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1. Introduction

The aim of image registration is to provide an optimal transformation that best aligns corresponding structures 
of interest from two or more input images, which may be acquired at different times and with different sensors. 
Biomedical image registration is essential for the fusion of complementary image information from different 
imaging modalities where fusion may reveal, for example, functional processes overlain on structural data that can 
assist diagnosis and treatment planning. Image registration is critical in radiation oncology where radiotherapy 
is directed at a tumor and adjacent normal tissue is spared (Wu et al 2008). It also plays an important role in 
the longitudinal assessment of imaging studies where there can be changes over time related to the underlying 
condition or changes in the subject’s body habitus. Image registration where there are changes or deformations 
is directed at finding an optimal rigid or non-rigid transformation. Rigid transformation is normally used for 
registering brain images within a rigid skull (Holden 2008, Rueckert and Aljabar 2010) or as a first step for a 
more complicated non-rigid/deformable registration. Deformable image registration includes non-physical and 
physical models.

Non-physical models are derived from interpolation or approximation theory (Sotiras et al 2013). In inter-
polation theory, deformation is considered as a restricted set of known locations in the image, and is interpolated 
for the rest of the image domain. Free-form deformation (FFD) is a common type of medical image registration. 
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Abstract
The demons registration (DR) model is well recognized for its deformation capability. However, 
it might lead to misregistration due to erroneous diffusion direction when there are no overlaps 
between corresponding regions. We propose a novel registration energy function, introducing 
topology energy, and incorporating a local energy function into the DR in a progressive registration 
scheme, to address these shortcomings. The topology energy that is derived from the topological 
information of the images serves as a direction inference to guide diffusion transformation to retain 
the merits of DR. The local energy constrains the deformation disparity of neighbouring pixels 
to maintain important local texture and density features. The energy function is minimized in a 
progressive scheme steered by a topology tree graph and we refer to it as topology-guided deformable 
registration (TDR). We validated our TDR on 20 pairs of synthetic images with Gaussian noise, 
20 phantom PET images with artificial deformations and 12 pairs of clinical PET-CT studies. We 
compared it to three methods: (1) free-form deformation registration method, (2) energy-based 
DR and (3) multi-resolution DR. The experimental results show that our TDR outperformed the 
other three methods in regard to structural correspondence and preservation of the local important 
information including texture and density, while retaining global correspondence.
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Dense deformation is given as a summation of tensor products of univariate splines and gained acceptance in 
medical image analysis when coupled with cubic B-spline (Declerck et al 1997, Rueckert et al 1999, Kybic and 
Unser 2003, Sdika 2008). Rueckert et al (2006) introduced hard constraints to produce diffeomorphic defor-
mation fields and to preserve topology. Subsequent developments included non-uniform rational B-splines 
(NURBS) by Wang and Jiang (2007) and multi-level B-spline by Shi et al (2012).

Physical models consider the physical characteristics as prior information to constrain the solution space and 
tissue motion is often modeled as the deformation of an elastic material or viscous fluid (Christensen et al 1996, 
Davatzikos 1997, Al-Mayah et al 2011). The finite element method (FEM) is a powerful technique that divides 
the problem domain into elements and further solves the equations on the element basis. Ahn and Kim (2010) 
and Hu et al (2011) extracted the local image features, such as the object surface, to derive the external forces at 
the FEM mesh nodes. An adaptive FEM refinement scheme was proposed by Zhang et al (2014) for more effective 
and accurate medical image registration. The diffusion model, ‘demons’, proposed by Thirion (1998), is another 
example of a physical model registration. In the demons registration (DR) algorithm, each image is considered as 
a set of iso-intensity contours with the idea that a regular grid of forces deforms an image by pushing the contours 
in the normal direction. The orientation and magnitude of the displacements are then derived from the instan-
taneous optical flow equation. The DR relies on the assumption that pixels representing the same homologous 
point on an object have the same intensity on the reference and moving images that are to be registered.

The classic DR, which uses image gradient information from the dissimilarity of image intensity, is highly 
sensitive to local artifacts and can be easily trapped in a local minimum. Variant deformation forces have 
been proposed to improve the Rogelj and Kovačič (2006) and Wang et al (2005) proposed symmetric demons 
(SymD) algorithms that included gradient information of the moving image and the reference image. In the 
accelerated ‘demons’ algorithm an ‘active’ force, along with an adaptive adjustment of the force strength dur-
ing the iterative process, was introduced by Wang et al (2005) to speed up the registration. Since the DR algo-
rithm moves pixels along the gradient direction, information orthogonal to the direction of the gradient is lost. 
Lu and Mandal (2010) introduced a symmetric orthogonal gradient to calculate the demons forces and showed 
that the registration was more accurate. Luo and Chung (2009), instead reported a feature-based image where 
local intensity histograms were used to substitute the original intensity image. These local histogram-based 
features are rotation invariant and can capture spatial information. Kroon and Slump (2009) and Modat et al 
(2010) incorporated mutual information into the DR for multimodality registration. Vercauteren et al (2009) 
suggested a diffeomorphic demons (DD) algorithm and it is recognized as a robust and reliable non-rigid 
method. These investigators combined the DR with the Lie group framework on diffeomorphisms and optim-
ized for the Lie group, instead of performing the optimization on the displacement vector field (DVF) as in the 
original DR algorithm.

