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Abstract

Turbulent flows affected by stable density stratification occur ubiquitously in wide range

of geophysical and environmental flows such as the ocean, the atmosphere or rivers and

lakes. Within such flows the process of turbulent mixing plays a leading order role in

numerous physical and ecological processes such as the vertical transport of heat, salt and

nutrients as well as being vital to accurately predict global energy circulation models. A

better understanding of the flow dynamics and the mechanisms that govern turbulent mixing

as well as its accurate prediction in stratified flows is therefore crucial to accurately resolve

such processes. If stratified flow is constrained by physical boundaries perpendicular to the

gravitational vector, then the flow develops into a distinctly vertically inhomogeneous state

that adds an additional layer of complexity into the mixing dynamics of the flow. Motivated

by the stratified river flows of Australia, this thesis aims to enhance our knowledge and

understanding of turbulent mixing in vertically inhomogeneous stratified flows through an

extensive set of direct numerical simulations (DNS) of stratified channel flow.

By performing a canonical ‘sunrise’ DNS of initially isothermal turbulent channel flow

subject to sudden radiative heating we demonstrate that the flow undergoes an initial ‘rapid’

suppression of turbulence due the reduction of the fluctuating vertical velocity component

w′ from the sudden introduction of stable stratification. The flow ‘slowly’ recovers towards

a stationary state as the flow accelerates and the mean shear develops such that equilibrium

is achieved in the turbulent kinetic energy and momentum flux balances. We demonstrate

that for the temporally evolving flow, the global suppression of turbulent mixing defined

by bulk measures of the eddy diffusivity and viscosity is well predicted by the mixed bulk

parameter Ri−1
τ Reτ , where Riτ and Reτ are the friction Richardson and Reynolds numbers

respectively such that mixing within the flow becomes strongly suppressed for Ri−1
τ Reτ ≲ 10

and approaches neutral conditions for Ri−1
τ Reτ ≳ 100. We find that the convergence

of the flow towards stationarity is a globally parabolic process such that the flow at all
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depths simultaneously obtains equilibrium in the buoyancy and momentum fluxes. Scaling

arguments are presented to demonstrate that this process may be parameterized through bulk

flow properties such that the flow achieves equilibrium at Ri
−1/2
τ (t/Tτ ) ≈ 2 provided that

Ri−1
τ Reτ ≲ 100, where t is the measured time from its initial isothermal state and Tτ is the

bulk friction time scale. We propose that the bulk scaling presented could lend itself as a

useful forecasting tool for the onset of suppressed mixing in real stratified river flows.

By considering instantaneous horizontal planar averages of the temporally evolving

flow we observe three distinctly different mixing regimes separated by transitional values

of turbulent Froude number Fr: a weakly stratified regime for Fr > 1, an intermediate

regime for 0.3 < Fr < 1 and a saturated regime for Fr < 0.3. The mixing coefficient Γ

is well predicted by the parametrization schemes of Maffioli et al. (2016) and Garanaik &

Venayagamoorthy (2019) across all three regimes through instantaneous measurements of Fr

and the ratio LE/LO, where LE and LO are the Ellison and Ozmidov length scales respectively.

The flux Richardon number Rf shows linear dependence on the gradient Richardson number

Rig up to a transitional value of Rig = 0.25 past which it saturates again to a constant value

independent of Fr or Rig. By examining the flow as a balance of inertial, shear and buoyancy

forces, we derive physically based scaling relationships to demonstrate that Rig ∼ Fr−2

and Rig ∼ Fr−1 in the weakly and moderately stratified regimes and that Rig becomes

independent of Fr in the saturated regime. Our scaling analysis and results suggest that an

extended range of the LE/LO ∼ Fr−1 scaling of Garanaik & Venayagamoorthy (2019) in

the intermediate regime manifests due to the influence of mean shear. Hence we directly

reconcile the Fr,Rig and LE/LO frameworks across all three mixing regimes for our shear

driven flow.

By adapting the density inversion criterion method of Portwood et al. (2016) for our flow,

we demonstrate that the flow may be robustly separated into regions of active turbulence for

which ReB ≳ O(10) and quiescent fluid where ReB ≲ O(10), where ReB is the buoyancy

Reynolds number. The intermittency in the surface heated channel flow spontaneously

manifests as a deformed horizontal interface between the upper quiescent and lower turbulent

flow. We find the region just below the interface is characterized by vigorous and efficient

energetic mixing from Kelvin-Helmholtz type overturning instabilities, with the thickness
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of the interfacial layer being proportional to the Ellison length LE . The resulting vertical

intermittency profile quantified through a depth varying turbulent volume fraction is accurately

predicted by a local Monin-Obukhov length normalized in viscous wall units Λ+ such that the

flow begins to display intermittency within the parameter range of 2.5 ≲ Λ+ ≲ 260. We find

the ‘turbulent’ flow within this region to be described by constant critical gradient Richardson

and turbulent Froude numbers of Rig,c ≈ 0.2, Frc ≈ 0.3 and Γc ≈ 0.25, suggesting that for

our flow, critical mixing conditions arise from the intermittency resulting from stratification.

By considering conditional averages of both the ‘turbulent’ and ‘quiescent’ flow separately

within this critical regime, we find that the ‘turbulent’ flow continues to display a Γ ∼ Fr−1

relationship in the limit of Fr < Frc, while the quiescent flow shows no correlation between Γ

and Fr. We demonstrate that for stratified open channel flow, the emergence of an asymptotic

‘saturated’ Γ regime in the limit of a low ‘global’ Fr occurs directly due to intermittency and

increasing contributions to measurements of Γ from the quiescent flow.
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CHAPTER 1

Introduction

1.1 Stably stratified turbulent flows, context and significance

Turbulent flows being characterized by highly disordered vortical motions are ubiquitous

across a large variety of naturally occurring flows. In particular, in the context of geophysical

turbulent flows such as the ocean, atmosphere, rivers or lakes, such flows are often affected

by stable density stratification. That being, that the density of the fluid increases in the

direction of the gravitational force. Stable stratification occurs in geophysical flows due to

temperature differences as the hotter fluid expands and becomes less dense, usually driven by

solar radiative heating (or the absence of, in the case of the nocturnal atmosphere), or due to

variable active scalar concentration (salinity in aqueous flows, moisture in the atmosphere). In

stably stratified flows, when a dense parcel of fluid is advected upwards by turbulent motions

into a relatively less dense background fluid, gravitational buoyancy acts to exert a restoring

force. This inhibits vertical fluid displacements and under sufficient strength of stratification

may act to ‘modify’ the turbulence structure into a anisotropic state (Riley & Lelong, 2000;

Billant & Chomaz, 2001).

In turbulent flows ’mixing’ occurs as turbulent eddying motions act to stir the fluid, dispersing

fluid particles and irreversibly homogenizing (mixing) the scalar fields within the flow. Un-

derstanding the dynamics and mechanism by which turbulent mixing occurs within stratified

flows as well as its accurate estimation is crucial to numerous geophysical applications such

as: global ocean circulation models, atmospheric climate and pollutant dispersion models,

global energy budget calculation, nutrient transport in rivers, estuaries and lakes (Gregg, 1987;

Fernando, 1991; Turner & Erskine, 2005). As an example, in the ocean, turbulent mixing
1
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defined through a measured ‘eddy diffusivity’ (to be defined in more detail in §1.3), may

vary by orders of magnitude (Ivey et al., 2018). As many of the mechanisms underlying

turbulent mixing in stratified flows remain poorly understood, this creates a significant amount

of uncertainty and often error in current mixing models (Gregg et al., 2018).

A particular motivation behind this study are the regulated river flows of Australia. Turbulent

mixing in such flows is the primary mechanisms responsible for the vertical transport of key

nutrients absorbed at the water-air interface critical for the ecological health of the system

such as carbon dioxide or dissolved oxygen. In summer and during periods of low rain,

Australian rivers and estuaries may become persistently strongly stratified such that there is a

significant reduction of turbulent mixing in the upper layer of the flow. It has been shown that

this reduced mixing and subsequent non-uniform distribution of the aforementioned nutrients

has been shown to facilitate severely harmful ecological events Turner & Erskine (2005).

Reduction in flow rates and turbulent mixing has been linked to harmful cyanobacterial

blooms such as that in 2016 which forced the closure of a 1600 km long stretch of the Murray

river (Brooks et al., 2016). Long periods of strong strong stratification and reduced mixing,

followed by rapid extreme mixing events have been proposed as a primary cause for the low

levels of dissolved oxygen resulting in the mass fish kills seen in the Darling river in 2019

(Vertessy et al. (2019)). The financial cost of such ecological damage can be severe. As such,

a better understanding of the mechanisms by which turbulent mixing and its suppression

manifests in stratified river flows is a key aim of this thesis.

1.2 Fundamental background theory

1.2.1 Governing equations of motion

Geophysical flows are characterized by their enormous scale, however turbulent mixing is

inherently a dissipative process that occurs at the smallest scales of turbulence (Caulfield &

Peltier, 2000; Peltier & Caulfield, 2003). As such, direct numerical simulations (DNS) as

employed in this dissertation, which resolves the smallest scales of motion computationally,
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lends itself as a logical method by which to investigate mixing within stratified flows at a

fundamental level. DNS modelling of stratified flow requires defining an appropriate set of

governing equations which are then discretized and solved numerically. For the purpose of

this thesis we will assume the scale of the flows in question is sufficiently modest such that

the effect of the earths rotation may be seen as negligible relative to buoyancy and may be

neglected. The governing equations of motion for an incompressible fluid with constant fluid

properties defining the conservation of momentum and mass, i.e. the Navier-Stokes equations

under the Oberbeck-Boussinesq assumptions read as

∂u

∂t
+ (u·∇)u = −∇p∗

ρ0
+ ν∇2u− ρ′

ρ0
gez, (1.1)

∇·u = 0, (1.2)

where ρ′ is the density pertubation of the fluid, ρ0 is the mean or background density, u is the

flow velocity, p∗ = p+ ρ0gez the combined pressure term which incorporates the hydrostatic

pressure portion of the gravitational term, t is the time, ν is the kinematic viscosity and g is the

gravitational acceleration. In this thesis we define that in the Eulerian reference frame gravity

acts in −δi3 or −z direction. Note that the derivation of (1.1-1.2) stems from the primary

Oberbeck-Boussinesq assumption that for most geophysical flows, the density perturbations

are small relative to the background density (i.e. ρ′ ≪ ρ0) and can be neglected in in the

equations of motion with the exception of the gravitational term.

For closure of the governing equations it is clear that an additional scalar transport equation

is required to determine ρ′. We now take the critical assumption that variations in density

due to concentration(i.e. salinity) are negligible such that they occur solely due to variations

in temperature θ . Hence we assume a linear transform from fluid temperature to density

perturbation is given by the equation of state

ρ′ = ρ0(1− βθ′), (1.3)

where β is the constant of thermal expansion. Assuming that θ′ is a conserved scalar that

satisfies an advection-diffusion transport equation we can write a similar transport equation
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for ρ′ of the form
∂ρ′

∂t
+ (u·∇)ρ′ = κ∇2ρ′, (1.4)

where κ is the molecular diffusivity of heat. Finally for consistency with past work of stratified

flow we define b = −ρ′g/ρ0 as the ‘buoyancy’ or reduced gravity variable to arrive at the set

of governing equations that fully define stratified flow:

∂u

∂t
+ (u·∇)u = −∇p∗

ρ0
+ ν∇2u+ bez, (1.5)

∂b

∂t
+ (u·∇)b = κ∇2b, (1.6)

∇·u = 0. (1.7)

Note that these equations are generic and describe all stratified flow under the assumptions

outlined above and do not include forcing terms or boundary fluxes which may vary with

individual flow configuration, provided the boundary conditions and initial mean profiles of u

and b similarly satisfy the Oberbeck-Boussinesq assumptions. We will cover our adaption of

(1.5-1.7) and their numerical discretization in more detail in §2.

1.2.2 Turbulent mixing and energetics

As discussed in §1.1 mixing in stratified flows is fundamentally linked to energetics and the

conversion of turbulent kinetic energy (TKE) into potential energy (PE) through mixing as

denser fluid is advected upwards through turbulent motions.

We note the flow velocity u and buoyancy b may be decomposed into their mean and

fluctuating components such that

u = u+ u′, b = b+ b′, (1.8a, b)

where the overbar denotes some appropriate ensemble average that is flow specific. Hence

we can define the ‘turbulent’ component of the kinetic energy as

EK =
1

2
(u′

iu
′
i). (1.9)
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By substituting (1.8) into the momentum equation (1.5) and multiplying through by u′/2 it

is possible to derive an evolution equation for EK (Pope, 2000). Under the assumption of

homogeneity in the horizontal plane, it reads

∂EK

∂t
= P − ϵK −B +Dν + TK +Π, (1.10)

where terms on the RHS going from left to right are: the production term, the turbulent

buoyancy flux, the dissipation rate of turbulent kinetic energy, the viscous transport term, the

turbulent convection term and the pressure transport term, where

P = −u′
iw

′ ∂ui

∂z
, ϵK = 2νs′ijs

′
ij, B = −b′w′

Dν = ν

(
∂2EK

∂z2

)
, TK = − ∂

∂z
(w′EK). Π = − ∂

∂z
(w′p′),

(1.11a − f )

where s′ij = 1/2(∂u′
i/∂xj + (∂u′

j/∂xi) is the pertubation deformation tensor. Here the most

significant difference to incompressible flow in the absence of buoyancy, is the inclusion of

the buoyancy flux B. Under the assumption that in turbulent stratified flows that the turbulent

buoyancy flux acts downwards (upwelling of dense fluid) such that B ≥ 0, B therefore acts as

a kinetic energy sink or ‘toll’ the flow has to pay that transfers TKE into PE. Accordingly in

literature B is often interpreted as the mixing rate within stratified flows (Osborn, 1980; Ivey

& Imberger, 1991; Shih et al., 2005). We note that B is not always strictly positive definite.

If the flow approaches very stable conditions, B may act as a reversible conduit of energy

from PE back to TKE, we will discuss this in more detail shortly.

Analogously by substituting (1.8) into the transport equation for b (1.6) and multiplying

through by b′/2N2, we can obtain an evolution equation for the buoyancy variance b′2/2.

Where N = (∂b/∂z)1/2 is square root of the background stratification known as the buoyancy

frequency. Under similar assumptions of homogeneity in the horizontal plane, the equation

reads
1

N2

∂(b′2/2)

∂t
= B − χ+Dκ + Tb, (1.12)

where the terms on the RHS going left to right are: the production term which is exactly the

buoyancy flux B, the rate of buoyancy variance destruction, diffusive transport term, turbulent
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convection term defined as:

χ =
κ

N2

(
∂b′

∂xj

)2

, Dκ =
κ

N2

(
∂2b′2

∂z2

)
, Tb = − 1

2N2

∂

∂z
(w′b′2). (1.13a, b, c)

It is clear that B features in both (1.10) and (1.12) as a kinetic energy sink and as the source

of buoyancy variance respectively. Note in both (1.10) and (1.12) we have omitted the mean

convection term as the term becomes identically zero under the assumption of homogeneity

in the horizontal plane.

As outlined in the seminal work of Osborn & Cox (1972), a further key insight is that if

the flow is sufficiently far from physical boundaries such that it may be considered quasi-

homogeneous as in the ocean interior, the transport terms Dν , TK ,Π in (1.10) and Dκ, Tb in

(1.12) may be neglected such that the steady-state evolution equations read

P ≈ B + ϵK , (1.14)

B ≈ χ. (1.15)

If the flow satisfies these conditions, it is said to be in a state of ‘local equilibrium’. However,

under very stable conditions, instantaneous ‘counter-gradient’ measurements of B < 0 may

be observed, as propagating internal waves and convective instabilities act to transfer PE

back into TKE (Taylor et al., 2005; Venayagamoorthy & Koseff, 2016; Howland et al., 2020).

Osborn & Cox (1972) argue that provided the conditions of (1.14-1.15) are satisfied, then χ

which is inherently a small scale and positive definite quantity, is a more sensible measure of

irreversible mixing than B.

If an additional condition is met that the background stratification N2 is invariant in space

and time then χ estimates the irreversible conversion of available potential energy (APE)

into background potential energy (BPE), this being a primary quantity of interest in global

energetics models (Caulfield, 2020). Here APE is the portion of the total potential energy

that may be converted back into kinetic energy. While BPE is the minimum potential energy

of the flow after an adiabatic resorting of the buoyancy field and is not available to the flow

(Lorenz, 1955). In a key study, using the APE framework, Winters et al. (1995) develop an

analytical expression for the irreversible diapycnal density flux. Caulfield & Peltier (2000)
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and Peltier & Caulfield (2003) extend this concept to demonstrate that for closed systems,

the framework may be employed to derive a global instantaneous irreversible mixing rate

M∗. The use of this framework has been particularly prevalent in DNS studies of singular

shear instability mixing events to better understand the transient dynamics and accurately

quantity irreversible turbulent mixing across the entire mixing cycle (Basak & Sarkar, 2006;

Mashayek et al., 2013; Salehipour & Peltier, 2015; Salehipour et al., 2015; Mashayek et al.,

2017; VanDine et al., 2021). Expanding on this, Scotti & White (2014) present a theoretical

formulation for the calculation of ‘local’ APE in stratified flows. Recent DNS studies of Zhou

et al. (2017b) of stratified plane Couette flow and Smith et al. (2021) of forced free shear flow

have adapted this theory to show that local irreversible mixing for vertically inhomogeneous

flows can defined in this framework. However in both cases the limitation being that the flow

must be symmetrical about a central shear interface where the local irreversible mixing is

appropriately defined.

In inhomogeneous flows, the χ and the APE framework are not always appropriate. In

vertically inhomogeneous flows where the presence of physical boundaries cannot be neglected

such as rivers or lakes, or temporally evolving flows in which flow properties rapidly change

with time the local equilibrium assumptions in (1.14 − 1.15) no longer hold true. This

effectively invalidates the use of χ as a measure of mixing or energy conversion between TKE

and PE. Meanwhile the APE framework requires full knowledge of the flow field such that

adiabatic resorting of the density field is possible, knowledge only available in DNS.

For a wide range of flows, particularly if they are spatio-temporally inhomogeneous, B

remains the primary method of defining the local mixing rate.

1.2.3 Eddy diffusivity and mixing efficiency

Despite the complexity of turbulent mixing in stratified flows, in geophysical applications it is

most commonly modelled through a one-dimensional simple flux-gradient eddy diffusivity Kρ.

From an applications perspective, Kρ remains the primary quantity of interest and its accurate

estimation remains the primary and most controversial objective of stratified mixing research
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to date (Ivey et al., 2018). Kρ can be readily derived by taking the Reynolds decomposition

of b in (1.8) to arrive at an evolution equation for the mean buoyancy b which reads

∂b

∂t
=

∂(−b′w′)

∂z
+ κ

∂2b

∂z2
=

∂

∂z

(
−b′w′ + κ

∂b

∂z

)
. (1.16)

Recalling that −b′w′ = B and ∂b/∂z = N2, we can rewrite this as

∂b

∂t
=

∂

∂z

(
(κ+Kρ)N

2

)
, (1.17)

where

Kρ =
B

N2
. (1.18)

It is clear that again the mixing defined through B (assuming that B > 0) acts to enhance the

diapycnal diffusion of heat transfer. In most turbulent geophysical flows it is assumed that

molecular diffusion of heat is negligible to that of turbulent mixing such that Kρ ≫ κ.

In his key study, Osborn (1980) presents a simple model for Kρ which remains widely used

to this day, which reads

Kρ =
B

N2
=

ϵK
ϵK

B

N2
= Γ

ϵK
N2

, (1.19)

where Γ = B/ϵK is the flux coefficient. From the perspective of field data interpretation, as

ϵK and N2 can be inferred from field measurements far more easily than B, quantifying Kρ

comes down to the estimation of Γ. Due to the ubiquitous measurements in the ocean and

laboratory experiments with upper limit of Γ ≤ 0.2, Osborn (1980) argued for the use of a

constant value of Γ = 0.2 for oceanic modelling. He argued based on the assumption of local

equilibrium of TKE for steady-state flow (i.e. P ≈ B + ϵK), the ratio of the kinetic energy

lost due to the buoyancy ‘toll’, to that being produced must have an upper limit to sustain

turbulence. This being defined as the flux Richardson number Rif = B/P , where Rif is

commonly referred to as the ‘mixing efficiency’. Hence he shows that

Rif =
B

P
≈ B

B + ϵK
=

1

1 + Γ
, (1.20)

and argues that an upper limit for Rif implies an upper limit for Γ. Expanding on this work,

by omitting the assumption of local equilibrium assumption or stationarity Ivey & Imberger
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(1991) define an instantaneous flux Richardson number Rf

Rf =
B

B + ϵK
, (1.21)

such that the equality the relationship between Rf and Γ in (1.20) does not rely on assumptions

of energetic equilibrium. They interpret it as the instantaneous mixing efficiency defining the

ratio of TKE lost to buoyancy to the total loss of TKE in the flow and similarly argue that an

upper limit pertains to Rf for sustained turbulence.

Citing the assumption of local equilibrium such that B ≈ χ, Osborn & Cox (1972) argue for

similar reasons outlined in §1.2.2 that is more logical to infer the eddy diffusivity through χ

such that

Kρ ≈
χ

N2
. (1.22)

A key recent study by Taylor et al. (2019) of high resolution DNS of stratified turbulence

simulates the ‘vertical sampling’ typically done in microstructure profiling of the ocean. They

confirmed that inferring Kρ directly through χ rather than B required appreciably less samples

to acquire an accurate estimate of Kρ. However accurate direct measurements of χ require the

resolution of the smallest diffusive scales of turbulence, which presents a significant challenge

in the field and the technology to achieve this has been only recently developed (Moum &

Nash, 2009; Waterhouse et al., 2014). Following the logic of Osborn & Cox (1972) it follows

that Kρ may be similarly parameterized as in (1.19) such that

Kρ ≈
χ

N2
= Γχ

ϵK
N2

, (1.23)

where Γχ = χ/ϵK , analogous to its counterpart defined through B. Note that similarly a

mixing efficiency η can be defined

η =
χ

χ+ ϵK
, (1.24)

which can be analogously linked to Γχ as in (1.20). A large amount of recent studies regarding

the estimation of mixing within stratified flows where the local equilibrium assumption is

valid have investigated mixing through the in (1.23) (Venayagamoorthy & Stretch, 2010;
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de Bruyn Kops, 2015; Maffioli et al., 2016; Venayagamoorthy & Koseff, 2016; Garanaik &

Venayagamoorthy, 2018; Howland et al., 2020, 2021).

Similarly, through the APE framework Caulfield & Peltier (2000) define an irreversible mixing

efficiency

η∗ =
M∗

M∗ + ϵK
. (1.25)

Salehipour & Peltier (2015) further demonstrate that within this framework an irreversible

diapycnal diffusivity K∗
ρ can be analogously defined and parameterized of the form

K∗
ρ =

M∗

N2
∗

= ΓM
ϵK
N2

∗
, (1.26)

where N2
∗ is the adiabatically sorted mean stratification profile and ΓM = M∗/ϵK .

However since the work of Osborn (1980), a large amount of observational, experimental

and numerical studies have demonstrated that all definitions of the flux coefficient are not

constant and may significantly vary across a wide range of parameters, often significantly

exceeding the proposed ‘Osborn’ upper limit of Γ = 0.2 (Shih et al., 2005; Ivey et al., 2008;

García-Villalba & del Álamo, 2011; Chung & Matheou, 2012; Maffioli et al., 2016; Ijichi &

Hibiya, 2018; Garanaik & Venayagamoorthy, 2019; Howland et al., 2020; Issaev et al., 2022).

As outlined above, obtaining direct and accurate measurements of B, χ or M∗ outside of

laboratory experiments or DNS is highly challenging. Hence the accurate estimation of the

eddy diffusivity for practical purpose, reduces down to the need to accurately parameterize an

appropriate definition of Γ from readily available quantities.

1.3 Parametrization of Γ

A significant challenge within the study of stratified turbulent mixing is the plethora of varied

parametrization schemes for Γ and the subsequent ambiguity in the relationship between the

different parameters across varying classes of flows (Gregg et al., 2018).

In an influential paper, Shih et al. (2005), present a parametrization of Γ based on the buoyancy

Reynolds number ReB , often also referred to as the activity parameter or Gibson number Gn
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(Portwood et al., 2016). Where

ReB =
ϵK
N2ν

. (1.27)

Using the results from their DNS data set they empirically propose that for 7 ≤ ReB ≤ 100

Γ is constant (seemingly in agreement with Osborn), Γ ∼ Re
1/2
B for ReB ≥ 100 and for

ReB ≤ 7, the flow approaches quasi-laminar conditions such that turbulent mixing becomes

of the same order as molecular diffusion. Since their study the use of ReB has been prevalent

in global models and is particularly appealing as it goes hand in hand with the Osborn model

for Kρ such that
Kρ

κ
= Γ

ϵK
N2κ

= Γ
ν

ν

ϵK
N2κ

= ΓPrReB, (1.28)

where Pr = ν/κ is the molecular Prandtl number which is assumed to be constant. The

model suggests that the diapycnal diffusivity may be fully parametrized by the singular

and relatively easy to measure parameter ReB. However, since then numerous studies have

demonstrated that the transition away from a constant Γ regime does not display universal

dependence on a singular value of ReB with reported transitional values varying between

O(101) ≤ ReB ≤ O(104) (Lozovatsky & Fernando, 2013; Scotti & White, 2016; Issaev

et al., 2022). In particular, a key recent DNS study of high resolution homogeneous sheared

stratified flow by Portwood et al. (2019) demonstrated that provided the flow maintains

sufficient dynamic range, Γ displays no dependence on ReB within their full parameter range

presented of 36 ≤ ReB ≤ 900.

To explain this we note that ReB can be expressed as a ratio of length scales such that

ReB =

(
LO

LK

)4/3

, (1.29)

where LO is the Ozmidov length describing the maximum conceptual size of an isotropic

eddy that is not confined by stable stratification, while LK is the well known Kolmogorov

microscale describing the smallest scale of turbulence, where

LO =

(
ϵK
N3

)1/2

, LK =

(
ν3

ϵK

)1/4

. (1.30a, b)

In a key study Maffioli et al. (2016) argue that if Γ is primarily determined by the how

‘strong’ the stratification is within the flow, then ReB is not an appropriate paramater to define
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Γ as it does not define the strength of stratification but rather is a measure of the inertial range

of the flow. Billant & Chomaz (2001) show that ReB may be considered a ‘mixed’ parameter

comprised out of intrinsic flow paramaters such that

ReB = ReTFr2, (1.31)

where ReT is the turbulent Reynolds number, analogous to a classic definition of the Reynolds

number Re = UL/ν (see Billant & Chomaz (2001) for a full derivation) comparing viscous

to inertial forces and Fr is the turbulent Froude number defined as

ReT =
E2

K

ϵKν
, Fr =

ϵK
NEK

. (1.32a, b)

Note that Fr can also be interpreted as a ratio of length scales, as shown in Lindborg (2006)

Fr =

(
LO

LI

)2/3

, (1.33)

where LI is the inertial turbulent length scale that conceptually defines the size of the largest

energy containing eddies in isotropic turbulence (Pope, 2000), defined as

LI =
E

3/2
K

ϵK
. (1.34)

Accordingly Fr represents a measure of how deformed the large energetic scales are due to

stratification, i.e. how strong the stratification is. Maffioli et al. (2016) argue that provided

ReT is sufficiently high, then Γ should show a dependence on Fr. They provide physically

based scaling arguments to show two limits: For Fr ≫ O(1) dubbed ‘weakly stratified’

flow they derive Γ ∼ Fr−2, consistent with the arguments of Ivey & Imberger (1991). And

for or Fr ≪ O(1) ‘strongly stratified’ flow they argue that Γ will grow independent of Fr

and approach a constant value. In particular their arguments presented for the latter case

stem from the underlying theory of Billant & Chomaz (2001) and Lindborg (2006) regarding

the distinguished limit of ReT ≫ O(1) and Fr ≪ O(1) for ‘strongly stratified turbulence’

expected in the highly energetic atmosphere and ocean. This also being commonly referred

to as the ‘layered anisotropic stratified turbulence’ (LAST) regime (Falder et al., 2016).

Numerous studies from varying flow configurations since then have shown strong support for
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this parametrization (Garanaik & Venayagamoorthy, 2019; Howland et al., 2020; Smith et al.,

2021; Issaev et al., 2022).

Garanaik & Venayagamoorthy (2019) expand upon this work to propose a separate ‘moder-

ately stratified’ - Fr = O(1) regime where both buoyancy and inertial forces are significant

and derive scaling arguments to propose a novel Γ ∼ Fr−1 relationship within this regime,

showing a range of varied data that supports this scaling. However, the underlying arguments

of Garanaik & Venayagamoorthy (2019) regarding this ‘intermediate’ regime remains an area

of debate in stratified turbulence literature (Caulfield, 2021; Mashayek et al., 2021).

Maffioli et al. (2016) argue that previous observation of correlation between Γ and ReB in

past studies where ReT is often kept constant, stems from an inherent relationship between

Fr and Γ. It should be noted that ReB is still a relevant parameter in the estimation of Γ.

It is a general consensus in stratified flow literature that ReB ≥ O(10) is a requirement

for sustained turbulence Smyth & Moum (2000); Brethouwer et al. (2007); Portwood et al.

(2016) (directly analogous to the finding of a ReB ≤ 7 diffusive regime in Shih et al. (2005)).

Below this the flow is not ‘energetic’ enough to maintain vigorous or efficient mixing such

that Γ drops towards zero. It has been suggested that multi-parameter frameworks may be

necessary to fully capture the complex dynamics and accurately parametrize Γ (Mater &

Venayagamoorthy, 2014; Salehipour et al., 2016).

For flows in the presence of mean shear, the parametrization of Γ has been frequently explored

in literature through the gradient Richardson number Rig, where

Rig =
N2

S2
, (1.35)

where S = ∂u/∂x is the mean shear rate. Note that Rig can be similarly expressed as a ratio

of length scales such that

Rig =

(
LC

LO

)4/3

, (1.36)

where

LC =

(
ϵK
S3

)1/2

(1.37)
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is the Corssin scale, analogously to LO representing the upper limit of an isotropic eddy not

distorted by the means shear. Hence, Rig can be seen as a competition between the turbulence

enhancing force of the mean shear and the suppression of turbulent motions from buoyancy.

Throughout numerous studies of varied flow configurations, it has been repeatedly shown

that for stationary turbulent shear flows, Rig approaches and upper limit ranging between

0.16 ≲ Rig ≲ 0.25, under which Rf and hence Γ displays a linear monotonic dependence

on Rig Armenio & Sarkar (2002); Taylor et al. (2005); García-Villalba & del Álamo (2011);

Chung & Matheou (2012); Deusebio et al. (2015); Karimpour & Venayagamoorthy (2015);

Zhou et al. (2017a); Issaev et al. (2022). As outlined in Caulfield (2021), the theory underlying

this result stems from the assumption that for steady stratified shear flow, the mean shear

dominates flow dynamics such that the stratification is inherently ‘weak’ such that the mixing

of the buoyancy field is lock-in-step with the mixing of momentum resulting in a turbulent

Prandtl number PrT of unity, where

PrT =
KM

Kρ

, (1.38)

where KM is the eddy viscosity defined for sheared flow as

KM =
−u′w′

S
. (1.39)

Assuming that in sheared flow P = −u′w′S, we can obtain

PrT =
KM

Kρ

=
−u′w′N2

BS
=

PN2

BS2
=

Rig
Rif

≈ 1, (1.40)

recovering the linear relationship between the mixing efficiency and Rig. For large Rig, there

exists no universal behaviour for Γ. Using DNS data, Venayagamoorthy & Koseff (2016)

propose an empirical fit suggesting Γ should remain constant at Rig, analogous to the strongly

stratified scaling of Maffioli et al. (2016). However, it has also been observed that Γ may

reduce as Rig exceeds some critical value (Shih et al., 2005; Zhou et al., 2017b).

