen battery model does not take it
into account. T

BATTERY_040 Battery database F

The output variable stored in the
database shall be the variation of
voltage during the simulation, the
variation of inputs currents during the
simulation T

 xiv

BATTERY_050
Battery
discharged F

A notification to all connected systems
shall be done when the battery is
completely discharged. When this
happen, the systems connected to the
battery must now that there is no more
available energy, so they shall turn off. T

BATTERY_060 Battery outputs F
The battery shall provide voltage and
current as outputs T

ENERGY_070 Energy model F

The energy model shall allow the user
to create events of a change of the
input current of the batteries whenever
he/she desires. T

ENERGY_080
Energy model
consumption F

It shall allow setting each state
consumption or taking into account
each module consumption T

ENERGY_SOURCE_090
Solar cells
models F

The chosen battery model shall be able
to represent any type of solar cells
technology T

ENERGY_SOURCE_100
Solar cells
efficiency F

The chosen model for solar cells shall
take into account the efficiency of the
cells. This efficiency will be set by the
user. T

ENERGY_SOURCE_110 Solar cell inputs F

The input of solar cells shall be either
come from the sun vectors or from an
input light irradiance set by the user T

ENERGY_SOURCE_120
Periodic
irradiance F

The user shall be able to set a period
for the irradiance, in order to simulate
eclipses. T

ENERGY_SOURCE_130
Solar cells
outputs F

The output of the solar cells model
shall be current T

ENERGY_SOURCE_140
Basic energy
source F

It shall implement a basic energy
source, where the input current will be
fixed and chosen by the user T

ENERGY_SOURCE_150
Energy source
inputs F

It shall be possible to choose between
the basic model source or the solar
cells T

A.1.2. Work packages description

Once reviewed the state of the art of each module, and before starting the design, thesis

advisors asked to plan how the project was going to be carried put. Because of that, the

project was divided into different Work packages:

Project: DSS Simulator WP ref.: WP1

Major constituent: Review of the state of the art Sheet 1 of 5

Brief description:

Review of current technologies used to achieve the

implementation of the objectives modules.

Planned start date:

31/01/2022

Planned end date:

01/02/2022

 xv

Start event: 31/01/2022

End event: 01/02/2022

Internal task WP1.1:

NS-3 + DSS-SIM: Review NS-3 API and DSS-SIM

documentation to learn how the simulator works.

Internal task WP1.2:

Solar cell: Research for already implemented solutions

to achieve the modelling of solar cells.

Internal task WP1.3:

Battery models: Review of existing battery models.

Internal task WP1.4:

Traffic model: Review of proposed models that describe

the Earth traffic model.

Deliverables:

-

Dates:

-

Project: DSS Simulator WP ref.: WP2

Major constituent: Design Sheet 2 of 5

Brief description:

Design the modules to implement.

Planned start date: 14/02/2022

Planned end date: 18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP2.1:

Module description: Define the final functionalities that

the module shall have.

Internal task WP2.2:

List of requirements: Define the requirements that the

implemented modules shall have.

Internal task WP2.3:

Deliverables:

Design report

which

includes

Dates:

21/03/2022

 xvi

Module high-level architecture: Define the final high-

level architecture of the module

Internal task WP2.4:

UML diagram: Define how all the components of a

module interacts with each other,

Internal task WP2.5:

Workflow diagram: Define a workflow diagram, where

must appear all the functionalities that the modules

must have.

Project: DSS Simulator WP ref.: WP3

Major constituent: Implementation Sheet 3 of 5

Brief description:

Implement the designed modules in WP2.

Planned start date:

14/02/2022

Planned end date:

18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP3.1:

Solar cells: Implement the solar cells module, based on

the designed made.

Internal task WP3.2:

Energy interface: Implement the energy interface

module, based on the designed made.

Internal task WP3.3:

Memory model: Implement the memory module, based

on the designed made.

Internal task WP3.4:

Solar cells: Implement the solar cells module, based on

the designed made.

Deliverables:

-

Dates:

-

 xvii

Project: DSS Simulator WP ref.: WP4

Major constituent: Testing Sheet 4 of 5

Brief description:

The models implemented at the previous Work

package.

Planned start date:

14/02/2022

Planned end date:

18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP4.1:

Solar cells: Test the solar cells implementation. Once

tests are passed successfully, a revision of coding

conventions shall be done before proceeding into pull-

request submission.