In the DR, the high degrees of freedom (DoF) empowers the deformation model to capture complex image 
content variations. The underlying registration strategy of the DR is to stimulate the deformation process as a 
diffusion analogy with thermodynamic concepts. This diffusion mechanism of DR enables its energy function 
to converge efficiently, but may also result in misalignment under two circumstances: (1) the expected corre-
sponding regions do not overlap; (2) there are overlapping regions with ambiguous correspondence. As shown in 
figures 1(a) and (b), the circles and the squares are the two expected corresponding pairs, and figure 1(c) displays 
the situation when the squares do not overlap and when the circle in the moving image has overlapped with the 
two shapes in the reference image (circumstances 1 and 2 above). The DR (see figure 1(e)) squeezes the moving 
square, instead of diffusing it into the square of the reference image. It also diffuses the moving circle into the cir-
cle and the square in reference image, and therefore results in misregistration. The DR deformation simulates the 
diffusion process to achieve the registration. However, the freedom of such deformation also introduces variance 
in local important information including texture and density referred as local importance, which are critical to 
clinical applications such as radiation therapy.

In this paper, we propose a topology-guided deformable registration (TDR) method to address the funda-
mental problems with the DR. The TDR has a novel registration energy function that introduces topology energy 
to guide the demons diffusion process to retain the merits of the DR and preserve the local importance in a pro-
gressive registration scheme.

2. Methodology

2.1. DR energy function
Given two images to be registered, a reference image F  and a moving image M , the aim of registration is to search 
for the optimal transformation which deforms points of M  onto points of F . Vercauteren et al (2007) proposed a 
standard registration model with a registration energy consisting of a similarity function, a transformation error 
function, and smoothness regularization. The optical flow equation for finding small deformation in temporal 
sequences is used as the basis of the DR forces in an iterative process. The squared pixel distance is the similarity 
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measure and the squared transformation field is the transformation regularization. The resulting demons energy 
can be represented as follows:

Edemons(U) = ‖F − M ◦ (S + U)‖2
+

σ2
i

σ2
x

‖U‖2
 (1)

where deformation field S describes the translation of every pixel from its original position, with U  the (iteration) 
update of S, σi and σx  the constants for intensity uncertainty (image noise) and transformation uncertainty. 
Let x and x′ be an arbitrary point in F  and its corresponding point in M  respectively. By minimizing the energy 
function as in equation (1), The spatial mapping function between the corresponding points in F  and M  can be 
formulated by

x′ = (S + U) (x). (2)

2.2. TDR energy function
The DR energy function assumes the homologous dependence on image intensities and derives the diffusion 
direction based on the local image gradient. However, the diffusion process solely along the image gradient 
direction may result in an erroneous diffusion direction. Besides, deformation of demons method is derived 
for each point independently, which may violate the original topology relationship. Hence to overcome these 
problems with DR, we introduce the topology energy and local importance preservation energy to define a new 
registration energy function as equation (3).

E (U) = Edemons (U) + Etopo (U) + Elocal (U) (3)

where Etopo is the topology energy introduced to guide the diffusion direction derived from demons energy 
Edemons and to find the correspondence by considering the original topology structures. The local importance 
preservation energy Elocal, along with Etopo, would limit the DoF of transformation freedom to preserve the local 
topology relations.

2.2.1. Topology energy
Since topological spatial relations are invariant to rotation, translation and scaling transformations, we define a 
topology energy function to infer topological correspondences for the demons diffusion direction.

2.2.1.1.Topo-tree definition
We aim to derive the ‘contain’ topological relationship for the internal organs or structures in medical images. 
Given an image I with regions ωi ⊂ ΩI, where i ∈ N  is the region index and ΩI is the domain of image I, we 
extract topology tree graph G, namely ‘topo-tree’, to represent the topology relations of the regions. The topo-
tree G = (V , E) is defined as an undirected acyclic connected graph with nodes vi ∈ V  corresponding to each 
region ci and edge eij ∈ E ⊆ V × V  connecting nodes representing direct ‘contain’ topology relations between 
regions. Here, we define that ωi  ‘contains’ ωj  if ωj ⊂ ωi and there exists no region ωh so that ωh ⊂ ωi ∧ ωj ⊂ ωh. 
The level of certain node is defined as the length of the path from root to the node with root node v0 at level 0.

