
Universitat Politècnica de Catalunya
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Abstract

Motivation:
Advances in genomics and sequencing technologies demand faster and more scalable
analysis methods that can process longer sequences with higher accuracy. However,
classical pairwise alignment methods, based on dynamic programming (DP), impose
impractical computational requirements to align long and noisy sequences like those
produced by PacBio, and Nanopore technologies. The recently proposed Wavefront
Alignment (WFA) algorithm paves the way for more efficient alignment tools, improving
time and memory complexity over previous methods. Notwithstanding the advantages
of the WFA algorithm, modern high performance computing (HPC) platforms rely on
accelerator-based architectures that exploit parallel computing resources to improve
over classical computing CPUs. Hence, a GPU-enabled implementation of the WFA
could exploit the hardware resources of modern GPUs and further accelerate sequence
alignment in current genome analysis pipelines.
Results:
This thesis presents two GPU-accelerated implementations based on the WFA for fast
pairwise DNA sequence alignment: eWFA-GPU and WFA-GPU. Our first proposal,
eWFA-GPU, computes the exact edit-distance alignment between two short sequences
(up to a few thousand bases), taking full advantage of the massive parallel capabilities
of modern GPUs. We propose a succinct representation of the alignment data that
successfully reduces the overall amount of memory required, allowing the exploitation
of the fast on-chip memory of a GPU. Our results show that eWFA-GPU outperforms
by 3-9× the edit-distance WFA implementation running on a 20 core machine. Com-
pared to other state-of-the-art tools computing the edit-distance, eWFA-GPU is up
to 265× faster than CPU tools and up to 56 times faster than other GPU-enabled
implementations. Our second contribution, the WFA-GPU tool, extends the work of
eWFA-GPU to compute the exact gap-affine distance (i.e., a more general alignment
problem) between arbitrary long sequences. In this work, we propose a CPU-GPU
co-design capable of performing inter and intra-sequence parallel alignment of multiple
sequences, combining a succinct WFA-data representation with an efficient GPU im-
plementation. As a result, we demonstrate that our implementation outperforms the
original WFA implementation between 1.5-7.7× times when computing the alignment
path, and between 2.6-16× when computing only the alignment score. Moreover, com-
pared to other state-of-the-art tools, the WFA-GPU is up to 26.7× faster than other
GPU implementations and up to four orders of magnitude faster than other CPU im-
plementations.
Availability:
The source code of both implementations is freely available under the MIT license at
https://github.com/quim0/eWFA-GPU and https://github.com/quim0/WFA-GPU

Contact: quim.aguado@estudiantat.upc.edu

1

https://github.com/quim0/eWFA-GPU
https://github.com/quim0/WFA-GPU
quim.aguado@estudiantat.upc.edu


Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Genomes and sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Exact pairwise alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Historical context . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Distance functions . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Alignment modes . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Edit distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Gap-affine distance . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The Smith-Waterman-Gotoh Algorithm . . . . . . . . . . . . . . . . . . 12
2.4 The Wavefront Alignment Algorithm . . . . . . . . . . . . . . . . . . . 13
2.5 Graphical Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Edit-distance WFA GPU alignment 17
3.1 WFA for the edit-distance . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Piggybacked alignment operations . . . . . . . . . . . . . . . . . 20
3.2.2 Bit-parallel packed sequence comparison . . . . . . . . . . . . . 23
3.2.3 Kernel specialisation . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Overlapping kernel computation with data transfers . . . . . . . 24

3.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Evaluation on other devices . . . . . . . . . . . . . . . . . . . . 26

3.4 Performance characterization . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Overall system profiling . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Alignment kernel performance profiling . . . . . . . . . . . . . . 30
3.4.3 Alignment kernel selection . . . . . . . . . . . . . . . . . . . . . 31

3.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Gap-affine WFA GPU algorithm 36
4.1 GPU parallel Wavefront Alignment . . . . . . . . . . . . . . . . . . . . 36
4.2 Alignment scheduling and GPU memory management . . . . . . . . . . 37
4.3 Piggybacked backtrace operations . . . . . . . . . . . . . . . . . . . . . 38
4.4 Bit-Parallel sequence comparison using packed DNA sequences . . . . . 40
4.5 CPU-GPU co-design system . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 41



4.6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6.2 Evaluation on simulated data . . . . . . . . . . . . . . . . . . . 42
4.6.3 Evaluation on real genomic data . . . . . . . . . . . . . . . . . . 44

5 Conclusions 46
5.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Source code and datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Financial and technical support . . . . . . . . . . . . . . . . . . . . . . 48

3



List of Figures

1 Edit and affine distance functions . . . . . . . . . . . . . . . . . . . . . 10
2 Global, semi-global, and local alignment modes . . . . . . . . . . . . . 11
3 Diagonal extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Mapping of CUDA resources into WFA work. . . . . . . . . . . . . . . 19
5 Wavefront alignment data layout . . . . . . . . . . . . . . . . . . . . . 21
6 Compute and data transfer overlapping . . . . . . . . . . . . . . . . . . 25
7 Edit-distance WFA-GPU performance bottlenecks . . . . . . . . . . . . 29
8 Parallel affine WFA GPU resource mapping . . . . . . . . . . . . . . . 37
9 Piggyback strategy for the affine WFA GPU implementation . . . . . . 39
10 WFA-GPU compared with the most widely-used tools . . . . . . . . . . 44

List of Tables

1 Edit-distance WFA GPU alignment times . . . . . . . . . . . . . . . . 27
6 Peak GCUPs of different edit-distance alignment tools . . . . . . . . . 33
2 Properties of devices used for evaluation. . . . . . . . . . . . . . . . . . 34
3 Edit-distance WFA GPU evaluated on different devices . . . . . . . . . 34
4 Edit-distance sepcialised kernels profiling metrics using different datasets 35
5 Edit-distance sepcialised kernels profiling metrics using a fixed dataset . 35
7 Real genomics datasets used for the affine WFA GPU implementation . 41
8 Results of affine WFA GPU impelemntation using simulated datasets . 43
9 Results of affine WFA GPU impelemntation using real datasets . . . . 43

4



1 Introduction

1.1 Motivation

Sequence alignment remains a fundamental problem in bioinformatics and computa-
tional biology. It is a critical component for methods like read mapping [1, 2, 3], de-
novo genome assembly [4, 5], variant detection [6, 7], multiple sequence alignment [8],
and many others [9, 10]. Due to the unprecedented data-production rates of mod-
ern DNA sequencing machines, the need for fast and accurate algorithms for sequence
analysis has become paramount. In the past years, computation has become a growing
fraction of genomics cost as sequence data production has increased drastically and
its costs have been significantly reduced [11]. Moreover, with ever-increasing sequence
lengths, third-generation sequencing technologies pose an additional challenge to these
algorithms and their ability to scale [12].

1.2 Goals and contributions

This thesis presents several contributions in the field of pairwise alignment. We adapt
the WFA algorithm to efficiently exploit GPU architectures, presenting two solutions: A
fast, specialized, edit-distance aligner for short sequences, and a more general gap-affine
aligner capable of working with very large sequences.

We first present the eWFA-GPU tool. eWFA-GPU is an implementation of the
WFA algorithm to exploit the computing power of modern GPUs adapted for the edit-
distance. This implementation has specialized kernels for relatively short sequences (i.e.
up to a few thousands nucleotides) with bounded errors (i.e. up to 128 errors), with an
algorithmic adaptation to reduce the memory consumption of the WFA, being able to
fit the algorithm working set on the GPU fast shared memory. Thanks to the bounded
error of the specialized kernels, this implementation can achieve massive computing
throughput.

Another implementation, WFA-GPU, is presented. This implements the WFA for
gap-affine distance function on GPUs. It is also a more general implementation, by not
having bounded sequences length or alignment error, so it can align noisy alignments of
very long sequences. An extended version of the previously mentioned memory reduc-
tion method is used. It also includes an efficient CPU-GPU co-design to fully exploit
heterogeneous systems, and a dynamic work scheduler that dispatches alignments to a
fixed number of CUDA blocks, to achieve lower memory consumption and better data
locality.

We characterize both implementations and compare them with other state-of-the-art
pairwise alignment tools.
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1.3 Thesis organization

This thesis is organized as follows: Chapter 2 gives background about genomics, se-
quencing, pairwise alignment, and GPUs. Chapter 3 explains in depth eWFA-GPU,
the edit-distance solution. It explains in depth the adaptation of the WFA for the
edit-distance, the design decisions for the GPU implementation, discusses the obtained
results, and reviews the solution performance bottlenecks. Chapter 4 explain the gap-
affine aligner, comparing it with widely used state-of-the-art tools on simulated and
real genomics datasets. Finally, Chapter 5 gives some conclusions, list the publications
produced during this work, and discusses future steps.
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2 Background

2.1 Genomes and sequencing

A genome is the complete set of genetic information of an organism, it consists of se-
quences of DNA, which are a chain of nucleotides. There are four nucleotides: Adeno-
sine, Guanine, Cytosine, and Thymidine, usually referred to as A, G, C, and T.

DNA is packed in chromosomes, which contain all or some genetic information of
an organism. For example, each human cell has 23 pairs of chromosomes. DNA chains
in chromosomes may contain different genes. A gene is a region linked with a specific
function and is considered the basic unit of inheritance, containing basic physical and
biological traits. Most genes encode a sequence of amino acids, which can eventually
form a protein.

Nowadays, there is no sequencing technology capable of producing a complete
genome from end to end. Current technological approaches are based on slicing the
DNA molecule into smaller pieces that can be read by modern sequencing machines.
Each DNA chunk is called a read. Currently, the most widely-spread sequencing tech-
nologies are the following:

• Short reads: Illumina is the main company producing short-read sequencing ma-
chines. Illumina machines deliver high-throughput and high-quality short reads
(i.e., circa 100-200bp long). This technology is also called second generation se-
quencing.

• Long reads: Also called third generation technologies, the main ones being the
ones from ONT and PacBio.

– Ultra-long reads: Oxford Nanopore Techonologies (ONT) produces very
long reads by passing the DNA molecule through a nano-scale pore and
measuring the changes in the electrical field around the pore. This technology
produces very long reads (up to millions of nucleotides per read) and has very
high throughput, but the generated data is noisy (between 2% and 10% of
error introduced by the sequencing machine).

– Accurate long reads: Sequencing machines from the company Pacific Bio-
sciences (PacBio) are able to produce HiFi reads (i.e., High Fidelity). HiFi
sequences are usually relatively long (of the order of tens of thousands of
nucleotides) and depict a high accuracy. Nevertheless, this technology has a
lower throughput than other technologies, as the high accuracy is achieved
by sequencing DNA fragments multiple times and computing the consensus
of all iterations.

The sequencing process starts with the acquisition of genomic data, which can come
from a real organism, a real dataset, or a simulated dataset.
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Sequencing machines produce different raw data depending on the technology used,
this data must be converted to a digital DNA alphabet for further analysis. This process
is called basecalling, and is the first computationally intensive step in the genomics
pipeline. Raw data can be in different forms depending on the sequencing technology
used, for example, it is electric current for Nanopore, or images for Illumina or PacBio.