Internal task WP4.2:

Energy interface: Test the energy interface

implementation. Once tests are passed successfully, a

revision of coding conventions shall be done before

proceeding into pull-request submission.

Internal task WP4.3:

Memory model: Test the memory model

implementation. Once tests are passed successfully, a

revision of coding conventions shall be done before

proceeding into pull-request submission.

Internal task WP4.4:

Traffic model: Test the traffic model implementation.

Once tests are passed successfully, a revision of coding

conventions shall be done before proceeding into pull-

request submission.

Deliverables:

Pull-request

of each

module

Dates:

-

Project: DSS Simulator WP ref.: WP5

 xviii

Major constituent: Documentation Sheet 5 of 5

Brief description:

Generation of a final review which includes the design,

testing, and implementation of the modules.

Planned start date: 14/02/2022

Planned end date: 18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP5.1:

Generate documentation: Generation of a final review

which includes the design, testing, and implementation

of the modules.

Deliverables:

Final report

Dates:

21/06/2022

Figure 25: DSS-SIM work breakdown structure

 xix

A.1.3. Gantt diagrams

Figure 26: DSS-SIM initial Gantt diagram

Figure 27: DSS-SIM final Gantt diagram

A.1.4. Deviations from initial proposal

As it has been said, more modules were planned to be implemented at the beginning of

the thesis. However, and as it can be seen at Figure 27, they have not been finally

implemented. The main reason for not achieving the original objectives has been a too

optimistic estimation of the required time, as the complexity of those objectives was under-

estimated during planning. This error can also be seen at the implemented module, as they

not fulfil all the original objectives.

A.2. Satellite Contact Emulator

A.2.1. Requirements and specifications

The list of requirements for this project are presented at, including its type and its validation

method.

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the

state of the art

1.1 NS-3 + DSS-SIM 31/01/2022 01/02/2022 10 -

1.2 Solar cells 02/02/2022 02/02/2022 5 -

1.3 Battery models 03/03/2022 03/02/2022 5 -

1.4 Traffic model 04/02/2022 04/02/2022 5 -

2 Module design

2.1

Module

description 14/02/2022 14/02/2022 5 -

2.2

List of

requirements 15/02/2022 16/02/2022 10 -

2.3

High-level

architecture 17/02/2022 17/02/2022 5 -

2.4 UML diagram 17/02/2022 17/02/2022 5 -

2.5

Workflow

diagram 18/02/2022 18/02/2022 5 -

3 Implementation

3.1 Solar cells 28/02/2022 03/03/2022 25 -

3.2 Energy interface 17/03/2022 31/03/2022 35 -

3.3 Memory model 25/04/2022 28/04/2022 20 -

3.4 Traffic model 12/05/2022 24/05/2022 20 -

4 Testing

4.1 Solar cells testing 04/03/2022 16/03/2022 20 -

4.2 Energy interface 01/04/2022 14/04/2022 30 -

4.3 Memory model 29/04/2022 11/05/2022 20 -

4.4 Traffic model 25/05/2022 07/06/2022 20 -

5 Final review

5.1

Generate

docuemnattion 08/06/2022 21/06/2022 25 -

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 23 (6/6-10/6) WEEK 25 (20/6-24/6)WEEK 17 (25/4-29/4) WEEK 19 (9/5-13/5) WEEK 21 (23/5-27/5)WEEK 11 (14/3-18/3) WEEK 13 (28/3-1/4) WEEK 15 (11/4-15/4)WEEK 5 (31/1-4/2) WEEK 7 (14/2-18/2) WEEK 9 (28/2-4/3)WPS

NUMBER
TASK TITLE

START

DATE
DUE DATE

DURATION

(In hours)