2.2.1.2.Topology regions extraction
To extract the topo-tree graph from a given image, we utilize the histogram thresholding fuzzy C-means 
(HTFCM) (Siang Tan and Mat Isa 2011) to classify the image into fuzzy clusters due to its capability for automated 
determination of the numbers of clusters by analyzing the image histogram. We calculate neighborhood 
connectivity to ensure that disjoint regions can be classified as different regions even when sharing similar 
intensities. By such, we got the regions set C = {ω0} ∪ {ωi|1 � i � m}, where ω0 represents image background 
and m is the number of fuzzy regions.

(a) (b) (c) (d) (e)

Figure 1. Example of DR registration. (a) Reference image (b) moving image. (c) Fusion of reference and moving images.  
(d) Moving image after DR. (e) Fusion of reference image and DR result with overlaid deformation field.

Phys. Med. Biol. 63 (2018) 015028 (15pp)
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2.2.1.3.Topo-tree construction
Given the regions set C, we construct the topo-tree nodes set V = {v0} ∪ {vi|1 � i � m} by representing each 
region ωi  with node vi , where v0 stands for the root node representing image background ω0. Then, we establish 
edges for nodes with ‘contain’ relations. The edge establishment starts from root node v0, and iteratively finds 
the child nodes for all nodes in V  by estimating the topology relation between corresponding regions. If any 
region ωi  is directly containing ωj , edge eij is established and added to the edges set E. The process continues 
until the topo-tree level reaches the level of node vROI which is corresponding to the region of interest (ROI) ωROI 
specified by user for local importance preservation. The automated topo-tree construction procedure from an 
input image is illustrated in figure 2.

2.2.1.4.Topology energy derivation
The topology energy Etopo is derived from the Euclidean distances of corresponding regions in reference and 
moving image and the regions are represented by topo-tree nodes. We represent these region distances as signed 
distance functions (SDF). The contour of region ω , denoted by c ⊂ Ω, is represented as the zero level set of 
Lipschitz function D(x) : Ω → R, such that





c = ∂ω = {x ∈ Ω : D(x) = 0}
inside(c) = ω = {x ∈ Ω : D(x) < 0}
outside(c) = Ω\ω̄ = {x ∈ Ω : D(x) > 0}

D(x) =





d (x, ∂ω)

0

−d (x, ∂ω)

if x ∈ Ω\ω̄
if x ∈ ∂ω

if x ∈ ω

 (4)

where d (x, ∂ω) = inf
y∈∂ω

d (x, y). Then, for each pixel p, the combined registration energy is formulated as follows:

Etopo(u) = ‖dF,k − dM,k − u∇dM,k‖2 (5)

where dF,k and dM,k  are the SDF of the kth corresponding topo-tree nodes or regions where pixel p belongs to in 
reference and moving images respectively. Then, we can calculate the derivative of E as below:

∇Etopo(u) = 2(∇dm,k)
T (

df ,k − dm,k − u∇dm,k

)
. (6)

Thereby, the registration direction inference is derived from equation (6). Figure 3 illustrates the derivation 
of topology energy and registration direction inference from topo-tree. As in figure 3, the edge establishment 
process stops when the topo-tree reaches level 2 where vROI (the red node) resides.

Figure 2. Outline of the automated procedure of topo-tree construction.

Phys. Med. Biol. 63 (2018) 015028 (15pp)
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2.2.2. Local importance preservation energy
The transformation model of DR is a spatial mapping between the corresponding points in M  and F . The 
smoothness of the mapping function is retained through applying a Gaussian kernel. However, due to the 
physical constraints of an anatomic organ, although the absolute distance of corresponding points may vary 
significantly under non-rigid registration, the local anatomic structure of a point should be well preserved 
after deformation. Therefore, it is natural to introduce a local importance preservation energy to constrain 
the deformation variation of points belongs to the same stiff anatomic structure. Let ūk be the mean value of 
transformation of pixels of same topology region ωk. The local importance preservation constraint energy for 
pixel x ∈ ωk  can be formulated as:

Elocal(u) = Var(u) = E
[
(u − ūk)

2
]
=

(u − ūk)
2

N
. (7)

Then, we can calculate the derivative of E as below:

∇Elocal(u) =
2 (N − 1) (u − ūk)

N2
. (8)

Combining the equations (1), (5) and (7), we define the energy function E for each pixel in equation (3) as:

E(u) = α‖ f − m − u∇m‖2

+ β‖dF,k − dM,k − u∇dM,k‖2

+ γ
(

(u−ūk)
2

N +
σ2

i
σ2

x
‖u‖2

) (9)

where f  and m are the intensity values of F  and M  respectively, α, β and γ  are the weighting coefficients for 
demons, topology energy, and local importance preservation energy.