When sequences are in digital DNA format, a quality control process decides which
nucleotides should be edited or removed to compensate for error during library prepara-
tion or the sequencing process. This step is also different for each sequencing technology,
as they have different error properties (e.g., Illumina has degraded quality on the end
of the reads). As a result, reads with the highest quality that each technology can offer
are obtained.

With the final reads available, the next step is read mapping: locating subsequences
of a reference genome that are similar to the sequencing read. As individuals do not have
exactly the same genome as the reference one (each genome is unique, with different
traits and mutations), and sequencing machines may have introduced some errors in
the read, we can not expect exact matches. Some edits must be allowed, this can
be done using the edit-distance (also known as Levenshtein distance) to speed up the
computational problem, or using the gap-affine distance to get a biologically more
relevant result. Although some research has proposed that using concave distance
functions may be more appropriate [13], it is not used in practice due to the increased
computational complexity and lack of consense [14].

Read mapping consists of four steps: indexing, seeding, pre-alignment filtering, and
sequence alignment. The first three steps are used to reduce the search space of the
problem, by removing alignments that are very unlikely to be relevant. This way, much
fewer data must be processed by the computationally expensive sequence alignment
step.

The final analysis step is called variant calling, which finds and analyses differences
between an individual and the reference genome, a good variant calling process must
be able to distinguish genetic variation from sequencing errors.

Each sequencing technology has different computational bottlenecks, but in all of
them, read mapping is one of the slowest steps of the pipeline, having between 2.4
and 341 times less throughput than the sequencing step [15]. In this work, we pursue
accelerating the read mapping step.

2.2 Exact pairwise alignment

2.2.1 Historical context

Saul Needleman and Christian Wunsch initially proposed the dynamic-programming
(DP) algorithm to find similarities between amino acid sequences of proteins [16]. They
use a similarity matrix that determines the matching score, and mismatching penalty of
each combination of elements in the sequences alphabet. They also use a gap penalty,
which is added to insertions and deletions. The algorithm proposed has O(n2m) time
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complexity, where n and m are the lengths of the sequences being aligned.
Several algorithms based on the Needleman-Wunsch were proposed [17, 18, 19],

reducing the time and space complexity of the algorithm to O(nm), and adapting it
to the edit-distance (introduced by Levenshtein on 1966 [20]). These algorithms with
quadratic complexity are usually called Needleman-Wunsch (NW) too, even though the
initial formulation had cubic time complexity.

In 1975, Hirschberg introduces a divide-and-conquer algorithm to compute the
Longest Common Subsequence (LCS) derived from the NW algorithm [21]. It maintains
the same O(nm) time complexity, but showing linear space complexity (from O(nm)
to O(min(n,m))). Future contributions have been inspired by this method to achieve
linear space in other distance functions or algorithm types [22, 23].

An algorithm to align two sequences using the gap-affine distance function in O(nm)
time and space was introduced by Gotoh [24] by improving the initial proposal by
Waterman, Smith, and Beyer [25]. This algorithm uses three matrices and is usually
referred to as Smith-Waterman-Gotoh (SWG) algorithm.

Another type of alignment algorithm was introduced by Ukkonen [26] and My-
ers [27], based on diagonal transitions. These methods exploit similarities between
sequences to speed up the alignment process, obtaining an O(ns) time complexity,
where s is the optimal alignment score. They only formulate these kinds of algorithms
for edit-distance and the LCS problem.

In 1988, Myers and Miller use Hirschberg’s ideas to propose an algorithm that
computes the gap-affine distance with linear memory space [22] while maintaining the
quadratic time complexity on the length of the sequences.

Recently, in 2021, Marco-Sola presented theWavefront Alignment algorithm (WFA) [28].
This proposal generalizes the diagonal transition idea to the gap-affine distance function,
obtaining a O(ns) time algorithm in O(s2) space complexity. Additionally, its formu-
lation makes it very suitable to exploit parallel or SIMD architectures. Furthermore,
in 2022, the same authors combine ideas from the WFA and Hirschberg algorithm to
decrease the memory complexity to O(s) while retaining the same O(ns) time complex-
ity [23]. This improved algorithm is known as the Bidirectional Wavefront Algorithm
(BiWFA).

2.2.2 Distance functions

A distance function is a metric used to model the differences between two sequences.
They define which transformations are valid (e.g., mismatch, insertion, deletion, trans-
position) and which costs are associated with each. Examples of commonly used dis-
tance functions are linear and gap functions.

A widely used linear distance function is the edit-distance [20]. Described in detail in
Section 2.2.4, this distance function accepts three transformations: mismatch, insertion,
and deletion. Each of those has a penalty of 1, while the match has a penalty of 0.
A variation of edit-distance is the Damerau–Levenshtein distance [29], which adds the
transposition of two adjacent characters as a valid operation.
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Figure 1: Penalties evolution with gap length on different distance functions.

The simplest gap-based distance function is the gap-linear function, which gives
a fixed value to each operation. This is similar to the edit-distance, but insertions,
deletions, and mismatches have independent costs that are different from 1.

A more biologically relevant distance function is gap-affine (explained in detail in
Section 2.2.5). In this case, starting an insertion or deletion have an initially associated
penalty (opening a gap), and extending an opened gap has a different penalty (extending
a gap). This way, longer contiguous gaps are preferred over smaller scattered gaps.

Another proposal for biological applications is the gap-log (convex) distance. In this
case, like gap-affine, there is a gap-open cost when opening an insertion or a deletion,
but the extension of an opened gap is now the logarithm of a fixed value. This way, a
penalty of a gap is O+ℓ× log(E), where O is the gap-open penalty, E is the gap-extend
penalty, and ℓ is the gap length.

General convex distance functions are significantly expensive to compute. For that,
2-pieces gap-affine was proposed [30]. It is presented as a lightweight compromise
between gap-affine and gap-log distances. It proposes having two different opening and
extension penalties. Using the right combination (i.e., one piece with a smaller opening
and bigger extension, and the other piece with a bigger opening and smaller extension),
2-pieces gap-affine can produce a good approximation to convex distance functions.

In Figure 1, the penalty increase produced by a gap depending on its length is
graphically shown. As explained before, 2-pieces gap-affine and convex distance func-
tions have similar behaviors.
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(a) Global alignment

(b) Semi-global alignment (ends-free)

(c) Local alignment

Figure 2: Global, semi-global and local alignment. The dotted lines indicate the sections in the
sequences taken into account to compute penalties.

2.2.3 Alignment modes

Different aligning modes can be used, an alignment mode determines which parts of
the sequences are taken into account when computing the score. The main ones are the
following:

• Global alignment : The goal is to align the sequences in their entire length; that
is, end-to-end.

• Semi-global alignment : Also called glocal alignment or end-free alignment. The
goal is to allow for gaps at the beginning and at the end of one sequence, without
introducing any penalty. It allows finding overlaps between sequences.

• Local alignment : The goal is to align two local sections of sequences minimizing
the penalty. The final alignment may not align the ends of both sequences, but a
small fragment with high similarity.

Figure 2 illustrates these concepts.

2.2.4 Edit distance

The edit-distance (also known as Levenshtein distance) is a metric used to measure sim-
ilarity between two sequences using insertion, deletion, and mismatch transformations.
Each transformation has a penalty of 1, while matching characters have a penalty of
0. Usually, the minimum edit-distance is solved by using dynamic-programming (DP)
methods [16][31][32].

Let P and Q be two sequences of length n and m, the edit-distance e between the
can be computed using Eq. 1 to fill the matrix M that contains n × m cells. The
minimum edit-distance is located at the cell Mn,m.
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Mi,j =



i if j = 0

j if i = 0

min


Mi−1,j−1 + δ(Pi, Qj)

Mi,j−1 + 1

Mi−1,j + 1

Otherwise

(1a)

δ(Pi, Qj) =

{
0 if Pi = Qj

1 if Pi ̸= Qj

(1b)

It is possible to trace back the operations that led to the edit-distance e. Starting
at Mn,m, we move to the cell that generated that penalty, repeating the operation until
we arrive at M0,0

2.2.5 Gap-affine distance

Gap-affine is a more biologically relevant distance function because it can benefit long
gaps over multiple small gaps. It transforms one sequence into the other using the
same operations as the edit-distance (i.e. mismatch, insertions, and deletions), but the
cost of opening a gap may not be the same as the cost of extending it. The penalties
are defined as: mismatch (x), gap-open (o), and gap-extend (e). This way, the cost of
a gap (contiguous chain of insertions or deletions) of length ℓ has a penalty score of
o+e×ℓ. Compared with the edit-distance, opening a gap is more costly than extending
an existing gap, this behavior can be graphically seen in Figure 1.

2.3 The Smith-Waterman-Gotoh Algorithm

The Smith-Waterman-Gotoh (SWG) is the classical algorithm to compute the gap-
affine distance between two sequences using dynamic programming. The algorithm
has three dynamic-programming matrices to compute the scores produced by different
operations: M for the mismatches, I for the gaps generated by insertions, and D for
the gaps generated by deletions. These matrices are filled according to the recurrence
shown in Eq. 2.

12



Ii,j = min

{
Mi,j−1 + o+ e Open insertion

Ii,j−1 + e Extend insertion

Di,j = min

{
Mi−1,j + o+ e Open deletion

Di−1,j + e Extend deletion

Mi,j = min


Ii,j Deletion

Di,j Insertion

Mi−1,j−1 + δ(Pi, Qj) Match/Mismatch

δ(Pi, Qj) =

{
0 if Pi = Qj

x if Pi ̸= Qj

(2)

The SWG algorithm has an interesting property that is key for the Wavefront Align-
ment algorithm (WFA) (Section 2.4). If the match score is set to 0, matching characters
along diagonals do not increase the score, as illustrated in Fig. 3. This is because di-
agonal values are monotonically increasing, as observed by [26, 27, 33]. This way, if
a match is found, the minimum possible score the cell Mi,j can have is Mi−1,j−1. If
Pi = Qj, then δ(Pi, Qj) always return 0, therefore, Mi,j will always be Mi−1,j−1 in that
case (Eq. 2).

2.4 The Wavefront Alignment Algorithm

The Wavefront Alignment algorithm (WFA) is a diagonal transition algorithm initially
formulated for global gap-affine distance [28]. The same algorithm can be applied to
other distance functions, and to the semi-global alignment mode. It can use any positive
integer value for the mismatch, gap-open, and gap-extend penalties, while the match
value is fixed to 0.

As diagonals in the DP matrix increase their score monotonically, the algorithm
only needs to store the position of the f.r. (furthest reaching) points in each diagonal
with a certain score. The algorithm defines the group containing the diagonal indexes
of the f.r. points with a certain score s as a Wavefront (W̃s). The goal is to obtain the

minimum distance s such as any point in W̃s reaches (n,m).
Each wavefront is represented as a vector of offsets centered at the diagonal 0 (k = 0).

Also note that, depending on the combinations of penalties, some scores may never
exist in the DP matrix, therefore, the wavefronts that represent the f.r. points at that
distance do not exist either.