Considering the aforementioned observations of an upper limit for a stationary Rig, is it

still unclear if shear flow can maintain active turbulence at high Rig. The issue is further

complicated if we consider that Rig and Fr may not be independent parameters. For the
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weakly stratified limit, Maffioli et al. (2016) present scaling arguments leading to Rig ∼

Fr−2. Yet for Fr ≲ O(1) the relationship between Fr and Rig and therefore how the Fr

and Rig mixing parametrization frameworks reconcile has not been addressed in current

literature. Caulfield (2021) argues that due the relationship between shear and inertial forces,

an upper limit on Rig implies a lower limit on Fr and therefore stratified shear flow may

be unable to access the ‘strongly stratified’ regime. Similarly it has been shown using

scaling analysis and DNS data, that for some flows Rig ∼ Re−1
B (Riley & deBruynKops,

2003; Hebert & de Bruyn Kops, 2006), such that high Rig flow in some instances may be

interpreted as low ReB ‘diffusive’ flow in which the concept of a ‘turbulent’ mixing efficiency

begins to somewhat lose relevance. This creates a complex and ambiguous parameter space

where conceptually Γ = f(Rig, F r, ReB), and where all these parameters may be also

interconnected, not to mention molecular fluid properties defined by varied Pr (Caulfield,

2021).

On the basis of past works (Ivey & Imberger, 1991; Smyth & Moum, 2000; Smyth et al., 2001;

Mater et al., 2013; Mashayek et al., 2017), Garanaik & Venayagamoorthy (2019) further

presents arguments showing that Fr may be inferred through the length scale ratio LE/LO,

where

LE =
b′rms

N2
(1.41)

is the Ellison length describing the extent of vertical fluid displacements and can be interpreted

as the characteristic size of overturns in stratified flow (Ellison, 1957). on the basis that LE has

been shown to correlate linearly to the Thorpe length LT which is relatively easy to measure

from one dimensional profiles in the field, Garanaik & Venayagamoorthy (2019) argue that Γ

may be inferred through the length scale ratio LT/LO, which is significantly easier to measure

than Fr. Where LT similarly describes the vertical extent of overturns and is defined through

a one dimensional adiabatic reordering of the density field (see Thorpe (1973)). They present

a varied DNS set which shows support for their scaling and parametrization.

A recent study by Mashayek et al. (2021), present an alternative parametrization through

LT/LO (ROT in their study) based on the concepts of time-dependant mixing and self-

organized criticality in stratified shear flow (to be discussed in more detail in §1.5). Most
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notably, in the limit of high LT/LO their parametrization does not predict an asymptotic Γ

regime as in Garanaik & Venayagamoorthy (2019), but rather suggests Γ continues to grow

large. They present a varied oceanic data-set which shows strong support for their scaling.

It is clear that there is still a considerable amount of ambiguity in the literature as to how

parametrization frameworks for Γ through ReB, F r, Rig and LT/LO reconcile(or contradict)

across the multitude of proposed mixing regimes and complex multi-parameter space. Many

of the frameworks discussed have been derived under the assumption of homogeneity and

stationarity, and tested within idealized triply-periodic DNS where such assumptions are

enforced. However real flows can exhibit strong spatial and temporal variability resulting

from the inherent intermittency of stratified flow at finite ReB as stratification suppresses

turbulence (Portwood et al., 2016). Furthermore, the presence of physical boundaries may

impose vertical inhomogeneity further complicating the mixing dynamics of the flow. Clearly

there is a need for more robust testing of the aforementioned parmaterization schemes in

a variety of spatio-temporally inhomogeneous flows and a deeper investigation into the

relationships between the parameters across varying flow regimes.

1.4 Vertical inhomogeneity in wall bounded stratified flows

Motivated by the ocean interior where such assumptions are valid, many numerical investiga-

tions into stratified flows have employed triply-periodic homogeneous domains with a linear

stratification (i.e. N = const) (Shih et al., 2005; Lindborg, 2006; Brethouwer et al., 2007;

de Bruyn Kops, 2015; Maffioli et al., 2016; Portwood et al., 2019). However, many naturally

occurring flows such as the atmospheric boundary layer or stratified river flows, the presence

of physical boundaries cannot be ignored and creates an additional confinement scale within

the flow, which introduces vertical inhomogeneity in the stratification profile (i.e. N = f(z)).

If mean shear is also present, (usually as a result of friction at the wall) then this creates a

complex set of flow dynamics in which S,N = f(z) and where local shear instability and

wall generated turbulence may interact and co-exist in one flow domain.
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Past studies on wall bounded stratified flows in which gravity acts perpendicular to the wall

can be largely subdivided into two classes of flows. One where the flow is driven by a pressure

gradient in the streamwise direction, namely channel flow (Komori et al., 1983; Garg et al.,

2000; Armenio & Sarkar, 2002; Taylor et al., 2005; García-Villalba & del Álamo, 2011;

Flores & Riley, 2011; Williamson et al., 2015; Buren et al., 2017; Kirkpatrick et al., 2019,

2020; Atoufi et al., 2020, 2021). The second being that where the flow is driven by shear

resulting from moving boundaries, namely Taylor-Couette and plane-Coutte flow (Oglethorpe

et al., 2013; Deusebio et al., 2015; Zhou et al., 2017b,a). The former having the appeal

of a priori knowledge of the momentum flux profiles due to the force balance between the

shear stress and pressure gradient. And the latter having the appeal of constant buoyancy and

momentum flux profiles in the core of flow.

A reoccurring theme in both classes of flows is that despite the vertical inhomogeneity of

the mean gradient profiles S,N , in steady-state and away from the physical boundaries, the

central flow approaches a state of quasi local equilibrium as defined by (1.14-1.15). This

creates an inhomogeneous flow where local based parametrization frameworks may be tested

across a broad paramater range within a single flow domain. As mean shear is usually

present within wall-bounded flows, the Rig framework has been extensively tested in the

aforementioned studies. With noteable exceptions (Zhou et al., 2017b,a), the Fr and LE/LO

frameworks remain largely untested in wall-bounded flows nor is it clear as to the relationship

between these parameters in such inhomogeneous flows. Furthermore, the vast majority of

the aforementioned studies focus on the statistically stationary flow where the flow dynamics

can be analyzed without additional complexities of time-dependant processes. It remains

unclear when the assumptions of local equilibrium become valid and subsequently if the

paramatrization frameworks remain relevant in temporally evolving wall bounded flows.

In the context of stratified river flows which form one of the primary motivators of this

study, Williamson et al. (2015) present its canonical representation as a DNS configuration

for stratified open channel flow subject to surface radiative heating modelled through the

Beer-Lambert law. Their study focuses on the stationary case and in particular finds that the

flux profiles of both buoyancy and momentum are distinctly inhomogeneous, with no constant
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flux regions observed. However, an appreciable region of local equilibrium still manifests

within the channel within which the P ≈ B + ϵK and Rig ∼ Rf relationships are observed.

The study of Kirkpatrick et al. (2019) expand on this to explore the temporally evolving

canonical ‘sunset’ case of the destratification of the stationary stratified flow after the removal

of the radiative heat source. In Kirkpatrick et al. (2020) they further add the additional control

parameter of upper surface cooling to expedite the destratification process. They find that at a

bulk parameter level the destratification of the flow is well described and can be predicted by

two time varying parameters: the friction Reynolds and Richardson numbers defined as

Reτ =
uτδ

ν
, Riτ =

∆bδ

u2
τ

, (1.42a, b)

where uτ is the so called friction velocity, δ is the channel height and ∆b is the mean

buoyancy (temperature) difference across the channel. They show that the destratifying

channel maintains a state of local equilibrium for the majority of the destratification process

as the flow relaxes back into a neutral state within which the Rig ∼ Rf parameterization

remained valid. Analogously they found that the upper limit of Γ ≈ 0.2 that manifests in the

stationary state similarly remains for a long period of the flows evolution.

However, the ‘sunrise’ analogue of this configuration (i.e. a turbulent neutral channel subject

to sudden radiative heating) remains uninvestigated. Hence with direct applicability to

stratified river flows, it remains unclear as to the validity of local equilibrium assumptions

nor the Rig, F r, LE/LO based parametrization frameworks within such a flow configuration.

To our knowledge no comprehensive description of the transient response with respect to

the vertical structure of the channel for the ‘sunrise’ case exists in literature through DNS

investigation.

1.5 Intermittency and criticality in stratified flows

If stabilizing forces of stratification overcome that of inertia and the production of turbulence

through shear instabilities, then turbulence may collapse and the flow may partially relaminar-

ize such that turbulent and non-turbulent phases may co-exist in a stable state (Brethouwer
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et al., 2012; Deusebio et al., 2015). Oceanic and atmospheric flows have been frequently

observed to display strong spatio-temporal intermittency with patches of weakly stratified

energetic turbulence encompassed in strongly stratified yet essentially quasi-laminar flow

(Baker & Gibson, 1987; Van de Wiel et al., 2002).

Portwood et al. (2016) observe strong intermittency in their high resolution DNS at ‘global’

values of Fr = 0.015, ReB = 13 and demonstrate that although turbulent patches account

for only a small fraction of the flow domain, they account for the vast majority of turbulent

mixing within the flow. They further find that the conditionally averaged values of ReB vary

by multiple orders of magnitude between the turbulent and quiescent regions. They find a

distinct bimodal distribution of ϵK , χ within their flow. Similar bimodal observations of the

dissipation rates and variability in ReB were made in the DNS de Bruyn Kops (2015) as the

flow became more anisotropic with increased stratification. It becomes an open question

whether the distinguished limit of the LAST regime as described by Billant & Chomaz

(2001) (ReB ≫ O(1), Fr ≪ O(1)) is physically possible in a ‘local’ sense. Indeed the

underlying theory presented in Billant & Chomaz (2001) suggests strongly stratified flow

will spontaneously organize into ‘layers’ or ’pancakes’ of well mixed weakly stratified flow

separated by interfaces at much stronger stratification. Strong evidence for such anisotropic

layering has been observed in numerous studies (Lindborg, 2006; Brethouwer et al., 2007;

Waite, 2011; Maffioli & Davidson, 2016; Maffioli, 2017; de Bruyn Kops & Riley, 2019;

Howland et al., 2020). This creates appreciable challenges in inferring a singular global

measure of Γ as used in oceanic models, where the parameters from which it is inferred are

calculated from measurements within finite spatial and temporal windows and are inherently

local.

In sheared flows, intermittency is often linked to Rig. In his seminal work, through inviscid

linear stability theory Miles (1961) defined an upper limit of Rig,c = 1/4 for the formation of

shear instabilities in steady stratified shear flows. Accordingly a vast amount of literature both

experimental and numerical has investigated on the transition to turbulence and evolution of a

mixing event due to the formation of shear instabilities (Caulfield & Peltier, 2000; Peltier &

Caulfield, 2003; Basak & Sarkar, 2006; Smyth & Moum, 2000; Smyth et al., 2001; Thorpe
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et al., 2013; Mashayek et al., 2013; Salehipour & Peltier, 2015; Salehipour et al., 2015;

Mashayek et al., 2017; Howland et al., 2018; Lewin & Caulfield, 2021, 2022). And although

it has been found that Rig = 1/4 is not a strict limit for transition to turbulence, it has

been generally established that it cannot exceed this value by any significant margin. This

being seemingly in direct agreement with the frequent observation of similar upper limits

on Rig, Rif for steady state flow observed in numerous past studies as discussed in §1.3.

However it is still open to debate whether the critical limits are defined by stability and

intermittency or if the overlap is simply ‘fortuitous’ (Zhou et al., 2017a), warranting further

investigation.

Based on the frequency of oceanic observations where Rig ≈ 1/4, Thorpe & Liu (2009)

hypothesise that by adjusting its mean gradients, stratified shear flows naturally converges

to this ‘marginally unstable’ state and slight variations in shear or stratification cause the

flow to oscillate between states of stability and instability. Salehipour et al. (2018) and

Smyth et al. (2019) expand on this to describe this a state of ‘self-organized criticality’ (SOC)

frequently observed in other natural systems. This concept of SOC lies at the heart of the

ROT parametrization scheme of Mashayek et al. (2021) who argue that although ROT and

Γ may vary, the significant majority of mixing occurs at this naturally occurring critical or

‘optimal’ state where ROT ≈ 1. Here ‘optimal’ implies that energy being injected into the

flow through overturns is precisely at the wavelength corresponding to the upper limit of

the inertial sub-range of the flow. However it is still unclear how local intermittency and

relaminarization come into play within this conceptual framework, nor has this framework

been explored in detail in vertically inhomogeneous flows.

In wall-bounded flows, the collapse of turbulence and intermittency has been frequently

explored through the Monin-Obhukov (M-O) framework. In the context of the atmospheric

boundary layer, M-O scaling suggests that the flow can be described by two parameters: the

distance from the wall z defining a confinement scale and the M-O length L defining the

competition between the forces of the shear and buoyancy at the wall defined as

L =
u3
τ

b∗κc

, (1.43)
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where b∗ is the surface buoyancy flux and κc = 0.4 is the von Karman’s constant. Flores

& Riley (2011) find that the collapse of turbulence in bottom-cooled open-channel is well

predicted by a critical value of the parameter L+ = Luτ/ν. Here L+ is the M-O length

normalized by the viscous wall-unit (ν/uτ ) such that L+ may be considered a ‘mixed’

parameter that compares the forces of shear, buoyancy and viscosity analogous to ReB.

Deusebio et al. (2015) similarly show that L+ serves as an excellent predictor of intermittency

in stratified plane Couette flow. Expanding on past atmospheric studies such as Nieuwstadt

(1984) or Sorbjan (1986), Chung & Matheou (2012) expand on this work to show that local

intermittency can be predicted similarly with a normalized ‘local’ M-O length Λ+ = Λu∗/ν

where

Λ =
u3
∗

Bκc

, u∗ = −u′w′1/2. (1.44a, b).

It still remains unclear how L+ or Λ+ scaling of intermittency applies (or whether it applies

at all) to stratified flows such as rivers or lakes where the buoyancy flux into the flow occurs

at the upper water-air interface rather than at the bottom wall as in the case of the atmosphere.

It becomes clear that to accurately parameterize mixing in intermittent stratified flows from

finite local measurements, a thorough understanding is required of the mechanisms by which

intermittency manifests, both the flow dynamics in the separate turbulent/quiescent regions as

well as a robust quantification and prediction of intermittency. All these being areas of current

investigation in stratified flow literature.

1.6 Primary goals and thesis layout

It is clear that a more thorough understanding of turbulent mixing and its parametrization

in stratified flows is still required within existing literature and in particular with respect to

vertically and temporally inhomogeneous and intermittent flows. Additionally it is clear that

there is a gap in current literature describing the transient response of a turbulent open channel

flow subject to sudden stratification with extensive DNS data. Motivated by stratified river

flows, this thesis employs a ‘sunrise’ scenario variant (to be defined in detail in §2) of the
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stratified open channel flow DNS configuration of Williamson et al. (2015) to address the

following open questions and core aims of this thesis:

(1) What is the transient response of the vertical energetic structure of a neutral turbulent

channel to the sudden imposition of stable stratification through radiative heating?

(2) In the context of stratified river flows, can the onset of globally suppressed turbulent

mixing and the time scale under which equilibrium is achieved be predicted through

a bulk flow parameterization of easily measurable quantities in the field?

(3) Can Γ be accurately parameterized through ReB, F r, Rig and LE/LO frameworks

in our spatio-temporally inhomogeneous channel flow within which the assumptions

of local equilibrium are invalid?

(4) How do these frameworks and the relationships between the varying parameters re-

concile (or contradict) across the varying mixing regimes and what are the subsequent

implications for current mixing models for stratified shear flow?

(5) How does intermittency due to stable stratification manifest within surface heated

stratified channel flow and can it be quantified and parameterized through Monin-

Obhukov scaling?

(6) How does the inherent intermittency in stratified flow effect the parameterization of

Γ in the limit of low Fr and how does this reconcile with the theory of self organized

criticality and ‘optimal’ mixing in stratified shear flows?

To that end the remainder of this thesis is structured as follows

In chapter §2 a description of the DNS configuration for temporally evolving stratified open

channel flow as well the numerical method used is presented. The numerical method is

validated through near-wall spectra of the initial condition.

In chapter §3 we present a thorough qualitative and quantitative description regarding the

transient response of a neutral turbulent open channel flow subject to sudden radiative heating

with emphasis on the energetic vertical structure of the flow. Physically based scaling argu-

ments are presented to derive a bulk property parametrization for both the global suppression
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of mixing and the time scale under which the flow obtains stationarity. A model for the bulk

stratification rate is proposed and its limitations discussed.

In chapter §4 we present a thorough evaluation as to the efficacy of ReB, F r, Rig and LE/LO

paramterization frameworks for Γ in temporally evolving stratified open channel flow. Three

separate mixing regimes are established based on values of Fr and scaling arguments are

presented to determine the relationship between all four non-dimensional parameters across

all regimes. The implications of the results for other stratified shear flows are discussed.

In chapter §5 an adaptation of the unstable density gradient criterion method of Portwood

et al. (2016) is presented for stratified open channel flow such that instantaneous realisations

of the flow are robustly separated into turbulent and quiescent regions. The intermittency and

its quantification is parameterized through local M-O scaling. The vertical energetic structure

of the flow with respect to the two flow regimes are investigated and evidence is presented

for self-organized criticality within the intermittent regions of the flow. Implications for the

parametrization of Γ within an intermittent flow are discussed and it is directly shown that for

stratified channel flow that a constant Γ regime occurs due to intermittency.

In chapter §6 the major findings within this thesis are summarized and direction for future

work is discussed.
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Numerical method

2.1 Flow configuration

The flow configuration of our DNS employs the framework of Williamson et al. (2015) for

stationary radiatively heated open channel flow as a canonical representation of stratified

river flow. For our DNS we consider not only the stationary flow but also the temporally

evolving case as an initially isothermal neutral open channel flow is subject to radiative

heating and evolves towards a stationary stably stratified state. A schematic depicting our

flow configuration is presented in figure 2.1. The flow is periodic in the streamwise (x) and

spanwise (y) directions and is driven by a constant pressure gradient in x. The top and bottom

boundary conditions are free-slip adiabatic and no-slip adiabatic respectively. The flow is

subject to a depth varying volumetric temperature source q(z), modelled on the principle of

Free-slip, adiabatic

No-slip, adiabatic

FIGURE 2.1: Schematic diagram of the flow configuration, domain is periodic
in x and y.

24
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Beer-Lambert’s law and defined as

q(z) =
Isα

CPρ0
e(z−δ)α, (2.1)

where Is is the radiant surface heat flux, α is the absorption coefficient and δ is the channel

height, Cp is the specific heat and ρ0 is the reference fluid density. Hence we can define both

the domain-averaged mean heat source and representative heat source respectively as

⟨q⟩ = 1

δ

∫ δ

0

q(z)dz, qN =
1

δ2

∫ δ

0

(⟨q⟩ − q(z))(z − δ)dz. (2.2a, b)

Here qN can be considered analogous to that of a surface heat flux in an iso-flux flow

configuration and defines a characteristic heat input into the channel by accounting for the

turbidity of the flow. Subsequently, under the Oberbeck-Boussinesq assumption, the governing

equations for our flow, i.e. the incompressible Navier-Stokes equations are

∇·u = 0, (2.3)

∂u

∂t
+ u·∇u = −∇p∗

ρ0
+ ν∇2u+ bez + Fex, (2.4)

∂b

∂t
+ u·∇b = κ∇2b+ gβq(z), (2.5)

Where b = −gρ/ρ0 is the buoyancy, g is the gravitational acceleration, ν is the kinematic

viscosity, κ is the thermal diffusivity, F is the driving mean pressure gradient and β is the

coefficient of thermal expansion such that the transform from fluid temperature (θ) to density

(ρ) is given by the equation of state

ρ = ρ0(1− βθ). (2.6)

And our initial and boundary conditions are explicitly defined as

z = 0 : u = v = w = 0,
∂b

∂z
= 0. (2.7)

z = δ :
∂u

∂z
=

∂v

∂z
= w = 0,

∂b

∂z
= 0. (2.8)

t = 0 : b = 0 (2.9)
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and where the initial condition for the velocity field is to be defined in §2.2. Our flow is then

fully defined by four non-dimensional parameters: The initial friction Reynolds number Re0τ ,

the molecular Prandtl number Pr, the turbidity parameter αδ that controls the vertical heating

profile and an initial bulk stability parameter λ0, defined as

Re0τ =
u0
τδ

ν
, Pr =

ν

κ
, αδ, λ0 =

δ

L0
. (2.10a − d)

Here, u0
τ is the initial equilibrium friction velocity defined as

u0
τ =

(
τ 0w
ρ0

)1/2

, (2.11)

where τ 0w is the initial equilibrium viscous shear stress at the bottom wall. The stability

parameter of our λ0 flow is defined in the Monin-Obhukov framework as the ratio of the

domain confinement scale δ to bulk Obhukov length L0 defined as

L0 =
(u0

τ )
3

gβqNδ
. (2.12)

We note that this formulation of the Obhukov length which accounts for our volumetric heat

source is analogous to the standard definition used in atmospheric literature L = u3
τ/κcb∗

(Flores & Riley, 2011), where the term gβqNδ can be considered analogous to the surface

buoyancy flux b∗. Furthermore, as derived in Williamson et al. (2015), for high αδ we can

obtain

qN ≈ IS
δ

(
1

2
− 1

αδ

)−1

, (2.13)

such that we can redefine

L0 =
(u0

τ )
3

gβIs/(ρ0Cp)

(
1

2
− 1

αδ

)−1

. (2.14)

We note that for our simulations we have defined our parameters using the initial friction

velocity u0
τ . In our flow, we maintain a constant pressure gradient in the stream wise direction

that is balanced by the downward momentum flux across the channel and reflected in the

measured shear stress at the wall. In this sense u0
τ represents both the initial and final

equilibrium value of the friction velocity of the flow. However as will be shown throughout

the study, the sudden effects of stable stratification act to suppress the turbulent component
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of the momentum flux causing an imbalance in the stream wise momentum equation and

subsequent reduction of uτ , which varies in time as the flow transitions towards its final

equilibrium state. As such, when presenting statistics within this study that incorporate

the time varying uτ , rather than the initial equilibrium value of u0
τ , it is implicit that this

corresponds to the measurement of the friction velocity at time t.

We can further define our governing equations in non-dimensional form. Firstly, we note that

the dimensional temperature θ at time t is decomposed into the statistically steady temperature

fluctuation deviating from a domain-averaged mean, defined as

θ(x, t) = θ(x, t)′ + ⟨θ(t)⟩. (2.15)

and under the assumptions that no heat is lost through the boundaries it follows that

∂⟨θ(t)⟩
∂t

=
⟨q⟩
ρ0Cp

, (2.16)

By defining u0
τ and δ as the characteristic velocity and length scales respectively we can then

define a characteristic temperature scale

θN =
qNδ

ρ0cpu0
τ

. (2.17)

And hence we can define a non-dimensional temperature and heat source

θ̂(x, t) =
θ(x, t)− ⟨θ(t)⟩

θN
, q̂(z) =

qI(z)− ⟨q⟩
qN

, (2.18a, b)

leading to our non-dimensional buoyancy variable

b̂ = λ0θ̂. (2.19)

Next we non-dimensionalize our remaining dimensional variables in (2.3-2.5) about u0
τ , δ and

ρ0 such that

x̂ =
x

δ
, û =

u

u0
τ

, t̂ =
tu0

τ

δ
, p̂∗ =

p∗

ρ0(u0
τ )

2
(2.20a − d).

Accordingly the governing equations in (2.3-2.5) expressed in non-dimensional form become

∇·û = 0, (2.21)
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∂û

∂t̂
+ û·∇û = −∇p̂∗ +

1

Re0τ
∇2û+ b̂ez + ex, (2.22)

∂b̂

∂t̂
+ û·∇b̂ =

1

PrRe0τ
∇2b̂+ λ0q̂, (2.23)

We have selected this open channel flow configuration for three reasons. Firstly, as discussed

in §1, our DNS configuration of a stratified open channel flow heated through radiative surface

heating is a canonical representation of stratified river flow and in particular the regulated river

flows in inland Australia, where the accurate estimation and prediction of diapycnal mixing

remains an important task. Secondly, the use of an adiabatic bottom boundary has been

shown to ensure that while the bulk flow becomes stratified, the near-wall turbulence structure

remains relatively unchanged by the effects of buoyancy (Taylor et al., 2005; Williamson

et al., 2015). As will be shown in §5, this creates a distinctly inhomgeneous intermittency

profile, allowing for simulations to be run at higher levels of buoyancy strength than iso-flux

or fixed buoyancy boundary conditions where the relaminarization and collapse of turbulence

inherently occurs at the wall (Flores & Riley, 2011; García-Villalba & del Álamo, 2011;

Deusebio et al., 2015; Zhou et al., 2017a). Thirdly, relative to a surface flux boundary

condition, use of the volumetric heat source shifts the pycnolcine deeper into the channel

away from the upper boundary, creating an appreciable region in the central bulk flow of

significantly stronger stratification (Williamson et al., 2015). This subsequently allows us to

access regimes of lower Fr (higher Rig) further away from the top boundary. Accordingly

this allows us to explore local correlations between mixing properties and non-dimensional

parameters at a low Fr range without additional complication from boundary confinement

effects which may influence the mixing dynamics (Flores et al., 2017).

2.2 Direct numerical simulations

Equations (2.21- 2.23) were solved using the SnS code, fractional-step finite-volume solver

as outlined in Norris (2000) and Armfield et al. (2003). The code has since been verified

and employed in a range of high resolution DNS studies (Williamson et al., 2015; Ke et al.,

2019, 2020, 2021). The advective spatial derivatives are discretized using fourth-order
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Case Re0τ λ0 Pr αδ Lx × Ly × Lz Nx ×Ny ×Nz
tfinal
T 0
τ

R400L0.02 400 0.02 1 8 2πδ × πδ × δ 512× 512× 150 15
R400L0.1 400 0.1 1 8 2πδ × πδ × δ 512× 512× 150 15
R400L0.25 400 0.25 1 8 2πδ × πδ × δ 512× 512× 150 15
R400L0.5 400 0.5 1 8 2πδ × πδ × δ 512× 512× 150 50
R400L0.5AD32 400 0.5 1 32 2πδ × πδ × δ 512× 512× 150 40
R400L0.5PR0.5 400 0.5 0.5 8 2πδ × πδ × δ 512× 512× 150 40
R400L1 400 1 1 8 2πδ × πδ × δ 512× 512× 150 50
R400L1LD 400 1 1 8 8πδ × 2πδ × δ 2560× 1280× 150 40
R400L2 400 2 1 8 2πδ × πδ × δ 512× 512× 150 90
R900L1 900 1 1 8 2πδ × πδ × δ 1152× 1152× 450 40
R900L1AD16 900 1 1 16 2πδ × πδ × δ 1152× 1152× 450 10
R900L2 900 2 1 8 2πδ × πδ × δ 1152× 1152× 450 10
R900L5 900 5 1 8 2πδ × πδ × δ 1152× 1152× 450 10

TABLE 2.1: List of DNS performed and relevant parameters

central differencing, whilst other spatial derivatives are calculated using second-order central

differencing. Cell-face velocities are calculated using Rhie-Chow momentum interpolation

and the time-advancement is performed using a second-order Adams-Bashforth scheme.

A detailed list of simulations performed is presented in Table 2.1. Our simulations cover two

friction Reynolds number of Re0τ = 400, 900. The stability parameter varies in the range

of λ0 = 0.02 − 5, such that our simulations cover stability regimes varying from passive

scalar flow to extremely stable. We keep the turbidity parameter constant at αδ = 8 for all

simulations with two control cases of αδ = 32, 16 for our Re0τ = 400, 900 cases respectively.

For all cases we keep Pr = 1 for computational efficiency with the exception of a single

Pr = 0.5 case to test our bulk flow parametrization in §3.

Our choice of grid resolution closely follows past studies of stratified wall-bounded turbulence

(García-Villalba & del Álamo, 2011; Deusebio et al., 2015; Williamson et al., 2015), we

discretize our domain as follows. For all simulations the stream and span-wise grid size in

initial viscous wall units is kept constant at ∆x+
0 = 5 and ∆y+0 = 2.5. The vertical grid size

for the Reτ,0 = 400 simulations is logarithmically stretched from ∆z+0 = 0.4 at the wall to

∆z+0 = 4 at z = 0.25 where it stays constant to the half channel height z = 0.5. The vertical
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FIGURE 2.2: (a) Stream-wise and (b) span-wise energy spectra of the initial
state of the flow at t = 0 for both values of Reτ at a vertical location of
z+ = 10. Included in both figures is the data of Moser et al. (1999) at z+ = 10
and Reτ = 395.

grid spacing in the top half of the channel is then set as symmetrical about the midpoint axis to

ensure accurate resolution of viscous near surface mechanics (Calmet & Magnaudet, 2003). A

similar procedure for the vertical grid size of the Reτ,0 = 900 simulations was employed with

a further refinement of ∆z+0 = 2.5 in the bulk of the flow. To maintain accurate resolution of

the viscosity affected near-wall and near-surface regions we ensure that we have more than

ten grid points within a ∆z+0 = 10 distance from either boundary.

The initial simulation field is of fully developed statistically stationary neutral open channel

flow at a given Re0τ . To validate the grid resolution of our flow, figure 2.2 shows the streamwise

and spanwise energy spectra E(kx), E(kz)for both Re0τ = 400, 900 initial conditions at

z+ = 10 roughly corresponding to the peak in turbulence production P . For reference we

also plot the spectra from the Reτ = 395 DNS of Moser et al. (1999). The results show well

developed spectra with no truncation at high wavelengths, with excellent agreement between

our Re0τ = 400 case and that of Moser et al. (1999).

For all simulations we then initialize the isothermal buoyancy field b = 0 at t = 0 and

simultaneously switch on the volumetric heat source and the effects of buoyancy. For all

simulations, transient data has been recorded at non-dimensional time intervals of ∆t/T 0
τ =

0.02 up to the non-dimensional time of t/T 0
τ = 10 to ensure accurate representation of the
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temporal effects during the early rapid adjustment period of the flow. Here T 0
τ = δ/u0

τ is the

initial friction (advection) time scale of the flow. For t/T 0
τ > 10, changes in the flow become

smoother and data is collected at non-dimensional time intervals of ∆t/T 0
τ = 0.1.

We acknowledge past studies that have shown that the size of the domain may effect the

intermittent regime where laminar and turbulent patches coexist, such that a smaller domain

often leads to earlier laminarization for the same set of bulk parameters Flores & Riley

(2011); García-Villalba & del Álamo (2011); Brethouwer et al. (2012); Deusebio et al.

(2015). However as shown in Williamson et al. (2015), our adiabatic bottom boundary

condition ensures that the near-wall region remains fully turbulent unlike the afforementioned

studies where intermittency in the near-wall region leads to a collapse of turbulence across

the whole domain. Hence we do not expect the domain size to significantly influence

the results presented in this study. Accordingly for computational efficiency we keep the

domain size constant at Lx × Ly × Lz = 2πδ × πδ × δ across all simulations with the

exception of case R400L1LD (long domain) for which the domain size is increased to

Lx×Ly ×Lz = 8πδ× 2πδ× δ to demonstrate the independence of our results on the domain

size. This is shown in chapter 5.3.