2.3. Optimization of the energy function
The optimization method for a registration framework is the searching algorithm for the optimal deformation. 
We utilized the L-BFGS (Nocedal 1980), a popular variant of the quasi-Newton approach with less computer 
memory requirement, to minimize the energy function in equation (9). L-BFGS optimization algorithm updates 
the deformation vector u at iteration r + 1 based on the estimation in its previous iteration r as

u(r+1) = u(r) −
(

H(r)
)−1

· ∇E
(

u(r)
)

 (10)

where the superscript r is the iteration number, 
(
H(r)

)−1
 represents the approximation of inverse Hessian matrix 

at iteration r, and  ∇  is the gradient operator. Therefore, we need to compute the derivative of the energy function 
E with respect to u by:

∇E(u) = 2α(∇m)
T
( f − m − u∇m)

+ 2β(∇dm,k)
T (

df ,k − dm,k − u∇dm,k

)

+ 2γ
(

(N−1)(u−ū)
N2 +

σ2
i

σ2
x
u
) . (11)

Figure 3. Outline of the derivation of topology energy and registration direction inference.

Phys. Med. Biol. 63 (2018) 015028 (15pp)
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The L-BFGS optimization is stopped if the difference of objective function value between two consecutive 
iterations is less than a tolerance value or the iterations reaches a preset maximum iteration number. In our 
experiments, we set the tolerance and maximum iteration number as 0.01 and 200 respectively.

2.4. Progressive registration along topo-tree
In our TDR method, we introduce the topo-tree which allows the registration to be performed and refined 
progressively along the tree structure. In figure 4, we outline the workflow of progressive registration on a pair of 
images along the topo-tree. The topo-tree is extracted from the images and it represents the topology structures 
of regions in images. Since image background region ω0 is ineffective in registration process, the corresponding 
root node v0 is only used to form the topo-tree graph in a valid tree structure. Therefore, the registration starts 
from level 1 and it is progressively performed on regions in the next level of the tree until it reaches the maximum 
level of the tree. While registration is being performed for level l, it treats each region node along with its decedent 
nodes as a single topology region with preservation of local important features, and each of them contributes to 
the calculation of energy function E(u) in equation (9) during optimization. In this way, regions of the moving 
image on level l would be aligned to their corresponding regions in the reference image, and the registration 
result of their parent regions would be refined due to the effect of the demons energy.

The progressive TDR is summarized below in Algorithm 1:

Algorithm 1. Progressive TDR algorithm.

Input: a pair of images F  and M , topo-tree graph G

Output: deformation field U .

for l ← 1 to lmax the maximum level of topo-tree hG

 Initialize Hessian matrix H

 for r ← 1 to maximum iteration

   vector g ← gradient of energy function El  with respect to deformation field u ∈ U

   find a direction p by solving Hp = −g

   do line search along p, and update u and g

   if |g| → 0, convergence criterion is met

      break

   endif

   update H

 endfor

 Interpolate deformation field U  on the parent regions of level l

endfor

Figure 4. Workflow of progressive registration along the topo-tree.

Phys. Med. Biol. 63 (2018) 015028 (15pp)
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3. Experiments and results

To evaluate the TDR algorithm, we performed experiments on synthetic image data, phantom PET-CT studies, 
and clinical PET-CT studies.

3.1. Synthetic image data
20 pairs of synthetic image data were used in our experiments. Each pair of synthetic images contains from one 
to five corresponding regular shapes. Ten pairs have no overlapping area for corresponding shapes, and the other 
ten pairs have moving shapes overlapping with incorrect or multiple shapes on reference image. Gaussian noise 
with 0 mean and 0.3 standard deviation was added to all synthetic data.

3.2. Phantom PET-CT studies
20 lung PET-CT phantom datasets were collected from the public RIDER8 collections from the Cancer 
Imaging Archive. The data were based on a NEMA NU-2 IQ phantom (GE Medical Systems using Ge-68)  
with the central ‘lung’ cylinder of the IQ phantom removed. The datasets were part of a research plan for 
measuring the response to drug or radiation therapy and so the decay of the Ge-68 was different between the  
20 scans. The target/background ratio was 4:1 with the initial background activity level set to be equivalent to 
555 MBq (15 mCi) in a 70 kg patient. The diameters of the 6 spheres were 10 mm, 13 mm, 17 mm, 22 mm, 28 mm  
and 37 mm. The PET data were reconstructed using a matrix of 128  ×  128 with voxel size 
2.73  ×  2.73  ×  3.27 mm. The CT data were constructed using a matrix of 512  ×  512 with voxels size 
0.68  ×  0.68  ×  2.5 mm. B-spline based artificial deformations were applied to the phantom data to generate 
the corresponding moving images.

3.3. Patient studies
We analyzed 12 PET-CT studies from patients with non-small cell lung cancer (NSCLC). The scans were carried 
out on a Biograph TrueV 64 slice PET-CT scanner (Siemens Medical Solutions, Hoffman Estates, IL, USA). 
PET data were reconstructed into 168  ×  168 matrices with pixel size of 4.07 mm  ×  4.07 mm. The CT data were 
reconstructed using a matrix of 512  ×  512 pixels with pixel size of 0.98 mm  ×  0.98 mm. The slice thickness in 
PET-CT was 2 mm (5 studies) and 3 mm (7 studies). Among the studies, B-spline based artificial deformations 
were applied to seven of them to simulate the deformation along time. The remaining three studies were temporal 
data acquired over a 2–4 week interval.