Let M̃s, X̃s, Ĩs, and D̃s be the wavefront components that describe partial alignments
of score s that end with a match, mismatch, insertion, and deletion, respectively. In
general, we denote W̃ = {M̃, X̃, Ĩ, D̃} as the set of wavefront components. We define

W̃s,k as the farthest reaching point of score s on diagonal k. That is, W̃s,k denotes the

coordinate (h, v) = (W̃s,k, W̃s,k − k) in the DP matrix that is farthest in the diagonal k
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with score s. Thus, a wavefront W̃s,k is a vector containing the farthest reaching points
with score s on each diagonal k.

The algorithm iterates over all distances, starting from zero up to the optimal so-
lution (0 . . . s) using the recurrences of Eq. 3 (where LCP(v,w) is the longest common
prefix between two strings v and w).

As shown in Algorithm 1, the original authors and this work implements Eq. 3 by
using two main operators:

• Next operator: Generates the wavefront X̃s.

• Extend operator: Generates the wavefront M̃s by extending the diagonals until
a mismatch is found (i.e. computing the LCP of the diagonal starting at the point

indicated by X̃s,k). The implementation of this step is shown in Algorithm 2

Ĩs,k = max{M̃s−o−e,k−1 + 1, Ĩs−e,k−1 + 1}
D̃s,k = max{M̃s−o−e,k+1, D̃s−e,k+1}
X̃s,k = max{M̃s−x,k + 1, Ĩs,k, D̃s,k}
M̃s,k = X̃s,k + LCP (qX̃s,k−k...n−1, tX̃s,k...m−1)

(3)

Algorithm 1: WFA algorithm.
Input: q, t strings, {x, o, e} gap-affine penalties

Function WFA ALIGN(q, t, {x, o, e}) begin
// Initial conditions

M̃0,0 ← LCP (q0...n−1, t0...m−1)
s← 0

while M̃s,m−n ̸= m do
s← s+ 1

for k in diagonals(W̃s) do
// Compute wavefronts with score s (next operator)

Ĩs,k ← max{M̃s−o−e,k−1 + 1, Ĩs−e,k−1 + 1}
D̃s,k ← max{M̃s−o−e,k+1, D̃s−e,k+1}
X̃s,k ← max{M̃s−x,k + 1, Ĩs,k, D̃s,k}
// Compute LCP() using the extend operator

M̃s,k ← WFA EXTEND(q, t, X̃s,k)

14
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Figure 3: Alignment score is not increased until a mismatch is found.

Algorithm 2: WFA extend operator

Function WFA EXTEND(q, t, W̃s,k):
// Compute (v,h) position

v ← W̃s,k − k

h ← W̃s,k

// Compute diagonal matches

while qv = th do
v ← v + 1
h← h+ 1

W̃s,k ← W̃s,k + 1

2.5 Graphical Processing Units

GPUs are massively parallel devices containing multiple throughput-oriented processing
units called streaming multiprocessors (SMs). SMs execute hundreds of instructions in
parallel by using deep pipelines and aggressive fine-grained multithreading. SMs share
an L2 cache of a few MB and a global memory of several GB. Each SM is equipped with
multiple SIMD cores capable of performing in-order execution of instructions. At the
same time, each SM contains a register file (around 256KB) and a fast on-chip scratch-
pad memory that can be shared among threads (around 48KB per block of threads).
Since its release in 2006, CUDA has become the most popular programming model
for general-purpose GPU computing. CUDA comes with a software environment that
allows using a superset of C/C++, together with API calls, to program one or multiple
GPU devices. The CUDA programming model provides a heterogeneous environment
where the host code runs on the CPU, and the device code runs on a physically sepa-
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rate GPU. Both the host and device can maintain their own separate memory spaces;
meanwhile, CUDA supports data transfer between host and device memory. The CUDA
programming model defines a computation hierarchy formed by kernels, thread blocks,
warps, and threads:

• Kernel: Minimum unit of work sent from the CPU to the GPU. In short, a kernel
is a function executed in parallel on a GPU by a large number of different CUDA
threads.

• Thread block: Group of threads that are executed by one SM and cannot mi-
grate to other SMs (except during preemption or dynamic parallelism). Threads
within a block can cooperate via synchronization primitives, using registers, or
shared memory. Thread blocks are scheduled non-deterministically for indepen-
dent MIMD execution into SMs.

• Warp: A thread block is divided into batches of 32 threads, called warps, which
are the smallest scheduling unit.

• Thread: Minimum execution unit of programmed instructions in CUDA.

GPU applications must launch kernels composed of tens of thousands of threads to
simultaneously achieve high-performance executions. To that end, between 32 and 64
warps from one or multiple thread blocks are dynamically scheduled for execution in the
same SM. This mechanism, often known as H/Wmultithreading, is the primary latency-
hiding strategy on GPUs. Furthermore, a GPU executes warps of parallel threads using
a SIMT model (Single Instruction Multiple Threads), which allows each thread to access
its registers, load and store from divergent addresses, and follow divergent control flow
paths. However, GPU executions can suffer from performance limitations due to several
factors. In particular, when threads of a warp diverge due to conditional branches, only
a subset of the threads are active, which may reduce the overall performance. This
situation is known as divergence, and it is an inherent performance limitation of SIMD
architectures that must be addressed when designing the algorithm. Similarly, another
critical performance limitation can arise from sparse memory accesses. When executing
a SIMD load/store instruction, the memory addresses provided by all the threads in
the same warp coalesce (i.e., combine) to generate one or multiple memory block access
requests. GPU applications seek to coalesce data requests from global memory into a
few memory blocks to achieve efficient transfers. Access to global memory is relatively
slow compared to fast on-chip memory (i.e., shared memory and registers). For that
reason, it is always preferred that all threads in a CUDA block exploit local memory
whenever possible. However, the amount of shared memory and registers used by a
CUDA block limits the number of concurrent CUDA blocks running on the same SM
and may reduce the GPU occupancy (i.e., threads assigned per SM). Having a high
occupancy is important to hide the latency of memory accesses and compute operations.
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3 Edit-distance WFA GPU alignment

This section presents a GPU implementation of the WFA algorithm for the exact com-
putation of the edit-distance alignment between DNA sequences on GPUs. We propose
an algorithmic adaptation of the WFA algorithm to exploit the parallel computing capa-
bilities of GPU architectures. Moreover, we introduce a compact piggyback-encoding of
the intermediate wavefront data that allows computing each alignment using the GPU
fast on-chip memories. Furthermore, we propose using a bit-parallel strategy within the
WFA to accelerate DNA sequence comparisons on the GPU. As a result, we provide a
high-performance implementation based on specialized alignment kernels for input se-
quences with different alignment errors. Also, we implement a batch processing based
system that allows computing thousands of alignments in parallel, overlapping data
transfers with computations. We characterize the performance of our implementation
and present the different performance trade-offs of our solution. Ultimately, experi-
mental results demonstrate that our implementation outperforms other state-of-the-art
proposals.

3.1 WFA for the edit-distance

Even though it is originally formulated for the gap-affine distance function, the Wave-
front Alignment algorithm can be simplified to compute the edit-distance. Only one
wavefront per distance e is needed (W̃e) as the score of opening and extending a gap
is the same. The recurrences for the edit-distance WFA are shown on Eq. 4. As the
original WFA, there is an adapted next operator (Algorithm 4), and extend/LCP op-
erator (Algorithm 3). Algorithm 5 presents how the two operators work to compute
the alignment.

Algorithm 3: Edit-distance WFA ex-
tend() operator

Function extend (P, T, W̃e):
for k ← −e to e do

// Compute (v,h) position

v ← W̃e,k − k

h ← W̃e,k

// Compute diagonal matches

while Pv = Th do
v ← v + 1
h← h+ 1

W̃e,k ← W̃e,k + 1

Algorithm 4: Edit-distance WFA
computeNext() operator

Function computeNext (W̃e,W̃e+1):
klo ← −(e+ 1)
khi ← (e+ 1)
for k ← klo to khi do

W̃e+1,k ← max


W̃e,k−1 + 1

W̃e,k + 1

W̃e,k+1
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Algorithm 5: WFA edit-distance alignment

Function WFA align (q,t,W̃):
// Initial conditions

W̃0,0 ← 0

extend (q,t,W̃0)
// Compute wavefronts

e← 0

while W̃e,m−n ̸= m do

computeNext (W̃e,W̃e+1)
e← e+ 1

extend (q,t,W̃e)

δ = max


W̃e−1,k+1 (Deletion)

W̃e−1,k + 1 (Mismatch)

W̃e−1,k−1 + 1 (Insertion)


W̃e,k = δ + LCP (qδ−k...n−1, tδ...m−1) (4)

3.2 GPU implementation

Nowadays, analysing large-scale workloads requires aligning millions of relatively large
sequences to a given reference genome in a very short time. Previous research work
has shown the capabilities of modern GPUs to accelerate HPC applications in general
and alignment tools in particular. Specifically, parallel programming using CUDA can
be very effective to accelerate string matching algorithms, as shown in many recent
studies [34, 35, 36, 37, 38, 39]. This section presents our proposed method to accelerate
edit-distance sequence alignment using the WFA algorithm on GPU. In the following,
we present the main challenges to adapt the WFA algorithm to the CUDA programming
model and the contributions and trade-offs of the proposed implementation.

Mainly, there are two strategies to parallelize computations on GPU devices: coarse
and fine-grained. In the case of the WFA algorithm, a coarse-grained parallelization
strategy devotes each CUDA thread to compute a single alignment, whereas, in a fine-
grained strategy, multiple CUDA threads collaborate to align a single pair of sequences.

In a coarse-grained approach, each thread within the block requires its own pair of
sequences and wavefront data structures to perform the alignment. Due to the limited
size of the shared memory, using this approach forces storing data in global memory
space, resulting in long-latency memory accesses. Moreover, a coarse-grained strategy is
bound to generate divergence across threads’ execution within a block as each alignment
requires a different amount of computations. Ultimately, a coarse-grain approach faces
significant performance limitations that can largely reduce the overall execution speed
of the algorithm on a GPU.
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Figure 4: Mapping of CUDA resources into WFA work.

In contrast, a fine-grained strategy computes each alignment using a thread block.
This way, all threads within the block cooperatively work to compute one alignment
problem. This approach heavily reduces the consumption of shared memory and reg-
isters, allowing the storage of the wavefront structures in shared memory for several
thread blocks, which can operate concurrently in the same SM (increasing the oc-
cupancy). Furthermore, the computational pattern depicted by the WFA algorithm
allows to efficiently map the computations across the threads of a block (Figure 4).
We exploit the fact that computations on each diagonal are independent, allowing to
compute every element in each wavefront W̃e in parallel for both operations extend()
and computeNext(). Our solution exploits this parallelism approach where each thread
block computes a single alignment problem, and each thread within the block is as-
signed a different diagonal offset to compute. This way, we implement Algorithm 5 to
be computed using a thread block. For each wavefront W̃e (containing 2e + 1 diago-
nals), threads within the block extend independently each diagonal k offset (i.e., apply
operator extend()); and then, compute the corresponding k offset of the next wavefront

W̃e+1 (i.e., apply operator computeNext()).
Nevertheless, this approach faces some performance challenges of its own. Concern-
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ing the memory utilisation, wavefronts naturally become larger as the alignment error
e considered grows during the alignment computation (i.e., |W̃e| = 1 + 2e). It follows
that the overall number of wavefront elements required to align a pair of sequences with
alignment error e is given by

∑e
n=0 1 + 2n = (e+1)2. Note that all the wavefronts need

to be stored to retrieve the edit operations that originated the minimum edit-distance
alignment. Consequently, the memory requirements grow quadratically with the align-
ment error, posing a scalability limitation when storing the data on shared memory.
To palliate this limitation and exploit the benefits of using the fast shared memory, we
propose a succinct encoding scheme where the wavefronts store partial backtraces as
the alignment is computed (Section 3.2.1).