CHAPTER 3

Transient response and transition to equilibrium of stratified open

channel flow

In this chapter we investigate the transient response of neutral/isothermal turbulent open

channel flow subject to sudden radiative heating. We present a detailed qualitative description

of the change in the vertical structure of the flow as the flow transitions towards a stationary

stratified state. In particular we focus on the bulk flow parameterization of globally suppressed

turbulent mixing as well as the time scale under which the flow obtains stationarity.

The contents of this chapter are based on the following manuscript:

Issaev, Vassili, Williamson, N., Armfield, S. W. & Norris, S. E. Transient response and

transition to equilibrium of turbulent open channel flow subject to stratification through

radiative heating. Planned for submission to Journal of Fluid Mechanics in 2022.

3.1 Introduction

Turbulent flows subject to radiative solar, heating resulting in a vertically inhomogeneous

stable density stratification profile are prevalent in an geophysical context such as rivers, lakes

and estuaries. As a result of the stratification, buoyancy acts to suppress turbulent mixing

in a non-uniform manner with the suppression being most pronounced at the upper surface

where the radiative heating is most concentrated (Williamson et al., 2015). In particular, such

flows are also typically defined by a non-uniform mean shear profile that results from the

friction at the bottom boundary which drives the generation of turbulence in the flow. In a

broad sense the flow can be described as a competition between the dampening effects of
32
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stable stratification and the turbulence enhancing effects of the mean shear which both vary

significantly with depth creating a complex set of inhomogeneous and interconnected flow

dynamics.

As discussed in §1, Williamson et al. (2015) present a DNS configuration for stably stratified

open channel flow subject to radiative heating modelled through the Beer-Lambert Law as a

canonical representation of stratified river flow. In their study analyse the statistically station-

ary flow, both at a bulk and local level. In particular, they find that at their paramater range,

the upper portion of the channel approaches quasi-laminar conditions with severely reduced

mixing, the onset of which is well predicted by a stationary ‘bulk’ Obhukov Reynolds number

ReL within the Monin-Obhukov framework. This being analogous to L+ used in atmospheric

studies. Following their work Kirkpatrick et al. (2019) examine a canonical ‘sunset’ case by

employing the same framework to examine the temporally evolving ‘destratifying’ flow in

which the stationary stable flow reverts back to a neutral state after the sudden removal of the

radiatiave heating. They find that the evolution and properties of the transient flow can well

described by the time dependant friction Reynolds and Richardson numbers Reτ and Riτ ,

both being bulk parameters that may be easily obtained from field measurements in real river

flows. In particular, they show that a bulk destratification rate D of the channel flow can be

well parameterized by Riτ alone. In their subsequent work Kirkpatrick et al. (2020) in which a

similar ‘sunset’ case is examined but with the addition of upper surface cooling, they similarly

find that D displays a clear dependence on Riτ as well as a convective Richardson number

Ri∗. It however remains unclear whether a singular Riτ parametrization of an analogous bulk

‘stratification’ rate for an idealised ‘sunrise’ scenario in which an initially neutral turbulent

open channel flow is subject to sudden radiative heating is valid. Furthermore, a bulk flow

parametrization for the time-varying flow that predicts the onset of reduced turbulent mixing

also remains uninvestigated in current literature.

The temporally evolving ‘stratifying’ case has also been explored by Flores & Riley (2011) in

the context of the development of the stable nocturnal boundary layer modelled as turbulent

open channel flow subject to sudden bottom wall cooling. They demonstrate that for the

stratifying case in which relaminarization and intermittency is an inherent feature of the flow,
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Riτ alone is insufficient to predict the behaviour of the flow as the molecular properties of

the fluid also becomes an important parameters of the temporally evolving flow such that

the collapse of turbulence is well predicted by ‘hybrid’ buoyancy Reynolds number in the

Monin-Obhukov framework ReL. However, drawing direct comparisons of their work to the

framework of Williamson et al. (2015) must be treated with caution as in former case the

collapse of turbulence occurs at the wall whilst in the latter the suppression of turbulence is a

‘top-down’ due to the concentration of radiative heating at the upper surface.

In particular, a key finding of Williamson et al. (2015) was that the central bulk flow of the

channel was in a state of local energetic equilibrium such that P ≈ B + ϵK and displays

properties similar to that of homogeneous stratified shear flow (Shih et al., 2000, 2005; Chung

& Matheou, 2012). In this regime they found that despite the strong vertical inhomogeneity,

the mixing efficiency defined through the flux Richardson number Rf approached a classic

‘Osborne’ limit of Rf,c ≈ 0.17 Osborn (1980). Similarly, they found the gradient Richardson

number also approached a critical limit of Rig,c ≈ 0.2. Similar values have been also reported

in a variety of stationary stratified shear flows both homogeneous and wall-bounded (Armenio

& Sarkar, 2002; Shih et al., 2005; García-Villalba & del Álamo, 2011; Chung & Matheou,

2012; Deusebio et al., 2015; Zhou et al., 2017a).

In Kirkpatrick et al. (2019) for the destratyfying case, it was shown that the state of local

equilibrium persisted for a long period of the destratification process and hence the upper

limits of Rf and Rig remained valid for the duration of the flow’s evolution. However, as will

be shown in §3.4, during the initial transitional period of the flow for our evolving stratifying

case, local values of Rf and Rig may greatly exceed these limit values analogously to studies

of stratified free shear flow during initial development of shear instabilities (Caulfield &

Peltier, 2000; Mashayek et al., 2013; Salehipour & Peltier, 2015; Salehipour et al., 2015;

Mashayek et al., 2017). Accordingly, a natural question that presents itself is: when is

stationarity in our ‘sunrise’ case reached such that the critical assumptions are valid? And is

it possible to predict the time scale at which this occurs through bulk flow parameters?
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In light of the discussion presented above, we present this chapter which employs direct

numerical simulations (DNS) to address a relatively focused and central theme which may be

subdivided into two open questions in literature:

(1) In the ‘sunrise’ case for stratified open channel flow, can the stratification rate

and onset of globally reduced mixing be accurately predicted through bulk flow

parameters?

(2) At what time in the flows evolution, does the channel flow obtain stationarity such

that critical limit conditions may be assumed and can this similarly be predicted

through a bulk flow parametrization?

To that end, the remainder of this chapter is structured as follows: in §3.2 we present our list of

DNS used for this chapter. In §3.3 we briefly present a theoretical background of the governing

equations that describe the flow’s transition to stationarity. In §3.4 we demonstrate the initial

time-dependence of our flow on the development of the buoyancy field and demonstrate

that after this period, the mixing properties within the flow become insensitive to global

temporal effects and can be described by local scaling. In §3.5 we present a qualitative

overview of the bulk and local flows transition towards equilibrium conditions. In §3.6 we

present scaling analysis to predict the transition towards a suppressed mixing regime through

bulk flow parameters. In §3.7 we investigate the transition of the buoyancy and momentum

fluxes towards equilibrium conditions and provide a bulk parameter scaling to predict the

equilibrium time scale. In §3.8 we define a bulk stratification rate and provide scaling analysis

to present its bulk flow parametrization. And in §3.9 we summarize our key findings in this

chapter.

3.2 List of DNS used and notation

Table 3.1 presents a list of the DNS used within this chapter. As our overreaching aim of

this chapter is to provide a bulk flow paramaterization for the time scale that determins the

transition to equilibrium, we only consider DNS that have been run until statationarity that is

obtained at the equilbrium time te (to be defined in more detail in §3.7). The DNS considered
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Case Re0τ λ0 Pr αδ Lx × Ly × Lz Nx ×Ny ×Nz
tfinal
T 0
τ

te
T 0
τ

Rifinal
τ

R400L0.02 400 0.02 1 8 2πδ × πδ × δ 512× 512× 150 15 4 0.4
R400L0.1 400 0.1 1 8 2πδ × πδ × δ 512× 512× 150 15 5 2.5
R400L0.25 400 0.25 1 8 2πδ × πδ × δ 512× 512× 150 15 6.5 11.5
R400L0.5 400 0.5 1 8 2πδ × πδ × δ 512× 512× 150 50 15 34.9
R400L0.5PR0.5 400 0.5 0.5 8 2πδ × πδ × δ 512× 512× 150 40 12 20.7
R400L0.5AD32 400 0.5 1 32 2πδ × πδ × δ 512× 512× 150 40 15 52.7
R400L1 400 1 1 8 2πδ × πδ × δ 512× 512× 150 50 30 113.8
R400L2 400 2 1 8 2πδ × πδ × δ 512× 512× 150 90 50 338.2
R900L1 900 1 1 8 2πδ × πδ × δ 1152× 1152× 450 40 33 201.1

TABLE 3.1: List of DNS considered within this chapter 3. tfinal corresponds
to the total simulation time, te corresponds to the time to obtain equilibrium,
Rifinal

τ corresponds to final(stationary) measured friction Richardson number
as defined in (1.42). T 0

τ = δ/u0
τ is the initial advection/friction time scale

tests both Reτ values, varying flux profiles through αδ and a range of λ that varies from

extremely stable to essentially neutral flow. For computational efficiency we do not test values

of Pr = 7 typical when considering the diffusivity of heat in water. However we probe the

sensitivity of our results to Pr by considering a singular Pr = 0.5 case.

For this chapter, we define that any flow variable at a spatial location x and time t can be

decomposed into a horizontally averaged mean and fluctuating components denoted with an

overbar and prime respectively, such that

f(x, t) = f(z, t) + f ′(x, t) (3.1)

and where the mean at a vertical location of z is calculated through a volumetric integral

across the horizontal plane at time t

f(z, t) =
1

LxLy

∫ Lx

0

∫ Ly

0

f(x, t)dxdy. (3.2)

Similarly, we define that unless otherwise explicitly stated, it is implicit that flow statistics

composed out of the velocity and buoyancy fields are presented as horizontal averages of

that quantity at location z and time t as defined in (3.2). Furthermore, we define that the ⟨.⟩
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operator indicates a domain averaged value across the entire channel such that

⟨f(t)⟩ = 1

V

∫ Lx

0

∫ Ly

0

∫ Lz

0

f(x, t)dxdydz. (3.3)

3.3 Theoretical Background

We consider the response of the buoyancy and velocity fields of an initially isothermal neutral

channel subject to radiative heating through q(z) and the subsequent sudden stabilizing effects

of buoyancy. Under the assumption of homogeneity in the horizontal plane the evolution

equations for the mean buoyancy and streamwise velocity become

∂b

∂t
=

∂(−b′w′)

∂z
+ κ

∂2b

∂z2
+ gβq(z) =

∂B
∂z

+ gβq(z) (3.4)

∂u

∂t
= Fex +

∂(−u′w′)

∂z
+ ν

∂2u

∂z2
= Fex +

∂M
∂z

, (3.5)

where B and M are the total vertical buoyancy and momentum fluxes respectively which can

be decomposed into their turbulent and laminar components such that

B = −b′w′︸ ︷︷ ︸
Turbulent Bt

+ κ
∂b

∂z︸︷︷︸
Molecular Bm

(3.6)

and

M = −u′w′︸ ︷︷ ︸
Turbulent Mt

+ ν
∂u

∂z︸︷︷︸
Molecular Mm

. (3.7)

B thus represents the pathway for buoyancy (heat) to be redistributed vertically throughout

the channel through both turbulent mixing and molecular diffusion, while M acts to oppose

the driving pressure gradient to achieve equilibrium in the stream-wise momentum equation

(Pope, 2000). Furthermore for clarity, we note that both B and M can be directly related to

the idea of an eddy diffusivity/viscosity hypothesis (Pope, 2000) such that:

B = (Kρ + κ)N2, M = (KM + ν)S. (3.8a, b)
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Where N = (∂b/∂z)1/2 is the buoyancy frequency, S = ∂u/∂z is the mean shear, Kρ is the

eddy diffusivity and KM is the eddy viscosity defined as

Kρ =
−b′w′

N2
, KM =

−u′w′

S
. (3.9a, b)

Subsequently, when B and M both achieve their respective equilibrium values for all vertical

locations within the channel, the mean buoyancy and velocity fields attain stationarity.

Williamson et al. (2015) (Henceforth denoted WAKN15) demonstrate that for the stationary

case the equilibrium value of total buoyancy flux BE can be anlytically derive such that

BE =
gβIS
CPρ0δ

(
z(1− e(z−δ)α)

)
. (3.10)

For our initially isothermal flow where B = Bt = Bd = 0 at t = 0, the convergence towards

buoyancy flux equilibrium can be defined through the fraction B/BE which transitions from

zero to unity.

Similarly, through (3.5), an expression for the equilibrium value of the total momentum flux

ME can be derived such that

ME = τw

(
1− z

δ

)
= u2

τ

(
1− z

δ

)
, (3.11)

We again note that in our evolving flow τw and hence uτ vary in time due to the suppressing

effects of stable stratification. In this sense a ratio of M/ME = 1 represents an quasi-

equilibrium state where any local variations in the momentum flux are captured through

instantaneous measurements of uτ .

The transition to equilibrium can also be considered from an energetics perspective by

considering the budget for the turbulent kinetic energy EK = 1/2(u′
iu

′
i) and under the

assumption of homogeneity in the horizontal plane, the evolution equation for EK at a given

depth z can be written as:

∂EK

∂t
= P − ϵK −B +Dν + TK +Π, (3.12)
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FIGURE 3.1: Mixing coefficient Γ plotted against non-dimensional time t/T 0
τ

(a) at varying vertical locations for case R900L1 (b) at a vertical location
of z = 0.5 for a range of simulations. Vertical dashed lines in both figures
represent t/T 0

τ = 0.1 and t/T 0
τ = 1, diagonal dashed line represents a line

proportional to (t/T 0
τ )

2

where terms going from left to right are: the unsteady term, the production term, the turbulent

buoyancy flux , the dissipation rate of turbulent kinetic energy, the viscous transport term, the

turbulent convection term and the pressure transport term, where

P = −u′w′S, ϵK = ν

(
∂u′

i

∂xj

)2

, B = −b′w′

Dν = ν

(
∂2EK

∂z2

)
, TK = − ∂

∂z
(w′EK), Π = − ∂

∂z
(w′p′).

(3.13)

We note that B and Bt are identical and are presented with different notation in this paper

with respect to the context in which they are used. In this sense, the sudden introduction of

the B term in (3.12) drives the imbalance in the transient energetics as the flow begins to pay

its ‘kinetic energy toll’ to mix the stabilizing buoyancy field (Osborn, 1980).

3.4 Initial time dependence

We first briefly consider the initial time dependence exhibited by our flow properties related

to the buoyancy field due to our idealised initial condition of b = 0 by plotting Γ = B/ϵK

as a function of time across a range of vertical locations and simulations in figure 3.1 which

has been chosen arbitrarily as a parameter that contains quantities relating to the buoyancy
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field to illustrate our point. From the results we observe that Γ initially grows proportional to

(t/T 0
τ )

2 and shows clear time dependence up to approximately one eddy turnover time unit

(t/T 0
τ ≈ 1). We consider the transport equation for the horizontally averaged mean buoyancy

b in (3.4). By taking the vertical derivative ∂/∂z we can obtain the evolution equation for N2

∂N2

∂t
=

∂2Bt

∂z2︸ ︷︷ ︸
Turbulent

+
∂Bm

∂z︸ ︷︷ ︸
Molecular

+
∂

∂z
gβq(z)︸ ︷︷ ︸
Source

. (3.14)

For our simulations with initial condition b = 0 we make the assumption that the turbulent and

diffusive terms (first and second terms on the RHS) are negligible at the start of the simulation

and the equation reduces to
∂N2

∂t
=

∂

∂z
gβq(z). (3.15)

Integrating forward in time from the initial reference time of t = 0 we arrive at estimate of

N2(t) at a given horizontal plane∫ t

0

∂N2

∂t
dt =

∫ t

0

∂

∂z
gβq(z)dt ⇒ N2(t) =

∂

∂z
gβq(z)qt. (3.16)

Hence it is clear that initially N2 ∼ t. For the remainder of this section, in the interest of

simplification, we drop the notation (t), however the dependence on time of flow properties

remains implicit. Performing a similar analysis as in the scaling arguements of Garanaik &

Venayagamoorthy (2019), we consider the turbulent vertical displacement of a fluid parcel

Ldisp = w′t. The fluctuating buoyancy b′ can therefore be estimated as

b′ ∼ LdispN
2 = w′N2t = w′ ∂

∂z
gβq(z)t2 ∼ t2. (3.17)

If we take one further assumption that buoyancy initially acts as a passive scalar, then it

follows that flow properties related to the velocity field are not a strong function of t and

remain initially unchanged by the introduction of the buoyancy field. We can thus construct

an initial time dependant expression for any flow property that incorporates the buoyancy

field. Consider for example the buoyancy flux such that

B = −b′w′ ∼ t2. (3.18)
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By similar logic we can obtain an expression for Γ

Γ =
B

ϵK
∼ t2, (3.19)

as clearly demonstrated in figure 3.1 for all cases where Γ ∼ (t/T 0
τ )

2 until approximately one

tenth of the characteristic eddy turnover time unit, corresponding to the estimate for the time

taken for energy injected at large scales to travel down the energy cascade to the dissipative

range and hence effect the flow field (see Pope (2000)). Past this timescale buoyancy begins to

affect the flow, nullifying our assumption of buoyancy acting as a passive scalar. Meanwhile

we expect the turbulent and diffusive terms in (3.14) to become appreciable and influence

the growth of N2, causing it to diverge from a linear N2 ∼ t growth. This creates a set

of complex dynamics, causing the buoyancy field to exhibit non-linear time-dependence as

the flow adjusts to the sudden imposition of buoyancy. This time-dependence lasts of the

order of one eddy turnover time unit (t/T 0
τ ≈ 1) across all simulations and vertical locations,

suggesting the adjustment to the buoyancy field is a global rather than local process. For

t/T 0
τ ≳ 1 temporal variability becomes negligible and Γ begins to evolve at a quasi-steady

rate. We note similar dependence on the initial eddy turnover timescale has been observed

in previous studies with distinctly different flow configurations yet with a similar b = 0

initial condition (Métais & Herring, 1989; Venayagamoorthy & Stretch, 2006; Maffioli &

Davidson, 2016), suggesting some universality on the eddy turnover timescale for the non-

linear adjustment of the flow. Subsequently we can expect that for t ≳ 1, mixing defined

through B and hence Γ and Kρ become independent of the initial condition and evolve relative

to local processes. Furthermore, it follows that for t/T 0
τ ≳ 1 we can expect locally based

parametrization schemes for mixing to become applicable to our flow.

3.5 Flow evolution overview

In this section we present a qualitative overview of the flow’s evolution from an initially

neutral isothermal state to that of stationary stably stratified turbulence. Where relevant,

we present the data for our high Reynolds number simulation R900L1 as a representative

case that displays behaviour typical of all simulations. We further note that to to minimize
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noise and present clear behavioural trends when presenting vertical profiles, transient data

is averaged across intervals of ∆t/T 0
τ = 0.5 non-dimensional time units using a centrally

weighted moving average filter.

3.5.1 Response of bulk flow parameters

At a global level the transient response of open-channel flow can be described by the evolution

of the (time-varying) friction Reynolds (Reτ ) and Richardson numbers (Riτ ), which are

defined as

Reτ =
uτδ

ν
, Riτ =

∆bδ

u2
τ

, (3.20a, b)

where ∆b = b(δ)− b(0) is the buoyancy difference across the channel. As demonstrated in

Kirkpatrick et al. (2019) (henceforth denoted as KWAZ19), it is further useful to consider

both Reτ and Riτ as a competition of timescales such that

Reτ =
Tτ

Tν

, Riτ =
T 2
τ

T 2
N

, (3.21a, b)

where Tτ , Tν and TN are the bulk friction, viscous and buoyancy timescales respectively

defined as

Tτ =
δ

uτ

, Tν =
u2
τ

ν
, TN =

(
∆b

δ

)−1/2

(3.22a, b, c)

Hence, Reτ and Riτ can be interpreted as the competition between the time scale associated

with large domain-scale shear induced motions against the dampening effects of viscous and

buoyancy processes respectively.

Figure 3.2(a) shows the evolution of Reτ normalized by the initial/final Reynolds number

Re0τ plotted against t/T 0
τ for all simulations. From the results it is clear that the evolution of

the flow can be broadly described by two periods. Firstly, as outlined in Buren et al. (2017)

by considering the budget for the Reynolds stress term −u′w′ = Mt, it can be shown that

the flow undergoes a ‘suppression’ or ‘decay’ period during which the sudden effects of

stable stratification act to suppress local turbulence through the dampening of the vertical

velocity fluctuation w′ and subsequently the the turbulent momentum flux Mt. This creates

an inbalance between the pressure gradient and the total momentum flux which subsequently
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FIGURE 3.2: Time response of bulk flow properties plotted against t/T 0
τ . (a)

Time varying friction Reynolds number Reτ normalized by initial/final friction
Reynolds number Re0τ , (b) Friction Richardson number Riτ .

causes a global suppression of turbulence across the channel and is reflected in the drop

of Reτ . As the flow accelerates to develop the mean shear profile such that Mm increases

to account for the inbalance, the flow is able to extract more energy from the mean shear

and subsequently undergoes a ‘recovery’ period in which turbulence re-intensifies across the

channel and Reτ grows to converge towards its final stationary value. We observe that through

the increase of the stability parameter λ0 or reduction of inertial range through decreasing

Re0τ , the duration and severity of the ‘suppression’ period is amplified. Meanwhile, changes

in turbidity profile αδ or Pr cause relatively negligible effects on the transient response of

Reτ .

The ‘suppression’ and ‘recovery’ behaviour is also evident in the evolution of Riτ plotted

against t/T 0
τ in figure 3.2(b). During the initial ‘suppression’ period, Riτ grows monotonically

with time to a clear peak as ∆b grows with the increasing stratification profile, while uτ is

suppressed. During the ‘recovery’ period, the increase in turbulent mixing in the upper

channel causes ∆b to marginally decrease, while the convergence towards momentum flux

equilibrium is reflected in an according increase in uτ . Subsequently Riτ decreases slightly

in the ‘recovery’ period before plateauing at its final stationary value. We observe that with

increasing λ0, both the growth rate and final value of Riτ is increased. Through comparison of

cases R900L1 and R400L1, we can observe that an increase in Re0τ causes an increase to both
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the initial growth rate and final value of Riτ . This can be explained under the consideration

that near the free surface and at our parameter range, stable stratification suppresses turbulence

to the extent that the flow relaminarizes and enters a diffusive regime. Within this regime

turbulent mixing is so severely suppressed, that the vertical transport of heat is almost entirely

governed by the process of molecular diffusion. As the heat input through q(z) is concentrated

near the free surface and within this quasi-laminar regime, an increase in Re0τ acts to reduce

the molecular and hence effective diffusivity within this region. This subsequently reduces the

downward transport of heat within this regime and causes the heat to be essentially ‘trapped’

within the upper layer of the channel. Accordingly this is reflected in an increase of ∆b and

Riτ . Analogously, increasing the concentration of heat input near the surface with increasing

turbidity parameter αδ or reduction of diffusivity with increasing Pr causes qualitatively

similar behaviour.

3.5.2 Flow visualizations

Figures 3.3 and 3.4 show the evolution of the buoyancy (b) and dissipation rate of turbulent

kinetic energy (ϵK) fields respectively in the x− z plane for our representative case R900L1,

which provide visual evidence for the ‘suppression’ and ‘recovery’ behaviour described in

§3.5.1. We note at t/T 0
τ = 33 the flow obtains both buoyancy and momentum flux equilibrium,

as will be shown in further detail in §3.7.

Initially we observe that the channel has a turbulence structure typical of a turbulent neutral

boundary layer, characterized by large wall-generated turbulent structures of size O(δ) dom-

inating the interior layer. Meanwhile as demonstrated in §3.4, during the initial adjustment

period of t/T 0
τ < 0.1, buoyancy acts purely as a passive scalar and grows directly proportional

to q(z). As buoyancy suppresses the turbulence in the bulk of the channel, the mean flow

subsequently accelerates to create the mean shear profile and account for the momentum

inbalance. Due to the increasing strength of stable stratification and relaxation of the mean

shear at the top boundary, we observe the formation of a quasi-laminar region developing

at the free surface where turbulent mixing is essentially suppressed. We further observe the

formation of braided-eye overturning type shear instabilities that show similarity to the well
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(a) t/T 0
τ = 0.02

(b) t/T 0
τ = 2

(c) t/T 0
τ = 5

(d) t/T 0
τ = 10

(e) t/T 0
τ = 20

(f) t/T 0
τ = 33

FIGURE 3.3: Evolution of instantaneous flow visualizations in the vertical
(x, z) plane for case R900L1 of the buoyancy field b. Colour scale is linear
and varies in each image to highlight features. Flow is moving left to right.

known Kelvin-Helmholtz instability (KHI) forming in the bulk flow shear layer, causing

overturning of the buoyancy interface as the overturning structures are ejected from the shear

layer towards the free surface. By t/T 0
τ = 10 the ‘suppression’ of turbulence in the central

and upper channel is most significantly pronounced and the extent of the quasi-laminar region

thickness reaches a maximum value with a clearly defined sharp buoyancy interface. As the

flow continues to accelerate and is able to extract more energy from the increasing mean

shear in the channel, the flow transitions into the ‘recovery’ period and we clearly observe
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(a) t/T 0
τ = 0.02

(b) t/T 0
τ = 2

(c) t/T 0
τ = 5

(d) t/T 0
τ = 10

(e) t/T 0
τ = 20

(f) t/T 0
τ = 33

FIGURE 3.4: Evolution of instantaneous flow visualizations in the vertical
(x, z) plane for case R900L1 of the dissipation rate of kinetic energy field
ϵK . Colour scale is logarithmic and is constant for all images to highlight
turbulence intesnity. Flow is moving left to right.

that turbulence in the bulk of the channel reintensifies with the increasing development of

small-scale dissipative structures, similar to the stationary results of WAKN15 and KWAZ19.

As the channel continues to ‘recover’, the thickness of the quasi-laminar region is significantly

reduced and the overturning events at the turbulent-laminar interface become more frequent

extending all the way to free surface. In contrast, the turbulence structure in the lower and

near-wall regions is only weakly effected by stable stratification.
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FIGURE 3.5: Evolution in time of the vertical profiles of: (a) mean streamwise
velocity u. (b) Mean buoyancy b. All data plotted for case R900L1

3.5.3 Evolution of mean flow profiles

We first consider the evolution of the vertical mean flow profiles for our representative case

R900L1.

Figure 3.5(a) shows the evolution in time of vertical profiles of the mean streamwise velocity

u normalized by uτ and u2
τδ respectively. The profile initially displays typical behaviour for

neutral channel turbulent flow (Moser et al., 1999), with rapid growth of the velocity within

the inner boundary layer before approaching a plateau in the bulk of the channel. Within

the bulk of the flow, as the shear develops to account for the suppression of turbulence, we

observe an increase in the mean velocity until the final profile displays clear inflectional

behaviour consistent with the stationary results of WAKN15.

Figure 3.5(b) similarly shows the evolution time of vertical profiles of the mean buoyancy

b − bz=0 normalized by u2
τδ. From its initial isothermal state, the mean buoyancy profile

shows steady development across the channel throughout the entire evolution of the flow

as the mean stratification profile develops. In particular the inhomogeneity of the flow’s

stratification profile becomes apparent with a clear concentration of high buoyancy near

the upper portion of the channel where the heating is strongest and where we have visually

observed the formation of a quasi-laminar layer in figures (3.3- 3.4).
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FIGURE 3.6: (a) Evolution of the turbulent buoyancy flux Bt, (b) molecular
buoyancy flux Bm and (c) buoyancy flux turbulent fraction γB as a function of
z/δ. (d-f) Evolution of the turbulent momentum flux Mt, Same as (a-c) but
for the momentum flux M. All data plotted for case R900L1

3.5.4 Evolution of the buoyancy and momentum fluxes

We now consider the evolution of the turbulent and molecular components of the buoyancy and

momentum fluxes. All figures within this section again present results from our representative

case R900L1.

Figures 3.6 (a) and (b) show the evolution in time of vertical profiles of Bt and Bm non-

dimensionolized by u3
τ/δ. From the results we observe rapid growth in both Bt and Bm across

the entire channel depth from its initial isothermal state as the flow responds to the radiative

heating. As demonstrated previously, during the initial adjustment time of one eddy turnover

time unit, it can be readily derived that initially the development of the fluxes evolve according
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to

Bm(z, t) ∼
∂

∂z
κgβq(z)t, Bt(z, t) ∼ w′2 ∂

∂z
gβq(z)t2. (3.23a, b)

Hence explaining the initial rapid growth of both buoyancy fluxes across the channel. As the

fluxes develop and the turbulent and molecular terms in (3.14) no longer become negligible,

the peaks progressively shift away from the free surface towards towards their stationary

values as dictated through the boundary conditions and reflected in (3.10). By t/T 0
τ ≈ 5,

in agreement with our visual observations of re-laminarazition at the free surface, a region

develops for 0.9 < z/δ < 1 where turbulent mixing is fully suppressed and Bt ≈ 0. Within

this region we observe counter-gradient behaviour in Bt as observed in numerous past studies

of very stable flow (Armenio & Sarkar, 2002; García-Villalba & del Álamo, 2011; Williamson

et al., 2015; Howland et al., 2020). As the flow continues to evolve and enters the ‘recovery’

period, both Bt and Bm continue to display steady growth across the channel until they reach

a state of quai-stationarity at t/T 0
τ ≈ 33, corresponding to the plateau in Riτ observed in

figure 3.2. Furthermore, as the turbulence intensity within the channel continues to recover,

the subsequent increase in mixing within the upper portion of the channel acts to reduce

the thickness of the upper quasi-laminar layer. This is reflected in the reduction of the

region where Bt ≈ 0 during the ‘recovery’ period and is in direct agreement with our visual

observations from figures 3.3 and 3.4.

It is useful to also consider the relative contribution to the total buoyancy flux from its

individual components. We subsequently define γB as the turbulent buoyancy flux fraction

such that

γB =
Bt

Bt + Bm

. (3.24)

We note that γB can be directly linked to the eddy diffusivity Kρ as it can be readily shown

that

γB =
Bt

Bt + Bm

≡ B

(Kρ + κ)N2
=

Kρ

Kρ + κ
(3.25)

Figure 3.6(c) shows the temporal evolution of the vertical profile of γB. The results again

strongly depict the ‘suppression’ and ‘recovery’ behaviour that define our flow. Initially for

0 < t/T 0
τ < 1 while buoyancy essentially acts as a passive scalar we observe that the majority

of the total buoyancy flux is comprised of its turbulent component. This is analogous to say
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that Kρ/κ ≫ O(1) for the entire channel depth, with the exception of the near-wall and near-

surface regions where the viscous and diffusive forces strongly effect the flow (Pope, 2000;

Calmet & Magnaudet, 2003). As turbulent mixing is suppressed and the mean stratification

profile develops we observe that γB decreases within the vertical range z/δ ≳ 0.5, with

the suppression being most severe at t/T 0
τ ≈ 10 in agreement with our earlier observations.

During the ‘recovery’ period, turbulence re-intensifies and γB begins to increase again in

the upper half of the channel before reaching its stationary value at t/T 0
τ ≈ 33. Conversely,

within the lower vertical extent of z/δ ≲ 0.5 where the flow is only weakly effected by

stratification, γB experiences negligible changes throughout the entirety of the flows evolution.