3.4. Validation and comparison methods
We evaluated the performance of our TDR algorithm by comparing the registration results with the following 
methods: (1) free-form deformable (FFD) registration (Studholme et al 2006); (2) energy-based DR (Vercauteren 
et al 2007); (3) multi-resolution DR (MDR) with 4 levels of grid sizes, i.e. from 8 × 8 to original size 1 × 1. We 
assessed accuracy by calculating the mean squared error (MSE) and normalized mutual information (NMI) 
between the reference and the registered moving image. The MSE is defined as:

MSE (F, M) =
1

n

n∑
i

(xF,i − xM,i)

2

 (12)

where F  and M  are reference and registered images respectively. xF,i and xM,i are ith pixel value of reference and 
moving images respectively. The minimum MSE value is 0 for two identical images.

The NMI was defined as

NMI (F, M) =
H (F) + H (M)− H (F, M)

H (F, M)
 (13)

where H (F) and H (M) are Shannon entropies of image F  and M  respectively, H (F, M) is the joint entropy of 
images. A high NMI value indicates high similarity between images, with maximum 1 indicating a perfect match.

3.5. Experiments on synthetic datasets
Experiments of DR, MDR and TDR on synthetic datasets included evaluations on three categories of registration 
cases: (1) expected corresponding regions without overlap; (2) relative local position mismatch between 
corresponding regions; (3) overlapping regions with ambiguous correspondence.

8 https://wiki.cancerimagingarchive.net/display/Public/RIDER+Collections

Phys. Med. Biol. 63 (2018) 015028 (15pp)
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3.5.1. Expected corresponding regions without overlap
Figure 5 shows sample registration results for synthetic datasets where clear gaps exist between corresponding 
regions. There are four shapes to be aligned in the reference and the moving images in figures 5(a) and (b). Since 
clear gaps existed between corresponding shapes as shown in the fusion image figure 5(c), MDR failed to diffuse 
the shapes in the moving image into their corresponding region in the reference image as shown in figure 5(d). 
Instead, it shrank the shapes to compensate for the requirement of total energy minimization. Figure 5(e) shows 
that the TDR was able to successfully align them.

3.5.2. Investigation of the influence of gap distance on registration performance
We further evaluated the influence of the gap distance between corresponding objects on the registration 
results (see figure 6). We gradually increased the level of misalignment of the circles to be registered by rigidly 
translating the circle in the moving image away from its original centroid as in the reference image. Then we 
applied DR, MDR and TDR methods to recover the misalignment, and evaluated the tolerance of these methods. 
The evaluations are reflected using MSE and NMI criteria, i.e. the lower the MSE and the higher the NMI, the 
better the registration results. The performance of each method is shown in figures 6(a) and (b) where x-axis 
is the offset distance and y-axis is the measuring criteria; the performance of the methods could be classified 
into three intervals, i.e. [0 − 56) mm, [56 − 77) mm and [77 −∞) mm. When the distance between centroids 
was between 0 and 56 mm, the circles overlapped (see figure 6(c)), in which cases all methods were able to align 
the circles correctly. With the [56 − 77) mm distance, the circle in the moving image started to disconnect from 
the circle in the reference, and the MSE and NMI of DR results changed markedly. These findings reflected that 

(a) (b) (c) (d) (e)

Figure 5. Sample synthetic corresponding regions with gap. (a) Reference image. (b) Moving image. (c) Fusion of reference image 
(grey) and moving image (color). (d) Fusion of reference image (grey) and MDR result (color) with deformation field. (e) Fusion of 
reference image and TDR result (color) with deformation field.

(a)

(c)

(b)

Figure 6. The influence of gap distance on registration result. (a) MSE measurement (b) NMI measurement (c) demonstrations of 
the degree of misalignment at difference translation distances.

Phys. Med. Biol. 63 (2018) 015028 (15pp)
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the DR method started to fail the registration and was not able to recover the misalignment from then on, while 
other two methods could register the circles under such circumstances. With the [77 −∞) mm distance, the 
gap between circles increased and the MDR method started to fail but the TDR method was able to maintain its 
accuracy.

3.5.3. Relative local position mismatch between corresponding regions
Figure 7 shows a case where the aim is to align both ellipses and the arrows inside. In reference image figure 7(a), 
the arrow is located in the left side of the ellipse, while in the moving image figure 7(b), the arrow is in the middle 
of the ellipse. Figure 7(d) demonstrates that the overlap between the corresponding ellipses enabled MDR 
to diffuse the ellipse of the moving image into that of the reference image and to correctly align both ellipses. 
However, the internal arrow was compressed and failed to be aligned to the expected location due to the gap 
between the arrows. Even if global rigid transformation was applied as a pre-processing step before MDR, there 
would still be a clear gap between the internal arrows which would result in misalignment. The TDR considered 
the topology energy as a diffusion guidance and took advantage of the progressive registration scheme to align 
the ellipses and internal arrows successfully (see figure 7(e)).