Depending on the alignment error between the input sequences, some alignments
may require more shared memory than others. Requesting memory for the worst-case
alignments will limit the number of concurrent thread blocks running on an SM and,
ultimately, the performance of the whole execution. For that reason, we implement three
different kernel specialisations, each one supporting a different maximum alignment
error. This way, our implementation can optimise the resource usage for each scenario
and achieve higher performance for cases where the alignment error is bounded (Section
3.2.3).

Moreover, the computation performed by the extend() operator can be largely ir-
regular as it depends on the number of matching characters on each diagonal. To
minimise thread divergence, we use a packed sequence encoding that allows performing
bit-parallel sequence comparisons (i.e., block-wise comparisons), reducing the chances
of divergence, and saving memory at the same time (see Section 3.2.2).

Additionally, modern GPUs allow simultaneous data transfers and kernel execution
to exploit parallelism further. In this way, the system minimises the impact of data
offloading from the host and overlaps transference with computation on the device.
Our solution implements an alignment batch system that allows multiple alignment
problems to be solved in parallel while performing data transfers HtoD and DtoH (see
Section 3.2.4).

3.2.1 Piggybacked alignment operations

As stated before, the WFA algorithm requires storing all the intermediate wavefront
vectors W̃e to be able to trace back the optimum alignment. As a result, the memory
consumption of the algorithm grows quadratically with the alignment error, posing
a severe constraint on the shared memory scalability. Here, we propose a succinct
encoding of the wavefronts based on storing partial backtraces as the alignment is
computed.

For an alignment of distance e, the WFA backtrace algorithm computes the optimum
alignment path from (n,m) to (0, 0), traversing all the wavefront vectors from W̃e to W̃0.

In particular, each step of the backtrace checks the adjacent offsets (e.g., from W̃e,k to

W̃e−1,k+1, W̃e−1,k, or W̃e−1,k−1) for the one that originated the minimum cost alignment
according to Eq. 4. In essence, each iteration in the backtrace process computes a step
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in the alignment path. To avoid storing explicitly all the wavefront offsets, we propose
to explicitly compute each backtrace step (i.e.,←,↖,↙) and store it together with the
previous steps in a backtrace vector. In this way, our implementation piggybacks the
partial backtraces B̃e,k from every offset W̃e,k to the beginning of the alignment W̃0,0.

As a result, our solution only needs to store two wavefronts (i.e., W̃e and W̃e+1) and

their partial backtraces B̃e and B̃e+1 for each step of the algorithm.
Figure 5 illustrates our proposal aligning the sequences T = ”GAATA” and P =

”GATTACA”. The example shows that the alignment process ends at W̃3,−2 (i.e., the

minimum edit-distance between P and T is e = 3). The alignment path from W̃3,−2 to

W̃0,0 is explicitly stored in the backtrace vector at B̃e,k = ”←↖↖ ”.

Figure 5: Wavefront data layout for aligning the sequences T = ”GAATA” and P = ”GATTACA”.

However, the backtrace vector does not contain the full alignment path but just
the edit operations (i.e., mismatches, insertions, and deletions) within the alignment.
To recover the full alignment path, we need to recover the matches between backtrace
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steps. To that purpose, the WFA’s extend() operator is used to compute stretches of
matches between successive backtrace steps. This strategy is shown in Algorithm 6.
Note that this algorithm only has to operate a single time over the backtrace vector of
the optimum alignment, and its time complexity is proportional to the alignment path.

Algorithm 6: Algorithm to retrieve the alignment from the backtrace vector

Function retrieveAlignment (P ,T ,W̃e,W̃e+1):
offset← 0
k ← 0
A← ∅
for i← 0 to e do

m← extend(P,T,k,offset)

A← A+’M’,
(m)
· · ·,’M’

op← B̃k[i]
switch op do

case ↖ do // Deletion
k ← k − 1
A← A+’D’

case ← do // Mismatch
offset← offset+ 1
A← A+’X’

case ↙ do // Insertion
offset← offset+ 1
k ← k + 1
A← A+’I’

m← extend(P,T,k,offset)

A← A+’M’,
(m)
· · ·,’M’

In practice, each backtrace step can be efficiently computed within the computeNext()
operation and encoded using two bits (i.e., 32 backtrace steps for each 64-bit word).
For that, each offset in Eq. 4 is piggybacked with its corresponding backtrace step on
its two less significant bits. After the maximum calculation, the resulting backtrace
step is appended to the backtrace vector at the end.

The succinct encoding of the backtrace steps leads to a significant reduction in
memory consumption. Using 32-bits offsets, the straightforward implementation of the
WFA algorithm requires (e + 1)2 × 4 bytes to align a pair of sequences of error e.
Using the proposed scheme, we reduce the required memory structures to the last two
computed wavefronts and their corresponding backtrace vectors (i.e., 4e × (4 + 2e/8)
bytes). For any sufficiently large e, this represents up to a 4x reduction in memory
usage. In practice, for moderately large e values, all the backtrace vectors can be
fitted in shared memory. Furthermore, to enable coalesced memory accesses and avoid

22



bank conflicts, we implement a struct-of-arrays approach, separating the wavefront
offsets from the backtrace vectors. As a result, subsequent backtrace vectors are stored
contiguously, enabling fast accesses when all threads in a warp access the backtrace
vectors.

3.2.2 Bit-parallel packed sequence comparison

As opposed to the computeNext() operation, the extend() operation can require per-
forming a different amount of computations per diagonal. Specifically, the inner loop
of Algorithm 3 iterates as many times as the total characters that match along each
diagonal. Thus, threads within a block executing this operation are bound to diverge,
which can diminish the overall performance.

To mitigate this problem, a packed sequence encoding that allows performing bit-
parallel sequence comparisons is used; that is, comparing blocks of characters, antici-
pating comparisons, and reducing the variability between diagonals. Taking advantage
of the reduced DNA alphabet (i.e., nucleotides A, C, G, and T), we propose to use
a 2bits-packed encoding scheme to increase the number of nucleotides compared per
block (i.e., 16 nucleotides per 32 bits word). Furthermore, packing and reducing the
size of the input sequences reduces the memory requirements on the shared memory
and, in turn, allows fitting more CUDA blocks in the same SM.

Nonetheless, this approach introduces the need of packing the input sequences be-
forehand. Sequence packing can be performed on the host CPU, or it can be offloaded
to the GPU. Although packing sequences on CPU would help to reduce the amount
of data that has to be transferred to the GPU, packing computations and memory
transfers can be overlapped with the alignment kernels (see Section 3.2.4). Not to men-
tion that current high-speed transfer technologies, such as NVLink, allow even faster
transfers from the host to the device. For instance, using a Nvidia V100, the offloading
of raw sequences and packing on the GPU turns out to be faster than packing the
sequences on the CPU and transferring the packed sequences.

Furthermore, sequence packing turns out to be a straightforward operation. Due to
the ASCII representation of the DNA letters (i.e., A=1000001, C=1000011, G=1000111,
T=1010100), it only requires to extract the bits on position 1 and 2 (unique bits in
every DNA letter encoded in the ASCII). This encoding has been extensively used in
multiple bioinformatics and genomics applications for packing DNA sequence databases
and genome references. However, our implementation does not assume the preprocess-
ing of the input sequences and allows using ASCII-encoded DNA sequences, packing
its content on the GPU.

Altogether, this approach accelerates the computations performed within the ex-
tend() kernel, decreasing the execution divergence between threads, and reducing the
number of instructions executed as well as the overall shared memory used. Compared
to the vanilla implementation, our experiments show that this strategy accelerates the
kernel execution time from 1.6× to 1.9× and reduces the number of executed instruc-
tions by a factor of 1.7× to 2.1×. Most importantly, it reduces between 1.2× and 1.7×
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the number of predicated-off threads in a warp (i.e., inactive threads when divergent
branches occur and threads take separated paths).

3.2.3 Kernel specialisation

Even though the introduction of the backtrace vectors (Section 3.2.1) reduces the mem-
ory requirements, shared memory usage is a major performance limitation when scaling
to larger alignment errors (see Section 3.4). In practice, our implementation uses bit-
vectors to store the backtrace vectors. For instance, using 64-bit words, we could store
up to 32 edit operations (i.e., each edit operation encoded using 2 bits). As the max-
imum alignment error increases, this approach requires longer bit-vectors. In turn,
large bit-vectors put additional pressure on the shared memory usage and hinder per-
formance. Therefore, it is important to bound the maximum alignment error for each
batch of sequences and use the most suitable configuration that minimises the memory
used by the backtrace vectors. On that account, three different kernels are implemented,
each one supporting a different maximum alignment error: 32, 64, and 128 errors. For
convenience, we call these kernels E32, E64, and E128, respectively. Each kernel re-
quires storing 64-bits, 128-bit, and 256-bits words per diagonal of the wavefront and
therefore require more shared memory as the alignment error supported increases. The
execution of these kernels display different performance tradeoffs discussed in Section
3.4. It is important to note that the length of the backtrace vector imposes a limit
on the maximum alignment error but not on the maximum sequence supported. For
instance, the E128 implementation could be used to align sequences of 1000 nucleotides
up to a 12.8% error rate or 10K long sequences up to a 1.28% error rate. For moderately
long sequences (i.e., between 100 and 1000 nucleotides), our implementation supports
alignments up to more than a 10% error rate. Nevertheless, it is possible to extend
this approach to higher error rates, using longer bit-vectors, at the cost of using more
memory and potential performance slowdowns (see Section 3.4).

3.2.4 Overlapping kernel computation with data transfers

At the system level, memory transfers from host to device take a significant percent-
age of the total execution time since all the sequences have to be stored in the device
to perform the alignment. Hiding transfer latencies with computation is key to avoid
performance slowdowns due to the offloading of computation to the GPU. The CUDA
programming model allows the creation of various streams to overlap computing ker-
nels with memory transfers. All operations within a CUDA stream are synchronous;
however, they can operate asynchronously between other running streams. As a result,
launching independent kernels and memory transfers to different CUDA streams can
effectively overlap computation with memory transfers.

To effectively implement this strategy, we created batches of sequences to be trans-
ferred and aligned in parallel. This way, compute kernels of a given batch can be
overlapped with computations and memory transfers from other batches. This concept
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Figure 6: Compute kernels of multiple batches are overlapped with data transfers (DthH and HtoD).

is illustrated in Figure 6.