We note that in the quasi-laminar layer γB < 0 due to the counter gradient fluxes within this

regime.

Figures 3.6(d) and (e) show the evolution in time of vertical profiles of Mt and Mm non-

dimensionolized by u2
τ . From the results we observe a defining feature of our temporally

evolving flow. Due to the suppression of w′ through the sudden imposition of stable stratifica-

tion, the turbulent momentum flux Mt rapidly drops from its initial value across the entire

channel with the exception of the near-wall region. We further note that this suppression is a

relatively ‘rapid’ process is most severe in the very initial stages of the flows evolution for

0 ≲ t/T 0
τ ≲ 2, past which the turbulent momentum flux begins to slowly recover towards

stationarity. In contrast to the ‘rapid’ suppression of Mt, the acceleration of the mean flow

and development of the mean shear profile reflected in Mm is a relatively ‘slow’ process with

a clear delay period of t/T 0
τ ≈ 1 during which the shear profile remains unchanged. It is

this disparity between the ‘rapid’ suppression of the turbulent momentum flux and the ‘slow’

acceleration of the mean flow that defines the shear stress in-balance accross the channel

and drives the structural changes within the flow. This behaviour directly agrees with that

observed in the studies of neutral channel flow suddenly subject to bottom surface cooling

(Flores & Riley, 2011; Atoufi et al., 2020). Furthermore, the turbulent momentum flux Mt

approaches zero in the upper quasi-laminar region with similar counter-gradient behaviour.

Within this region where the total momentum flux is predominantly provided through viscous

diffusion, we observe that the mean shear profile reflected through Mm displays a linear

profile away from the free surface as dictated by (3.11).



3.5 FLOW EVOLUTION OVERVIEW 51

Figure 3.6(f) shows the evolution of the vertical profile of the turbulent momentum flux

fraction γM, which can similarly be defined through the eddy viscosity KM , such that

γM =
Mt

Mt +Mm

=
KM

KM + ν
(3.26)

From the results we observe that the evolution of γM displays qualitatively similar behaviour

to that of γB. Initially in its neutral state γM ≈ 1 for almost the entire channel depth with

the exception of the near-wall and near-surface regions. In the upper half of the channel γM

analogously displays ‘suppression’ and ‘recovery’ behaviour and in the bottom half remains

relatively unchanged throughout the entire evolution of the flow. Again we observe negative

values for γM within the upper quasi-laminar layer due to the development of counter-gradient

fluxes.

3.5.5 Evolution of dominant energetic terms

We also consider the transient response of the flow from the perspective of energetics. Figure

3.7 shows the evolution of the vertical profiles of the individual terms within the turbulent

kinetic energy budget defined in (3.12) for case R900L1.

Figure 3.7(a) shows the evolution of EK normalized by u2
τ . The results similarly demonstrate

clear ‘suppression’ and ‘recovery’ behaviour that defines the evolution of our flow. EK

is initially reduced across the entire channel with the exception of the near-wall region as

turbulence is suppressed. We again observe that this suppression is ‘rapid’ with the majority of

the suppression occurring within the 0 < t/T 0
τ < 2 non-dimensional time period and remains

in this suppressed state until approximately t/T 0
τ ≈ 10 when the flow enters the ‘recovery’

period. Within the upper quasi-laminar layer of z/δ ≳ 0.9 we observe that turbulent kinetic

energy is almost entirely suppressed and EK ≈ 0.

Figures 3.7(b-d) show the evolution of the dominant terms within the budget P, ϵK and B

normalized by u3
τ/δ. We note that as B = Bt, figure 3.7(d) is identical to figure 3.7(a) and

has been included again for clarity with respect to the energetic response of the flow.



52 3 TRANSIENT RESPONSE AND TRANSITION TO EQUILIBRIUM OF STRATIFIED OPEN CHANNEL FLOW

(a) (b) (c)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0 10 20
0

0.2

0.4

0.6

0.8

1

0 10 20
0

0.2

0.4

0.6

0.8

1

(d) (e) (f)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

-1 0 1
0

0.2

0.4

0.6

0.8

1

0 1 2
0

0.2

0.4

0.6

0.8

1

FIGURE 3.7: Evolution of the vertical profiles of key energetic quantities:
(a) the turbulent kinetic energy EK , (b) TKE production term P , (c) TKE
dissipation rate ϵK , (d) turbulent buoyancy flux B, (e) the normalized turbulent
convection term TK/(B+ϵK), (f) local energetic equilibrium ratio P/(B+ϵK).
All data plotted for case R900L1

From the results we can observe qualitatively similar behaviour in the evolution of the

production and dissipation terms. with the exception of the near-wall region, we observe that

both P and ϵK are reduced relative to their initial profiles during the initial suppression period

of 0 < t/Tτ < 2 as w′ is suppressed. We note the drop in P is marginally more severe than

ϵK as the growing stratification profile initially constrains the larger scales associated with

production before the smaller dissipative scales (Lindborg, 2006). In combination with the

sudden development of the buoyancy flux which acts as a kinetic energy sink, this drives the

kinetic energy imbalance within the flow causing the global drop in EK across the channel.

As the flow accelerates, the increasing mean shear allows the central bulk flow to extract more

turbulent kinetic energy from the mean flow locally through shear instabilities rather than
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wall-generated structures from below. Subsequently, both P and ϵK begin to recover and

eventually exceed their respective initial values with a clear secondary peak forming in the

region of maximum shear at 0.7 < z/δ < 0.8 in agreement with our visual observations of

vigorous overturning driven mixing within this region.

Figures 3.7(e) shows the evolution of the turbulent convection transport terms TK , normalized

by the total loss of TKE: B + ϵK . We observe that in the initial neutral state, for z/δ ≳ 0.5

turbulent convection TK acts as an appreciable source of EK as wall generated turbulence is

ejected upwards from the wall. This falls in agreement with the stationary results for λ = 0

of Williamson et al. (2015) and the DNS study of neutral channel flow of Moser et al. (1999).

This region grows to z/δ ≳ 0.3 during the initial suppression period of 0 < t/T 0
τ < 2 as

−u′w′ and hence local production through P is rapidly suppressed. As the increasing mean

shear causes P to grow in the central shear layer we observe that the relative contribution

to EK through turbulent convection continues to decrease in the bulk of the flow as TK

eventually becomes negligible in the energetic budget. In the final quasi-stationary state TK is

only appreciable in the near-surface and and near-wall regions, consistent with the stationary

results of Williamson et al. (2015).

Figure 3.7(h) shows the production term P normalized by (B + ϵK) and depicts the local

equilibrium ratio such that a value of P/(B + ϵK) ≈ 1 represents an energetic state of the

flow that is in balance between the inherently local terms P,B, ϵK . As discussed in §1, the

assumption of P/(B + ϵK) ≈ 1 is regularly invoked in literature, in particular with respect to

parametrization mixing models for the eddy diffusivity Kρ (Osborn & Cox, 1972; Osborn,

1980; Shih et al., 2005; Gregg et al., 2018). From our results it is clear that in the case of the

developing channel flow, this assumption is significantly invalid for the majority of the flows

evolution. In its initial neutral state, the flow is only in a state of equilibrium within region of

50 ≲ z+ ≲ 0.5Reτ in agreement with the studies of Moser et al. (1999) and Williamson et al.

(2015). During the initial suppression period of 0 < t/T 0
τ < 2 we observe that the equilibrium

region shrinks to an upper limit of z/δ ≈ 0.3 as local production is suppressed and turbulent

convection becomes important in the vertical transport of TKE. Past this, the increasing mean

shear and local production causes the local equilibrium ratio to recover towards unity within
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the region of z+ ≳ 50 and z/δ ≲ 0.8. Above this depth, the flow deviates from a state local

equilibrium as the transport terms become appreciable. As we have visually observed in

figures 3.3 and 3.4, this upper region approaches a quasi-laminar state. It is hence unclear

whether this deviation from local equilibrium occurs due to the surface confinement effects

described in Calmet & Magnaudet (2003) or due the laminarization of the flow. As surface

confinement effects are outside the scope of this dissertation, we leave this as room for future

work. Accordingly, the significant takeaway from these results is that unlike the destratifying

case of KWAZ19 where local equilibrium is maintained for the majority of the destratification

process, for a significant portion of our flows evolution, the local equilibrium assumption

within the upper half of the channel becomes strictly invalid.

3.6 Prediction of suppressed mixing regime

In the context of the discussion presented in §1 regarding the stratified river flows of Australia

that form the motivation behind this thesis, we seek to define a bulk flow parametrization

for the global suppression of turbulent mixing across the channel. We propose that suitable

bulk metrics of turbulent mixing across the channel are the normalized domain averaged eddy

diffusivity and viscosity of the form

⟨Kρ⟩
κ

=
1
δ

∫ δ

0
Kρdz

κ
,

⟨KM⟩
ν

=
1
δ

∫ δ

0
KMdz

ν
. (3.27a, b)

Initially we consider the scaling of the bulk averaged eddy diffusivity ⟨Kρ⟩ , which can recast

using dimensional analysis of the form

⟨Kρ⟩ ∼ U2
∗T∗, (3.28)

where U∗ and T∗ are the velocity and time scales pertinent to the global state of the flow. We

note this is analogous to a classic mixing length argument of the form Kρ ∼ L∗U∗ as it can

clearly be shown that the pertinent mixing length L∗ = U∗T∗.
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Firstly, we take the assumption that the turbulent mixing within the flow is predominantly

shear driven such that we expect the friction velocity which defines the shear in the flow to be

the pertinent velocity scale such that U∗ = uτ .

Secondly, we hypothesise that the global flow may be loosely described by two limit regimes.

One where the effect of stable stratification is relatively negligible and the flow approaches

neutral conditions and the mixing of the buoyancy field may be treated as a passive scalar.

Within this regime we expect the eddy turnover time scale to define the dynamics of the flow

such that T∗ ∼ Tτ . Accordingly we obtain:

⟨Kρ⟩ ∼ u2
τTτ = u2

τ

δ

uτ

= uτδ. (3.29)

Normalizing both sides by κ(ν/ν) we obtain:

⟨Kρ⟩
κ

∼ uτδ

κ
=

uτδ

κ

ν

ν
= PrReτ . (3.30)

A such the resulting scaling suggests that the global mixing of the buoyancy field displays no

dependence on the stratification of the flow, analogous to that of neutral channel flow (Moser

et al., 1999).

Conversely, we propose that for flow where stable stratification strongly suppresses the

turbulent fluxes as seen in figures 3.6(c.f), it is reasonable to assume that processes occurring

at the global buoyancy time scale dominate the flow, such that T∗ ∼ TN . This is in direct

agreement with the experimental results of Buren et al. (2017) where it was shown that the

global time scale TN scaled the late time evolution of the Reynolds stresses of the flow in a

stable boundary layer. Hence, we obtain:

⟨Kρ⟩ ∼ u2
τTN = u2

τ

δ1/2

∆b
1/2

. (3.31)

We can hence obtain an expression in terms of Riτ of the form:

⟨Kρ⟩ ∼ u2
τ

δ1/2

∆b
1/2

δ1/2

δ1/2
= Ri−1/2

τ uτδ (3.32)
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and similarly by normalizing both sides by κ(ν/ν) we obtain the final result:

⟨Kρ⟩
κ

∼ PrRi−1/2
τ Reτ . (3.33)

We note a similar Ri
−1/2
τ dependence on the evolution of the total buoyancy flux and stratific-

ation rate was empirically observed in KWAZ19.

To predict the global eddy viscosity ⟨KM⟩, we take the assumption that for the majority of

the domain (excluding flow close to either boundary), the local turbulent Prandtl number

PrT = KM/Kρ is approximately unity such that KM ∼ Kρ. As will be shown directly in §5,

we have directly shown this to hold for our flow for both the transitional and stationary flow.

Hence we similarly obtain two scaling results. For the passive scalar regime we obtain:

⟨KM⟩
ν

∼ ⟨Kρ⟩
ν

∼ uτδ

ν
= Reτ (3.34)

and for the suppressed regime we obtain:

⟨KM⟩
ν

∼ ⟨Kρ⟩
ν

∼ Ri−1/2
τ

uτδ

ν
= Ri−1/2

τ Reτ . (3.35)

Lastly, a suitable parameter is needed to define the separation of the two regimes. For the

stationary case WAKN15 demonstrate that ReL0 becomes a suitable bulk parameter for the

prediction of globally supressed turbulent mixing across the channel, where

ReL0 =
u0
τL0

ν
. (3.36)

We note that ReL0 is analogous to the non-dimensional Obhukov length L+ used in atmo-

spheric literature to predict the collapse of the nocturnal boundary layer (Flores & Riley, 2011;

Chung & Matheou, 2012). However for our developing case however ReL0 loses relevance as

the definition of L0 in (2.14) inherently assumes a stationary and fully developed buoyancy

flux profile.

It is however well established that ‘locally’ the onset of a diffusive regime marked by reduced

mixing is well predicted by the buoyancy Reynolds number ReB = ϵK/N
2ν (Billant &

Chomaz, 2001; Shih et al., 2005; Portwood et al., 2016; Issaev et al., 2022). We can
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directly relate this to our estimates of global mixing through bulk parameters by taking two

assumptions. Firstly, we assume the established inertial scaling for channel flow of ϵK ∼ u3
τ/δ

(Moser et al., 1999). Secondly, following the work of KWAZ19, we assume that the local

mean buoyancy gradient evolves proportionally to the mean global buoyancy difference across

the channel such that N2 ∼ ∆b/δ such that we obtain:

ReB =
ϵK
N2ν

∼ uτ3δ

∆bνδ
=

uτ3

∆bν
. (3.37)

Furthermore, as derived in Billant & Chomaz (2001), in the same sense that ReB is a ‘mixed’

parameter such that ReB = ReTFr2, where Reh and Fr are the turbulent Reynolds number

and Froude number respectively, it can be readily shown that the bulk parameter u3
τ/∆bν is

analogously a mixed parameter that can be decomposed into Reτ and Riτ such that

uτ3

∆bν
=

u2
τ

∆bδ

uτδ

ν
= Ri−1

τ Reτ . (3.38)

Accordingly, to account for the viscous and buoyancy forces which may conceivably suppress

mixing in the channel, we propose that Ri−1
τ Reτ will act as a logical global parameter for

the onset of a reduced mixing regime for our temporally evolving flow analagous to ReB.

Furthermore from figure 3.2, we note that the rate of change in Reτ is very small relative to

Riτ during the transitional period of the flow. Hence Reτ can be assumed to be essentially

constant such that we can reasonably approximate:

Ri−1/2
τ Reτ ≈ Ri−1/2

τ Re0τ . (3.39)

To test our analysis, figures 3.8(a,b) show ⟨Kρ⟩/κPr and ⟨KM⟩/ν plotted against Ri−1
τ Reτ

respectively for all simulations, excluding the data for the adjustment period of t/T 0
τ < 1.

From the results it is clear that our hypothesis is correct and we observe the two limit cases for

the global levels of turbulent mixing. For Ri−1
τ Reτ ≳ 100 the flow approaches an asymptotic

mixing state where stratification only weakly suppresses turbulent mixing and both ⟨Kρ⟩/κ

and ⟨KM⟩/ν appear to plateau to a constant asymptotic value that varies with Pr and Reτ .

This is in agreement with our above analysis suggesting that for the passive scalar regime,

global values of turbulent mixing depend only on Pr and Reτ which remain essentially



58 3 TRANSIENT RESPONSE AND TRANSITION TO EQUILIBRIUM OF STRATIFIED OPEN CHANNEL FLOW

(a) (b)

10
0

10
2

10
4

10
0

10
1

10
0

10
2

10
4

10
0

10
1

(c) (d)

10
0

10
2

10
4

10
-2

10
-1

10
0

10
2

10
4

10
-2

10
-1

FIGURE 3.8: Normalized, instantaneous measurements of bulk eddy ⟨Kρ⟩
and viscosity ⟨KM⟩ plotted against Ri−1

τ Reτ . (a) ⟨Kρ⟩/κPr (b) ⟨Km⟩/ν.
(c) ⟨Kρ⟩/(uτδ). (d) ⟨Km⟩//(uτδ). Vertical dashed lines indicate Ri−1

τ Reτ =
10, 100. Solid diagonal lines indicate lines ∝ (Ri−1

τ Reτ )
1/2, (Ri−1

τ Reτ )
1/4.

All data plotted for t/T 0
τ > 1

constant for this regime. This is conceptually consistent with the work of Chung & Matheou

(2012) who show that for neutral sheared flow, Kρ/κ and KM/ν approach asymptotic values

defined by the molecular properties, and the ratio of an appropriately defined confinement

scale to the Kolmogorov scale.

For Ri−1
τ Reτ ≲ 10 we observe that the channel flow enters a regime of suppressed mixing

with clear dependence on the mixed parameter of the form:

⟨Kρ⟩
κPr

∼ ⟨Km⟩
ν

∼ (Ri−1
τ Reτ )

1/2. (3.40)

This result is directly in agreement with our above analysis suggesting a Ri
−1/2
τ dependence

on the evolution of the turbulent fluxes for the buoyancy effected regime.
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For flow where 10 ≳ Ri−1
τ Reτ ≲ 100, we observe an intermediate regime where buoyancy

begins to suppress turbulent mixing, but at a lesser extent than the Ri
−1/2
τ scaling for a

buoyancy dominated regime. Within this regime, from our observation we empirically

propose a (Ri−1
τ Reτ )

1/4 scaling to account for this behaviour which can conceptually be

interpreted as a regime where both Tτ and TN are equally significant.

Due to the clear dependence of the asymptotic values on the molecular properties, we can

present the results in a way that clearly shows the separation of the two regimes. We do this

by renormalizing bulk eddy diffusivity and viscosity by κ/uτδ and ν/uτδ respectively such

that we obtain
⟨Kρ⟩
κ

κ

uτδ
=

⟨Kρ⟩
uτδ

,
⟨Km⟩
ν

ν

uτδ
=

⟨Km⟩
uτδ

. (3.41a, b)

We note that this formulation can be interpreted in the form of a classic mixing length

argument such that the eddy diffusivity term becomes

Kρ

uτδ
=

−b′w′

N2uτδ
∼ b′w′

N2uτδ
∼ LE

δ

w′

uτ

∼ LE

δ
, (3.42)

where LE = b′rms/N
2 is the Ellison length scale describing the size of overturning eddies

within the flow (Shih et al., 2005). Analogously, the eddy viscosity term can be interpreted as

Km

uτδ
=

−u′w′

Suτδ
=

LM

δ

(−u′w′)1/2

uτ

∼ LM

δ
, (3.43)

where LM = −u′w′/S is the well known mixing length. In this sense the ratios ⟨Kρ⟩/uτδ

and ⟨KM⟩/uτδ can be interpreted as the bulk ratios of the two respective large energetic

length scales LE and LM to the confinement scale δ which we expect to asymptote to an

upper limit in the neutral case as shown in Chung & Matheou (2012). Furthermore, as has

been previously shown in past studies of stratified sheared flow (Mater & Venayagamoorthy,

2014; Issaev et al., 2022), the size of the overturns is well approximated by the mixing length

such that LE ∼ LM . Hence we expect both qualitatively and quantitatively similar behaviour

in ⟨Kρ⟩/uτδ and ⟨KM⟩/uτδ.

Figures 3.8(c,d) show the ratios ⟨Kρ⟩/uτδ and ⟨KM⟩/uτδ plotted against Ri−1
τ Reτ . Presen-

ted in this manner the data across all simulations collapses well on singular lines of scaling

that depict qualitatively similar behaviour to figure 3.8(a) and (b) with a clear separation of
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the asymptotic passive scalar and suppressed mixing regimes, separated by the transitional

value of Ri−1
τ Reτ = 10.

The collapse of the results presented within this section across the entire parameter set suggest

that the mixed parameter Ri−1
τ Reτ is a relatively robust measure of the global levels of

turbulent mixing across the channel. However, we acknowledge that at the limited parameter

range explored within this thesis (particularly our modest values of Reτ ), it remains unclear if

the transitional values of Ri−1
τ Reτ ≈ 10 and 100 will hold universally for all Reτ , Riτ and

Pr. We suggest rather than exact transitional values, the results within this section should be

viewed more broadly such that Ri−1
τ Reτ = O(10),O(100) that roughly separate the clearly

differing mixing regimes within flow. As such we propose that the results presented here

could form the groundwork for the forecasting of reduced mixing rates at the upper layer in

real stratified river flows where the bulk flow properties uτ and ∆b can be readily obtained

from field measurements.

3.7 Transition to equilibrium flow

3.7.1 Convergence of buoyancy and momentum fluxes towards

equilibrium

In the context of a ‘sunrise’ scenario for stratified river flow, a central aim of this chapter is

the accurate prediction of the time scale at which the flow obtains stationarity as an initially

isothermal channel flow is subject to radiative heating. As outlined in §1.2, at a local level

the flow’s transition to equilibrium conditions can be described by the convergence of the

total buoyancy and momentum fluxes towards their respective equilibrium values defined by

the ratios B/BE and M/ME respectively. To investigate this, we first consider figure 3.9

which shows B/BE plotted as a function of t/T 0
τ over a wide range of depths and different

simulations.

From the global results we can make two key observations. Firstly, it is clear that from

the initially isothermal state of B = 0, the development of the total buoyancy flux and the
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FIGURE 3.9: Evolution for of the local buoyancy flux convergence ratios
B/BE as a function of t/T 0

τ for a range of simulations. Vertical dashed lines
correspond to approximate visually estimated values of the final equilibrium
convergence time.

transition to buoyancy flux equilibrium is a global process such that local equilibrium at any

depth z is obtained simultaneously across the entire channel depth. We note that for all cases

this time at which each simulation obtains equilibrium corresponds directly to a plateau of

Riτ observed in figure 3.2 and is tabulated within table 3.1 as te.

Secondly we can observe that initially during the adjustment period of t/T 0
τ ≈ 1, B grows

rapidly and varies with vertical location as both Bt Bm evolve according to (3.23). Past this
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time scale, the local convergence of the total buoyancy flux towards equilibrium follows

an essentially linear monotonically increasing trajectory regardless of depth or local levels

strength of stratification. The exception to this behaviour are vertical locations within the

upper quasi-laminar regime where the total buoyancy flux is comprised almost entirely of

its molecular component (i.e. γB ≈ 0). Within this regime where the turbulent fluxes and

hence the turbulent term in (3.14) are heavily suppressed, the background stratification N2

and subsequently Bm initially grow at a relatively more rapid rate than that of the turbulent

flow within the channel. The final equilibrium convergence time however remains constant.

We further observe that these two findings hold irrespective of the external parameter set Re0τ ,

λ0, αδ. The results subsequently suggest that although the mixing of the buoyancy field at

a given depth is a local process that is defined by the relevant local scales pertinent to the

varying mixing regimes within the flow (as will be shown in §4), the convergence towards

an equilibrium buoyancy flux profile in time is rather a global phenomenon that we expect

to scale with bulk flow properties similarly to the prediction of the bulk measures of eddy

diffusivity and viscosity as in §3.6.

Through comparison of cases R400L0.5 and R400L1 it is clear that for a given Reτ an increase

in stratification strength through λ0 (decreasing Ri−1
τ Reτ) acts to increase the thickness of the

quasi-laminar layer and hence an increasing portion of the upper channel deviates from the

constant trajectory towards equilibrium. Analogously through comparison of cases R400L1

and R900L1, a decrease in Re0τ acts causes a similar effect. Similarly, through increasing

turbidity parameter αδ we see an increase in Riτ . Hence, the increase in heating near the

upper surface causes larger local buoyancy gradients and contributions from Bm to the total

buoyancy flux causing similar deviation from a constant trajectory towards equilibrium.

Figure 3.10 shows the evolution of the momentum flux equilibrium ratio M/ME for the

same extended data set presented in figure 3.9. During the initial suppression period of

0 ≲ t/T 0
τ ≲ 2 where Mt is rapidly suppressed and before the mean shear has begun to

develop, the total momentum flux is accordingly reduced for all simulations. The severity

of the suppression relative to equilibrium is accordingly amplified with increasing distance

from the wall due to the inhomogeneity of the flow as both the strength of stratification
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FIGURE 3.10: Evolution for of the local momentum flux convergence ratios
M/ME as a function of t/T 0

τ for a range of simulations. Vertical dashed lines
correspond to approximate visually estimated values of the final equilibrium
convergence time. Legend same as for figure 3.9.

increases whilst the turbulence intensity decreases. Similarly, increases in λ0 or decreases

in Reτ further amplify the suppression and deviation from momentum flux equilibrium.

Past the initial suppression, the mean shear profile begins to develop and the momentum

flux recovers monotonically towards equilibrium. Most significantly we observe that the

convergence towards momentum flux equilibrium is similarly a global process governed by

a single convergence time at which the entire channel obtains M/ME = 1 simultaneously.

Furthermore, we observe that this convergence time is identical to that of the buoyancy flux
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equilibrium convergence time indicating that a single convergence time scale governs the

transitional process of the channel.

Past this equilibrium time-scale the total momentum flux continues to evolve directly pro-

portional to u2
τ towards full stationarity of the flow field. As such, the results suggest that

for our temporally evolving channel flow in which the buoyancy flux profile and therefore

the stabilizing force on the velocity field is still developing, caution should be advised in

the inference of the local momentum flux from instantaneous measurements of the friction

velocity uτ .

From the results above it is clear that a single global time scale exists that defines the transition

of the channel at any depth z towards buoyancy and momentum flux equilibrium which we

explicitly define as:

tE = t

(
B(z)
BE(z)

= 1

)
= t

(
M(z)

ME(z)
= 1

)
(3.44)

Subsequently we can define global convergence ratios for the buoyancy and momentum fluxes

of the form 〈
B
BE

〉
=

1

δ

∫ δ

0

B
BE

dz,

〈
M
ME

〉
=

1

δ

∫ δ

0

M
ME

dz. (3.45a, b)

And due to the approximate monotonic convergence behaviour of the fluxes it is clear that

tE = t

(〈
B
BE

〉
= 1

)
= t

(〈
M
ME

〉
= 1

)
. (3.46)

Figures 3.11(a) and (b) show the evolution of the global convergence ratios ⟨B/BE⟩ and

⟨M/ME⟩ for all simulations plotted against t/T 0
τ . From the results it is clear that the

evolution of the global flux convergence ratios display the same qualitative behaviour as that

of the local convergence ratios B/BE and M/ME . Furthermore, in agreement with our

hypothesis of a single convergence time scale we observe that the time taken for the global

convergence ratios to reach equilibrium are identical to that of the local flow observed in

figures 3.9 and 3.10.

We also consider the global convergence of the flow towards a quasi-stationary energetic state

by plotting the domain averaged turbulent kinetic energy ⟨EK⟩ normalized by u2
τ and plotted
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FIGURE 3.11: (a) Global convergence statistics plotted against t/T 0
τ for all

simulations. (a) Global buoyancy flux convergence ratio ⟨B/BE⟩ .(b) Global
momentum flux convergence ratio ⟨M/ME⟩. (c) Normalized domain aver-
aged turbulent kinetic energy ⟨EK⟩/u2

τ .

against t/T 0
τ for all simulations in figure 3.11(c). From the results it becomes clear that the

single convergence time scale te defines not only the convergence towards equilibrium of the

buoyancy and momentum fluxes but also a defines the time for which the flow obtains a state

of energetic quasi-stationarity. This result implies a globally parabolic process with respect to

the convergence of the flow field towards statistical stationary and is not overly surprising

given the coupled nature of the governing equations of the flow in (2.3-2.5). We again note
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the high frequency oscillations due to the internal wave field in all three figures for the bulk

flow quantities.

3.7.2 Prediction of the global convergence time scale

We now consider the scaling of the global buoyancy flux convergence ratio ⟨B/BE⟩. In

the previous section we have observed that the development of the total buoyancy flux and

convergence towards equilibrium is a global process described by a single convergence time

scale te and monotonic growth towards unity of the ratio ⟨B/BE⟩ respectively. Due to the

clear observation of monotonic growth of B with respect to time, we can simplify the global

integral ⟨B/BE⟩ as two separate integrals such that〈
B
BE

〉
=

1

δ

∫ δ

0

BT

BE

dz ∼
∫ δ

0
BTdz∫ δ

0
BEdz

. (3.47)

The integral in the denominator subsequently can be readily derived analytically to obtain∫ δ

0

BEdz = gβqNδ
2. (3.48)

Next we recast the total buoyancy flux B in terms of the classic eddy diffusivity formulation

as defined in (3.8) such that the numerator in (3.47) becomes∫ δ

0

Bdz =

∫ δ

0

(Bt + Bm)dz =

∫ δ

0

(Kρ + κ)
∂b

∂z
dz. (3.49)

Further, by considering the results of figure 3.6 and 3.8, we take the assumption that when

considering the integral across the entire channel depth, the dominant contribution to the total

buoyancy flux is through turbulent mixing rather than molecular diffusion such that∫ δ

0

(Kρ + κ)
∂b

∂z
dz ≈

∫ δ

0

Kρ
∂b

∂z
dz. (3.50)

In the context of a global convergence towards equilibrium, Kρ in this instance represents

a global level of eddy diffusivity such that we can adopt the bulk scaling derived in §3.6.

Hence, following our analysis that for flow where Ri−1
τ Reτ ≲ 100 and stratification actively

suppresses and modifies turbulent mixing, we take the bulk scaling of Kρ ∼ Ri
−1/2
τ uτδ

derived in (3.32).
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Next we consider that in the context of the global stratification process and the heating of

the channel from its initial isothermal state, the ∂b/∂z term in (3.50) represents the transient

development of the buoyancy gradients due to the externally imposed heat input into the flow

through the representative bulk heat source qN and is inherently dependant on the total time t

for which the external forcing has been applied. Accordingly we can obtain

∂b

∂z
∼ gβqN t

δ
, (3.51)

In this sense, gβqN t/δ represents the total buoyancy input into the channel from the initial

isothermal reference state of b = 0 at t = 0 distributed across the channel height δ. We

note here that we fundamentally differ from the analysis in KWAZ19 in which the absence

of the forcing term that depends on t suggests that the appropriate scaling for this term is

∂b/∂z ∼ ∆b/δ. We can thus substitute (3.32) and (3.51) into (3.50) to obtain∫ δ

0

Kρ
∂b

∂z
dz ∼

∫ δ

0

Ri−1/2
τ uτδ

(
gβqN t

δ

)
dz = Ri−1/2

τ uτδgβqN t. (3.52)

Following which we can substitute (3.48) and (3.52) back into (3.47) to obtain∫ δ

0
Bdz∫ δ

0
BEdz

∼ Ri
−1/2
τ uτδgβqN t

gβqNδ2
=

Ri
−1/2
τ uτ t

δ
. (3.53)

Now, we recall that δ/uτ = Tτ to obtain the final scaling for the global convergence ratio

such that: 〈
B
BE

〉
∼ Ri

−1/2
τ uτ t

δ
= Ri−1/2

τ

(
t

Tτ

)
;

〈
B
BE

〉
≤ 1 (3.54)

Furthermore, as we have observed that the transition to equilibrium is governed by a single

time scale te, we expect the evolution of the domain averaged momentum flux and turbulent

kinetic energy to similarly display a dependence on Ri
−1/2
τ (t/Tτ ). To test the scaling derived

in (3.54), we plot ⟨B/BE⟩, ⟨M/ME⟩ and ⟨EK⟩/u2
τ against Ri

−1/2
τ (t/Tτ ) for all simulations

in figure 3.12.