3.5.4. Overlapping regions with ambiguous correspondence
Figure 8 outlines a case when one shape in a moving image overlapped multiple shapes in the reference images, 
including both expected corresponding and uncorrelated shapes. As shown in figure 8(c), the square in the 
moving image overlapped with the square and the circle in the reference image, and was expected to be aligned 
with the square in the reference image only. Since both the square and the circle in the reference image had similar 
intensity values as the square in the moving image, the MDR method diffused the moving square into both 
shapes as shown in figure 8(d). The TDR method was able to align the square and the circle in the moving image 
(see figure 8(e)).

3.6. Experiments on phantom datasets
Sample registration results on the PET phantoms are shown in figure 9. Figure 9(c) shows the fusion of the 
moving image in color and the reference image in grey. The moving image was generated with an artificial 
warping of the reference image. When compared to the reference image, circle 1 in the left was moved away and 
detached from the circle in its original location, and circle 2 in the lower left was relocated while keeping attached 
with the circle in its original location. The left part of the phantom was also deformed to generate more variance. 
In figure 9(d), the MDR was able to recover the deformation of the left part of the phantom and align circle 2, but 
was unable to align the circle 1. The MDR also shrank the shape and size of the mis-aligned circle 1 to be almost 

(a) (b) (c) (d) (e)

Figure 7. Sample synthetic corresponding regions with an internal gap: (a) reference image, (b) moving image, (c) fusion of 
reference image (grey) and moving image (color), (d) fusion of reference image (grey) and MDR result (color), (e) fusion of 
reference image and TDR result (color).

(a) (b) (c) (d) (e)

Figure 8. Sample synthetic regions overlapping with multiple regions: (a) reference image, (b) moving image, (c) fusion of reference 
image (grey) and moving image (color), (d) fusion of reference image (grey) and MDR result (color), (e) fusion of reference image 
and TDR registration result (color).
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invisible. The TDR method, figure 9(e), was able to recover the deformation of the phantom equal to that done by 
MDR, while maintaining the shapes and sizes of the relocated circles and aligning them to their origins.

3.7. Experiments on patient datasets
An example of the registration results for a clinical chest CT scan with synthetic deformation is shown in figure 10. 
The reference image with a tumor in the left lung is seen in figure 10(a). Artificial deformation was applied to the 
reference image to generate the moving image which moved the tumor away from its location in the reference 
image and also affected the left lung and heart (see figure 10(c)). In figures 10(d)–(f) the MDR was able to register 

(a) (b) (c) (d) (e)

Figure 9. Sample registration results on phantom data: (a) reference image, (b) moving image, (c) fusion of reference image (grey) 
and moving image (color), (d) fusion of reference image (grey) and MDR result (color), (e) fusion of reference image and TDR 
registration result (color).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Transaxial chest CT images, using soft tissue windows, with artificial deformation: (a) reference image, (b) moving 
image with artificial deformation, (c) fusion of reference and moving image, (d) MDR registration result, (e) checker-board view of 
reference image and MDR registration result, (f) fusion of reference image and MDR registration result, (g) TDR registration result, 
(h) checker-board view of reference image and TDR registration result, (i) fusion of reference image and TDR registration result.
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most of the moving image, e.g. lung and heart, but not the tumor, where it could not detect the correspondence 
and shrank it to a minimum. In figures 10(g)–(i), the TDR method could perform the global deformation and 
accurately aligned the tumor to its corresponding location in the reference image.

An example of the registration results on thoracic PET images with synthetic deformation is shown in  
figure 11. The reference image contained a tumor in the left lung, at the left hilum adjacent to the mediastinum. 
Artificial deformation moved the tumor away from its location in the reference image and also introduced defor-
mation to the mediastinum, as shown in the image fusion of the moving and the reference images. The fusion 
MDR result shows that the MDR could not find the corresponding tumor and diffused the tumor into the medi-
astinum. The fusion TDR, however, could accurately align the tumor to its corresponding location in the refer-
ence image and recover the deformation in mediastinum.

3.8. Local importance preservation
We evaluated the volume changes of the ROI after registration to quantitatively measure the effect of the shape 
deformation after image registration, which is a criterion for treatment response evaluation (Therasse et al 2000). 
In table 1 DR, MDR and FFD had obvious, marked changes on the ROI, i.e. tumor regions in clinical studies, 

while the TDR method produced minimal changes.
The texture in the tumor region is an important variable in the disease evaluation. As shown in  

figures 12(a)–(c), besides the offset between the locations of tumors, variations on distribution and shape of 
standard uptake value (SUV; a semi-quantitative measure of tumor metabolism) could be observed from the 
moving and the reference images, e.g. the region with maximum SUV (represented in white) in the reference 
image was much smaller than that in the moving image. The fusion results in figures 12(f) and (i) show that 
both the DR and the TDR recovered the tumor location offset. However, as shown in figures 12(d) and (g), DR 
deformed both the shape and SUV distribution of tumor, e.g. the region with maximum SUV (represented in 
white) is squeezed to match that in the reference image, while the TDR method maintained a similar tumor shape 
and SUV distribution as that in the moving image.