3.3 Experimental evaluation

3.3.1 Experimental setup

We performed the experimental evaluation of our solution on an IBM Power9 processor
(20 cores with 4 threads per core), equipped with an NVIDIA V100 GPU with 16GB of
HBM2 memory connected through NVLink. We used synthetic datasets consisting of 10
million sequence pairs of lengths 150, 300, and 1000 nucleotides, and error rates of 2%,
5%, and 10%. For comparison, we selected representative and widely-used libraries and
tools from the state-of-the-art. We focused on those CPU and GPU implementations
that stand out in terms of performance or implement the latest algorithmic approaches.

For the CPU evaluation, we selected Edlib [40]; eWFA, an optimised CPU version
of the WFA [28] adapted to the edit-distance; BPM, a highly optimised version of the
BitParallel Myers algorithm [41]; and the O(ND) algorithm [27] used at the core of
the Linux diff-tool. All CPU executions were performed using 80 threads, as the best
performance (execution time) is obtained with this number of threads.

From the multiple GPU implementations available, we have selected those that
could be deployed, executed without faults, and had a competitive execution time.
In particular, we evaluated two methods from the widely-used NVBio [42] framework,
the WmCudaTile algorithm from xbitpar [43], and the highly optimised GASAL2 [44].
Note that NVBio implementation only computes the alignment distance, not producing
the complete alignment. Also, note that GASAL2 implements the gap-affine distance
and, consequently, requires more computation than edit-distance. Notwithstanding, its
inclusion in the benchmark is interesting for comparison purposes. We tuned GASAL2’s
gap-affine parameters to this end, so the library computes the edit-distance alignment.

3.3.2 Performance evaluation

In order to present a comprehensive evaluation of the different methods’ performance,
Table 1 shows the alignment time taken by each implementation for aligning 10 million
sequences of different lengths and error rates. We report total execution time, including
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transfer times (i.e., host to device and back) for the GPU executions. All CPU imple-
mentations were executed using 80 threads. Overall, results show that eWFA-GPU
executes 2.9-265× faster than the CPU-based methods and 8-56× faster than other
GPU implementations.

Compared to established CPU alignment algorithms, eWFA-GPU performs 24-102×
faster than the BPM algorithm and 19-100× faster than the O(ND) implementation.
Similarly, we obtain speedups of 31-265× compared to Edlib. Compared to the CPU
implementation of the eWFA, our GPU implementation delivers 3-9× times more per-
formance. In particular, the speedups obtained by eWFA-GPU increase with higher
alignment error rates as the wavefronts increase in size and more wavefront computation
can be done in parallel (see Section 3.4).

Regarding the GPU implementations, eWFA-GPU outperforms the widely-used
NVBio library, achieving speedups of 2.5-7.4× compared to NVBio’s classical DP-based
implementation and speedups of 4.5-7.2× compared to NVBio’s BPM. Compared to
wmCudaTile, eWFA-GPU achieves up to 12× speedup for short sequences (i.e., 150
nucleotides) and up to 56× speedup for longer sequences. Compared to GASAL2,
eWFA-GPU is 10-30× faster. In general, eWFA-GPU execution time scales better
with the sequence length, compared to the other GPU implementations. In particular,
the performance of DP-based methods, like GASAL2, is strongly limited by the se-
quence length. Ultimately, aligning long sequences with GASAL2 becomes impractical
(e.g., 1000 nucleotides or more). For a fair comparison, it is important to acknowledge
that GASAL2 implements the gap-affine distance, which is more complex and costly
than computing the edit-distance alignment.

Unsurprisingly, DP-based implementations (i.e., BPM, Edlib, NVBio, and GASAL2)
are insensitive to the alignment error, performing the same amount of computations to
align similar sequences as to align very divergent ones. As a result, the performance
of classical DP-based algorithms is heavily constrained by the sequence length and not
by the sequences homology. For that reason, some tools, like Edlib, implement heuris-
tics that prune the DP computations at the expense of potentially missing the optimal
alignment (note the reduction in the execution time when aligning sequences of 1000
nucleotides with e¿=5%). In contrast, error-sensitive methods, like the eWFA-GPU,
perform faster when aligning highly similar sequences, exploiting similarities between
the sequences to accelerate the alignment process. These methods are only constrained
by the nominal amount of differences between the sequences.

3.3.3 Evaluation on other devices

To offer a thorough analysis of the performance of the proposed solution, we also eval-
uated our implementation using two other GPU models: an Nvidia GeForce RTX 2080
Ti and an Nvidia GeForce RTX 3080. The computing capabilities of each device used
are listed in Table 2.

The results of the execution on other GPU devices are shown in Table 3. On
the GeForce RTX 2080 Ti, our implementation is bounded by the bandwidth between
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the CPU and the GPU. The device is connected through PCI Express, achieving a
bandwidth of 13GB/s on average. For instance, a batch of 10 million sequences of
1000 nucleotides represents 21GB of input data. Transferring all this data to the GPU
using the available peak bandwidth of 13GiB/s would take 1615 milliseconds. That is
about 87% of the total execution time. Even with the proposed strategy to overlap
computation with transfers, the overall execution time is bounded by data transfers to
the device.

In the case of the RTX 3080, most execution times are similar to the RTX 2080
results, as they have similar PCI Express bandwidth. Overall, computation kernels
are faster than memory transfers and can be effectively overlapped. However, when
aligning 1000 nucleotides long sequences with 10% of error, computation kernels take
more time than memory transfers, mainly due to the intensive usage of shared memory.
As shown in Table 2, the RTX 3080 has more shared memory available per SM than
other devices, allowing it to have more alignments per SM, and therefore, achieving
better performance than the RTX 2080.

3.4 Performance characterization

Our solution relies on exploiting the fast on-chip memory of the GPU to improve the
execution time. As explained in Section 3.2, our implementation stores the algorithm’s
working set (i.e., sequences, offsets, and backtraces) in shared memory, enabling fast
accesses at the expense of limiting the maximum amount of memory that each alignment
can use. As the shared memory required by the algorithm grows quadratically with the
alignment error, the memory consumed by the offsets and backtraces becomes the most
limiting factor. In turn, increasing the shared memory consumed per each alignment
limits the amount of thread blocks that can be executed concurrently on each SM.
Therefore, the maximum alignment error supported strongly constrains the number
of alignments that can be processed on each SM, thus limiting the performance and
scalability of the solution to high error rates. Due to these limitations, our solution
implements three specialised alignment kernels, each supporting a different maximum
number of errors per alignment (i.e., 32, 64, and 128 errors; see Section 3.2.3). In
this section we show that selecting the proper kernel, adjusted the maximum expected
alignment error, is crucial to obtain the best performance.
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3.4.1 Overall system profiling
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Figure 7: Application execution time broken down into transference time (i.e., host to device and
device to host), kernel execution time, and total execution time. Each execution was performed using
a dataset contain 1 million sequences of 1000 nucleotides with different error rates (i.e., 20, 35, 50, 75,
and 100 nominal errors).

Having three different specialised kernels, the performance of the executions change
depending on the alignment error between the sequences. Fig. 7 shows the application
execution times aligning datasets with different error rates, broken down into trans-
ference time (i.e., HtoD and DtoH), kernels execution time, and total execution time.
In the figure, each execution is represented using three columns: the first one showing
the aggregated time of the memory copies between CPU and GPU, the second one
showing the GPU kernels computation times, and the third one showing the overall ex-
ecution time. Note how transference times are being effectively overlapped with kernel
computations.

In particular, when aligning homologous sequences (e.g., 20 differences between the
sequences) with the E32 kernel, we observe that data transfers become the main perfor-
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mance bottleneck. In this case, the kernels’ computation can be effectively overlapped
with transfers (disregarding initialisation times), resulting in the fastest execution times.
As the number of differences increases, our implementation requires using kernels that
support higher error rates. In these scenarios (E64 and E128), the kernel’s computing
time overtakes the transfer time and becomes the main bottleneck. Most notably, the
alignment kernel time increases with higher error rates (specially, due to increments in
the size of the backtrace vectors from E64 to E128). As opposed, transfer, packing,
and backtrace times remain constant across all executions for all datasets used (i.e.,
sequences of 1000 nucleotides).

3.4.2 Alignment kernel performance profiling

Due to its significance, we focus on the alignment kernel to characterise its perfor-
mance and understand the GPU resource utilisation. Table 4 reports a summary of
the most relevant performance metrics of the execution of the three alignment kernel
specialisations.

Concerning memory utilisation, the alignment kernel only accesses global memory
at the beginning of the execution to copy the input sequences into shared memory. Due
to the limited usage of global memory, the effective throughput reached is very low
and rapidly decreases as the compute time grows for executions using higher alignment
error rates. For the rest of the execution, the alignment kernel only accesses the fast
on-chip shared memory.

Regarding computation on the GPU, in Table 4 we observe that all the alignment
kernel specialisations are consistently between 60% and 87.74% of the maximum SM
core instruction throughput (i.e., SM busy). Furthermore, a more detailed profiling
reveals that none of the SM computing pipelines is fully saturated. In particular, the
most used computing pipeline, the ALU pipeline, reaches a 87% utilisation on the E32
kernel, 80% on the E64 kernel, and 30% utilisation on the E128 kernel. Additionally,
note that the warp stall time (i.e., warp cycles per issued instruction) remains similar
across all executions.

These results reveal that the real limiting factor of these executions is not the lack
of computing resources on the GPU but the lack of computing parallelism. When
aligning up to higher alignment error rates, the wavefronts become larger; and thus, an
SM can exploit more threads to perform parallel computations. Accordingly, Table 4
shows that the average active threads per warp increases from 10.1 to 27.4 (out of a
maximum of 32 threads per warp) when executing kernels with higher alignment error
support. In turn, this increase in parallelism is reflected on the total warp instructions
executed. As the alignment error increases, we would expect an O(e2) increase in the
number of warp instructions. However, we observe a much gentle growth alleviated by
the utilisation of more threads per each warp.

Nevertheless, this increase in the number of active threads per warp does not imme-
diately translates into higher SM utilisation (i.e., SM busy). Note that higher alignment
error supporting kernels require more shared memory per block (Table 4). Therefore,

30



the maximum number of active warps per SM is bounded by the total shared memory
available and the shared memory required per block. Table 4 shows that the occupancy
drops from 31.86 to 19.94 when aligning sequences up to 100 nominal differences using
the E128 kernel. As a result, the SM busy and the computing pipelines usage is reduced
from 87.74% to 61.96%. Ultimately, as the profiling results show, the performance of
the alignment kernel execution attends to a trade-off between the shared memory re-
quired by each thread block and the maximum active threads per warp that can be
exploited to perform the alignment computations.

3.4.3 Alignment kernel selection

In order to maximise performance, it is crucial to select the alignment kernel that
minimises the shared memory consumption while being capable of aligning up to the
maximum error required by the input dataset. Table 5 presents the performance results
from using the three different kernel specialisation to align the same dataset. First, we
can observe how gradually each alignment kernel requires more shared memory (from
1.65KiB up to 18.61KiB per thread block), reducing the occupancy (from 31.50 down
to 4.88), and ultimately leading to longer kernel execution times (i.e., an slowdown of
11× from E32 to E128). When using the same dataset, all three executions compute
the same alignments and process wavefronts of the same length. Consequently, the
effective parallelism attained is the same for all the kernels (i.e., average active threads
per warp) and the executed warp instructions remains constant for all the executions
(ignoring overheads associated to operating with longer backtrace vectors). Hence,
the maximum amount of parallel computations depends on the maximum alignment
error, not on the alignment kernel specialisation. Considering that the three kernels
are capable of supporting the maximum alignment error of the dataset, selecting an
oversized kernel can lead to a slowdown up to 3.8×.