With the exception of case400L0.02 the results in figure 3.12(a) show clear support for the

proposed scaling in (3.54) with a distinct collapse of the data as ⟨B/BE⟩ displays clear linear
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FIGURE 3.12: (a) Global convergence statistics plotted against Ri
−1/2
τ (t/Tτ )

for all simulations. (a) Global buoyancy flux convergence ratio ⟨B/BE⟩ . Solid
black line indicates linear fit of ⟨B/BE⟩ = 0.5Ri

−1/2
τ (t/Tτ ). (b) Global mo-

mentum flux convergence ratio ⟨M/ME⟩. (c) Normalized domain averaged
turbulent kinetic energy ⟨EK⟩/u2

τ . Legend same as figure 3.11

dependence on Ri
−1/2
τ (t/Tτ ) such that we can approximate〈

B
BE

〉
≈ 0.5Ri−1/2

τ

(
t

Tτ

)
;

〈
B
BE

〉
≤ 1 (3.55)

until the flow transitions to equilibrium at Ri
−1/2
τ (t/Tτ ) ≈ 2. Figure 3.12(b) further confirms

the universal scaling of the convergence of the flow towards equilibrium with a clear collapse

of the data and an identical final convergence of ⟨M/ME⟩ ≈ 1 at Ri
−1/2
τ (t/Tτ ) ≈ 2 for all
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simulations (again with the exception of case R400L0.02). Similar behaviour is shown in

figure 3.12(c) for the scaling of the global energetic equilibrium confirming our assumptions.

For case R400L0.02 we observe clear disagreement with our scaling. This is conceptually

consistent with our analysis in §3.6 as flow in this simulation is described by Ri−1
τ Reτ ≫ 100

and may hence be considered essentially neutral turbulent open channel flow. In this sense we

do not expect TN to be a relevant time scale in the evolution of the flow and hence our Riτ

scaling becomes invalid.

3.7.3 Convergence of local mixing diagnostics

We note that a global transition to quasi-stationarity of the flow can also be interpreted as a

state of the flow in which the local mixing properties reach their respective stationary values.

Furthermore, the global convergence of the turbulent fluxes towards equilibrium suggest that

the time scale of te should similarly govern this process.

To demonstrate this we consider the instantaneous flux and gradient Richardson number Rf

and Rig defined as:

Rf =
B

B + ϵK
, Rig =

N2

S2
. (3.56a, b)

As discussed in §3.1, it has been shown for a variety of channel flow configurations, that

for the stationary case and under sufficiently stable conditions, Rf and Rig approach their

respective critical values of Rf,c ≈ 0.17 − 0.2 and Rig,c ≈ 0.2 − 0.25 (Armenio & Sarkar,

2002; Taylor et al., 2005; García-Villalba & del Álamo, 2011; Williamson et al., 2015). And

for flow where Rig < Rig,c it has been shown in numerous studies that the two paramaters

display a linear correlation such that Rf ∼ Rig.

Figure 3.13 shows the evolution of the vertical profiles of Rig and Rf for case R900L1. The

results clearly show that for most of the flows evolution towards stationarity, in the upper

portion of the channel, Rf and Rig may significantly exceed their critical values and become

uncorrelated. Analytically this can be explained for our particular flow by the slow response

of S and ϵK , while B and N2 grow rapidly according to (3.23). Conceptually this is consistent
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FIGURE 3.13: Evolution of the vertical profiles of: (a) Gradient Richardson
number Rig, vertical dashed line indicates Rig0.2. (b) Instantaneous flux
Richardson number Rf , vertical dashed line indicates Rf = 0.17. Data for
case R900L1

with past studies of stratified shear layers that show appreciably higher values of Rf and

Rig during the initial ‘roll-up’ of an overturning shear instability structure (Mashayek et al.,

2017). Conversely in the lower portion of the channel, the slow development of the buoyancy

fluxes causes Rf and Rig to slowly and monotonically grow towards their stationary values.

In the final stationary state we observe that a region develops in the core of the channel where

Rig and Rf approach their established critical limits of 0.2 and 0.17 respectively, consistent

with WAKN15. In the upper quasi-laminar layer we observe Rig grows very large as the

upper boundary conditions causes a relaxation of the mean shear while Rf grows small and

becomes negative due to the counter gradient fluxes in this region.

We hence test whether our bulk scaling for the global convergence of buoyancy and momentum

fluxes to equilibrium similarly applies to Rig and Rf . To investigate this we plot Rf and Rig

against Ri
−1/2
τ (t/Tτ ) for all simulations with the exception of case R400L0.02 at varying

depths z/δ = 0.4, 0.6, 0.8 in figure 3.14. Note we have omitted the plot of Rf at z/δ = 0.8

for case R400L2 in figure 3.14(g) as at this location the flow is essentially laminar and

measurements of Rf become extremely noisy as both B and ϵK go to zero. From the results

it becomes clear that our assumption is valid and the results suggest that Ri
−1/2
τ (t/Tτ ) ≈ 2

corresponds to a global time scale under which the ‘local’ mixing diagnostics similarly reach
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FIGURE 3.14: Flux Richardson Rf and gradient Richardson Rig numbers
plotted against Ri

−1/2
τ (t/Tτ ) at varying depths for all simulations (with the

exception of case R400L0.02). (a-b) z/δ = 0.4. (c-d) z/δ = 0.6. (e-f) z/δ =
0.8. Horizontal dashed lines in (c),(e),(g) indicate Rf = 0.17. Horizontal
dashed lines in (d),(f),(h) indicate Rig = 0.2. Same legend as for figure 3.11.

their respective stationary values, regardless of the external parameter set and hence initial

rapid growth rate of Rf and Rig during the adjustment period of t/Tτ,0 < 1. Although not

shown here, similar behaviour occurs for other mixing diagnostics composed of N,S and the

energetic quantities in (3.12) (e.g. Fr,ReB). Hence analogous to the invalidity of the local
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equilibrium assumption, it is clear that in the transitional flow for Ri
−1/2
τ (t/Tτ ) < 2 care

must be taken when assuming classic critical limits on mixing diagnostics and their respective

parameters.

In the context of a global process governing the flows convergence to equilibrium, the results

presented within figure 3.14 are somewhat reminiscent of the results of Salehipour et al.

(2018) who demonstrate the convergence of Rf , Rig in stratified free shear flow towards their

critical value regardless of initial condition. Accordingly our results further present strong

mounting evidence for the case of self-organization in sheared stratified flow towards an

‘optimal’ or ‘critical’ state of ‘marginal stability’ as argued for by Thorpe & Liu (2009) and

Smyth et al. (2019). This will be explored in much more detail in §5.

3.8 Global stratification rate and comparison with

Kirkpatrick et al. (2019)

A key finding of KWAZ19 in their study of the destratifying case after the removal of the

radiative heat source, was to present a parametric estimate of the bulk destratification rate

∂∆b/∂t through measurements of Riτ . In its its nondimensional form the the model reads:

Tτ

∆b

∂∆b

∂t
= −2.1Ri−1/2

τ ; Riτ > 15. (3.57)

We can derive a similar expression for stratifying case based on the scaling analysis for

buoyancy flux convergence derived in §3.7. We recall the evolution for the buoyancy gradient

N2 in (3.14) which can be recast in terms of the total buoyancy flux B such that

∂N2

∂t
=

∂2B

∂z2
+ κ

∂N2

∂z
+

∂

∂z
gβq(z) =

∂2B
∂z2

+
∂

∂z
gβq(z). (3.58)

Integrate (3.58) across the channel height δ∫ δ

0

∂N2

∂t
dz =

∫ δ

0

(
∂2B
∂z2

+
∂

∂z
gβq(z)

)
dz. (3.59)
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leads to an evolution equation for the buoyancy difference across the channel of the form

∂∆b

∂t
=

∫ δ

0

(
∂2B
∂z2

)
dz +

(
∂

∂z
gβq(z)

)
dz. (3.60)

Next we recall provided that Ri−1
τ Reτ ≲ 100 we recall our observation that with the exception

of the quasi-laminar regime, the local convergence of B(z) towards equilibrium follows a

single constant trajectory which we estimate to scale as the global convergence ratio such that

B(z, t)
BE(z)

≈ 0.5Ri−1/2
τ

t

Tτ

(3.61)

Accordingly, we can make the approximation that the first term on the LHS of (3.60) becomes∫ δ

0

(
∂2B
∂z2

)
dz ∼ 0.5Ri−1/2

τ

t

Tτ

∫ δ

0

(
∂2BE(z)

∂z2

)
dz. (3.62)

Furthermore, it can be readily derived that∫ δ

0

(
∂2BE(z)

∂z2

)
dz =

gβISα

CPρ0
, (3.63)

which leads to ∫ δ

0

(
∂2B
∂z2

)
dz ∼ −0.5Ri−1/2

τ

t

Tτ

gβISα

CPρ0
. (3.64)

Next it can again be readily derived that∫ δ

0

(
∂

∂z
gβq(z)

)
dz =

∫ δ

0

(
gβISα

2

CPρ0
e(z−δ)α

)
dz =

gβISα

CPρ0
. (3.65)

Finally we can substitute (3.64) and (3.65) into (3.60) to obtain

∂∆b

∂t
=

gβISα

CPρ0

(
1− 0.5Ri−1/2

τ

t

Tτ

)
, (3.66)

For brevity, we define a non-dimensional stratification rate S such that

S =
CPρ0
gβISα

∂∆b

∂t
(3.67)

and hence (3.66) can be expressed in non-dimensional form such that:

S = 1− 0.5Ri−1/2
τ

t

Tτ

. (3.68)
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FIGURE 3.15: Normalized global stratification rate S plotted against
Ri

−1/2
τ (t/Tτ ) for all simulations (with the exception of case R400L0.02).

Solid black line indicates projected linear fit of S = 1 − 0.5Ri
−1/2
τ (t/Tτ ).

Same legend as for figure 3.11

Accordingly in agreement with our results in §3.7, it is clear from the derivation above

that when Ri
−1/2
τ (t/Tτ ) ≈ 2, the bulk stratification rate of change will become zero and

∆b reaches its stationary value. We investigate the above analysis by plotting S against

Ri
−1/2
τ (t/Tτ ) for all simulations (with the exception of case R400L0.02) in figure 3.15. A

line depicting the linear relationship defined in (3.54) is shown for reference.

From the results we again confirm that Ri
−1/2
τ (t/Tτ ) ≈ 2 indeed corresponds to the global

equilibrium time scale past which S reduces zero for all cases. However for the transitional

state of the flow where Ri
−1/2
τ (t/Tτ ) < 2, we do not observe a universal collapse of the

data on a single line of scaling as for the buoyancy flux convergence ratio ⟨B/BE⟩ or in

the destratifying case of KWAZ19. Rather the evolution of S displays a non-linear de-

pendence on Ri
−1/2
τ (t/Tτ ) which varies significantly with the entire external parameter set

(Re0τ , λ
0, P r, αδ).

To investigate this we consider that the derivation of the scaling for S in (3.68) stems from

the assumption that our global scaling for the buoyancy flux convergence is applicable at a

local level. As shown in figure 3.9 this assumption breaks down for vertical locations near

the top boundary within the quasi-laminar regime. Furthermore, as is evident from (3.60),

the evolution of S depends strongly on the second derivative term ∂2B/∂z2. As outlined
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FIGURE 3.16: Evolution of the vertically integrated cumulative normalized
functions (a) BC and (b) BC

zz plotted against z/δ for case R900L1.

in KWAZ19 (see their figure 27), unlike the buoyancy flux B which is relatively evenly

distributed across the channel depth, the majority of the contribution to ∂2B/∂z2 occurs very

close to the upper surface. To demonstrate this we define the vertically integrated cumulative

normalized functions for B and ∂2B/∂z2 such that

BC(z, t) =

∫ z

0
B(z, t)dz∫ δ

0
B(z, t)dz

, BC
zz(z, t) =

∫ z

0
∂2B(z,t)

∂z2
dz∫ δ

0
∂2B(z,t)

∂z2
dz

, (3.69a, b)

Figures 3.16(a) and (b) shows the transient evolution of BC and BC
zz respectively for our

representative case R900L1. For reference we also plot the projected cumulative functions

based on our assumption of B = 0.5BERi
−1/2
τ (t/Tτ ) in (3.48) denoted as BC

E and BC
zz,E

respectively.

With the exception of the initial development period, it is clear from from figure 3.16(a) that

our estimation of BC
E through the scaling in (3.48) is valid displaying excellent agreement with

BC for the most of the flows evolution. Furthermore, it is clear from the profiles of BC that

the total buoyancy flux is quite evenly distributed across the channel depth and accordingly

explains the excellent agreement of the results for the buoyancy flux convergence presented

in figure 3.12.

Conversely, from the profiles of BC
zz in figure 3.16(b) it is clear that the vast majority of the

total contribution to ∂2B/∂z2 occurs very close the free surface where the heating is strongest
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and where the flow enters the diffusive regime for most simulations. Within this region, for

the majority of the flows evolution our estimation of a constant growth rate of ∂2B/∂z2 in

time breaks down with poor agreement between the measured data and our estimation of

BC
zz,E through (3.48). We note that this effect is strongly amplified with increasing turbidity

parameter αδ or with an increased thickness of the quasi-laminar layer through a reduction of

Re0τ or increase of λ0. Subsequently this explains the disagreement from a linear dependence

of S on Ri
−1/2
τ (t/Tτ ) in figure 3.15 with clear sensitivity to the external parameter set.

We note however from the results of our weakly stratified cases R400L0.1 and R400L0.25

where the flow remains fully turbulent all the way to the free surface, we still observe

disagreement from our fit of linear estimation through (3.48). This can be explained if we

consider that during the initial development period of t/T 0
τ ≲ 1, our linear fit model inherently

breaks down near the upper surface due to the growth of B and ∂2B/∂z2 proportional to

q(z) as dictated by (3.23). As seen from figure 3.2(b), for these two low λ0 cases, during

this initial period the flow is always described by Riτ ≈ O(1) and hence Ri
−1/2
τ ≈ O(1).

Hence for these cases where the suppression of the turbulent flow is negligible and where the

flow reaches stationarity quite rapidly, the initial development period of t/T 0
τ ≈ O(1) also

corresponds to Ri
−1/2
τ (t/Tτ ) ≈ O(1). Accordingly the flow only briefly enters the transitional

period of the flow which is both independent of the initial condition and yet sufficiently far

from equilibrium conditions to observe a linear fit to the stratification rate S.

Conversely, in KWAZ19 it was found that the collapse of the quasi-laminar upper layer is

a very rapid process that occurs within approximately t/Tτ ≈ O(1) eddy turn over time

units. Similarly in their study, the removal of the external forcing through the heat source

dictates that the RHS of (3.60) is reduced only to the second derivative term. Hence the

destratification rate evolves due to local processes reflecting the evolution of B that we expect

to linearly depend on Ri
−1/2
τ . Accordingly in their study, an assumption of fully turbulent

flow independent of external forcing or time across the entire channel becomes valid. Hence

explaining the collapse of their results for the destratification rate on a single line of scaling.

As such, consider that ∂2B/∂z2 in both the initial transient period and later recovery period

depends so strongly only local processes that vary strongly with vertical location. The results
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hence suggest that for the heating ‘sunrise’ case where partial relaminarization and the initial

condition complicates the process, the prediction of a global stratification rate through a

singular bulk parameter framework may not be possible as in the destratifying case. However

the final stratification time at Ri
−1/2
τ (t/Tτ ) = 2 for all simulations remains clear.

3.9 Conclusion

In this chapter we have investigated the transition of turbulent open channel flow from a

neutral to a stably stratified state as the channel is subject so sudden radiative heating across a

wide external parameter set. In particular the emphasis of our study falls on the quantification

and prediction of the flows transition to an equilibrium state.

We find that the the transient response of the channel is largely described by two transient

periods. Firstly, the flow undergoes an initial ‘rapid’ suppression period where the imposition

of stable stratification acts to suppress the Reynolds stress −u′w′ dampening turbulence

production across the channel. Secondly, the flow transitions to an equilibrium state in a

relatively ’slow’ recovery period that is defined by the acceleration of the mean flow and

development of the mean shear profile in the bulk of the channel.

By defining a bulk measure of the turbulent mixing in the channel through ⟨Kρ⟩/κ and

⟨KM⟩/ν we demonstrate that the transition away from an asymptotic(neutral) to a heavily

suppressed mixing regime in the channel is well predicted by the mixed bulk parameter

criterion of Ri−1
τ Reτ ≲ 10 and approaches neutral conditions for Ri−1

τ Reτ ≳ 100. We

provide scaling arguments to show that for the suppressed mixing regime the bulk values of

the normalized eddy diffusivity and viscosity show dependence on Pr,Riτ and Reτ , while

in the weakly stratified asymptotic regime, buoyancy acts as a passive scalar and the only

influencing parameters are Pr and Reτ .

We find that the transition to an equilibrium quasi-stationary state defined by the vertical

buoyancy flux and momentum flux convergence ratios B/BE = 1 and M/ME = 1 is a

global process governed by a single global equilibrium time scale such that the flow obtains
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local flux equilibrium at all depths simultaneously across the channel. We find that this global

time scale also corresponds to a state of energetic quasi-stationarity at which EK/u
2
τ and the

mixing diagnostics Rf and Rig reach their respective stationary values irrespective of the

initial deviation in the adjustment period of the flow. By defining the turbulent fluxes through

the eddy diffusivity/viscosity hypothesis we employ our previously derived scaling arguments

to demonstrate that the convergence of the fluxes and turbulent kinetic energy within the flow

scales directly with the bulk flow properties Ri
−1/2
τ (t/Tτ ) and the flow obtains equilibrium

at Ri
−1/2
τ (t/Tτ ) = 2 for all simulations across the entire external parameter range provided

that buoyancy is an influencing factor in the flow such that Ri−1
τ Reτ ≲ 100. In the context

of the Ri
−1/2
τ dependence of the fluxes found in the studies of Kirkpatrick et al. (2019) and

Kirkpatrick et al. (2020), the results suggest a degree of universality to this result.

By applying our derived scaling of the global flux convergence ratio ⟨B/BE⟩ to the local

buoyancy flux B(z) we subsequently provide scaling analysis to demonstrate that a non-

dimensional bulk stratification rate S similarly displays a clear dependence on Ri
−1/2
τ analog-

ous to the destratification rate D in Kirkpatrick et al. (2019) . However, due to the coexistence

of an upper quasi-laminar layer with the bulk turbulent flow as well as the initial time de-

pendence of the isothermal flow, we find that S does not evolve on singular lines of scaling

as in Kirkpatrick et al. (2019) but rather displays a clear dependence on the entire external

parameter set (Re0τ , λ
0, P r, αδ) as well as local time-varying dynamics of the flow suggesting

a singular universal bulk scaling for S may not be possible.

As our temporally evolving DNS is an idealised representation of a ‘sunrise’ scenario of

stratified river flow, we consider our results in this context. As an example, in times of

draught in Australia flow rates in rivers can be reduced to the extent such that measurements

of the friction velocity and river depth have been observed at values uτ ≈ 0.002m/s and

δ ≈ 4m (Webster et al., 1996; Bormans & Webster, 1998). This results in highly turbulent

flow where Reτ ≈ O(105) and λ ≈ 10 yet where the typical advection time scale is Tτ ≈

O(103)s. In contrast, from our results the least stratified (yet not neutral) case R400L0.1

has a transitional period towards equilibrium that lasts t/Tτ ≈ 5 eddy turnover units. In this

sense it becomes clear that our results for the temporally evolving open channel flow become
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very physically relevant as the transitional period can extend for the entire duration of a day.

Accordingly it remains to be seen how our results at modest Reτ and λ within our idealised

DNS configuration pertain to real river flows and presents a clear direction for future work.

We note in our study we have limited ourselves to Pr = 0.5 and 1 for numerical efficiency. In

stratified river flows, typical values are Pr ≈ 6− 7. Hence it remains unclear how our results

pertain directly in this context. However considering the scaling arguments for te presented in

§3.7 which do not consider molecular properties and the clear collapse of both Pr cases in

our study we argue that the final convergence time of Ri
−1/2
τ (t/Tτ ) = 2 will display a degree

of universality for stratified open channel flow at higher Pr.



CHAPTER 4

Parameterization of mixing in temporally evolving stratified open

channel flow

In this chapter we perform a robust investigation into the parameterization of the flux coeffi-

cient Γ through Fr,Rig, LE/LO and ReB frameworks for temporally evolving stratified open

channel flow. We explore how the varying parametrization frameworks and their underlying

scaling arguments pertain and reconcile to the dynamically different mixing regimes defined

by a local measure of Fr. In particular we employ our data-set in which the majority of

the flow is described by Fr ≈ O(1) to investigate the ‘intermediate’ mixing regime pro-

posed by Garanaik & Venayagamoorthy (2019) and discuss the potential differences in the

parameterization of mixing within this regime for flow with and without mean shear.

The contents of this chapter are based on the following publication:

Issaev, Vassili, Williamson, N., Armfield, S. W. & Norris, S. E. 2022 Parameterization of

mixing in stratified open channel flow. Journal of Fluid Mechanics 935, publisher: Cambridge

University Press.

4.1 Introduction

As outlined in §1, central to the quantification and estimation of mixing in stratified flows are

the diapycnal diffusivity Kρ and the mixing efficiency coefficient Γ, which are linked through

the relation

Kρ = Γ
ϵK
N2

(4.1)

80



4.1 INTRODUCTION 81

where Γ = Rf/(1− Rf ), Rf is the mixing efficiency or flux Richardson number, ϵK is the

dissipation rate of turbulent kinetic energy and N is the buoyancy frequency. Historically,

Osborn (1980) argued that under equilibrium conditions Γ can be assumed to have a constant

value of 0.2, however it has since been demonstrated that Γ can significantly vary with respect

to the energetic state of the flow (Shih et al., 2005; Ivey et al., 2008; Venayagamoorthy &

Koseff, 2016). As such, numerous parametrization schemes have been proposed in the literat-

ure to estimate Γ based on relevant non-dimensional parameters. However, as summarized

in Gregg et al. (2018), a significant challenge within the study of stratified turbulence is

the plethora of varied parametrization schemes for Γ and the subsequent ambiguity in the

relationship between the different parameters. Further, as outlined by Caulfield (2021) a

limitation of numerous parametrization frameworks is that they are derived under the as-

sumptions of homogeneity and stationarity and further tested within idealised triply-periodic

domains where such homogeneity and stationary is enforced and the statistics are correlated

after appropriate spatial and temporal averaging. Although such flows are extremely useful

for evaluating flow properties at a precise parameter range, real flows however can exhibit

significant variability in time and space, often resulting in disparity between instantaneous

correlations of flow properties to their respective non-dimensional parameters relative to a

statistically stationary case. In this context, our spatio-temporally inhomogeneous channel

flow in which no local parameters are externally enforced or known a priori, presents a

robust testing ground for such schemes as well as a distinct opportunity to investigate the

relationships and similarities between the varied parametrization frameworks.

Historically, due to the relative ease of measuring mean gradients, parametrization of the

mixing efficiency in wall-bounded and shear flows has focused on the gradient Richardson

number Rig = N2/S2, where S is the mean shear. Throughout numerous studies it has been

repeatedly shown that for stationary shear flows and within the upper limit of Rig ≲ 0.25, the

mixing efficiency displays a monotonic, essentially linear dependence on Rig (Armenio &

Sarkar, 2002; Taylor et al., 2005; García-Villalba & del Álamo, 2011; Chung & Matheou,

2012; Deusebio et al., 2015; Karimpour & Venayagamoorthy, 2015; Zhou et al., 2017a).

Although the deviation of a monotonic relationship between Γ and Rig at Rig = 0.25 is

conceptually consistent with the idea of critical gradient Richardson number Rig,c = 0.25
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proposed in the seminal work of Miles (1961) as the idealised threshold for the formation

of local shear instabilities, however it remains unclear if stability is in fact the mechanism

for the departure from monotonic behaviour or the value of Rig = 0.25 is simply ‘fortuitous’

Salehipour et al. (2018)). The critical value itself as applied to real three dimensional flows is

an area of debate in itself (Galperin et al., 2007).

In a recent study Maffioli et al. (2016) (henceforth referred to as MBL16 in this chapter)

presented scaling arguments to propose an alternative parametrization framework through the

turbulent Froude number Fr = ϵK/NEK , where EK is the turbulent kinetic energy. In their

paper and under the assumption of sufficiently high Reynolds number, they classify stratified

turbulence into the ‘strongly stratified’ - Fr ≪ O(1) and ‘weakly stratified’ - Fr ≫ O(1)

regimes with Γ ∼ constant and Γ ∼ Fr−2 scaling relationships respectively. Garanaik &

Venayagamoorthy (2019) (henceforth referred to as GV19 in this chapter) expand upon this

idea to propose a separate ‘moderately stratified’ - Fr = O(1) regime where both buoyancy

and inertial forces are significant and derive scaling arguments to propose a novel Γ ∼ Fr−1

relationship within this regime. Expanding on similar concepts from past works such as Ivey

& Imberger (1991) and Smyth et al. (2001), they further propose that Fr and subsequently Γ

can be inferred from the ratio of LE/LO across all three regimes, where LE is the overturning

Ellison length scale and LO is the Ozmidov lengthscale, with the underlying concept being

that LE has been proven to correlate directly to the easily measurable overturning Thorpe

lengthscale LT (Smyth & Moum, 2000; Mater et al., 2013), thus inferring the mixing efficiency

through field measurements of LT/LO becomes a conceivably easier task rather than directly

through Fr. As Fr is a parameter composed of fundamental turbulent flow properties that

inherently exists in stratified turbulence irrespective of physical boundaries or mean shear,

MBL16 and GV19 hence both argue that a Fr based framework may present a degree of

universality across a broad range of stratified flows. However the testing of its applicability to

wall-bounded and shear flows remains relatively limited, in particular for stronger stratification

levels of Fr < 1.

The concept of a single unifying parametrization scheme becomes somewhat complicated

when considering that in the presence of mean shear, Rig and Fr may not be independent
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parameters, in fact it has been suggested that a multi-parameter framework may be necessary

to accurately describe the mixing dynamics when both shear and buoyancy forces are present

within the flow (Mater & Venayagamoorthy, 2014). The two frameworks are reconciled

for weakly stratified flow (Fr ≫ O(1) or Rig ≪ O(1) ) as it can readily be shown that

Rig ∼ Fr−2 (Zhou et al., 2017a). However in the moderately and strongly stratified regimes

the relationship between Rig and Fr remains unclear. The underlying basis for the scaling in

the strongly stratified regime of MBL16 draws directly from established strongly stratified

turbulence theory of a regime defined by Fr ≪ O(1) and ReB ≫ O(1) (Billant & Chomaz,

2001; Riley & deBruynKops, 2003; Lindborg, 2006; Brethouwer et al., 2007), where ReB =

ϵK/N
2ν is the buoyancy Reynolds number and ν is the kinematic viscosity. As summarized in

the review of Caulfield (2021), it is however still an open question whether sheared stratified

turbulence can access this regime in the sense described. For instance, Thorpe & Liu (2009)

hypothesise that sheared stratified turbulence inherently self-regulates within a loop between

states of marginal stability and instability. Recent studies have shown support for such self-

regulatory behaviour that appears to drive sheared Holmboe instability (HBI) or ‘scouring’

driven turbulence towards a state described by the classic Miles and Osborne estimates of a

critical gradient Richardson number Rig,c ≈ 0.25 and mixing efficiency Γc ≈ 0.2 (Salehipour

et al., 2018; Smyth et al., 2019). The matter becomes even further complicated if we consider

that in weakly stratified flows, Rig and ReB can also become deeply correlated such that

Rig ∼ Re−1
B (Riley & deBruynKops, 2003; Hebert & de Bruyn Kops, 2006; Chung &

Matheou, 2012), where ReB itself has been a parameter widely used to parametetrize mixing

(Shih et al., 2005). Thus creating a complex multi-parameter space in which Γ, Rig, F r, ReB

may all conceivably be interdependent in varying ways across varying energetic regimes.

In particular, the dynamics and relationships between these key parameters in the intermediate

Fr = O(1) regime remains relatively uninvestigated in the literature. Motivated by oceanic

and atmospheric flows, recent high resolution body-forced numerical studies have predomin-

antly focused on the ‘strongly stratified’ regime (Brethouwer et al., 2007; Maffioli et al., 2016;

Maffioli, 2017; Portwood et al., 2016; Taylor et al., 2019). Meanwhile studies with temporally

evolving simulations tend to traverse this regime temporarily between states of weak and

strong stratification, or vice-versa (Shih et al., 2005; Maffioli & Davidson, 2016; Garanaik &
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Venayagamoorthy, 2018) rather than in a forced quasi-stationary state. However, a key study

by Portwood et al. (2019) demonstrated that in stationary sheared stratified turbulence with a

broad range of ReB, and where Fr and Rig were allowed to evolve as free parameters, the

flow ‘tuned’ to fixed values of Rig ≈ 0.16, Fr ≈ 0.5 and Γ ≈ 0.2, independent of ReB. In

the context of the self-regulatory behaviour described previously, such results suggest that the

Fr = O(1) regime may have significant relevance across a variety of sheared stratified flows

and warrants deeper investigation.

In light of the discussion presented above, we summarise the main concepts and subsequent

open questions we aim to address within this chapter:

(1) In the context of our highly spatio-temporally inhomogenous flow, can Γ be ac-

curately parametrized through instantaneous measurements of Fr,Rig, LE/LO or

ReB?

(2) Are these frameworks interconnected and if so how are they and the relationships

between their relative parameters reconciled across the different mixing regimes?

(3) What are the limitations on their applicability to open channel flow?

To that end, the remainder of this chapter is structured as follows. in §4.2 we present our list

of DNS performed in this chapter. In §4.3 we present a brief qualitative overview of our flows

evolution and demonstrate the local parameter range of Fr and ReB available within our

flow. In §4.4 we examine the applicability of Fr,Rig, LE/LO and ReB based parametrization

frameworks for both the mixing efficiency as well as the energetic state of the flow itself

and subsequently derive relationships between all four non-dimensional parameters across

the varying flow regimes within the channel. Finally in §4.5 we discuss our main findings

within the study and their direct implications to the parametrization of mixing within stratified

turbulence.
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Case Re0τ λ0 Pr αδ Lx × Ly × Lz Nx ×Ny ×Nz
tfinal
T 0
τ

R400L0.5 400 0.5 1 8 2πδ × πδ × δ 512× 512× 150 10
R400L1 400 1 1 8 2πδ × πδ × δ 512× 512× 150 10
R400L2 400 2 1 8 2πδ × πδ × δ 512× 512× 150 10
R900L1 900 1 1 8 2πδ × πδ × δ 1152× 1152× 450 10
R900L1AD16 900 1 1 16 2πδ × πδ × δ 1152× 1152× 450 10
R900L2 900 2 1 8 2πδ × πδ × δ 1152× 1152× 450 10
R900L5 900 5 1 8 2πδ × πδ × δ 1152× 1152× 450 10

TABLE 4.1: List of DNS performed in chapter 4 and relevant parameters

4.2 List off DNS performed and notation

Table 4.1 presents the list of DNS considered within this chapter. As one of the aims of this

chapter is to investigate how the parameterization frameworks apply to temporally evolving

in which the local equilibrium assumptions are strictly invalid (see §3), we consider only flow

within the first ten eddy turnover units. This allows to us consider our entire high resolution

Reτ = 900 data-set. As Pr effects on local mixing parameterization fall at Pr = 1. We

demonstrate the independence of our results on the buoyancy flux profile by considering a

singular αδ = 16 case at high Reynolds number. Furthermore, as we are again primarily

interested in flow moderately or strongly effected by stable stratification (i.e Fr ≲ O(1)), we

only consider DNS at λ0 ≥ 0.5.