PCT OF

TASK

COMPLETE

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the state

of the art

1.1 NS-3 + DSS-SIM 31/01/2022 01/02/2022 10 100%

1.2 Solar cells 02/02/2022 02/02/2022 5 100%

1.3 Battery models 03/03/2022 03/02/2022 5 100%

1.4 Traffic model 04/02/2022 04/02/2022 5 100%

2 Module design

2.1 Module description 14/02/2022 14/02/2022 5 100%

2.2 List of requirements 15/02/2022 16/02/2022 10 100%

2.3

High-level

architecture 17/02/2022 17/02/2022 5 100%

2.4 UML diagram 17/02/2022 17/02/2022 5 100%

2.5 Workflow diagram 18/02/2022 18/02/2022 5 100%

3 Implementation

3.1 Solar cells 28/02/2022 15/03/2022 40 100%

3.2 Energy interface 31/03/2022 29/04/2022 60 100%

3.3 Memory model - - - 0%

3.4 Traffic model - - - 0%

4 Testing

4.1 Solar cells testing 15/03/2022 30/03/2022 35 100%

4.2 Energy interface 09/05/2022 27/05/2022 50 100%

4.3 Memory model - - - 0%

4.4 Traffic model - - - 0%

5 Final review

5.1

Generate

docuemntation 08/06/2022 21/06/2022 30 100%

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 17 (25/4-29/4) WEEK 19 (9/5-13/5) WEEK 21 (23/5-27/5) WEEK 23 (6/6-10/6) WEEK 25 (20/6-24/6)WEEK 5 (31/1-4/2) WEEK 7 (14/2-18/2) WEEK 9 (28/2-4/3) WEEK 11 (14/3-18/3) WEEK 13 (28/3-1/4) WEEK 15 (11/4-15/4)
WPS NUMBER TASK TITLE START DATE DUE DATE

DURATION (In

days)

PCT OF TASK

COMPLETE

 xx

Table 2: SCE requirements

ID Name Type Description
Validation Method
[I, R, A, T]

PC_010 Effects F

It shall implement the
following effects:
Attenuation, Doppler shift
and delay. T

PC_020
Orbit
propagation F

It shall propagate the orbit
following a SGP4 orbit
propagators. T

PC_030
Real-time
calculations F

It shall compute the
desired channel effects in
real-time. T

PC_040 Mobility F

It shall propagate the orbit
/ position of the hardware
devices in real-time. T

PC_050
Scenario
Settings F

It shall enable to configure
the scenario to be
emulated. (Orbit and
channel settings) T

PC_060
Device
configuration F

It shall be to configure
devices as satellites or
ground-stations T

PC_070
Orbit
parameters F

It shall enable to assign an
orbit or geographic
coordinates to a connected
hardware T

PC_080 Earth rotation F

It shall be decided if the
GS should take into
account the rotation of the
Earth. T

PC_090 Plot Tools F

It shall provide tools to plot
and export the different
metrics. T

PC_100
DSS-SIM
compatibility F

It shall be able to interact
with the DSS-SIM engine. T

EMULATOR_010 Operation range F

It shall operate from 400
MHz to 60 GHz. T

EMULATOR_020 Input power F

It shall support input power
of at least 33 dBm (TBC)
look for those devices that
allow this power T

A.2.2. Work packages description

Project: SCE WP ref.: WP1

Major constituent: Review of the state of the art Sheet 1 of 5

 xxi

Brief description:

Review of current technologies used to achieve the

implementation of the desired functionalities.

Planned start date:

31/01/2022

Planned end date:

01/02/2022

Start event: 31/01/2022

End event: 01/02/2022

Internal task WP1.1:

Orbit propagator: Research for already implemented

libraries to achieve the propagation of the orbits.

Internal task WP1.2:

Determination of attenuation, Doppler, and delay:

Research for already implemented solutions to achieve

the determination of those parameters.

Internal task WP1.3:

ZeroMQ review: Review of the tool ZeroMQ, what it is

and how to use it.

Internal task WP1.4:

MsgPack review: Review of the tool MsgPck, what it is

and how to use it.

Deliverables:

-

Dates:

-

Project: SCE WP ref.: WP2

Major constituent: Design Sheet 2 of 5

Brief description:

Design the tests to implement.

Planned start date: 14/02/2022

Planned end date: 18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP2.1:

Module description: Define the final functionalities that

the SCE shall have.

Deliverables:

Design report

which

includes

Dates:

21/03/2022

 xxii

Internal task WP2.2:

List of requirements: Define the requirements that the

SCE shall have.

Internal task WP2.3:

Module high-level architecture: Define the final high-

level architecture of the SCE.

Internal task WP2.4:

Workflow diagram: Define a workflow diagram, where

must appear all the functionalities that the must SCE

have.

Project: SCE WP ref.: WP3

Major constituent: 1st test Sheet 3 of 5

Brief description:

Implement a first test to achieve some of the

functionalities and requirements designed in WP2.