In conclusion, utilising the best fitted kernel (in terms of maximum alignment error
supported and shared memory consumed) is key for performance. Specially, for align-
ments with a small alignment error where the parallelism is rather limited and only a
few threads per block can effectively compute useful work in parallel. Balancing the
number of alignments per SM and the maximum number of active threads per block is
crucial for an efficient exploitation of the GPU computing resources.

3.5 Related work

Over the years, many efforts have been invested in finding new algorithms and more
efficient implementations to compute pairwise edit-distance alignments. In [45], Navarro
provides a comprehensive review of the most relevant algorithms and a performance
evaluation for different datasets and configurations. Most alignment algorithms can be
classified into four categories: DP-based, automaton, filters, and bit-parallel algorithms.
In practice, bit-parallel algorithms outperform the rest approaches. Most notably, these
include the BPM [41], the O(ND) [27], and the Wu-Manber (WM) [46] algorithms.
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Based on the most successful algorithmic approaches, many high-performance CPU
libraries have been presented. Some of them have become extensively used due to their
efficiency or versatility, most notably, Edlib [40], BGSA [47], and SeqAn [48]. Edlib is an
efficient CPU implementation of the BPM algorithm used within many Bioinformatics
tools. BGSA is also a very efficient implementation of the BPM algorithm, optimised
to exploit vectorization on multi-core and many-core CPUs. SeqAn is a sequence anal-
ysis library that implements a hybrid algorithm that combines the memory-efficient
Hirschberg’s algorithm [48] with the BPM algorithm.

Additionally, there have been many efforts to adapt and optimise these algorithms on
GPU devices. Most relevant proposals are based on DP, computing cells antidiagonal-
wise in parallel [49, 50, 51, 52, 53]. Meanwhile, some research efforts have been focused
on producing efficient CUDA implementation of the classical Needleman-Wunsch [54]
algorithm; other proposals have focused on novel organisations of the DP-matrix to
exploit efficiently the GPU resources [55]. In particular, in [56] and [57], the authors
propose an algorithm to reduce memory operations when computing the DP-matrix,
by using warp-shuffle instructions of current Nvidia GPU architectures.

Many other GPU-based methods have opted for accelerating bit-parallel algorithms.
In [43], the authors propose using warp-shuffle operations to simulate a 1024-bit machine
word, allowing to perform approximate string matching on long patterns. Also, in
[58], the authors exploit the Crochemore algorithm based on Suffix automaton for bit-
parallel alignment. Like [59], other proposals revisit the Shift-Or and Wu-Manber
algorithms, implementing them as inclusive-scan operations to allow multiple parallel
computations. Similarly, in [35] the authors propose a thread-cooperative version of the
BPM algorithm, achieving very high performance results in a Nvidia GTX 680 GPU.

Furthermore, there has been many proposal to optimise sequence alignment on field
programmable gate array devices (FPGA)[60, 61, 62, 63]. Most notable FPGA imple-
mentations exploit bit-parallel techniques and custom processing designs to accelerate
the computation of multiple alignments in parallel.

Comparing the performance of multiple methods implemented on different hardware
platforms can be a challenging task. For the purpose of making meaningful compar-
isons, it is common to compare the peak number of Giga Cells Updated Per Second
(GCUPS) achieved by each implementation. GCUPS is an established metric used to
measure the performance of alignment algorithms regardless of the target devices and
other implementation specifics. It represents the number of cells from the DP-matrix
computed per second by each implementation. GCUPS can be computed using Eq. 5
for an alignment of two sequences of length n and m, taking s seconds. This way, Table
6 compares peak GCUPS reported by the most relevant implementations. Note that the
eWFA-GPU algorithm doesn’t require computing the full DP-matrix to obtain the op-
timal alignment. Even so, for a fair comparison, we report the total number of CUPS
required to compute to obtain the same alignment as our implementation. Overall,
our solution obtains between 8-1790× more GCUPs than other GPU implementations.
Notwithstanding the inherent inaccuracies of this comparison method, it is significant
that eWFA-GPU produces 2 orders of magnitude more GCUPS than the most efficient
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methods found in the literature.

GCUPS =
nm

s
× 10−9 (5)

Table 6: Peak GCUPs of different edit-distance alignment tools as reported on their work.

Device Paper Year Device Model GCUPs

GPU

Ours 2022 Tesla V100 22075
[59] 2016 GeForce GTX TITAN X 2800
[35] 2014 Geforce GTX 680 2300
[42] 2014 Tesla K40c 1000
[64] 2013 Geforce GTX 480 470
[65] 2013 Geforce GTX 480 470
[43] 2016 Tesla V100 420
[44] 2019 Tesla V100 206
[56] 2015 GeForce GTX 980 65
[66] 2016 GeForce GTX 960 50
[58] 2015 GeForce GTX 580 28
[67] 2020 GeForce GTX TITAN Black 14
[38] 2018 Tesla K40c 14

CPU
[40] 2017 Intel i7-4710HQ 388
[68] 2016 Intel Xeon E5-2670 136
[48] 2008 3.2 GHz Intel Xeon 2

FPGA [61] 2019 Kintex KCU1500 161
Others [47] 2018 Intel Xeon Phi-7210 1895
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Table 2: Properties of devices used for evaluation.

V100 RTX 2080 Ti RTX 3080

Compute capability 7.0 7.5 8.6
Clock frequency (MHz) 877 1605 1710
SMs 80 68 68
Cores 5120 4352 8704
Maximum warps per SM 64 32 48
Register space per SM (KiB) 256 256 256
Shared memory per SM (KiB) 96 64 100
Global memory size (GiB) 16 11 10
L2 cache size (KiB) 6144 5632 5120
Host to Device bandwidth (GB/s) 67.1 13.2 12.3
Device to Host bandwidth (GB/s) 65.8 13.2 13.1

Table 3: Alignment time (in milliseconds) of 10 million alignments using eWFA-GPU on different
devices.

Average nucleotides Error V100 RTX 2080 Ti RTX 3080

2% 91 299 333
150 5% 95 298 332

10% 116 301 335

2% 144 555 585
300 5% 160 563 585

10% 252 565 590

2% 453 1864 1921
1000 5% 689 1878 1989

10% 1928 2900 2103
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Table 4: Performance metrics of each specialised alignment kernel on the Nvidia V100 GPU. Exe-
cutions were performed using datasets of 1M sequences of 1000 nucleotides. Each dataset contains
sequences that align with an average error rate of 2%, 5%, and 10% (i.e., 20, 50, and 100 nominal
differences). Each execution was performed using the minimum alignment error supporting kernel (i.e.,
E32, E64, E128)

Dataset:
1000nt
2% error

1000nt
5% error

1000nt
10% error

Alignment kernel executed E32 E64 E128
Maximum error supported 32 64 128
Threads per block. 32 64 128

Shared memory per block (KiB) 2.14 5.74 19.08
Occupancy (active warps per SM) 31.86 31.87 19.94

Kernel time (ms) 17.27 45.19 190.36
SM busy (%) 87.74 82.50 61.96
Global memory throughput (GiB/s) 35.86 14.05 3.46

Executed warp instructions (x109) 6.31 15.47 48.82
Avg. active threads per warp 10.10 21.36 27.40
Warp cycles per issued instruction 9.08 9.66 8.04

Table 5: Performance metrics of each specialised alignment kernel on the Nvidia V100 GPU. All
executions were performed using 32 threads per block, aligning a dataset of 1M sequences of 150
nucleotides with an average error rate of 5% (i.e., average of 7.5 nominal differences). Each execution
was performed using a different alignment kernel; that is, E32, E64, and E128.

Dataset: 150 nucleotides
(5% alignment error)

Kernel
E32

Kernel
E64

Kernel
E128

Maximum error supported 32 64 128

Shared memory per block (KiB) 1.65 5.27 18.61
Occupancy (active warps per SM) 31.50 17.63 4.88

Kernel time (ms) 3.93 4.91 14.96
SM busy (%) 92.95 79.37 28.43
Global memory throughput (GiB/s) 37.15 33.00 12.43

Executed warp instructions (x109) 1.51 1.61 1.76
Avg. active threads per warp 10.48 11.34 13.03
Warp cycles per issued instruction 8.46 5.54 4.28
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4 Gap-affine WFA GPU algorithm

4.1 GPU parallel Wavefront Alignment

The WFA algorithm depicts simple computational patterns when computing Eq. 3.
To compute any wavefront W̃s, we only require wavefronts W̃s−o−e, W̃s−e, and W̃s−x.

Moreover, note that each diagonal offset W̃s,k can be computed independently. There-
fore, the WFA allows computing each wavefront diagonal in parallel, which makes the
algorithm perfectly suited to the GPU execution model.

Algorithm 7: WFA-GPU parallel algorithm.
Input: q, t strings, {x, o, e} gap-affine penalties

Function WFAGPU ALIGN KERNEL(q, t, {x, o, e}) begin
// Initial conditions

M̃0,0 ← LCP (q0...n−1, t0...m−1)
s← 0

while M̃s,m−n ̸= m do
s← s+ 1

parallel foreach thread k in diagonals(W̃s) do
// Compute wavefronts with score s

Ĩs,k ← max{M̃s−o−e,k−1 + 1, Ĩs−e,k−1 + 1}
D̃s,k ← max{M̃s−o−e,k+1, D̃s−e,k+1}
X̃s,k ← max{M̃s−x,k + 1, Ĩs,k, D̃s,k}
// Compute LCP()

M̃s,k ← X̃s,k + LCP (qX̃s,k−k...n−1, tX̃s,k...m−1)

Synchronize threads()

Algorithm 7 presents the high-level pseudocode of the WFA-GPU. Basically, our
solution offloads the computation of multiple WFA alignments to the GPU. For each
alignment, multiple threads in the same block cooperate to compute consecutive wave-
fronts until the optimal alignment is found. In particular, for every score s and diagonal
k, each GPU thread in the block computes W̃s,k independently. After every diagonal

of wavefronts W̃s is computed, GPU threads synchronize and proceed to compute the
following wavefronts W̃s+1. This way, the WFA-GPU implements a combined inter-
sequence and intra-sequence parallelization strategy.

Fig. 8 illustrates in detail the parallel computation of a given wavefront s using
multiple GPU threads (i.e., intra-sequence parallelization). At the same time, other
alignments are computed by different thread blocks on the GPU (i.e., inter-sequence
parallelization). Each GPU thread undertakes the computation of a diagonal offset
independently applying Eq. 3 (using the previously computed wavefronts and the LCP()
function). Notably, as the algorithm progresses, wavefronts become increasingly larger
and the potential parallelism of the problem grows. For large and noisy sequences,
the problem becomes embarrassingly parallel and perfectly suited for massively parallel
devices like modern GPUs.
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Figure 8: Detail of the parallel computation of a given wavefront s using multiple GPU threads.
At the same time, other alignments are computed by different thread blocks on the GPU. This figure
shows how each wavefront diagonal can be computed independently using a single GPU thread.