We again define that flow statistics and non-dimensional parameters unless otherwise stated

are presented as horizontal averages at time t denoted by the (.) operator.

4.3 Flow overview

4.3.1 Qualitative description and local parameter range

A defining feature of our DNS configuration is that as the channel transitions from a neutral to

stratified state, the local flow at any given vertical location z evolves through a broad range of

non-dimensional parameters such that at any point in time, the flow contains regions of both
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FIGURE 4.1: Evolution in time of key local parameters as a function of z/δ
for case R900L2. (a) turbulent Froude number Fr, vertical dotted lines left to
right represent Fr = 0.02 (as the upper limit for the strongly stratified regime
outlined in Lindborg (2006)) and Fr = 1, (b) buoyancy Reynolds number
ReB, vertical dotted line represents ReB = 1

high and low Fr simultaneously. This creates a data-set that traverses a variety of energetic

regimes within a single simulation and where the flow, both mean and fluctuating evolves in

a relatively natural way without external imposition. We briefly present the local parameter

range available within our data set through figure 4.1 showing the temporal evolution of Fr

and ReB as a function of z for case R900L2 which shows behaviour typical of our flow, where

we redefine

Fr =
ϵK

NEK

, ReB =
ϵK
N2ν

, (4.2a, b)

where ϵK = ν(∂u′
i/∂xj)

2, EK = 1/2(u′
iu

′
i) and N = (∂b(z)/∂z)1/2. From figure 4.1(a)

we observe that the flow obtains a Fr range that encapsulates all three energetic mixing

regimes proposed by GV19. Of particular interest is that within the central portion of the

channel, Fr stabilizes within approximately one eddy turnover unit (t ≈ 1) and obtains an

appreciable depth range for the so called ‘moderately stratified regime’ where Fr = O(1)

in an energetically ‘quasi-stationary’ state such that turbulent properties adapt rapidly to the

evolving buoyancy gradient N in order to obtain energetic equilibrium. As outlined in §4.1,

in previous numerical studies this regime is only often temporarily traversed as a transient

state and subsequently there is a lack of data-points in available literature within this regime.
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FIGURE 4.2: Instantaneous flow visualizations in the vertical (x, z) plane at
t = 5 for case R900L2 of (a) the buoyancy field b and (b) enstrophy field |ω2|.
Flow is moving left to right. Color scale in both figures is linear.

As such our flow and extensive data-set of Fr = O(1) allows us to examine the mixing

properties and scaling relationships within this regime in much greater detail than has been

previously reported.

Although the flow achieves Fr < 0.02 close to the free surface, our simulations are not

able to access the ‘strongly stratified regime’ in the same sense as outlined in Billant &

Chomaz (2001) or Brethouwer et al. (2007). This is made evident in figure 4.1(b), which

demonstrates that for our flow configuration as we approach the free surface, the stratification

grows stronger and a reduction in Fr inevitably leads to a reduction in ReB, leading to the

relaminarization of the flow. Subsequently at our parameter range, regions within our flow

of very low Fr are more indicative of a diffusive regime as described by Brethouwer et al.

(2007), where ReB < 1 and the flow is dominated by viscous effects and strong vertical

shearing at large scales.

This is made clear if we consider the instantaneous visualizations of the buoyancy b and

enstrophy |ω2| fields in the vertical (x, z) plane at t/T 0
τ = 5 in figure 4.2 for case R900L2.

We can clearly observe that the flow is separated into three distinct regimes relative to the

vertical coordinate z. A lower near wall regime, where due to the adiabatic boundary con-

dition, the boundary layer turbulence structure remains relatively unchanged by the effects
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of stratification. A central region within which turbulent structures exhibit the characteristic

‘lean’ of sheared stratified turbulence and where we again observe the formation of distinct

braided eye overturning structures within the shear layer, causing highly vigorous and en-

ergetic mixing. And finally an upper quasi-laminar or diffusive regime where turbulence is

essentially suppressed by the effects of buoyancy and separated by a sharp buoyancy interface

that experiences sporadic overturning by turbulent structures. Thus, the turbulence structure

visually observed in figure 4.2 corresponds closely to the three regimes defined by Fr and

ReB in figure 4.1.

4.3.2 A note on the mixing efficiency

Throughout this thesis we defer to a definition of the instantaneous mixing efficiency through

Rf and Γ as defined in Ivey & Imberger (1991)

Rf =
B

B + ϵK
, Γ =

Rf

1−Rf

=
B

ϵK
, (4.3a, b)

where B = −b′w′ is the buoyancy flux. As discussed in §1, the vertical buoyancy flux

however not only incorporates the small scale irreversible mixing rate (the quantity of interest)

but also large scale reversible stirring processes (Caulfield & Peltier, 2000; Peltier & Caulfield,

2003). As such, for linearly stratified flows a more robust definition of the irreversible mixing

rate is usually defined through the destruction rate of buoyancy variance χ (Maffioli et al.,

2016; Venayagamoorthy & Koseff, 2016; de Bruyn Kops & Riley, 2019; Howland et al.,

2020), where

χ =
κ

N2

(
∂b′

∂xj

)2

. (4.4)

For χ to accurately represent the irreversible conversion of kinetic to available potential

energy, a fundamental condition is that the local buoyancy period N(z) must be invariant in

both space and time (Caulfield, 2020), a condition that is inherently unsatisfied within our

temporally evolving inhomogeneous channel flow (see figure 3.6).

As discussed in §1, an alternative framework is through the adiabatic resorting of the buoyancy

in the z∗ coordinate space of Winters et al. (1995) to obtain an irreversible mixing rate M and
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subsequently an irreversible mixing efficiency η = M/(M+ ϵK) (Caulfield & Peltier, 2000).

In past studies Zhou et al. (2017b) and Smith et al. (2021) have shown that the framework

may be also applied to inhomogeneous shear flows to evaluate irreversible mixing across a

midplane shear interface through appropriate spatial and temporal integration over the shear

layer.

However, in stratified open-channel flow where we are interested in investigating the correl-

ation between mixing efficiency and local flow parameters across a broad range of vertical

locations, rather than a single central shear layer, the z∗ framework presents obvious limita-

tions. We note, the aim of this chapter is not to quantify an exact measure of the irreversible

mixing efficiency, but rather to investigate its behavioural trends across different mixing re-

gimes and the subsequent implications on the relationships between varying non-dimensional

parameters at a given vertical location. Furthermore, as shown in Venayagamoorthy & Koseff

(2016), we expect that in the weakly and moderately stratified regimes the differences in the

definitions of mixing efficiency to be relatively small and the qualitative behaviour to remain

similar. As such our definition of mixing efficiency through (4.4) still accurately capture the

dynamics of interest to our study.

4.4 Parametrization of mixing efficiency, applicability and

comparison

We now turn to the main theme of this chapter. In this section we explore the parametrization of

mixing efficiency in our temporally evolving inhomegenous flow through the Fr,Rig, LE/LO

and ReB methods. We then use the Fr based framework of MBL16 and GV19 as a base

case scenario to further investigate the relationships and similarities between the varying

frameworks and relevant non-dimensional parameters across the varying mixing regimes.
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4.4.1 Fr − Γ framework and moderately stratified regime scaling

To begin we first explicitly test the novel Γ− Fr−1 scaling relationship derived in GV19 for

the Fr = O(1) regime. The authors argue that the pertinent timescales for B and ϵK are the

buoyancy and inertial timescales TN = 1/N and TL = EK/ϵK respectively. And under the

assumption of a stationary linearly stratified flow they obtain

B ∼ χ ∼ w′2

TN

, ϵK ∼ w′2

TL

. (4.5a, b)

Thus they obtain the new scaling for the irreversible mixing coefficient Γ = B/ϵK ∼

χ/ϵK ∼ TL/TN = Fr−1. For the purpose of generality we take one further assumption that

at Fr = O(1) the separation of vertical and horizontal velocity scales is still relatively small

and hence we can approximate w′2 ∼ EK . We can thus rewrite (4.5) in the classic form of

velocity and length scales ϵ ∼ u3/l as

B ∼ χ ∼ EK

TN

∼ E
3/2
K

LN

, ϵK ∼ EK

TL

∼ E
3/2
K

LI

, (4.6a, b)

where

LN =
E

1/2
K

N
, LI =

E
3/2
K

ϵK
. (4.7a, b)

Here LN is an energetic buoyancy length scale constructed as a result of dimensional analysis

and can be taken to represent the conceptual size of large energy containing eddies when

the effects of buoyancy are significant. LN has also been shown to be an accurate indicator

of the size of overturns when Fr < 1 (Mater et al., 2013). LI is the well known inertial

energy-containing turbulent length scale (Pope, 2000). Such that for the moderately stratified

regime we obtain Γ = B/ϵK ∼ χ/ϵK ∼ LI/LN = Fr−1, the same scaling as GV19. If

considered in the context of the strongly stratified turbulence theory of Billant & Chomaz

(2001) and Lindborg (2006) it can be readily seen that LN and LI have physical analogues in

the vertical and horizontal integral scales lv ∼ uh/N and lh ∼ u3
h/ϵK respectively, where uh

is the horizontal velocity scale.

As discussed in §4.3, the definition of χ as an irreversible mixing rate in the derivation above

is not equivalent to that of an instantaneous local χ(z) as measured within our flow, hence
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FIGURE 4.3: Buoyancy flux B normalized by E
3/2
K /LN , (a) as a function of

time t for all simulations at a vertical location of z = 0.5, (b) as a function
of the turbulent Froude number Fr presented as a 2-D p.d.f. for t/T 0

τ > 1
and 0.2 ≤ z/δ ≤ 0.8. Vertical dashed lines indicate Fr = 0.3 and Fr = 1.
Dashed horizontal line in both figures indicates empirical constant of 0.08

and without loss of generality we explore these scaling proposals through the buoyancy

flux B instead. Figure 4.3(a) shows B normalized by E
3/2
K /LN as function of time at a

vertical location of z = 0.5, corresponding to a location in the flow where Fr = O(1) and

ReB ≫ O(1) for all simulations. For the proposed scaling to hold, we expect the former

ratio to approach a constant value of O(1). We further note that it is sufficient to show

the B scaling alone to validate the Γ ∼ Fr−1 assumption, as it can readily be shown that

ϵK/(E
3/2
K /LI) = (ϵK/E

3/2
K )/(ϵK/E

3/2
K ) = 1.

In agreement with our analysis in §3.4 we observe the scaling does not hold for t < 1 during

the transient adjustment period, past which the results clearly show an agreement with the

scaling in (4.6) such that B/(E
3/2
K /LN) approaches a constant value of approximately 0.08

across all simulations and appears invariant in time. When considered in the context of

our temporally inhomogeneous flow where not only the turbulent properties but also the

background stratification N2 is evolving in time, the result implies that the above scaling for

B in (4.6) is both valid and relatively robust. This is further made evident in figure 4.3(b)

which shows the two-dimensional probability density function (p.d.f.) of Fr and the ratio

B/(E
3/2
K /LN) for all simulations. Due to the initial time dependence observed in §3.4 we

exclude the data for t < 1 in the construction of the p.d.f. Furthermore, as the confinement
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effects of the top and bottom boundaries are outside the scope of this chapter we also exclude

the data for z/δ < 0.2 and z > 0.8. The vertical limits of z/δ = 0.2 and z/δ = 0.8 have

been chosen as the approximate values within which fully developed open channel flow has

been shown to obtain local energetic equilibrium (Williamson et al., 2015; Kirkpatrick et al.,

2019). It is indeed clear from the results that B/(E
3/2
K /LN) ≈ 0.08 and remains constant

only for a regime within the bounds of 0.3 ≲ Fr ≲ 1, presenting further strong evidence

for the argument of GV19 for the existence of a separate intermediate energetic regime that

exists in a quasi-stationary state and not as a transient transition between the weakly and

strongly stratified regimes. We note that the value of Fr = 0.3 is in direct agreement with

the transitional value observed in MBL16 towards the asymptotic Γ regime within their

study, suggesting some level of universality to this transitional value. We now turn our

attention to the Fr based parametrization of the mixing efficiency. Figure 4.4(a) shows the

two dimensional p.d.f. of Fr and Γ for all simulations constructed out of the data within the

range of t/T 0
τ > 1 and 0.2 ≤ z/δ ≤ 0.8.

From the results we observe that Γ collapses well across all three energetic regimes and

respective scaling relationships proposed by MBL16 and GV19. Although we only access

a very small section of the weakly stratified regime, we observe a distinct Fr−2 slope

developing in the high Fr range similar to that observed in the Couette flow studies of Zhou

et al. (2017a,b). Crucially in agreement with our analysis above, we observe that within a

range of 0.3 ≲ Fr ≲ 1 where the majority of our data is concentrated, Γ collapses across

all simulations and depths with a distinct Fr−1 scaling, providing further strong evidence

for the existence of a distinctly separate intermediate regime as proposed by GV19. Unlike

MBL16 however, who find that Fr = 0.3 corresponds to a peak in mixing efficiency, we

observe no non-monotonic behaviour in Γ, rather the transition at Fr = 0.3 corresponds to

a saturation of the mixing efficiency, with Γ displaying independence of Fr and trending

towards an empirically observed asymptotic value of Γ ≈ 0.3. The asymptotic value being

significantly higher than the upper limit of 0.2 proposed by Osborn (1980), is more reminiscent

of the higher values of cumulative mixing efficiency seen in studies of KHI induced mixing

(Salehipour & Peltier, 2015; Mashayek et al., 2017; Salehipour et al., 2018), seemingly in



4.4 PARAMETRIZATION OF MIXING EFFICIENCY, APPLICABILITY AND COMPARISON 93

(a)

(b)

10
-3

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

FIGURE 4.4: (a) Two dimensional p.d.f. of the turbulent Froude number Fr
and the mixing coefficient Γ constructed out of the instantaneous data of all
simulations within the range of t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8. The axes on
the insert within the figure are presented on a linear scale. (b) Fr bin-averaged
mixing coefficient ⟨Γ⟩ plotted against bins of corresponding turbulent Froude
number ⟨Fr⟩ for all data points within t/T 0

τ > 1 and z/δ > 0.2. Solid lines
indicate the proposed scaling of MBL16 and GV19 as well as empirically
observed Γ = 0.3. Vertical dashed lines indicate Fr = 0.3 and Fr = 1

agreement with our visual observations of highly energetic overturning driven mixing events

within our flow.

With further decreasing Fr we observe a significant amount of scatter in the data. This

can be explained as the flow transitions towards the diffusive regime and both B and ϵK

grow very small and a minor change in either of the two quantities causes large variation
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in Γ. Additionally, as has been reported in the study García-Villalba & del Álamo (2011),

channel flow within this regime becomes increasingly affected by the propagation of internal

gravity waves as well as counter-gradient fluxes resulting from convective instabilities in

the flow (Taylor et al., 2005). This results in instantaneous measurements of B becoming

strongly susceptible to contamination from these reversible processes, subsequently causing

our measurements of Γ within this regime to show significant scatter about its asymptotic

mean value. Furthermore, as discussed in Venayagamoorthy & Koseff (2016) the presence

of the counter-gradient fluxes may cause the observed saturated mean value of Γ = 0.3 to

underestimate the true irreversible mixing efficiency. However, as can be observed from

the insert in figure 4.4(a) which presents the same data on a linear-linear axes, the observed

frequency of counter-gradient fluxes is relatively negligible in comparison to the full data-set.

As such the significant takeaway from the results presented within this regime is not the

precise value for the saturated mixing efficiency but rather the observation that Γ appears to

grow independent of Fr within this regime.

To investigate this further we sort and average our instantaneous measurements of horizontal

plane measurements of Γ(z, t) across bins of constant Fr to obtain the binned data-set of

⟨Γ⟩. Avoiding near-wall mechanics we consider all data for z > 0.2 and t0τ > 1. We note that

for this case we include the data near the free-surface boundary to highlight the departure

point from the saturated regime towards the diffusive regime. Figure 4.4(b) shows ⟨Γ⟩ plotted

against bins of corresponding ⟨Fr⟩ for all simulations under the conditions described above.

A colour bar depicting ⟨ReB⟩ is also shown for reference. When presented in this manner, it

becomes clear that for Fr ≲ 0.3 the mixing efficiency indeed saturates towards a constant

value for all simulations, independent of Fr, a detail that is somewhat less clear in the

scattered data presented in figure 4.4(a). Furthermore, it is clear that the transition from

a saturated mixing efficiency to the Γ ∼ Fr−1 regime at Fr ≈ 0.3 occurs irrespective of

Reτ , λ, αδ or vertical location z within the channel, again suggesting a degree of universality

for this transitional value as argued by MBL16. Conversely no singular value of Fr appears

for the transition away from the constant Γ regime within the ‘left flank’ of the curve. Rather

as seen from the results, this corresponds to a transition to the diffusive regime at low ReB as

will be demonstrated in further detail in §4.4.5.
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We note that within the ‘left flank’ of figure 4.4(b), following the saturated regime, case

R900L5 displays a further increase in Γ with a clear peak before dropping away. The exact

mechanism of this is unknown, and may be attributed to a number of influencing factors that

fall outside the scope of this chapter such as large vertical displacement of fluid parcels through

internal gravity waves, surface confinement effects and strong spatio-temporal intermittency of

turbulence as the flow approaches the diffusive regime. Furthermore, as can be observed from

the colour bar, this behaviour occurs for flow where ReB ≪ O(1), which can be considered

essentially laminar such that the vertical transfer of buoyancy through the turbulent flux B

is significantly smaller than that of molecular diffusion. Subsequently our definition of a

‘turbulent’ mixing efficiency through Γ begins to lose relevance. We further note similar

behaviour has been observed at low ReB in the studies of Zhou et al. (2017b) and Smith et al.

(2021), suggesting that as ϵK goes to zero the diapycnal flux is not fully suppressed within

this regime.

4.4.2 Rig framework

In this section we briefly examine the behaviour of Γ relative to the more established frame-

work based on Rig, where

Rig =
N2

S2
, (4.8)

where S = ∂u(z)/∂z. Figure 4.5 shows the two dimensional p.d.f. of Rig and Rf constructed

analogously to that of figure 4.4(a). For reference we also plot the line corresponding to

the linear relationship Rf = Rig (dotted line) as well as the empirical fit corresponding

to Rf = 0.25(1 − e−7Rig) of Venayagamoorthy & Koseff (2016) (solid lined). From the

results it is clear that in agreement with numerous studies of sheared stratified turbulence (see

§4.1), the mixing efficiency displays linear monotonic dependence on Rig up to a critical

value of Rig ≈ 0.25, where it can be seen that the majority of our data is concentrated.

The results add to the mounting evidence that in weak/moderate levels of stratification the

diapycnal and momentum diffusivities are relatively equal such that the the turbulent Prandtl

number PrT ∼ Rig/Rf is approximately unity. A further key observation from the results is

that within our flow we clearly observe sustained turbulence and vigorous shear instability
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FIGURE 4.5: Two dimensional p.d.f. of the gradient Richardson number Rig
and the the flux Richardson number Rf constructed out of the instantaneous
data of all simulations within the range of t0τ > 1 and 0.2 ≤ z/δ ≤ 0.8. Solid
line indicate the proposed empirical fit model of Venayagamoorthy & Koseff
(2016). Dotted line represents a linear relationship of Rf = Rig. Vertical
dashed line indicates Rig = 0.25. The axes on the insert within the figure are
presented on a linear scale.

induced mixing at Rig values significantly higher than the critical ‘Miles-Howard’ limit of

Rig,c = 0.25, suggesting exercising caution in assuming a strict upper limit of stability based

on Rig,c for more complex and initially turbulent flows as suggested by Galperin et al. (2007).

Within the ‘right flank’ of the curve we again observe no non-monotonic behaviour in Rf as

observed in the high Pr Couette flow simulations of Zhou et al. (2017b), rather the saturation

of the mixing efficiency seems very well described by the empirical fit of Venayagamoorthy

& Koseff (2016) showing clear asymptotic behaviour in the limit of high Rig. We note in our

study we maintain Pr = 1 for all simulations, rather than higher values of Pr = 6− 7 which

a are typical of stably stratified river or oceanic flows that provide the motivation behind this

chapter. Past studies of shear instability driven mixing (Smyth et al., 2001; Salehipour &

Peltier, 2015; Salehipour et al., 2015) have shown that at higher Pr the dynamics of a KHI

mixing event can vary significantly to that at lower Pr, particularly the secondary instabilities

that form at smaller scales. Furthermore, we note our definition of the mixing efficiency

through Rf has fundamentally different behaviour at high Rig compared with its irreversible
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counterpart used in the aforementioned studies making a direct comparison somewhat difficult.

It remains unclear how higher Pr values for our flow configuration would effect the results

presented in this chapter and presents direction for future work.

4.4.3 Influence of mean shear and Fr −Rig scaling

A distinct key observation from the above analysis is that the transition to the saturated

mixing efficiency regime is described well by both Fr ≈ 0.3 and Rig ≈ 0.25. However for

0.3 ≲ Fr ≲ 1 and Fr ≳ 1 we have observed two distinctly different mixing regimes with

separate scaling for Γ, in contrast to a simple linear dependence of the mixing efficiency

on the gradient Richardson number for Rig ≲ 0.25. Such results imply a more complex

relationship between Fr and Rig within our flow than the Rig ∼ Fr−2 relationship for

weakly stratified flow (Zhou et al., 2017a). To investigate this further, we consider that the

dynamics of our channel flow can be described in the conceptual framework of Mater &

Venayagamoorthy (2014) as a competition of the inertial, buoyancy and shear forces within

the flow, or analogously as a competition of the three respective time scales TL, TN , TS , where

TS = 1/S is the shear timescale. Thus we consider our channel flow within their S∗ − Fr−1

regime map, where S∗ is the non-dimensional shear rate defined as

S∗ =
SEK

ϵK
. (4.9)

S∗ has been frequently used in literature to describe sheared turbulence, both with and

without the presence of buoyancy (Rogallo, 1981; Shih et al., 2000; Chung & Matheou, 2012).

Furthermore, It can be readily seen that S∗ = TL/TS , and hence S∗ represents the competition

between the shear and inertial time scales in the same manner that Fr = TN/TL analogously

represents the competition of buoyancy and inertial time scales. We note that by convention,

S∗ is often defined by S∗ = Sq/ϵK where q = 2EK is twice the turbulent kinetic energy.

For this chapter however, we defer to the definition in (4.9) to maintain consistency in the

comparison of the respective three time scales.

In this sense Mater & Venayagamoorthy (2014) propose stratified shear flow can be divided

into three distinct regimes. An inertia dominated regime where flow tends to revert to isotropy
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FIGURE 4.6: Two dimensional p.d.f. of the inverse of the turbulent Froude
number 1/Fr and non-dimensional shear rate S∗ in the STL −NTL regime
map of Mater & Venayagamoorthy (2014) constructed out of the instantaneous
data of all simulations within the range of t0τ > 1 and 0.2 ≤ z/δ ≤ 0.8.
Solid lines indicate the separation of the proposed inertia, buoyancy and
shear dominated regimes as outlined in §4.4.2. Vertical dashed lines indicate
1/Fr = 1 and 1/Fr = 3.33 corresponding to Fr = 1 and Fr = 0.3 respect-
ively.

and is defined by both S∗ < S∗
c and Fr−1 < Fr−1

c , where S∗
c and Frc are some critical values

at which shear and buoyancy forces become significant relative to inertia and begin to distort

the isotropic flow. Meanwhile the buoyancy and shear dominated regimes are defined by

S∗ > S∗
c and Fr−1 > Fr−1

c and separated by the diagonal line of Rig = 0.25 as it can be

readily shown that Rig = (TS/TN)
2 = (Fr−1/S∗)2. We adopt the critical values defined in

Mater & Venayagamoorthy (2014) of S∗
c = 3.3 and Fr−1

c = 1.65. Furthermore, we note that

the limit of Rig = 0.25 delineating the shear and buoyancy dominated regime isn’t a strict

limit as in the sense of the ‘Miles-Howard’ criterion but rather an empirical choice due to the

evidence that in forced stratified sheared turbulence Rig tends to an upper bound of 0.25 in a

stationary state (Rohr et al., 1988; Chung & Matheou, 2012).

Figure 4.6 shows the two dimensional p.d.f. of our flow within S∗ − Fr−1 regime map

described above, constructed in the same manner as figure 4.4. From the results we can again

observe three distinct regimes of behaviour separated by Fr = 1 and Fr = 0.3.
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In the weakly stratified regime for 1/Fr < 1, buoyancy acts essentially as a passive scalar

and the flow travels along a horizontal path of S∗ ≈ S∗
c where the shear and inertial forces are

in balance, much like in a neutral channel flow.

Within the moderately stratified regime we observe a transitional regime where buoyancy

begins to change the dynamics of the flow. As Fr decreases and buoyancy begins to restrict

the vertical velocity fluctuation w′ and subsequently the turbulent shear stress −u′w′, an

inbalance appears in the flow between the total local shear stress and the driving pressure

gradient. This causes the flow to accelerate in an effort to obtain energetic equilibrium,

translating into an increase in a local measure of S, such that S∗ accordingly increases. Thus,

it is clear that for our flow this intermediate regime where both S∗ = O(1) and Fr = O(1)

represents a critical state of the flow where inertia, buoyancy and shear all play a significant

and interconnected role in the dynamics of the flow.

Conversely in the saturated regime for Fr < 0.3 or Rig > 0.25 we observe that with further

increasing stratification, the shear accordingly increases such that S∗ grows large and Fr

grows small. Within this regime we can thus expect inertia to become insignificant relative

to the effects of shear and stratification such that N ∼ S and Fr becomes decoupled from

Rig as the effects of inertia become negligible relative to buoyancy and shear. Accordingly,

although the data in this regime shows some scatter we can observe that within this regime the

flow tends to settle down and evolve along diagonal lines of constant Rig, with the majority of

the data in the ’right flank’ of the figure again being concentrated around the ubiquitous value

of Rig = 0.25. The scatter in the data can be directly explained by the relatively slow process

that is the acceleration of the mean flow from its initial state. We note that at tfinal = 10 all the

simulations are still significantly distant from their final equilibrium states. As such the mean

shear S is still increasing to obtain shear stress equilibrium such that Rig is still evolving

towards its stationary state. Meanwhile, the turbulent properties have adapted to the growing

background stratification and Fr has essentially stabilized as observed in figure 4.1, causing

the scattered trajectories of the flow in S∗ − Fr−1 space within this regime.

From the observations above it is clear that the relationship between the inertial, shear and

buoyancy forces within the flow vary significantly along the three energetic regimes of the
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flow. We can hence derive scaling arguments to directly relate Fr to Rig within our flow

across the three regimes.

Within the weakly stratified, Fr > 1 regime we can relate Fr and Rig with a simple mixing

length argument for S such that

S ∼ U∗

L∗
, (4.10)

where U∗ and L∗ are some characteristic velocity and length scales pertinent to energetic

mixing within the flow. Observing a balance between shear and inertial forces we can estimate

U∗ ∼ E
1/2
K and L∗ ∼ LI such that S ∼ ϵK/EK or conversely TS ∼ TL. Thus we can obtain

Rig =
N2

S2
∼ N2E2

K

ϵ2K
= Fr−2. (4.11)

The same scaling as derived in MBL16 or Zhou et al. (2017a).

Within the moderately stratified, intermediate 0.3 < Fr < 1 regime we can adopt a similar

mixing length argument for S as in (4.10). Having hypothesised that in this critical regime

inertia, buoyancy and shear are all significant, the dimensional group that could influence the

dynamics becomes (N,S,EK , ϵK). Analogously to our scaling of B within this regime in

(4.6), we make the assumption that the pertinent length scale is the energetic vertical buoyancy

length scale such that L∗ ∼ LN . Hence, dimensional analysis dictates that a velocity scale

constructed out of the remaining dimensional quantities becomes U∗ ∼ (ϵK/N)1/2, where

(ϵK/N)1/2 is the velocity scale analogue of the Ozmidov length scale (Shih et al., 2005).

Hence we obtain

S ∼ U∗

L∗
∼ (ϵK/N)1/2

E
1/2
K /N

=

(
ϵKN

EK

)1/2

. (4.12)

Conversely this can be seen as a comparison of timescales such that

TS ∼ (TLTN)
1/2 (4.13)

and we can obtain a scaling relation between Fr and Rig within this regime

Rig =
N2

S2
∼ N2EK

NϵK
=

NEK

ϵK
= Fr−1. (4.14)
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FIGURE 4.7: Mean shear rate S non-dimensionalized by (ϵKN/EK)
1/2 (a)

plotted against time t for all simulations, horizontal dashed lined indicates
empirically observed constant of 0.3, (b) presented in the form of a two
dimensional p.d.f. with the turbulent Froude number Fr. The p.d.f. is
constructed out of the instantaneous data of all simulations within the range of
t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8. Vertical dashed lines indicate Fr = 0.3 and
Fr = 1

We note the scaling proposed in (4.12-4.14 ) are new scaling relationships for the Fr = O(1)

regime and thus directly reconcile the observed Γ ∼ Fr−1 and Rf ∼ Rig scaling for mixing

efficiency within this regime.

Finally in the Fr < 0.3 saturated regime we can directly imply that as TN and TS both

become much smaller than TL, the effects of inertia become negligible such that N ∼ S and

Rig becomes decoupled from Fr.

We first test the new scaling in (4.13) explicitly by plotting the ratio S/(ϵKN/EK)
1/2 as a

function of time at z/δ = 0.5 in figure 4.7(a) and as a function of Fr, presented in the form

of a two dimensional p.d.f. in figure 4.7(b). From the results it is clear that S/(ϵKN/EK)
1/2

approaches a constant value of approximately 0.3 that appears invariant with respect to both

time and space within the defined regime of 0.3 ≲ Fr ≲ 1. Again in the context of our

evolving and inhomogeneous flow, such results suggest that the scaling is reasonably robust

and may pertain to a wider range of stratified shear flows.

To confirm the different scaling across all regimes, we plot the two dimensional p.d.f. of

Fr and Rig in figure 4.8(a) for our DNS results as well as from the stationary homogeneous
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FIGURE 4.8: (a) Two dimensional p.d.f. of the turbulent Froude number Fr
and the gradient Richardson number Rig constructed out of the instantaneous
data of all simulations within the range of t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8.
(b) Fr bin-averaged gradient Richardon number ⟨Rig⟩ plotted against bins of
corresponding ⟨Fr⟩ for all data points within t/T 0

τ > 1 and z/δ > 0.2. Large
blue circles show the data of the stationary runs in table 2 of Shih et al. (2000).
Large diamonds (cyan in (a), black in (b) ) show data of Chung & Matheou
(2012). Large green ‘X’ shows ‘tuned’ values of Portwood et al. (2019). Solid
lines indicate the proposed scaling in (4.11) and (4.14). Vertical dashed lines
indicate Fr = 0.3 and Fr = 1. Horizontal dashed lines indicate Rig = 0.25

sheared turbulence studies of Shih et al. (2000); Chung & Matheou (2012) and Portwood

et al. (2019). From our instantaneous results it is clear that the flow is again well divided

into the three distinct regimes divided by Fr = 1 and Fr = 0.3, with clear Rig ∼ Fr−2

and Rig ∼ Fr−1 behaviour in the weakly and moderately stratified regimes respectively.
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The results of the three aforementioned studies with distinctly different forcing mechanics

also show clear support for the derived scaling showing excellent agreement across both

regimes, suggesting a degree of universality in their application. Meanwhile the transition

to the saturated regime at Fr ≈ 0.3 and Rig ≈ 0.25 corresponds to a decoupling between

Fr and Rig as the variables become uncorrelated, although this is somewhat obscured by the

scatter in the data.