Planned start date:

14/02/2022

Planned end date:

18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP3.1:

Orbit propagation: Achieve the propagation of the orbits

Internal task WP3.2:

Compute parameters: Apply the review methods to

compute attenuation, Doppler and delay.

Internal task WP3.3:

Connection with local host: Achieve the transmission of

the parameters between the PC and the local host.

Deliverables:

Report

Dates:

-

Project: SCE WP ref.: WP4

 xxiii

Major constituent: 2nd test Sheet 4 of 5

Brief description:

Extend the functionalities of the test performed in WP4.

Planned start date:

14/02/2022

Planned end date:

18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP4.1:

Connection PC-SDR: Achieve the connection via

sockets between the PC and the SDR. Moreover, the

transmission of the parameters must be also performed.

Internal task WP4.2:

Implementation of external tools: Implement the

reviewed tools in WP1, in order to extend the

functionalities of the network.

Deliverables:

Report

Dates:

-

Project: SCE WP ref.: WP5

Major constituent: Final test Sheet 5 of 5

Brief description:

Perform a final test to achieve the defined

requirements.

Planned start date: 14/02/2022

Planned end date: 18/02/2022

Start event: 14/02/2022

End event: 18/02/2022

Internal task WP5.1:

Final test: Perform a similar test than the done in WP4,

but continuous operation of orbit propagation and

parameters calculations is performed.

Deliverables:

Report

Dates:

21/06/2022

 xxiv

Figure 28: SCE work breakdown structure

A.2.3. Gantt diagrams

Figure 29: SCE initial Gantt diagram

Figure 30: SCE final Gantt diagram

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the

state of the art

1.1

Orbit

propagator 06/02/2022 07/02/2022 10 -

1.2

Determination

of parameters 08/02/2022 10/02/2022 10 -

1.3

ZeroMQ

review 11/02/2022 21/02/2022 10 -

1.4 MsgPck review 22/02/2022 23/02/2022 10 -

2 Design

2.1

Module

description 24/02/2022 24/02/2022 5 -

2.2

List of

requirements 25/02/2022 07/03/2022 10 -

2.3

High-level

architecture 08/03/2022 09/03/2022 10 -

2.5

Workflow

diagram 10/03/2022 21/03/2022 15 -

3 1st test

3.1

Orbit

propagation 22/03/2022 25/03/2022 20 -

3.2

Compute

parameters 04/04/2022 06/04/2022 15 -

3.3

Connection

with local host 07/04/2022 08/04/2022 10 -

4 2nd test

4.1

Connection PC-

SDR 18/04/2022 04/05/2022 35 -

4.2

Implementatio

n of external

tools 05/04/2022 20/05/2022 50 -

5 Final test

5.1

Continuous

operation of

test 2 30/05/2022 17/06/2022 60 -

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 18 (2/5-6/5) WEEK 20 (16/5-20/5) WEEK 22 (30/5-3/6) WEEK 24 (13/6-17/6)WEEK 6 (7/2-11/2) WEEK 8 (21/2-25/2) WEEK 10 (7/3-11/3) WEEK 12 (21/3-25/3) WEEK 14 (4/4-8/4) WEEK 16 (18/4-22/4)PCT OF

TASK

COMPLETE

WPS

NUMBER
TASK TITLE

START

DATE
DUE DATE

DURATION

(In hours)

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

1

Review of the

state of the art

1.1

Orbit

propagator 06/02/2022 07/02/2022 10 100%

1.2

Determination

of parameters 08/02/2022 10/02/2022 55 100%

1.3

ZeroMQ

review 11/02/2022 08/04/2022 10 100%

1.4 MsgPck review 22/02/2022 23/02/2022 10 100%

2 Design

2.1

Module

description 24/02/2022 24/02/2022 5 100%

2.2

List of

requirements 25/02/2022 07/03/2022 10 100%

2.3

High-level

architecture 08/03/2022 09/03/2022 10 100%

2.5

Workflow

diagram 10/03/2022 21/03/2022 15 100%

3 1st test

3.1

Orbit

propagation 18/04/2022 21/04/2022 35 100%

3.2

Compute

parameters 02/05/2022 16/05/2022 45 100%

3.3

Connection

with local host 17/05/2022 20/05/2022 20 100%

4 2nd test

4.1

Connection PC-

SDR 30/05/2022 17/06/2022 45 100%

4.2

Implementatio

n of external

tools - - - 0%

5 Final test

5.1

Continuous

operation of

test 2 - - - 0%

Holidays

On time

Delayed

Programmed

Deadline TFG

WEEK 18 (2/5-6/5) WEEK 20 (16/5-20/5) WEEK 22 (30/5-3/6) WEEK 24 (13/6-17/6)WEEK 6 (7/2-11/2) WEEK 8 (21/2-25/2) WEEK 10 (7/3-11/3) WEEK 12 (21/3-25/3) WEEK 14 (4/4-8/4) WEEK 16 (18/4-22/4)WPS