Nevertheless, porting the WFA algorithm to GPU architectures presents some per-
formance challenges of its own. First, as the alignment error increases, the memory
requirements grow quadratically, limiting the scalability of the method when aligning
tens of thousands of sequences in parallel. In Sections 4.2 and 4.3, we propose solutions
to perform a better memory management in the GPU and reduce the overall memory
usage of the algorithm, respectively. Second, when aligning large and noisy sequences,
the amount of computations to compute successive wavefronts becomes a limiting factor.
In Section 4.4, we present a strategy to accelerate the LCP() computation. Finally, in
Section 4.5, we present an overview of the CPU-GPU co-design implemented in WFA-
GPU. Our co-design allows overlapping computations with data transfers (i.e., from
CPU host to GPU device and vice versa) and performing computations in the CPU
meanwhile the GPU device is busy.

4.2 Alignment scheduling and GPU memory management

A simple and naive implementation would spawn a thread block per each WFA align-
ment offloaded to the GPU. However, each WFA alignment kernel requires GPU mem-
ory to store all the intermediate wavefronts. It is not feasible to reserve GPU memory
for every alignment in advance when processing tens of thousands of sequence align-
ments. However, it is possible to request an upper bound of the total WFA memory
required for a number of alignments that can be processed in parallel in the GPU at
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the same time.
Thus, our implementation creates a pool of outstanding WFA alignments and allo-

cates memory for as many alignment blocks as can be processed simultaneously on the
GPU. Then, an alignment scheduler assigns WFA alignments to thread blocks. When-
ever a thread block finishes an alignment, it requests another from the alignment pool
until all alignments offloaded to the GPU have been completed.

Nevertheless, having to allocate GPU memory beforehand forces to estimate the
maximum memory required by each WFA alignment in advance. For that, our method
establishes a configurable upper bound on the required memory based on a conservative
estimation of the maximum error rate (i.e., 10% of sequence length by default on our
tool). Nonetheless, some alignments may override initial estimations and require more
memory. For those cases, the WFA-GPU implements a rescue mechanism that returns
the alignment to the CPU to be computed using the original WFA algorithm. In
practice, when aligning long and noisy sequences (like those produced by PacBio or
Nanopore Technologies) the amount of rescued alignments is below 0.2%. Furthermore,
the computation of the rescued alignments can be performed in the host CPU meanwhile
the GPU is computing other alignments, as described in Section 4.5.

Although modern GPUs are equipped with large DRAM memories, accesses to
global memory are relatively slow and can potentially reduce the performance of GPU
applications. To take advantage of fast on-chip memories and minimize the latency of
global memory accesses in the GPU, our implementation allocates the central diagonals
of wavefronts in the shared memory. This way, the WFA-GPU benefits from fast on-chip
memory accesses to the elements of the central diagonals.

4.3 Piggybacked backtrace operations

For an alignment with optimal score s, the WFA algorithm requires storing all the
intermediate wavefronts up to W̃s to be able to retrieve the alignment path (a.k.a.
CIGAR) during the final backtrace step. However, alignments with a large nominal
number of errors require non-negligible amount of memory. That is, an upper-bound
of 3

∑s
i=0 1 + 2i = 3(s + 1)2 wavefronts offsets, consuming up to 12(s + 1)2 Bytes per

alignment. These memory requirements become impractical when aligning multiple
noisy sequences in parallel, even for modern GPUs equipped with large amounts of
global memory.

To reduce the memory consumption, our method piggybacks the backtrace oper-
ations (i.e., X, I, and D) to the wavefronts as they are being computed. Using only
two bits, each backtrace operation is encoded in a bitmap stored for every diagonal
of the wavefront. Therefore, for a given score s and diagonal k, our method stores a
bitmap with the alignment operations required to reach W̃s,k. It follows that the bitmap

associated to M̃s,m−n contains the optimal alignment’s backtrace.
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Figure 9: Illustration of the piggybacked backtrace strategy and data-layout organization. From
left to right of the figure, we show the source wavefronts (M̃s−x, M̃s−o−e, Ĩs−e, and D̃s−e) and how
they are combined to generated wavefronts at score s. Each diagonal has a BT-block and an offset
(shaded in grey). At the center, we detail the process of computing Eq. 3 for a single diagonal and the
piggyback of the corresponding backtrace operation. At the bottom, the global BT-buffer is depicted
where each slot represents a BT-block (displayed vertically for better readability of the figure).

In practice, our implementation uses 32-bit bitmap words to store backtrace op-
erations (i.e., BT-block). Once a BT-block is full and cannot encode more backtrace
operations, it is offloaded to a global backtrace buffer (i.e., BT-buffer). Each BT-block
stores an index to the previous BT-block in the chain that allows retrieving the complete
alignment backtrace associated with any W̃s,k offset. A complete alignment backtrace
is recovered by traversing the linked BT-blocks starting from the last one.

The computation of each backtrace operation is coupled with the computation per-
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formed in Algorithm 7 to generate each diagonal offset. For that, the corresponding
backtrace operation (i.e., X, I, and D) is piggybacked to each source wavefront off-

set (M̃s−o−e,k−1, M̃s−o−e,k+1, Ĩs−e,k−1, D̃s−e,k+1, and M̃s−x,k) in Eq. 3, using the two
less significant bits. Then, as a byproduct of the computation of the maximum offset,
the corresponding backtrace operation is found piggybacked. In practice, this strat-
egy turns out to be computationally lightweight. Fig. 9 illustrates the piggybacked
backtrace strategy and its data organization.

Note that BT-blocks only contain edition operations (i.e. X, I, D) and not the
matches in between. To retrieve the complete alignment CIGAR, the algorithm needs
to compute any missing matches between backtrace operations. Nonetheless, this is
a remarkably simple operation. Using the same LCP() function presented earlier, the
algorithm computes matches until a mismatch is found. Then, it adds the following
backtrace operation and proceeds again to compute the LCP(). This process halts
when all the backtrace operations from the chain of BT-blocks have been processed.

Overall, the piggyback strategy effectively reduces the memory consumed by the
wavefronts to 4 bits per entry (accounting for the BT-block indices). Compared to
storing the raw wavefront offsets as the original WFA does (i.e., 4 Bytes per entry),
this strategy represents an 8× reduction.

4.4 Bit-Parallel sequence comparison using packed DNA se-
quences

WFA’s execution time is dominated by the computation of the LCP() function. A
naive implementation would compare sequences character by character until a non-
matching character is found. This approach not only executes a non-negligible amount
of instructions per LCP() call but also creates divergence across threads computing the
same alignment. That is, each GPU thread within a block performs a different number
of comparisons depending on the characters being compared. Because GPU threads
execute in groups of 32 threads in lock-step mode, divergent execution (i.e., variable-
iterations loops) forces idle threads to wait until all threads have finished iterating.

To alleviate this problem, we propose a bit-packed encoding of DNA sequences us-
ing 2 bits per base. This encoding turns out to be remarkably simple, as the ASCII
representation of each base has two unique bits on position 1 and 2 (i.e., A=1000001,
C=1000011, G=1000111, T=1010100). Using this bit-packed representation, our im-
plementation compares blocks of 16 bases at once using 32-bit operations. This strategy
reduces execution divergence and, most importantly, the total number of instructions
executed. In turn, this translates into faster execution times.

4.5 CPU-GPU co-design system

The WFA-GPU implementation presents a CPU-GPU co-design that allows the si-
multaneous execution of GPU computations overlapped with data transfers and CPU
alignment rescue.
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Table 7: Description of the real datasets used in the experimental evaluation. †Datasets ob-
tained from NIST’s Genome in a Bottle (GIAB) project can be found at https://github.com/

genome-in-a-bottle/giab_data_indexes. §Datasets obtained from PrecisionFDA Truth Challenge
V2 can be found at https://precision.fda.gov/challenges/10.

Dataset Sample
No.
pairs

Seq. Length (bps)
min avg max

Illumina 150 HG002† 100M 134 148 162
Illumina 250 HG002† 100M 140 248 275
Moleculo ERR1590085 100M 42 4352 14463
PacBio CSS HG002† 10M 263 9561 18317
PacBio HiFi HG002§ 10M 201 12847 24640

Nanopore
ERR3279200
ERR3279201

10M 104 6249 21708

To maximize performance, our implementation offloads batches containing multiple
alignments to the GPU. For that, input sequences from a batch have to be transferred
to the device. To minimize GPU idle times, our implementation makes asynchronous
kernel launches, allowing overlapping data transfers with GPU computations. That is,
while the GPU is computing the alignments for a given batch, the sequences of the
following batch are being copied to the device. As a result, latencies due to transfer
times are effectively hidden and overlapped with useful GPU computations.

Furthermore, the asynchronous implementation of WFA-GPU allows employing idle
CPU time to rescue alignments returned by the GPU. As explained in Section 4.1,
a small percentage of alignments may not be aligned in the GPU due to exceeding
memory requirements. For those few cases, the implementation overlaps the CPU
WFA execution with GPU computations and data transfers.

4.6 Experimental evaluation

4.6.1 Experimental setup

For the experimental evaluation, we select simulated and real datasets. For the simu-
lated datasets, we generate synthetic pairs of sequences of 150, 1000, and 10,000 bases
aligning with an average edit-error of 2%, 5%, and 10% differences. For the evaluation
using real datasets, we select publicly available datasets representative of current se-
quencing technologies (see Table 7). The target sequences are retrieved from mapping
the source sequences against GRCh38 using Minimap2 [69] and default parameters.

To compare the performance of the WFA-GPU, we select other sequence alignment
libraries and tools representative of the state-of-the-art on both CPU and GPU de-
vices. For the GPU tools comparison, we select the library GASAL2 [44], ADEPT [70]
and two NVIDIA libraries (NVBio [42] and CudaAligner [71] from Clara Parabricks
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Genomeworks). Additionally, we implement a kernel in WFA-GPU that only com-
putes the gap-affine distance, but not the optimal alignment path, this is referenced as
WFA-GPU(distance) on Table 9. Unfortunately, we were unable to include the recently
presented GPU aligners Logan [34] and GenASM [72] due to inadequacy to perform
basic pairwise alignment and the unavailability of the source code, respectively. As
for the CPU tools, we selected the most widely-used and efficient libraries available
to date. That is, Seqan [48], Parasail [68], Edlib [40], and KSW2 [73]. Naturally, we
also include the original WFA implementation (WFA2-lib [74]) into the comparison.
Note that Edlib and CudaAligner can only compute the edit distance alignment (a
much simpler problem compared to computing gap-affine alignments). Regardless, we
include them in the comparison as an interesting point of reference. In an attempt
to evaluate the recall of these tools using gap-affine scores, we re-scored the reported
CIGAR using using gap-affine penalties and compared against the optimal score.