To demonstrate this result more clearly we plot the Fr bin-averaged data-set of ⟨Rig⟩ plotted

against corresponding bins of ⟨Fr⟩ in figure 4.8(b) in a similar manner to that of the process

described for figure 4.4(b). A colour bar showing ⟨ReB⟩ is again included for reference. From

the results it is again clear that the scaling derived for the weakly and moderately stratified

regimes in (4.11) and (4.14) distinctly collapses on one line and holds irrespective of external

flow parameters of vertical location in the channel, with a clear transition at Fr ≈ 0.3 or

Rig ≈ 0.25 at which point each simulation continues its own unique trajectory in Fr −Rig

space. It is also worth noting that the long individual ‘tails’ in the ‘left flank’ of the curve,

where Rig ≫ O(1) correspond to low ReB flow that is essentially laminar and where the

scaling derived above on the assumption of turbulent flow becomes invalid. Furthermore, the

data of the aforementioned three studies is again plotted for visual clarity to highlight the

validity of the scaling.

In addition to the stationary runs plotted in figures 4.8(a) and (b) in which Rig is free to evolve

to its stationary state, Shih et al. (2000) also ran non-stationary simulations (see table 1 in

Shih et al. (2000)) in which Rig and subsequently the mean gradients S,N are kept fixed

for a given simulation. These simulations do not follow the proposed scaling but instead

evolve along constant lines of Rig across all three regimes. Conversely in our study and

the other data-sets shown in figure 4.8(a) and (b) neither Fr or Rig are known a priori and

subsequently the both the mean and turbulent flow properties adapt to the proposed scaling.

The findings discussed in the analysis above present implications for the parametrization of

stratified shear flow. Firstly, it is clear that for Fr > 0.3 or Rig < 0.25, in the weakly and

moderately stratified regimes Fr and Rig become interchangeable in any parametrization

schemes by using the scaling relations in (4.11 and 4.14) respectively. Such interchangeability



104 4 PARAMETERIZATION OF MIXING IN TEMPORALLY EVOLVING STRATIFIED OPEN CHANNEL FLOW

allows for more flexible parametrization as relationships derived through turbulent properties

and Fr may be inferred in real flows from relatively simple measurements of the mean

buoyancy and velocity field. Secondly, although very appealing, the simple division of

stratified shear flow into two regimes along a line of Rig = 0.25 does not accurately capture

the subtleties and the differences in dynamics between the distinctly different 0.3 < Fr < 1

and Fr > 1 regimes. Lastly, care should be taken in any assumptions on the state of the

flow by inferring relationships between Rig and Fr in the Fr < 0.3 regime, in particular in

temporally evolving flow where the mean fields may exhibit appreciably long adjustment

periods as the flow transitions to energetic equilibrium. Furthermore, in the context of the

strongly stratified turbulence theory of Brethouwer et al. (2007) the apparent decoupling

of Fr and Rig within this regime suggests that even if an upper limit fundamentally exists

on the stationary value of Rig, it does not translate to a lower bound on Fr, suggesting the

possibility of accessing the strongly stratified Fr ≪ O(1) regime within stratified channel

flow.

4.4.4 Overturning length scale framework

In this section we investigate the applicability of the LE/LO − Γ and hence the more easily

measurable LT/LO − Γ framework of GV19 to our temporally evolving channel flow. Where

we define

LE =
b′rms

N2
, LO =

(
ϵK
N3

)1/2

, (4.15a, b)

where LE is the well known Ellison overturning length scale and represents the large energy

containing overturns within the flow. Meanwhile the Ozmidov length LO represents the

maximum conceptual size of an isotropic eddy that is not confined by stable stratification

(Smyth & Moum, 2000). In this section we use the overturning length scales LE and LT

interchangeably when referencing different studies, due to their linear relationship in fully

turbulent flow as shown in Mater et al. (2013).

Figure 4.9 shows the two dimensional p.d.f. of LE/LO and Γ for the same data-set as in figure

4.4. It is clear that Γ is accurately described through instantaneous measurements of LE/LO

across all three regimes and scaling relationships described in GV19. Although accessing
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FIGURE 4.9: Two dimensional p.d.f. of the length scale ratio LE/LO and the
mixing coefficient Γ constructed out of the instantaneous data of all simulations
within the range of t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8. Solid lines indicate the
proposed scaling of GV19 as well as empirically observed Γ = 0.3. Vertical
dashed line indicates LE/LO = 1

only a very small section of the regime, we observe a Γ ∼ (LE/LO)
4/3 relationship in the

weakly stratified regime in agreement with the observational oceanic study of Ijichi & Hibiya

(2018). However, as LE/LO becomes increasingly small we note that the results appear to

deviate slightly from the proposed scaling for the weakly stratified regime. We shall return to

this shortly in the analysis to come. Again, we observe a distinct collapse of the data in the

moderately stratified regime, showing a Γ ∼ (LE/LO)
1 scaling that holds for almost an entire

decade of (LE/LO). A key observation is that the transition towards the saturated regime

occurs at precisely LE/LO ≈ 1. Taking the approximation of LE ≈ LT and considering the

visual observation of vigorous overturning induced mixing in figure 4.2, this is conceptually

consistent with the work of Mashayek et al. (2017) who find that mixing efficiency in a

KHI mixing event peaks for when LT ∼ LO. That is, when energy being injected into the

downscale energy cascade through the overturning of the KHI is at a scale corresponding to

the upper end of the inertial sub-range such that it is not constricted by the mean stratification.

In this sense LE/LO ≈ 1 may offer a somewhat more conceptually appealing transitional

value to the saturated regime in our flow, rather than the empirically observed Fr ≈ 0.3 or

Rig ≈ 0.25.
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An important observation from the above results is the appreciably large region of the channel

with a distinct Γ ∼ (LE/LO)
1 scaling within a quasi-stationary state as proposed by GV19.

This is in direct contrast to the recent study of Howland et al. (2020) who rather find that

Γ ∼ (LE/LO)
2 within this regime. As the LE/LO − Γ framework is essentially an indirect

Fr based framework, we consider the scaling arguments of GV19 for the relationship between

Fr and LE/LO.

In the weakly stratified Fr ≫ O(1) regime, it is expected that the overturning length scale is

well approximated by the inertial energy containing scale LT ∼ LE ∼ LI , hence GV19 show

that

LT/LO ∼ LE/LO ∼ LI/LO =
E

3/2
K /ϵK

ϵ
1/2
K /N3/2

=
E

3/2
K N3/2

ϵ
3/2
K

= Fr−3/2. (4.16)

Conversely in the limit of strong stratification where Fr ≪ O(1) and the effects of buoyancy

strongly influence flow dynamics, the overturning scale will be expected to scale as the vertical

buoyancy scale such that LT ∼ LE ∼ LN , and GV19 obtain

LT/LO ∼ LE/LO ∼ LN/LO =
E

1/2
K /N

ϵ
1/2
K /N3/2

=
E

1/2
K N1/2

ϵ
1/2
K

= Fr−1/2. (4.17)

However in the intermediate regime the relationship between Fr and LE/LO becomes some-

what ambiguous. For instance in the decaying homogeneous (un-sheared) stably stratified

DNS study of Mater et al. (2013) no such intermediate regime was observed for any appre-

ciable range of Fr, rather the flow was divided into the two regimes described by (4.16 and

4.17) with a single critical crossover point of LT/LO ∼ Fr ∼ 1.

We note that the scaling in GV19 makes no assumptions about the presence of mean shear.

However let us consider that in stratified shear flow it has been shown that the overturning

length scale is well approximated by the turbulent shear length such that LT ∼ LE ∼ LS

(Venayagamoorthy & Stretch, 2010; Mater & Venayagamoorthy, 2014), where

LS =
E

1/2
K

S
. (4.18)

Here LS is the shear analogue of LN and can be directly related back to the mixing length

LM = −u′w′/S. We note that the LE ∼ LI , LE ∼ LN and LE ∼ LS scaling relationships
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(a)

(b)

(c)

(d)

FIGURE 4.10: Two dimensional p.d.f.s of the turbulent Froude number Fr
and the length scale ratios: (a) The ratio of the Ellison length LE to turbulent
shear length scale LS , (b) The ratio of LE to the inertial turbulent length scale
LI , (c) the ratio of LE to vertical buoyancy length scale LN , (d) the ratio of LE

to Ozmidov length scale LO. All p.d.f.s. constructed out of the instantaneous
data of all simulations within the range of t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8.
Horizontal dashed line for all figures indicates a ratio of unity. Vertical dashed
lines indicate Fr = 0.3 and Fr = 1
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can also be derived in the framework of dominant timescales by considering the vertical

displacement of a fluid parcel from its background stratification similar to the analysis

presented in §3.4, such that

b′ ∼ w′N2T∗, (4.19)

where T∗ is some timescale pertinent to the evolution of b′ due to overturning of the buoyancy

field. For instance if we consider that for the buoyancy dominated regime the pertinent

timescale is TN and by taking the approximation that w′ ∼ E
1/2
K we obtain

LE =
b′

N2
∼ E

1/2
K N2TN

N2
∼ E

1/2
K TN =

E
1/2
K

N
= LN . (4.20)

It can hence be readily shown that a substitution of TL or TS into (4.19) analogously yields

LE ∼ LI and LE ∼ LS respectively. In this sense and under the assumption that LE ∼ LT ,

we present physical scaling arguments that provide support to past studies that have shown

correlation between measurements of LT and the three respective energetic length scales

LI , LN , LS across varying flow regimes (Mater et al., 2013; Mater & Venayagamoorthy, 2014;

Ijichi & Hibiya, 2018).

To investigate this further, we plot the two dimensional p.d.f.s of Fr and the ratios LE/LS ,

LE/LI , LE/LN and LE/LO in figure 4.10.

From figure 4.10(a) it is clear that within the moderately stratified and saturated regimes for

Fr < 1 , the LS or alternatively TS scaling becomes valid and the ratio LE/LS becomes a

constant of approximately unity. In particular, the excellent correlation within the moderately

stratified regime is conceptually consistent with our visual observations in figure 4.2 of

vigorous overturning driven mixing arising from shear instabilities. This is further supported

by the observation that in the S∗ − Fr−1 regime map in figure 4.6 the flow predominantly

lies within the ‘shear dominated’ regime and is reflected in the TS ∼ (TLTN)
1/2 scaling

derived in §4.4.3. The scatter in the far ‘left flank’ of the saturated regime can again be

attributed to the relatively slow process that is acceleration of the mean flow and development

of the mean shear profile in our time-varying simulations. For Fr > 1 where we observed

the slight disagreement between the Γ ∼ (LE/LO)
4/3 scaling and our results we observe a

small transitional regime where LE/LS grows with Fr before again appearing to plateau to
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a constant of O(1), although this behaviour is not fully developed at our parameter range.

To explain this we consider our assumption that for Fr > 1 we expect the inertial scaling

LE ∼ LI such that

LE/LS ∼ LI/LS =
E

3/2
K /ϵK

E
1/2
K /S

=
SEK

ϵK
= S∗ (4.21)

and multiplying through by N/N we obtain

S∗N

N
=

SEK

ϵK

N

N
= Ri−1/2

g Fr−1. (4.22)

Now recalling Rig ∼ Fr−2 in the limit of high Fr as derived in (4.11) we obtain

LE/LS ∼ S∗ = Ri−1/2
g Fr−1 ∼ Fr1Fr−1 = constant. (4.23)

This is in agreement with our observations in figure 4.6 that S∗ remains a constant of O(1)

for Fr > 1.

From figure 4.10(b) however we observe that within the Fr > 1 regime we do not observe

the expected inertial scaling of LE ∼ LI for an appreciable range of Fr. Rather we see

continued growth of the ratio LE/LI with increasing Fr. We can explain this under two

considerations. Firstly, for the data presented our highest measurements of Fr are still of

O(1). For comparison, in the study of Mater et al. (2013) (their figure 6), the LT ∼ LI scaling

only appears for flow where Fr = O(10). Secondly as seen in figure 4.1, by nature of our

DNS configuration the data for high Fr inevitably occurs close to the bottom wall. At the

lower vertical extent of z = 0.2 for which our p.d.f. results are presented, LE , LI , LN and LO

are all larger than the geometric confinement length scale defined by the distance from the wall

z for all simulations. As discussed in the study Taylor et al. (2005), this creates an additional

confinement scale that changes and further complicates the relationship between the varying

length scales. In this sense we find the absence of a clear LE ∼ LI scaling unsurprising and

we hypothesise that a LE ∼ LI regime would manifest for our DNS configuration similar to

that of Mater et al. (2013) if we were able to access a flow regime where Fr ≫ O(1) and

simultaneously all the relevant length scales were smaller than the physical confinement scale
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z. As the confinement effects of physical boundaries on the parametrization of mixing fall

outside the scope of this chapter, we leave this for future work.

Within the moderately stratified regime, we can take the LE ∼ LS scaling derived above to

again obtain

LE/LI ∼ LS/LI = 1/S∗ = Ri1/2g Fr1, (4.24)

similarly to the derivation in (4.22). Taking the new scaling of Rig = Fr−1 derived in (4.14),

we obtain

LE/LI ∼ Ri1/2g Fr1 ∼ Fr−1/2Fr1 = Fr1/2. (4.25)

Our results show clear support for this scaling, with a clear region of LE/LI ∼ Fr1/2

developing in the intermediate regime for an entire decade of Fr. This falls in direct contrast

to the study of Mater et al. (2013) where in the absence of mean shear this scaling does

not manifest but rather a LT/LI ∼ Fr1 relationship is observed for Fr < 1. We similarly

observe an Fr1 scaling relationship for our results, but only in the far ‘left flank’ of the figure

within the saturated regime, suggesting a buoyancy dominated regime such that LE ∼ LN

and as derived in Mater et al. (2013) we can obtain

LE/LI ∼ LN/LI =
E

1/2
K /N

E
3/2
K /ϵK

=
ϵK

NEK

= Fr1. (4.26)

From figure 4.10(c) we observe direct support for this with a clear trend that in the saturated

regime LE/LN becomes a constant of order unity. Furthermore, we note that it can clearly be

shown that

LS/LN =
E

1/2
K /S

E
1/2
K /N

=
N

S
= Ri1/2g . (4.27)

Hence, within the saturated regime for Fr < 0.3 it is clear that both LE/LS and LE/LN

become constant in agreement with the scaling in (4.17) and our observation that as the

flow evolves towards stationarity, Rig will trend towards a constant critical value becoming

independent of Fr. Within the the moderately stratified regime, using LE ∼ LS and Rig ∼

Fr−1 as derived in (4.14), we can obtain

LE/LN ∼ LS/LN = Ri1/2g ∼ Fr−1/2. (4.28)
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This intermediate scaling that arises due to the presence of mean shear is again strongly

supported by our results with a clear collapse of the data across a decade of Fr.

Finally for the weakly stratified regime, as shown in Mater et al. (2013) we can substitute the

expected inertial scaling LE ∼ LI to obtain

LE/LN ∼ LI/LN =
E

3/2
K /ϵK

E
1/2
K /N

=
EKN

ϵK
= Fr−1. (4.29)

At our simulation parameter range, we cannot however confirm this scaling for our results

within this regime for the reasons discussed above.

In light of the results and derivation above we now consider the ratio of LE/LO plotted

against Fr in figure 4.10(d). Indeed it is clear that in the saturated regime we observe the

respective LE/LO ∼ Fr−1/2 as proposed by GV19 in (4.17) and shown in the derivation

above. As we barely access the weakly stratified regime we again are unable to definitively

test the LE/LO ∼ Fr−3/2 scaling at our parameter range. For the moderately stratified

regime we now consider that we have explicitly shown LE ∼ LS and also recall our scaling

of S ∼ (ϵKN/EK)
1/2 in (4.12) to obtain

LE/LO ∼ LS/LO =
E

1/2
K /S

ϵ
1/2
K /N3/2

∼ EK/ϵ
1/2
K N1/2

ϵ
1/2
K /N3/2

=
EKN

ϵK
= Fr−1, (4.30)

which is the scaling proposed by GV19 but explicitly derived for our shear driven flow and

shown to hold only for the intermediate range of 0.3 ≲ Fr ≲ 1 within our flow. Hence we

obtain their scaling for Γ

LE/LO ∼ Fr−1 ⇒ Γ ∼ Fr−1 ∼ (LE/LO)
1. (4.31)

As demonstrated in our results in figure 4.9.

Furthermore, due to the relationships between Rig and Fr derived in (4.11 and 4.14) it can

be readily shown that LE/LO is directly related to Rig across the three regimes. Within the

weakly stratified regime we expect

LE/LO ∼ Fr−3/2 ∼ Ri3/4g . (4.32)
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FIGURE 4.11: (a) Two dimensional p.d.f. of the gradient Richardson number
Rig and the length scale ratio LE/LO constructed out of the instantaneous
data of all simulations within the range of t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8.
(b) Rig bin-averaged ⟨LE/LO⟩ plotted against bins of corresponding ⟨Rig⟩
for all data points within t/T 0

τ > 1 and z/δ > 0.2. Solid lines indicate the
proposed scaling in (4.32 and 4.33). Vertical dashed line indicates Rig = 0.25.
Horizontal dashed line indicates LE/LO = 1

Within the moderately stratified regime

LE/LO ∼ Fr−1 ∼ Ri1g. (4.33)

and within the saturated regime where Rig and Fr become decoupled we expect that LE/LO

will become independent of Rig, similar to the results of Rohr et al. (1988) for high Rig.

Figure 4.11(a) the two dimensional p.d.f. of Rig and LE/LO, with reasonable collapse for the

scaling of the three regimes presented above. Due to the scatter in the ‘right flank’ of the curve

we illustrate this point more clearly by plotting the Rig bin-averaged set of ⟨LE/LO⟩ against
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corresponding bins of ⟨Rig⟩ in figure 4.11(b). A colour bar depicting ⟨ReB⟩ is again included

for reference. From the results it becomes clear that for Rig ≲ 0.25 or LE/LO ≲ 1 the data

collapses well along lines of the proposed scaling derived in (4.32 and 4.33). Meanwhile, in

the ‘right flank’ of the curve we observe that LE/LO grows independent of Rig in agreement

with the analysis above, showing separate horizontal trajectories for each simulation.

In this sense for our quasi-steady shear driven flow it becomes clear that the Fr,Rig and

LE/LO frameworks for the parametrization of the mixing efficiency can all be directly

reconciled across the weakly and moderately stratified regimes, with a clear transition to

the saturated regime at Fr ≈ 0.3, Rig ≈ 0.25 or LE/LO ≈ 1, with it being implicit that

these three values are interchangeable for our flow. In light of the above analysis we find

that the results of Mater et al. (2013) or Howland et al. (2020) do not contradict ours, as

their studies inherently have zero mean shear and hence the LE ∼ LS scaling within the

intermediate regime becomes invalid. As such, for non-sheared flows we expect that the

buoyancy scaling of LE ∼ LN to hold across both the intermediate and saturated regimes for

Fr ≲ 1 as in Mater et al. (2013) and accordingly may explain the Γ ∼ Fr−1 ∼ (LE/LO)
2

scaling observed in Howland et al. (2020) for the moderately stratified regime. Hence in

flows where the mean shear is not significant, we expect no appreciable range of LE/LO to

develop a Γ ∼ (LE/LO)
1 scaling as in the aforementioned studies. Such findings suggest

that the inference of Fr and hence the state of turbulence and mixing through direct field

measurements of the overturning length scale within the Fr = O(1) regime may prove a

problematic task as it would require additional information as to the state of the flow.

4.4.5 ReB framework and transition to diffusive regime

Since the important work of Shih et al. (2005), recent studies have shown that ReB may

not be an optimal parameter in the parametrization of mixing efficiency as it does not truly

describe the strength of stratification within the flow in the same sense as Fr or Rig (Scotti

& White, 2016; Maffioli et al., 2016; Garanaik & Venayagamoorthy, 2019; Portwood et al.,

2019). Rather, it is argued that since ReB = (LO/LK)
4/3, where LK = (ν3/ϵK)

1/4 is the
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FIGURE 4.12: (a) Two dimensional p.d.f. of the buoyancy Reynolds number
ReB and the mixing coefficient Γ constructed out of the instantaneous data
of all simulations within the range of t/T 0

τ > 1 and 0.2 ≤ z/δ ≤ 0.8. (b)
ReB bin-averaged mixing coefficient ⟨Γ⟩ plotted against bins of corresponding
buoyancy Reynolds number ⟨ReB⟩ for all data points within t/T 0

τ > 1 and
z/δ > 0.2. Solid lines indicate scaling lines of Γ ∼ Re

−1/2
B and Γ ∼ Re−1

B as
well as empirically observed Γ = 0.3. Vertical dashed line indicates ReB = 1

well known Kolomogorov scale, its use should be restricted to a measure of the size of the

inertial subrange or how ‘energetic’ the flow is.

We explore this by plotting the two dimensional p.d.f. of ReB and Γ in figure 4.12(a). From

the results we again observe that our flow is divided into three mixing regimes. Again we

observe a clear saturated regime where Γ trends towards constancy and a distinct regime

where Γ ∼ Re
−1/2
B , in agreement with the ‘intermediate’ and ‘energetic’ regimes proposed
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by Shih et al. (2005). Furthermore, we observe a region of the flow corresponding to the

weakly stratified regime with a clear Γ ∼ Re−1
B scaling, in agreement with the Couette flow

results and scaling derived in Zhou et al. (2017a). The results suggest the validity of an

ReB based parametrization approach of mixing efficiency for our flow at the parameter range

available. albeit with slightly more scatter in the high ReB ‘right flank’ of the plot with two

distinctly separate ‘tails’ emerging in the results. However, as described in MBL16, ReB can

be directly linked to the horizontal Reynolds number Reh and Froude number Frh through

the expression ReB = RehFr2h. By considering E
1/2
K as the velocity scale instead of uh, a

similar expression can be constructed for turbulent Reynolds number ReT and Fr such that

ReB = ReTFr2, (4.34)

where ReT = E2
K/(νϵK) is the turbulent Reynolds number (Mater & Venayagamoorthy,

2014). Hence the parametrization of Γ through Fr can be directly related back to ReB. For

the weakly stratified regime it is clear that

Γ ∼ Fr−2 ⇒ Γ ∼
(
ReB
ReT

)−1

. (4.35)

For the moderately stratified regime we obtain

Γ ∼ Fr−1 ⇒ Γ ∼
(
ReB
ReT

)−1/2

. (4.36)

And for the saturated regime, provided the flow remains turbulent, Γ will become independent

of both parameters. As discussed by MBL16, in this sense and under the assumption that

Γ is fundamentally linked to Fr rather than ReB, an ReB based parametrization inherently

contains an ReT dependence within itself. Furtheremore, taking the estimation that in weakly

and moderately stratified flow E
1/2
K ∼ uτ and ϵK ∼ u3

τ/δ, it can be clearly shown that

ReT =
E2

K

νϵK
∼ u4

τδ

νu3
τ

=
uτδ

ν
= Reτ . (4.37)

Hence, provided the scaling in (4.35 - 4.36) is valid, we expect the flow should show Reτ

sensitivity in the parametrization of mixing efficiency through ReB within these regimes.
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To investigate this we consider an ReB bin-averaged data-set of ⟨Γ⟩ plotted against corres-

ponding bins of ⟨ReB⟩ in figure 4.12(b) in the same manner as for the Fr sorted data in figure

4.4(b). From the results it is clear that there is no singular transitional value of ReB from the

saturated regime of constant mixing efficiency to the Γ ∼ Re
−1/2
B regime. Rather, two separate

evolution paths develop for the Reτ,0 = 400 and Reτ,0 = 900 cases respectively, showing a

clear Reynolds number dependence on the transition. Similarly no clear singular ReB value

emerges for the transition to the Γ ∼ Re−1
B regime. In contrast with the Fr averaged results in

4.4(b) it becomes clear that an ReB based parametrization of mixing efficiency is inherently

dependant on Fr, while the reverse is untrue.

In the ’left flank’ of figure 4.12(b) we can observe that the transition away from a constant

Γ regime to the diffusive regime is well approximated by ReB ≈ 1 in agreement with the

theory of Brethouwer et al. (2007). The exception is the data for case R400L05 (green

diamonds), where due to the relatively low level of stability, the flow remains turbulent up

the free surface. In this case the free surface itself rather than buoyancy acts to confine and

modify the turbulence properties (Calmet & Magnaudet, 2003; Flores et al., 2017), causing

deviation from the constant Γ regime. The exact mechanics of this are relatively unknown

and are an area of study within itself and are subsequently outside the scope of this chapter.

4.5 Conclusion

In this chapter we have investigated temporally evolving stratified open channel flow through

direct numerical simulations as the flow transitions from a neutral to a stably stratified state,

with the emphasis of the study being on the parametrization of mixing across varying energetic

regimes within stratified channel flow and the subsequent analysis of the relationship between

the relevant non-dimensional mixing diagnostics.

We find that after an initial transient adjustment period of approximately one eddy turnover

time unit (t ≈ 1), the turbulent flow within the channel is distinctly divided into weakly

stratified, moderately stratified and saturated mixing regimes separated by transitional values

of Fr = 1 and Fr = 0.3 across all simulations. Within the three regimes we find that



4.5 CONCLUSION 117

instantaneous measurements of the mixing coefficient Γ are predicted well through both

the Fr and LE/LO parametrization frameworks as outlined in MBL16 and GV19. To

our knowledge, ours is the first DNS study to extensively test both the Fr and LE/LO

parametrization frameworks for stratified wall-bounded flow across a wide range of Fr.

Considering the strong inherent vertical inhomogeneity within our sheared flow due to the

depth varying flux profiles as well as the spatio-temporally evolving mean gradients S and N ,

the remarkable collapse of the results from purely instantaneous measurements of Fr within

our flow presents a very strong argument in the favor of the case put forward by MBL16 and

GV19 for the applicability of an Fr based approach to parametrization of mixing across a

variety of stratified flows.

A defining characteristic of our flow is that the majority of the channel evolves into an

energetically quasi-stationary state of Fr = O(1). Within this regime we are able to explicitly

verify the novel ‘moderately stratified’ scaling of GV19 by showing that B ∼ E
3/2
K /LN ,

invariant in time and only within the range of 0.3 < Fr < 1. By considering our flow

within the inertia-shear-buoyancy regime map of Mater & Venayagamoorthy (2014), we

find this regime describes a critical state where the inertial, shear and buoyancy forces

are all significant in describing the energetic state of the flow. We subsequently provide

physically based scaling arguments to show that TS ∼ (TNTL)
1/2 and Rig ∼ Fr−1 within

this regime, hence reconciling the concept of a separate intermediate Γ ∼ Fr−1 scaling with

the established evidence that in sheared flow and for Rig < 0.25, the turbulent Prandtl number

is approximately unity resulting in a linear relationship between the mixing efficiency and

Rig. In contrast we find that for Fr > 1 in the weakly stratified regime, buoyancy becomes

negligible and a simple balance between shear and inertial forces leads to Rig ∼ Fr−2 in

agreement with the arguments presented by MBL16. By considering the mixing length scaling

in shear flow of LE ∼ LS within the intermediate regime we demonstrate that the remarkable

collapse of the data with a distinct Γ ∼ (LE/LO)
1 scaling for 0.3 < Fr < 1 as proposed

by GV19 comes as a direct result of the TS scaling presented above. However, our analysis

suggests that in flows devoid of mean shear, the LE/LO − Fr and hence LE/LO − Γ scaling

within this regime may differ, implying limited applicability to a wider range of stratified

flows under a single framework.
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As such, the results suggest that for weakly and moderately stratified quasi-stationary shear

flow, the three parametrization schemes become equivalent. As the unification of parametriz-

ing mixing across various fields and applications in the study of stratified turbulence remains

a pressing challenge (Caulfield, 2020), the results of our study present strong evidence of

universal mixing behaviour that appears invariant under differing frameworks in these ubiquit-

ous shear driven flows. Furthermore, as our DNS configuration is an idealisation of stratified

river flows (Williamson et al., 2015; Kirkpatrick et al., 2019), the present results suggest that

under sufficient levels of stratification an appreciable region will inevitably develop where

Fr = O(1) and the separate scaling relationships derived in this chapter for the moderately

stratified regime become physically relevant.

For flow that remains turbulent and within the regimes described by the equivalent transitional

values Fr < 0.3, Rig > 0.25 or LE/LO > 1, we find that the mixing efficiency saturates to

a constant asymptotic value, seemingly in agreement with the strongly stratified scaling of

MBL16, however we note our lowest values of Fr obtained in this chapter are still significantly

higher than the theoretical upper limit of the strongly stratified regime. We further find that in

agreement with the theory of Brethouwer et al. (2007), the transition away from a saturated

mixing efficiency into the diffusive regime occurs at ReB ≈ 1 for our flow, with the caveat

that the transition occurs sufficiently far from the free surface boundary.

We would like to clarify that the primary conclusions from the results within this chapter and

our comparison to GV19 is not to specify clear transitional values of Fr,Rig, LE/LO between

the varying mixing regimes nor to serve as direct validation for specific mixing models with

direct applicability to the field. Rather due to the ambiguity in the current literature (Caulfield,

2021), the focus of this chapter was to identify and present evidence for a distinctly different

‘intermediate’ mixing regime where Fr ∼ O(1) which have identified as being fundamentally

different from the two more established limit regimes of Fr ≫ O(1) and Fr ≪ O(1). We

have further expanded on the insightful scaling arguments of GV19 to develop new scaling

relations in the shear/inertia/buoyancy regime space as well as in the conceptual framework of

the overturning length scale. Furthermore, we have observed visually that both the physical

structure of the flow and the nature of the mixing within this ‘intermediate’ mixing regime is
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definitively different to that of the weakly stratified and hence quasi-isotropic state. Hence we

substantiate our claims and primary argument that this regime is indeed dynamically distinct

and care should be taken in future studies of stratified flow driven by a mean shear to properly

account for the differing dynamics for flow where Fr ∼ O(1).



CHAPTER 5

Intermittency and critical mixing in stratified open channel flow

In this chapter we investigate the spatio-temporal intermittency that arises in stratified open

channel flow due to the suppressive nature of stable stratification. We hence present an

adaptation of the unstable density gradient method of Portwood et al. (2016) to robustly

separate instantaneous realisations of the flow into turbulent and quiescent regions. We

explore the nature and mechanisms by which this intermittency manifests for our flow and

quantify it through a ‘local’ depth varying turbulent fraction which we demonstrate is well

predicted through Monin-Obhukov theory. We further investigate the resulting vertical

structure of the channel from the perspective of the two conditionally averaged data sets with

respect to energetic quantities and key mixing diagnostics. Finally we directly investigate the

effect intermittency has on a Fr based parameterization of Γ for our flow at low Fr.

The contents of this chapter are based on the following publication:

Issaev, Vassili, Williamson, N. & Armfield, S. W. 2022, Intermittency and critical mixing in

stratified channel flow. Journal of Fluid Mechanics, (Submitted).