NUMBER
TASK TITLE

START

DATE
DUE DATE

DURATION

(In hours)

PCT OF

TASK

COMPLETE

 xxv

A.2.4. Deviations from initial proposal

The main delay of the project was the calculation of channel effects. After reviewing some

information, a first model of them was made, but later it was discarded when testing it.

Because of that, more information reviewing had to be done in order to compute the effects

accurately. Despite achieving the calculations at the end, the delay has provoked that the

continuous transmission of the parameters had not been done. If the calculations of the

channel had been done on time, it would have remained time to address the multithreading

issues and perform the continuous operation of the emulator.

 xxvi

B. Budget

As there are both projects, the budget will be computed separately. The costs that will be

considered are the prototyping cost and the designing cost, which is divided into personal

cost and used tools cost.

To compute the tool cost, the amortization of the is needed to be computed. This

amortization is computed by following formula:

𝐴 =

𝐶 − 𝑅 · 𝐶

𝐿
· 𝐻 (16)

Where:

• 𝐴 = Amortization (€)

• 𝐶 = Purchase cost (€)

• 𝑅 = Residual value (%)

• 𝐿 = Lifspan (h)

• 𝐻 = Tool usage (h)

However, residual value is null for software tools, as well as for long lifespan hardware
tools.

B.1. DSS-SIM

The main constituent of the project is a software, so it has non prototyping cost associated.

To compute the cost of the personal it is assumed an average salary of a junior engineer

of 24.949 €20 per year, which leads into a wage of 13,66 €/h, assuming an annual work of

1826 h, which is the maximum annual working hours at Spain21.

The main software tools used during the project were free software, but the documentation

has been done using Microsoft Office tools, which have a price of 69 €/year22. Also, a

computer has been needed which was provided by i2Cat. The computer itself was a Dell

Inspiron 15, whose price is 808,99 €23 for the version with an i7 processor and 16 GB RAM.

To sum up, the total designing cost has been of 4.287,43 €. The total cost calculation is

done in Table 3, Table 4, and Table 5¡Error! No se encuentra el origen de la referencia..

20 Junior Engineer wage (June, 2022)
21 Resolución de 13 de enero de 2022
22 Microsoft 365
23 Dell Inspiron 15

https://www.glassdoor.es/Salaries/junior-engineer-salary-SRCH_KO0,15.htm?countryRedirect=true
https://noticias.juridicas.com/base_datos/CCAA/717615-convenio-colectivo-del-sector-empresas-cosecheras-y-productoras-de-fruta-uva.html
https://www.microsoft.com/es-es/microsoft-365/buy/compare-all-microsoft-365-products
https://www.dell.com/es-es/shop/port%c3%a1tiles-de-dell/port%c3%a1til-inspiron-15/spd/inspiron-15-5510-laptop/cn51530

 xxvii

Table 3: DSS-SIM personal cost

Table 4: DSS-SIM hardware tools costs

Table 5: DSS-SIM software tools costs

B.2. Satellite Contact Emulator

The main constituent of this project is a prototype, so in this case prototyping costs must

be computed. As explained in Section 4.2, the final testbed consists of 2xADALM Pluto

SDRs24 and a switch25. A computer is also needed to perform the tests, but its use is

computed as tools costs.

Unlike DSS-SIM project, no paid software have been used to carry out this project.