We evaluated the SUV distribution changes in tumor regions after registration. Figure 13 illustrates this dis-
tribution changes on a temporal patient dataset. As shown in figure 13(a), DR deformed the tumor volume and 
formed a similar distribution trend as the tumor volume in the reference image except for the region with over 
90% maximum SUV. The TDR result shared a similar trend as the moving image, but also showed close conv-
ergence to the distribution in the moving image in regard to the volume percentage. As shown in figure 13(b), 
compared to the tumor region in the moving image, the SUV distribution of tumor in the reference image was 
different, especially for 50%–70% and over 90% maximum SUV regions. The DR deformed the tumor volume 

Figure 11. Transaxial PET images of the mid-thorax where a tumor at the left hilum appears as a region of markedly increased 
glucose metabolism (black region) close to the center of the image.
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on the moving image with 50%–70% and over 90% maximum SUV towards a similar volume distribution as the 
reference image, while TDR method retained the tumor volume distribution and kept the volume difference at a 

Table 1. Comparison of volume changes (%) on ROI after registration on clinical data.

DR MDR FFD TDR

33.53  ±  15.32 37.76  ±  18.58 25.75  ±  6.43 5.24  ±  3.12

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Transaxial thoracic PET images with a tumor (black in the non-zoomed images) located just behind the right hilum 
with deformable registration effects on tumor region texture from temporal patient data: (a) reference image, (b) moving image, 
(c) fusion of reference and moving images, (d) DR result, (e) checker-board view of reference image and DR result, (f) fusion of 
reference image and DR result, (g) TDR result, (h) checker-board view of reference image and TDR result, (i) fusion of reference 
image and TDR result.

Figure 13. Registration effects on the SUV distribution of tumor regions on moving image: (a) tumor volume distribution at 
various SUV level, (b) tumor volume distribution difference compared with original moving image.
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low level, i.e. less than 5% difference for regions with 40%–90% maximum SUV and 8% changes for regions with 
over 90% maximum SUV.

3.9. Evaluation of global deformable registration
We calculated the similarity of the reference and deformed moving images using NMI and MSE criteria to 
validate the global registration efficacy. Since excessive deformation on the texture of a critical regions affects the 
evaluation criteria, the accuracy of global deformable registration was calculated excluding the tumor area for the 
phantom and patient studies. Table 2 summarizes the results. Across all three data types, the MDR and the TDR 
method outperformed the FFD registration. In regard to the quality of the global registration, the performance 

of TDR was comparable to that of MDR.

3.10.Speed and CPU/memory consumption
We analyzed the speed and CPU/memory consumption of DR, MDR and TDR for clinical data registration 
on Dell desktop with Intel Core i5-4570 CPU 3.2 GHz, 8 GB memory. All algorithms were implemented in 
Matlab. As expected, both MDR and TDR showed marked improvement in registration speed in comparison 
to DR (237.41  ±  5.75 s), while TDR (48.69  ±  5.47 s) was slightly slower than MDR (41.95  ±  4.91 s). It was 
not surprising that the incorporation of topology energy of TDR method introduced about 16% computation 
overhead compared to MDR. All three methods required same amount of memory 4.1044 × 104 kb and the 
optimization process dominated the consumption. As to the CPU consumption, all three methods were in a 
similar range 74%− 79%.

4. Discussion and future work

Our main findings are that our TDR method is able to correctly register images with non-overlapping 
corresponding regions, overlapping regions with ambiguous correspondence and preserves locally important 
variables during registration.

The TDR method, with the incorporation of topology energy, is able to register non-overlapping regions 
where the classic DR would derive erroneous diffusion directions. The TDR energy function incorporates the 
topology energy to reflect the topology structure and provides inference to the demons diffusion direction. The 
topology energy assigns each pixel a general diffusion direction guidance towards its corresponding topology 
region and the demons energy further tunes the diffusion towards local counterparts around that topology 
region. Our experimental results (see figures 5, 7, 9–11) demonstrate the contribution of the topology energy to 
solving the non-overlapping corresponding issue. As shown in figure 6, the MDR eventually failed when the gaps 
between objects kept increasing when compared to the TDR, which consistently registered the regions regardless 
of the gap distance.

Our TDR method is also able to solve the problem of registering overlapping regions with ambiguous cor-
respondence (as shown in figure 8) by the introduction of the local importance preservation energy. The local 
importance preservation energy regulates the deformation and force the diffusion along a similar direction, 
when a region overlaps with multiple regions and has ambiguous correspondence. In cooperation with the 
topology energy, the resultant diffusion direction is bound towards a common correspondence. In addition, the 
local importance preservation energy also serves as a boundary condition during optimization of deformation. 
Since the structure of the topo-tree is to group pixels based on their topology relationship, the deformation of 
the outer region infers the deformation of the inner regions. As shown in figure 7, the deformation of the oval 
inferred the deformation of the inner arrow. Based on the deformation of the oval, TDR deformed the oval and 
arrow together and then further deformed the arrow to its corresponding area using the topology energy and 
local importance preservation energy.