ADEPT computes the local alignment of two sequences, as we compute global align-
ment, it can not be compared with WFA-GPU in terms of accuracy. This is indicated
as not-comparable (n/c) in Tables 8 and 9.

All the experiments are executed using a 10-core Intel Xeon-W2155 (3.3GHz) pro-
cessor equipped with 126GB of memory and a NVIDIA GeForce 3080 with 10GB of
memory. Moreover, all CPU executions are performed in parallel using the 10 physi-
cal cores available in the platform. All GPU execution times include CPU-GPU data
transfer, alignment, backtrace, and CIGAR generation time.

4.6.2 Evaluation on simulated data

Table 8 shows time (in seconds) and recall (percentage of sequences for which the
optimal alignment was correctly reported) for the alignment executions, using simulated
datasets.

Considering the alignment of short sequences (i.e., ∼150bps), NVBio outperforms
all other tools at the expense of a major loss in alignment accuracy as the alignment
error increases. WFA-GPU is between 1.9 and 3 times faster than the best CPU
time obtained. GASAL2 has a very good performance (as it is specialized for short
sequences), outperforming our implementations when the error grows. The other GPU
aligners, ADEPT and CudaAligner, are one order of magnitude slower than WFA-GPU
and GASAL2.

For medium length sequences (i.e., ∼1Kbps), most other GPU implementations
either fail due to execution errors, like NVBio and ADEPT, or obtain a recall lower
than 10%. Only GASAL2 remains competitive when the error increases, but at a
significantly low accuracy (52.4%). Compared to CPU implementations, WFA-GPU
executes 3.0-5.8× faster than the original WFA and up to 5500× faster than other
libraries.

Experiments aligning long simulated sequences (i.e., ∼10Kbps) turns out to be the
most challenging for most GPU tools. All other GPU implementations either fail (i.e.,
ADEPT and NVBio), give incorrect results (i.e., CudaAligner), or have significantly
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low recall (i.e. GASAL2 with less than 50% accuracy). WFA-GPU is the only GPU
implementation that can scale to long sequences reporting the optimal alignment result.
When compared to the original WFA, WFA-GPU executes 3.3-4.1× faster.

Executing WFA-GPU without computing the backtrace (only computing the dis-
tance) is between 1.8-4.4× faster than the baseline WFA-GPU. This gives us an speedup
of up to 17× compared to the CPU WFA implementation.

4.6.3 Evaluation on real genomic data

Table 9 presents a performance evaluation of the WFA-GPU compared to other state-
of-the-art libraries and tools when aligning real datasets (referred in Table 7). Figure
10 visually represents the speedups of WFA-GPU in comparison with the most relevant
CPU and GPU tools.

Figure 10: WFA-GPU compared with the most widely-used tools.

For the case of aligning high-quality short sequences, like those produced by Illu-
mina sequencers, NVBio delivers the fastest results at the expense of scoring low in
recall (only 49.2% and 27.2% of the alignments are correct). GASAL2 delivers similar
performance than WFA-GPU when aligning the Illumina 150 dataset, and is 1.7 times
slower when aligning Illumina 250 (that has slightly longer sequences). Compared to
the original WFA, which achieves the best execution time among all CPU libraries,
WFA-GPU is 1.5-3× faster. Compared to other CPU libraries, WFA-GPU obtains
remarkable speedups (up to 1264× with respect to Parasail).

When aligning Moleculo sequences, WFA-GPU obtains an speedup of 1.8× com-
pared to the CPU version of the WFA. On the GPU side, only CudaAligner and WFA-
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GPU are able to complete successfully, being WFA-GPU 5.2× faster than CudaAligner.
Using PacBio sequences, WFA-GPU achieves a speedup of 2.5× (on PacBio CSS)

and 7.7× (on PacBio HiFi) compared to the CPU version of the WFA. The speedup
goes up to 12.2× if we don’t compute the backtrace (distance-only version). Our
implementation outperforms by up to four orders of magnitude other CPU tools and
libraries. The only GPU implementation able to finish is CudaAligner, even though
it obtains a significantly low recall (less than 50%), while being between 19.5-26.7×
slower than our solution.

Considering the Nanopore dataset, having large sequences with high error rate,
WFA-GPU is 4 times faster than the CPU implementation of WFA, and 16× faster
when using the distance-only version of WFA-GPU. For this execution, CudaAligner
is 3× faster, but it generates incorrect results (0% recall). Compared with other CPU
libraries, our implementation is up to 19.7× faster. This speedup is not as high as
the ones from previous datasets, because alignments with a high nominal error are the
worst case scenario for the WFA algorithm.
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5 Conclusions

Future advances in sequencing technologies and genomics present critical challenges to
current bioinformatics methods and tools. This situation calls for improved methods
and tools that can scale with the increasing production yields and sequence lengths.
Modern HPC computing relies on GPUs as successful hardware accelerators for com-
puting intensive applications in many areas of research. This work presents the first
GPU-based tool for sequence alignment based on the efficient WFA algorithm. In this
work, we presented two GPU implementations of the WFA algorithm for DNA pairwise
alignment, discussing the algorithmic adaptations and design decisions adopted.

Our first contribution, eWFA-GPU, is an adaptation of the WFA algorithm for the
edit-distance. It is designed to achieve maximum performance on relatively short reads
with moderate errors. This is done by using the GPU on-chip fast memories, at the
expense of having a limit on the maximum error supported by the application. To be
able to store the WFA working set into the limited on-chip memories, we introduce
the piggybacked backtrace strategy, a novel optimisation technique that significantly
reduces the amount of memory needed for aligning sequences. Moreover, our imple-
mentation is fully asynchronous and overlaps compute kernels and memory transfers to
accelerate the algorithm execution, hiding memory transfer latencies with computation.

To assess the benefits of our design and implementation, we compared eWFA-GPU
with other state-of-the-art tools. The results obtained on the Nvidia V100 GPU show
speedups up to 265× compared to Edlib, and up to 9.2× compared with the CPU
version of the WFA algorithm. Also, we obtain speedups up to 101.7× compared to the
BPM, and up to 100.4× compared to the O(ND) CPU implementation. Furthermore,
we compared our implementation against GPU aligners: wmCudaTile from XBitPar,
GASAL2, and NVBio. We achieve a speedup up to 56.2× compared to wmCudaTile,
up to 30.3× compared to GASAL2, and up to 7.4× compared with NVBio.

The second contribution presented in this thesis is the WFA-GPU tool: a gap-affine
GPU pairwise aligner based on the WFA algorithm. This version solves a more general
alignment problem, supporting the alignment of very long sequences with high error
rates. We demonstrate the benefits of WFA-GPU compared to other state-of-the-art
CPU and GPU tools and libraries. Our WFA-GPU implementation performs up to
26.7× faster than other GPU tools, and up to four orders of magnitude faster than DP-
based CPU libraries. When compared to the WFA CPU implementation (fastest CPU
library to date) we obtain speedups between 1.5-7.7×, without any accuracy loss when
computing the optimal alignment path. Without computing the alignment path (only
computing the distance), WFA-GPU is 2.6-16× faster than the CPU implementation.
To the best of our knowledge, WFA-GPU is the only GPU-based pairwise aligner ca-
pable of computing exact gap-affine alignments for long-sequencing datasets, like those
produced by PacBio HiFi or Oxford Nanopore technologies, leveraging commodity GPU
devices.

With the advent of improved sequencing technologies and more sophisticated genome
studies, our tools offer an accurate, fast, and scalable sequence alignment solution that
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effectively exploits the massive computing capabilities of modern GPU devices. There-
fore, we expect eWFA-GPU andWFA-GPU to become a valuable and practical addition
to the toolkit of bioinformatics tools that support efficient research in future genome-
scale analysis.

5.1 Publications

As a result of the research work produced throughout this thesis, several scientific
articles have been elaborated and published.

• Quim Aguado-Puig, Santiago Marco-Sola, Juan Carlos Moure, David Castells-
Rufas, Lluc Alvarez, Antonio Espinosa, and Miquel Moreto. ”Accelerating Edit-
Distance Sequence Alignment on GPU Using the Wavefront Algorithm.” IEEE
access 10 (2022): 63782-63796. [75]

• Quim Aguado-Puig, Santiago Marco-Sola, Juan Carlos Moure, Christos Mat-
zoros, David Castells-Rufas, Antonio Espinosa, and Miquel Moreto. ”WFA-GPU:
Gap-affine pairwise alignment using GPUs.” bioRxiv (2022) [76]

• David Castells-Rufas, Santiago Marco-Sola,Quim Aguado-Puig, Antonio Espinosa-
Morales, Juan Carlos Moure, Lluc Alvarez, and Miquel Moretó. ”OpenCL-based
FPGA accelerator for semi-global approximate string matching using diagonal
bit-vectors.” In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), pp. 174-178. IEEE, 2021. [60]

• David Castells-Rufas, Santiago Marco-Sola, Juan Carlos Moure, Quim Aguado,
and Antonio Espinosa. ”FPGA Acceleration of Pre-Alignment Filters for Short
Read Mapping With HLS.” IEEE Access 10 (2022): 22079-22100. [77]

• WFA-GPU: Accelerated gap-affine pairwise alignment, 21st European Conference
on Computational Biology, 2022 (Poster).

5.2 Source code and datasets

All the materials generated from this thesis are open source and publicly available. The
source code of both implementations is freely available under the MIT license. The
eWFA-GPU edit-distance implementation (Section 3) is found on https://github.

com/quim0/eWFA-GPU. The WFA-GPU gap-affine implementation (Section 4) is found
on https://github.com/quim0/WFA-GPU. Datasets are freely available upon request
to the author.

5.3 Future work

There are many interesting ideas to explore in the context of this work. First of all,
the current WFA-GPU implementation can be extended with heuristics, multi-GPU
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support, and a tile-based version to allow multiple GPU blocks to work cooperatively
on the same alignment, reducing the memory pressure and allowing the exploitation of
more GPU resources per alignment.

We are also working on implementing the Bidirectional WFA (BiWFA [23]) on GPU.
This recent improvement over the WFA algorithm dramatically reduces the memory
usage (from O(s2) to O(s)) and depicts the opportunity to perform more work in parallel
thanks to its divide-and-conquer strategy.

Ultimately, we would like to integrate our library within existing mapping tools,
accelerating genomics pipelines by using WFA-GPU instead of traditional dynamic-
programming, CPU-based implementations.

5.4 Financial and technical support

This thesis was supported by the European Unions’s Horizon 2020 Framework Pro-
gramme under the DeepHealth project [825111], by the European Union Regional
Development Fund within the framework of the ERDF Operational Program of Cat-
alonia 2014-2020 with a grant of 50% of total cost eligible under the DRAC project
[001-P-001723]. It was also supported by the Spanish Ministerio de Ciencia e Innova-
cion MCIN AEI/10.13039/501100011033 under contracts PID2020-113614RB-C21 and
TIN2015-65316-P and by the Generalitat de Catalunya GenCat-DIUiE(GRR) (con-
tracts 2017-SGR-313, 2017-SGR-1328, and 2017-SGR-1414). Q. Aguado has been par-
tially supported by PRE2021-101059 (founded by MCIN/AEI/10.13039/501100011033
and FSE+).
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