Regarding personal costs, same salary is considered as in Annex B.1. However, more

hardware tools have been used to develop this project, including a signal generator and a

spectrum analyzer. Unfortunately, no response has been obtained when asked for

24 ADALM-PLUTO
25 Netgear GS108PE-300EUS

Activity Worked hours Total cost

WP1 25 h 341,50 €

WP2 30 h 409,80 €

WP3 100 h 1.366,00 €

WP4 85 h 1.161,10 €

WP5 30 h 409,80 €

Total 3.688,20 €

Personal cost

Activity Worked hours Hardware used Purchase cost Lifespan Hardware cost

WP1 25 h Computer 808,99 € 5 years 55,38 €

WP2 30 h Computer 808,99 € 5 years 66,46 €

WP3 100 h Computer 808,99 € 5 years 221,52 €

WP4 85 h Computer 808,99 € 5 years 188,29 €

WP5 30 h Computer 808,99 € 5 years 66,46 €

Total 598,10 €

Hardware costs

Activity Worked hours Service used Purchase cost Lifespan Service cost

WP1 25 h - Free - -

WP2 30 h Draw.io Free - -

WP3 100 h Visual Studio Code, GitHub Free - -

WP4 85 h Visual Studio Code, GitHub Free - -

WP5 30 h Microsoft Office 365 69,00 € 1 years 1,13 €

Total 1,13 €

Services costs

https://www.mouser.es/ProductDetail/Analog-Devices/ADALM-PLUTO?qs=xbccQsLEe0ffoUoi%2FjfIWA%3D%3D
https://www.amazon.es/Netgear-GS108PE-300EUS-gestionable-alimentaci%C3%B3n-53/dp/B00LMXBOG8?th=1

 xxviii

quotation, so a price of 4.75026 € per device has been suppose. The amortization of the

products is computed taking into account a total lifespan of 5 years.

The final cost of this project has been 546,83€ for prototyping the last testbed, while the
designing cost has been of 5.717,03 €. Th detailed calculations are performed in Table 6,
Table 7, and Table 8.

Table 6: SCE prototyping cost

Table 7: SCE hardware tools cost

Table 8: SCE personal cost

26 Spectrum Analyzers Rent - KWIPPED

Device Price Quantity Total cost

ADALM Pluto 226,42 € 2 452,84 €

Switch 93,99 € 1 93,99 €

Total 546,83 €

Prototyping cost

Activity Worked hours Hardware used Purchase cost (combined) Lifespan Hardware cost

WP1 75 h Computer 808,99 € 5 years 166,14 €

WP2 40 h Computer 808,99 € 5 years 88,61 €

WP3 100 h Computer 808,99 € 5 years 221,52 €

Computer, Spectrum Analyzer, Signal generator 808,99 € 5 years 121,84 €

WP4 55 h Spectrum Analyzer 4.750,00 € 5 years 715,36 €

Signal generator 4.750,00 € 5 years 715,36 €

Total 2.028,83 €

Hardware costs

Activity Worked hours Total cost

WP1 75 h 1.024,50 €

WP2 40 h 546,40 €

WP3 100 h 1.366,00 €

WP4 55 h 751,30 €

Total 3.688,20 €

Personal cost

https://www.kwipped.com/rentals/electronic-test/spectrum-analyzers/265

 xxix

C. Environmental report

Despite being a final degree thesis focused on software development, some hardware
tools have been used during its development, so it has generated some environmental
pollution. This pollution is estimated in CO2 emissions. However, not only hardware
devices cause those emissions, but software products also cause them, as the consumed
electricity also produces emissions [32].

To compute the CO2 some products have associated a carbon footprint report, where it is
specified the amount of pollution produced during its useful life, including the
manufacturing and shipping. This is the case of Dell laptops, which is the one used to
develop the project. Despite the exact model of the computer does not provide the carbon
footprint, a similar one has been used to estimate the impact.

The computer27 generates a total amount of 386 kg of CO2 emissions during its life, being
a 91% of them related to manufacturing, transportation, and end of life residues. Knowing
this information, the total impact of the computer can be assumed. However, more
hardware has been used during the development of the thesis, such as SDRs, switches,
signal generators and spectrum analyzers. Unfortunately, none of these products have an
associated carbon footprint, so their CO2 emissions will not be computed. However, it
must be kept in mind that they also generate pollution, as well as cloud applications such
as GitHub (where the code is stored).

The minimum is 353,44 kg of CO2 emission. The calculation is done in Table 9. Note that
the usage contribution considers the PC used hour, which are less than the total lifespan
hours.

Table 9: Computer CO2 emissions

27 Dell Inspiron 16 - Carbon footprint

Type Contribution Co2 Emissions

Manufacturing 87,20% 336,59

Usage 9,00% 2,57

Transport 3,30% 12,74

End of life residues 0,40% 1,54

TOTAL 353,44

Computer CO2 emissions

https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/dell-inspiron-16-5620-pcf-datasheet.pdf