The TDR is able to preserve local important information such as texture and density during the registration 
through the contribution of local importance preservation energy. Since the demons method derives the trans-
formation for each pixel individually regardless of the association with its neighborhood, there is no regulation 
except for a Gaussian filter utilized to maintain the topology of the pixels and the texture of original images. Such 

Table 2. Comparison of global alignment result of MDR, FFD and TDR method.

Methods

Synthetic data (%) Phantom data (%) Patient data (%)

NMI MSE NMI MSE NMI MSE

MDR 92.37  ±  5.13 5.62  ±  3.39 86.77  ±  8.51 7.62  ±  5.94 82.62  ±  7.42 9.72  ±  5.82

FFD 85.46  ±  8.36 9.87  ±  5.53 82.33  ±  9.44 10.86  ±  4.13 77.24  ±  8.65 12.65  ±  7.22

TDR 92.62  ±  6.22 5.56  ±  3.66 86.35  ±  7.72 6.56  ±  3.24 81.21  ±  6.82 9.53  ±  5.74
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high DoF of transformation enables the demons method to recover the deformation, while resulting in texture 
and topology difference from the original images. The local importance preservation energy of TDR maintains 
the original topology by limiting the disparity of transformation for pixels belonging to same topology region 
during optimization. Therefore, our topology energy and local importance preservation energy cooperate with 
demons energy to keep such changes at a low level. Our experimental results (as shown in figure 12) and statisti-
cal analysis of SUV distribution difference (as shown in figures 12 and 13) show the local importance preserva-
tion capability of TDR.

Since the topo-tree is constructed to describe the relations between topology regions in the image, the inten-
sity levels of the same set of topology regions would not affect the topo-tree structures or the TDR result. For 
example, in figure 5, the four shapes and the background regions were all of different intensity levels and would 
derive five clusters corresponding to five topology regions. If the four shapes in figure 5 were assigned the same 
intensity, the algorithm would derive two clusters including one for the background and the other cluster with 
the four shapes; and then after calculating the region connectivity, the clusters would be further split into five 
topology regions. Since both cases would derive the same set of topology regions, the topo-trees of these two cases 
were exactly the same and which in turn lead to the same topology energy. As there was no other difference in 
these two cases (except for the intensity settings), the registration results would be similar.

However, the levels of the topo-tree can impact registration results. As shown in figure 2, the topo-tree levels 
are determined automatically with regard to the ROI for local importance preservation. When choosing different 
ROIs, topo-trees with different levels will be constructed. Our progressive TDR refines deformation level-by-
level and stops at ROI level (the maximum level of the topo-tree), and therefore, no further deformation will be 
refined for the topology region(s) in the ROI. By such, the TDR results in different registration outputs for differ-
ent local importance preservations. With regard to the clinical cases, the lesion/tumor region is normally consid-
ered as the ROI, and in our experiments, all the procedures were automated once the ROI was given.

Our proposed TDR method is an intensity-based registration that is able to preserve local importance 
through topological information and relations. Radial basis function (RBF)-based transformations provide 
a landmark-based registration scheme and are known for their property of topology preservation. RBF-based 
registration methods optimize the bending energy of landmark displacement, i.e. transformation (Cavoretto 
et al 2014). The RBFs preserve ‘neighboring’ topology relations through regularizing the transformation in 
area around landmarks under specified radius. However, as commented upon by Yang et al (2011), the perfor-
mance of RBF not only depends on the possessed topology preservation property of various types of RBF, but 
also varies according to different spacing between landmarks. Yang et al (2011) further indicated that when the 
displacement of one landmark is bigger enough than its adjacent landmarks, the resultant deformation field 
could be folded. Therefore, the selection of type and variable radius for RBF would be critical and may affect 
the registration performance. In comparison with the RBFs which preserve ‘neighboring’ topology relations, 
our  progressive TDR infers ‘contain’ topology relations through the topo-tree graph. The integration of such 
complementary topology relation information would lead to more meaningful registration result. In our future 
work, we will investigate incorporating the RBF global topology preservation property into our progressive 
registration scheme.

5. Conclusion

The high DoF of deformation empowers the DR to capture complex image content variations but it is derived 
from local image gradient information which may result in erroneous deformation, and it lacks explicit 
correlation among deformation of the neighbouring pixels. We propose a novel registration energy that 
introduced diffusion guidance for the erroneous demons diffusion direction while retaining the advantages 
of DR, and preserving important local texture data. Our experimental validation on synthetic, phantom and 
clinical data show that the introduction of topological information and local importance preservation energy 
provide more accurate results.
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