5.1 Introduction

Turbulent flows subject to strong stable stratification such as in the ocean and atmosphere have

been shown to exhibit strong spatio-temporal intermittency with isolated patches of vigorous

‘weakly stratified’ turbulence encapsulated by an essentially quiescent yet ’strongly stratified’

fluid (Baker & Gibson, 1987; Van de Wiel et al., 2002). As discussed in §1, this intermittency

creates significant challenges in the quantification of local mixing rates from measurements
120
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that are inherently calculated as averages over finite volumes and time periods and in which

conceivably contributions from both flow regimes are present in unknown quantities. In wall-

bounded stratified flows the complexity of the intermittency problem is further confounded

by the inherent vertical inhomogeneiety of the flow (Armenio & Sarkar, 2002; Taylor et al.,

2005). Accordingly, flow properties and mixing diagnostics for wall-bounded flows are by

convention presented as appropriate volumetric averages across horizontal planes (García-

Villalba & del Álamo, 2011; Deusebio et al., 2015; Williamson et al., 2015; Zhou et al.,

2017a; Issaev et al., 2022). However strong intermittency of turbulence has been observed

across horizontal layers in the very same studies. In this study we explore the nature and

structure of intermittency in stratified open channel flow and its effect on the estimation of

local mixing rates.

Strongly stratified flows are highly anisotropic with a large separation of horizontal and

vertical scales. Such flows are typically defined by a sufficiently small turbulent Froude

number Fr. Additionally for turbulence to be sustained, a global buoyancy Reynolds number

ReB must be appropriately large such that the inertial range of the flow is sufficient to generate

local instabilities that create turbulence (Riley & deBruynKops, 2003). In particular, much of

the stratified turbulence theory developed and investigated over the past decades that underlies

the prediction of mixing and energetic transfer in the ocean and atmosphere focuses on the

so called ‘strongly stratified’ or ‘layered anisotropic stratified turbulence’ (LAST) regime in

the limit of Fr ≪ O(1) and ReB ≫ O(1) (Billant & Chomaz, 2001; Riley & deBruynKops,

2003; Lindborg, 2006; Riley & Lindborg, 2008; Maffioli & Davidson, 2016; Falder et al.,

2016; Maffioli, 2019; Taylor et al., 2019).

Portwood et al. (2016) demonstrate that flow described by appropriate bulk measures of

Fr and ReB such that the flow approaches the LAST regime may be subdivided into three

dynamically distinct regimes: ‘turbulent patches’, ‘intermittent layers’ and ‘quiescent’ flow,

with conditionally averaged values of ReB that vary by orders of magnitude across the three

regimes. Of particular note, they find that although for their most stratified case of Fr = 0.015,

the quiescent region occupies approximately 80% of the flow domain, it only accounts for

less than 15% of the total dissipation rates of TKE and scalar variance. In their DNS study
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de Bruyn Kops (2015) similarly find that with decreasing Fr the flow becomes increasing

anistropic with an emerging bimodal distribution of the dissipation rates. In their similar

DNS study of homogeneous stratified turbulence Howland et al. (2020) further observe the

occurrence of ‘spontaneous layering’, such that the flow organizes into horizontal layers of

vigorous and essentially isotropic turbulence as well as definitively anisotropic quiescent

flow. A fundamental question of stratified turbulence is hence how such strong intermittency

effects the parametrization of diapycnal mixing through non-dimensional parameters that

are comprised of flow properties that display significant spatial variation over the different

dynamical regions.

Of particular note, Maffioli et al. (2016) present scaling arguments based on the underlying

theory of the LAST regime to demonstrate that for quasi-stationary flow in the limit of low

Fr, Γ should become independent of Fr and asymptote to a constant value. Since their

work, a number of studies with a variety of flow configurations and ranges of Fr and ReB

including the work presented in §4, have demonstrated support for this result (Garanaik

& Venayagamoorthy, 2019; Howland et al., 2020; Smith et al., 2021; Issaev et al., 2022),

albeit with differing asymptotic values of Γ. However, it remains unclear how the varying

intermittency in these studies influences this relationship as measurements of both Fr and Γ

inherently contain contributions from both turbulent and quiescent regions of the flow.

In atmospheric boundary layer literature, the prediction of intermittency has been frequently

explored through the Monin-Obhukov (M-O) framework and the M-O length L which com-

pares the turbulence generation through the wall shear to the suppression of turbulence as a

result of the surface buoyancy flux (Van de Wiel et al., 2002, 2012). In their idealised DNS

of the nocturnal atmospheric boundary layer, Flores & Riley (2011) demonstrate that the

collapse of turbulence in channel flow subject to bottom wall cooling is well predicted by the

parameter L+, where L+ is the M-O length normalized in viscous wall units. In a subsequent

study Deusebio et al. (2015) demonstrate that the L+ criterion is similarly applicable to

stratified plane Couette flow for the prediction of intermittency. Chung & Matheou (2012)

further show that M-O theory may be similarly applied to homogeneous stratified shear flow

and intermittency displays a dependence on a ‘local’ normalized M-O length Λ+. However, it
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still remains unclear whether the prediction of intermittency through M-O theory is applicable

to stratified flows in which the suppression of turbulence occurs ‘top-down’ such as the

radiatively heated open channel flow framework of Williamson et al. (2015).

For stratified flows in the presence of a mean shear, the theme of intermittency and relaminar-

ization has been frequently explored in literature through the gradient Richardson number:

Rig = N2/S2, where S is the mean shear. The underlying concept being that the stabiliz-

ing forces of the background stratification suppress turbulence whilst the background shear

deforms the flow leading to the formation of shear instabilities. Based on linear stability

analysis Miles (1961) proposed the ‘Miles-Howard Criterion’ of an upper limit of Rig = 1/4

for the formation of instabilities. Since then, seemingly in agreement a wide range of studies

have observed that in a stationary state, stratified sheared turbulence tends to converge to an

upper critical limit of Rig,c ≈ 0.16 ∼ 0.25 (Shih et al., 2000; Flores & Riley, 2011; Chung &

Matheou, 2012; Williamson et al., 2015; Zhou et al., 2017a; Portwood et al., 2019). However

as discussed by Zhou et al. (2017a), it is unclear if this result is indeed related to the stability

of the local flow as argued by Miles (1961) or is simply ‘fortuitous’. Thorpe & Liu (2009)

further hypothesise that stratified shear flow naturally converges to this state of ‘marginal

instability’ that facilitates the formation of relatively efficient mixing through local shear

instabilities. This work was expanded on by the studies of Salehipour et al. (2018) and Smyth

et al. (2019) who use numerical and observational data to demonstrate this behaviour dubbed

‘self-organised criticality’ in stratified shear flows. However as noted in Caulfield (2020),

due to the inherent local intermittency of stratified flows it becomes somewhat ambiguous

as to what defines a local measure of the background shear and stratification and hence the

appropriate measure of Rig. As such the role of the intermittency in the concept of a ‘critical’

Rig remains unclear.

The shear layer study of Mashayek et al. (2017) support the aforementioned ‘self-organized

criticality’ demonstrating that the mixing in a KHI overturning event is most vigorous and

efficient when the flow enters a critical state such that the injection of energy into the flow

through overturning is precisely at the wavelength corresponding to the upper limit of the

inertial sub-range such that ROT ≈ 1. Where ROT = LO/LT is the length scale ratio
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of the Ozmidov length scale (LE) characterizing the theoretical upper bound for scales

largely unaffected by the background stratification to the well known Thorpe scale (LT )

describing the extent of overturning motions. Mashayek et al. (2021) expand on this idea,

demonstrating through oceanic observational data sets that the distinct majority of field

observations correspond to this ‘critical’ and ‘optimal’ state defined by a marginally unstable

Rig and where ROT ≈ O(1). It is still however unclear how the theory and results derived

in studies of singular mixing events pertains to forced quasi-stationary flows and the role of

the inherent intermittency arising from stable stratification, in particular that of wall-bounded

vertically inhomogeneous flows. Furthermore, it is unclear how the concept of a self-organized

critical state within stratified shear flow reconciles with the numerous observations of an

asymptotic Γ regime in the limit of low Fr and how intermittency effects this behaviour.

The concept of spatio-temporally intermittent mixing is directly physically relevant to stratified

river flows which underlies the motivation behind this study. Persistent stratification and

subsequent reduction in mixing rates in Australian rivers has been shown to create conditions

that directly facilitate harmful cyanobacterial blooms and reduce vertical transport of key

nutrients (i.e. CO2, O2) absorbed at the water/air interface (Turner & Erskine, 2005). As such

the need to accurately predict the intermittency profile of the flow and to better understand the

mixing dynamics in regions of intermittency are crucial to understanding such ecologically

damaging processes.

In light of the discussion presented above, the work presented in this chapter falls into two

key themes. Firstly, that of the robust identification and prediction of the intermittency profile

in radiatively heated open channel flow. Secondly, that of the role of spatio-temporal intermit-

tency in stratified shear flows on the estimation of mixing rates through ‘local’ measurements

of appropriately defined mixing diagnostics, with emphasis on the concept of self-organized

‘critical’ mixing in stratified shear flows. We explore these ideas through our DNS of tem-

porally evolving stratified open channel flow which due to its vertical inhomogeneity allows

us to explore a wide range of local parameters with a varied intermittency profile within a

single simulation. To that end the remainder of this chapter is structured as follows. In §5.2

we present the list of DNS used in this chapter. In §5.3 we present our adaption of the density
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Case Re0τ λ0 Pr αδ Lx × Ly × Lz Nx ×Ny ×Nz
tf
T 0
τ

te
T 0
τ

ze
δ

R400L0.5 400 0.5 1 8 2πδ × πδ × δ 512× 512× 150 50 15 0.86
R400L0.5AD32 400 0.5 1 32 2πδ × πδ × δ 512× 512× 150 40 15 0.89
R400L1 400 1 1 8 2πδ × πδ × δ 512× 512× 150 50 30 0.82
R400L1LD 400 1 1 8 8πδ × 2πδ × δ 2560× 1280× 150 40 30 0.83
R400L2 400 2 1 8 2πδ × πδ × δ 512× 512× 150 90 50 0.71
R900L1 900 1 1 8 2πδ × πδ × δ 1152× 1152× 450 43 33 0.91

TABLE 5.1: List of DNS performed and relevant parameters. tf corresponds to
the total simulation time, te corresponds to the time to obtain quasi-stationary,
ze corresponds to the upper vertical coordinate past which the stationary flow
is no longer in a state of local quasi-equilibrium.

gradient inversion method of Portwood et al. (2016) to separate our intermittent flow into

‘turbulent’ and ‘quiescent’ regions and present our prediction of the intermittency profile

through Monin-Obhukov theory. In §5.4 we demonstrate the vertical distribution of key

conditionally averaged flow properties and non-dimensional parameters within the turbulent

and quiescent regions of the flow . In §5.5 we explore and quantify the effect of intermittency

on the parametrization of mixing rates through Fr and discuss the implications of the results

for stratified shear flow. Finally in §5.6 we summarize the main findings within this study.

5.2 List of DNS performed and notation

Table 5.1 presents the list of DNS considered in this chapter. As we are interested in the

vertical structure of the intermittent stationary flow, we only consider the DNS that have been

substantially past stationarity as defined by te in §3. Furthermore, as this chapter focuses

on intermittency that arises due to strong stable stratification we again only consider DNS

run at λ0 ≥ 0.5. We again demonstrate that our local correlations of flow flow properties

are independent of the flux profiles by considering a single αδ = 32 case relative to all

other DNS where αδ = 8. We further limit our focus in this chapter on cases for which

Pr = 1. Finally as discussed in §2, we acknowledge past studies that have shown that the

size of the domain may effect the intermittent regime where laminar and turbulent patches

coexist, such that a smaller domain often leads to earlier laminarization for the same set of
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bulk parameters (Flores & Riley, 2011; García-Villalba & del Álamo, 2011; Brethouwer

et al., 2012; Deusebio et al., 2015). However as shown in Williamson et al. (2015), our

adiabatic bottom boundary condition ensures that the near-wall region remains fully turbulent,

hence we do not expect the domain size to significantly influence the results presented in

this study. Accordingly for computational efficiency we keep the domain size constant at

Lx × Ly × Lz = 2πδ × πδ × δ across all simulations. However as intermittency is the core

theme of this chapter we also consider case R400L1LD (long domain) for which the domain

size is increased to Lx × Ly × Lz = 8πδ × 2πδ × δ to demonstrate the independence of our

results on the domain size.

In this chapter we consider both time developing and stationary flow. We hence define that

for this chapter the (.) overbar operator indicates an appropriate temporal average within the

stationary time period of te ≤ t ≤ tf . Meanwhile, unless otherwise explicitly stated, the angle

bracket ⟨.⟩ operator in this chapter presents an appropriate instantaneous ensemble average at

time t.

5.3 Turbulent/Non-Turbulent identification algorithm

5.3.1 Method Validation

We base our turbulent flow identification algorithm on the method described in Portwood et al.

(2016) (Henceforth denoted as PKTSC16). The underlying hypothesis being that regions of

active turbulence inevitably contain some measure of local overturning down to a relevant

length scale such that there exist appreciable regions in the flow where the local buoyancy

gradient is unstable; i.e. ∂b(x)/∂z < 0. We define our detector function Q as:

Q(x) =

∫ ∞

−∞
H

(
− ∂b(x− r)

∂z

)
Gxy(r, lf )dr (5.1)

Where H is the heavy-side function, Gxy is the two dimensional Gaussian function (in the

x − y horizontal plane) with the input variance corresponding to the filter length scale lf

and r is the dummy variable for the convolution of the Gaussian. We note that the inherent
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vertical inhomogeneity of open channel flow creates significant variation with in the turbulent

length scales of the flow with respect to the vertical coordinate z (Williamson et al., 2015).

Accordingly we cannot construct a sensible three-dimensional cumulative filtered density

function as the detector function analogously to that of the homogeneous flow of PKTSC16

that tests the vertical extent of the density inversions. Our hypothesis however is that for active

vigorous turbulence, overturns of a particular vertical extent lf leave an ‘imprint’ of small

scale inversions on a horizontal pancake of the same radius lf . Q(x) can hence be considered

the smoothed probability that within the horizontal circular filter range of lf the local buoyancy

gradient at (x) is unstable. Subsequently, for our flow the turbulent identification algorithm

requires two choices, an appropriate filter size lf and a suitable threshold value of Q∗ to be

defined below in (5.3).

As discussed in §5.1, for their high resolution DNS, PKTSC16 demonstrate that by defining

two different filter radii based on physical length scales, their flow may be separated into

three regimes with varying values of conditionally averaged ReB: vigorous ‘patch’ turbulence

where buoyancy inversions occur down to the buoyancy length scale LB and where ReB ≈

O(100), ‘layers’ where buoyancy inversion occur down to the Taylor micro scale Lλ where

ReB ≈ O(10) and ‘quiescent’ flow where ReB ≈ O(1). Where

LB =
uh

N
, Lλ =

√
15

ν

ϵK
u′

rms. (5.2a, b)

where uh is the turbulent horizontal velocity scale, N = (∂b/∂z)1/2 and ϵK = ν(∂u′
i/∂xj)

2.

As LB > Lλ for all z, it is clear that regions of the flow where buoyancy inversions occur down

to a length scale of Lλ incorporate both turbulent ‘patch’ and ‘layer’ regions. The vertical

inhomogeneity of open channel flow creates a wide range of horizontally averaged ReB(z)

that spans between O(105) near the wall to O(10−2) at the free surface (as will be shown

shortly). However the same inhomogeneity of the stratification profile and modest Reτ of our

simulations ensures that we do not have sufficient dynamic range to find horizontal planes

within our flow where appreciable contributions from all three regions exist. Accordingly,

for our study we have chosen not to differentiate between ‘patch’ and ‘layer’ turbulence, but

rather classify them together as ‘turbulent’ with the remaining flow considered ‘quiescent’.
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FIGURE 5.1: (a) Stationary profiles of the horizontally averaged cutoff
threshold paramater Q

∗
and buoyancy Reynolds number ReB as a function

of z/δ. Shading indicates ± one standard deviation (Shading for Q
∗

cutoff to
minimize noise in the plot.) Horizontal lines indicate z/δ(ReB = 150) and
z/δ = 0.1. (b) Time series of the global threshold parameter ⟨Q∗⟩. (c) Sta-
tionary profiles of the conditionally averaged ‘turbulent’ buoyancy Reynolds
number ⟨ReB⟩|T plotted against z/δ for all simulations. Shading indicates
± one standard deviation. Plots ended at a turbulent fraction threshold of
γ < 0.05. Dotted lines of same color correspond to full data set. Vertical
dashed lines correspond to ReB = 1, 10 (d) Variation of conditionally aver-
aged ⟨ReB⟩|T (left axes solid lines) and turbulent fraction γ (right axes dashed
lines) with varied sampling of ⟨Q∗⟩ at z/δ = 0.875. Figures (a),(c),(d) for
case R900L1

Hence we only consider one depth varying filter size in the definition of (5.1) such that

lf (x) = Lλ(z).

In PKTSC16 the threshold criterion was derived by considering a reference simulation at high

ReB and moderate Fr where intermittency was negligible such that the entire flow domain
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may be considered a turbulent ‘patch’. For our study we employ similar logic by considering

the bottom region of the channel is similarly described by Fr > O(1) and ReB > O(102)

and may be considered fully turbulent (Williamson et al., 2015; Kirkpatrick et al., 2019;

Issaev et al., 2022). We hence define a depth and time varying threshold value of Q∗(z, t)

such that almost the entire volume of a horizontal plane at depth z would be considered

turbulent. We explicitly define this as

Q∗(z, t) s.t.
1

LxLy

∫ Lx

0

∫ Ly

0

H
(
Q(x, t)−Q∗(z, t)

)
dxdy ≥ 0.99. (5.3)

Hence we expect that for fully turbulent regions Q∗(z, t) will approach a constant value and

for regions with strong intermittency Q∗(z, t) will trend towards zero. To demonstrate this we

plot the quasi-stationary profiles of Q
∗
(z) and ReB(z) against z for a typical case R900L1

in figure 5.1(a), where the (.) operator denotes temporal averaging over the quasi-stationary

window of te ≤ t ≤ tf . Note that a reading of Q
∗
(z) = 10−4 corresponds to the finest

numerical sampling size of Q∗ in the algorithm to satisfy the implicit equation (5.3) and may

be interpreted as essentially zero.

The results show clear support for our hypothesis showing Q
∗
(z) approaching a constant value

of O(10−1) within a region approximately bounded by an upper vertical limit corresponding

to ReB ≈ 150 and a lower limit of z/δ ≈ 0.1. The upper bound is consistent with the

arguments presented in PKTSC16 for ReB ≈ O(100) as a criterion for vigorous turbulence

where intermittency is negligible. The lower bound represents the dominance of near-wall

mechanics and viscous effects that invalidate the assumption of small scale overturning as an

indicator of active turbulence. Note that for the Reτ = 400 cases the corresponding depth

is z/δ ≈ 0.15 As near-wall mechanics are outside the scope of this study, for simplicity

we assume that this region is fully turbulent due to past studies showing negligible effects

of stratification for channel flow with a bottom adiabatic boundary condition at a similar

parameter range (Taylor et al., 2005; Williamson et al., 2015; Kirkpatrick et al., 2019).

Although not shown here, qualitatively similar behaviour occurs for all our other simulations,

with variations in the asymptotic value of Q
∗
(z) for each simulation.
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Accordingly we can construct a global threshold value of ⟨Q∗(t)⟩ of the form

⟨Q∗(t)⟩ = 1

(z(ReB = 150)− zl)

∫ z(ReB=150)

zl

Q∗(z, t)dz. (5.4)

where

zl/δ =

 0.15, Reτ = 400

0.10, Reτ = 900.
(5.5)

Figure 5.1(b) shows the time series of ⟨Q∗(t)⟩ for case R900L1, both the instantaneous

realisations and a line of best fit using a moving average filter. Note we do not consider

the data for t/T 0
τ < 1 as this corresponds to an initial non-linear adjustment period of the

flow due to the sudden imposition of buoyancy on an idealised isothermal flow field (see §3).

The results show that ⟨Q∗(t)⟩ is well behaved, with a slight initial decline during the early

‘suppression period’ of the flow (Atoufi et al., 2020), and approaches a constant value of

⟨Q∗(t)⟩ ≈ 0.09 with a normal distribution of the scatter about the line of best fit of the order

of 0.005 in agreement with the narrow spread of Q
∗
(z) observed in figure 5.1(a). Accordingly

we propose that provided a sufficient amount of flow falls within the fully turbulent range as

defined in (5.4), a single realisation of the flow at time t and the subsequent instantaneous

measurement of ⟨Q∗(t)⟩ is sufficient to separate the flow into turbulent and quiescent regions.

Hence we define that flow is considered ‘turbulent’ if Q(x, t) ≥ ⟨Q∗(t)⟩ and ‘quiescent’ or

quasi-laminar if Q(x, t) < ⟨Q∗(t)⟩.

To test this we consider that as discussed in PKTSC16, a consensus has formed in stratified

flow literature that for active turbulence a requirement is that ReB ≥ O(10). We hence define

a conditionally averaged (and inherently depth varying) ⟨ReB⟩|I such that

⟨ReB⟩|I =
⟨ϵK⟩|I
ν⟨N2⟩|I

(5.6)

where the ⟨.⟩|I operator denotes conditional averaging over the set I where |F , |T , |Q cor-

respond to the full (unsorted), turbulent and quiescent data sets respectively and where

⟨N2⟩|I = ⟨∂b(x)/∂z⟩|I . Accordingly in the limit of low ReB ,we expect that for horizontal

layers with strong intermittency, the conditionally averaged ⟨ReB⟩|T should trend towards

O(10) if our turbulent identification algorithm is robust.
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We demonstrate the validity of our method by plotting the quasi-stationary profiles of ⟨ReB⟩|T
against z/δ for all simulations in figure 5.1(c). We restrict the plots within the limits of

0.05 < γ ≤ 1, as past this limit the relatively small amount of data at our flow resolution

generates excessive noise in measurements of turbulent flow properties. For reference the

profiles of the full data-set are also plotted (dashed lines of the same colour). From the

results it is clear that for all simulations, despite the variation in the profiles of ⟨ReB⟩|F , the

turbulent counterpart ⟨ReB⟩|T appears to approach a limit of O(10) confirming the hypothesis

underlying our algorithm.

To further test the robustness of our algorithm we consider the of depth z/δ = 0.875 of case

R900L1 where throughout the entire flow evolution ReB ≈ O(1) and a significant portion

of the flow is quiescent. Figure 5.1(d) shows the variation of ⟨ReB⟩|T (solid lines, left axes)

and the turbulent volume fraction γ = VT/VF ( dashed lines, right axes) as we vary the

threshold parameter ⟨Q∗⟩ at three arbitrarily selected instances in time. To help interpret

this figure it is important to consider that ⟨Q∗(t)⟩ = 0 corresponds to the assumption that

the entire horizontal plane is considered turbulent such that ⟨ReB⟩|T = ⟨ReB⟩|F . From the

results it is clear that the result is robust with ⟨ReB⟩|T ≈ O(10) for all cases showing relative

insensitivity to the noise in the instantaneous measurements of ⟨Q∗(t)⟩ within the expected

standard deviation of 0.005 observed in figure 5.1(b). Similarly γ is well behaved, with

negligible variation in the region of uncertainty relative to ⟨Q∗(t)⟩.

For visual reference we also verify our identification algorithm by considering flow visualiza-

tions of the ϵK field for case R900L1 across all three planes in figure 5.2 at t/T 0
τ = 35 which

has been chosen to display the full range of intermittency in the flow. The overlaying red con-

tours display the separation of turbulent and quiescent regions as outlined in the method above.

Figures 5.2(a,b) show slices in the x − y plane at depths of z/δ = 0.75 and z/δ = 0.875

respectively and where there is significant variation in the amount of intermittency between

the two depths. The results show convincing support for the robustness of our algorithm as

the small-scale high dissipation regions of active turbulence are distinctly separated from

quiescent regions of essentially constant near-zero dissipation.



132 5 INTERMITTENCY AND CRITICAL MIXING IN STRATIFIED OPEN CHANNEL FLOW

(a) z/δ = 0.75

(b) z/δ = 0.875

(c) y/δ = 1.6

(d) x/δ = 3.2

FIGURE 5.2: Instantaneous realisations of the dissipation rate of kinetic en-
ergy field ϵK at t/T 0

τ = 35 for case R900L1. Red lines indicate the separation
of the ‘turbulent’ and ‘quiescent’ flow regions as per the algorithm in §5.3.
Colour scale for all figures is logarithmic. (a,b) slices in the x − y plane at
z = 0.75, 0.875 respectively. (c) Slice in the x− z plane. (d) Slice in the y− z
plane.
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Figures 5.2(c,d) show realisations of the flow in the x − z and y − z planes respectively.

The results clearly depict our unique flow structure with a weakly stratified fully turbulent

lower region, a distinctly sheared central bulk flow and an upper quiescent or quasi- laminar

layer. The results clearly highlight the inherent three dimensional aspect of the intermittency

boundary in stratified open channel flow and the subsequent inaccuracy of naively using

a single horizontally averaged metric to separate the transition from turbulent to quiescent

flow. Here we note a fundamental feature of our flow: that the intermittency in our flow

which may be interpreted as a deformed horizontal interface between the lower turbulent

and upper quiescent flow. This being fundamentally different to that of past atmospheric

boundary layer or Couette flow studies where intermittency originates at the wall (Flores &

Riley, 2011; Deusebio et al., 2015). We will return to this idea in more detail in §5.4. In

particular, we highlight that the shear layer that forms between the turbulent bulk flow and

upper quasi-laminar layer is notably defined by distinctly energetic overturning driven mixing

that arises from the critical conditions below as the shear instability structures are ejected

upwards through upwelling events. From figure 5.2(c) we note that our algorithm is able

to robustly capture this mechanic identifying singular ejection events in the upper layer as

‘turbulent’.

5.3.2 Intermittency profile and Monin-Obhukov scaling

Figure 5.3(a) shows the resulting intermittency profile as a result of the turbulent/quiescent

identification algorithm outlined above by plotting the quasi-stationary turbulent volume

fraction γ against z/δ for all simulations. Accordingly in agreement with the distinctly

inhomogeneous profiles of ReB, the profiles of γ show significant variation with z as the

flow sharply transitions from its fully turbulent state in the lower portion of the channel to

an entirely quiescent state at the upper boundary. We note this profile comes as a result of

the deformed turbulent/quiescent interface that spontaneously forms within the flow. This

allows us the opportunity to explore the effect of intermittency in wall bounded flows at a

wide range of local parameters and with a distinctly inhomgeneous intermittency profile that

is not effected by the suppression of near-wall mechanics.
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FIGURE 5.3: (a) Vertical profiles of the stationary turbulent fraction γ for
all simulations. (b) Bin averaged values of the turbulent fraction ⟨γ⟩ plotted
against corresponding bins of Λ+. Bin averaged values constructed for all z
and t/T 0

τ > 1. Horizontal dashed lines indicate Λ+ = 2.5, 260. (c) Stationary
profiles of γ plotted against the theoretical maximum value of Λ+

M . Shading
corresponds to ± one standard deviation. Horizontal dashed lines in (b,c)
indicate Λ+ = 2.5, 260.

One of the key aims of this study is the prediction of the derived intermittency profile through

appropriate non-dimensional parameters. As outlined in §5.1, the scaling of ‘local’ flow

sufficiently far from the wall and prediction of intermittency has been extensively investigated

in literature through the Monin-Obhukov framework for a variety of flow configurations

(Flores & Riley, 2011; García-Villalba & del Álamo, 2011; Van de Wiel et al., 2012; Chung

& Matheou, 2012; Deusebio et al., 2015; Williamson et al., 2015; Zhou et al., 2017a).

Flores & Riley (2011) demonstrate that the collapse of turbulence of open channel flow

subject to bottom cooling was well predicted by a critical value of the parameter L+ ≈ 100.

Here L+ = Luτ/δ being the ratio of the Monin-Obhukov (M-O) length L to the viscous

wall unit ν/uτ . In their study of stratified plane Couette flow Deusebio et al. (2015) showed

that similarly the introduction of intermittency due to to near-wall intermittency was well

predicted through L+ ≈ 200. Zhou et al. (2017a) further demonstrated that due to the

constant turbulent flux profile of Couette flow, M-O theory accurately described the mean

flow sufficiently far from the wall. Expanding on past studies of the outer stable atmospheric

boundary layer such as Nieuwstadt (1984) and Sorbjan (1986), Chung & Matheou (2012)

demonstrate that Monin-Obhukov scaling is applicable to homogeneous stratified shear flow
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sufficiently far from the wall through the construction of a ‘local’ Monin-Obhukov length

Λ and non-dimensional parameter Λ+ comprised out of the local momentum and buoyancy

fluxes of the form

Λ =
⟨−u′w′⟩3/2

κcB
, Λ+ =

⟨−u′w′⟩2

κcBν
, (5.7a, b)

where B = ⟨−b′w′⟩ is the turbulent buoyancy flux. They similarly found the flow to become

noteably intermittent with horizontal layers of quiescent fluid forming for Λ+ ≲ 260.

As demonstrated in Williamson et al. (2015) this flow configuration obtains an appreciable

depth range for which the flow is sufficiently stratified and obtains a state of local energetic

equilibrium and where each horizontal layer may be loosely considered a slice of quasi-

homogeneous sheared turbulence where we expect ‘local’ M-O scaling to become valid

(Chung & Matheou, 2012; Zhou et al., 2017a). Williamson et al. (2015) further provide

scaling arguments to demonstrate that within the region of local equilibrium, ReB ≈ κcΛ
+.

Accordingly we expect the intermittency profile to show dependence on a depth varying value

of Λ+(z).

Figure 5.3(b) shows the bin-averaged values of γ plotted against corresponding bins of

Λ+. The bin averaged data includes both the transitional and quasi-stationary data and is

constructed for t/T 0
τ > 1 to exclude the initial adjustment period as described above. The

results show clear collapse of the data as intermittency is introduced into the flow at Λ+ ≈ 260

in direct agreement with Chung & Matheou (2012), corresponding to ReB ≈ 100 under the

assumption that ReB ≈ κcΛ
+. The data within the intermittent region remains collapsed

across all simulations as the flow transitions to a fully quiescent or quasi-laminar state at

Λ+ ≈ 2.5 corresponding to ReB ≈ 1 as argued for the transition to the ‘diffusive’ regime by

Brethouwer et al. (2007).

It is further worth noting that the data here includes both the transitional period of the flow

as well as the quasi-stationary state. Furthermore, our flow is highly inhomegeneous with

distinctly varying flux profiles with respect to depth. As such the excellent collapse of the

results presents a further strong argument for the applicability of M-O theory in the prediction

of the onset of intermittency for a variety sheared flows.
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In a practical sense, the accurate prediction or measurement of the depth varying turbulent

fluxes ⟨−u′w′⟩, B is very challenging outside of DNS. However, an advantage of our flow

configuration is that for the quasi-stationary case, the vertical profiles of the momentum and

buoyancy fluxes and hence Λ+(z) may be roughly estimated a priori. For the flow to obtain a

quasi-equilibrium state, the forced heating profile q(z) and driving pressure gradient F seek

to attain balance with the total downward buoyancy B and momentum M fluxes which are

comprised of their turbulent and laminar components such that

B = B + κN2, M = ⟨−u′w′⟩+ νS. (5.8a, b)

For the stationary state, the equilibrium profiles of BE and momentum ME may be obtained

analytically (Williamson et al., 2015):

BE(z) =
gβIS
CPρ0δ

(
z(1− e(z−δ)α)

)
, ME(z) = u2

τ

(
1− z

δ

)
. (5.9a, b)

By neglecting the molecular terms we can hence construct a theoretical maximum value for

Λ+
M(z) from the analytical profiles of the form

Λ+
M(z) =

M2
E(z)

κcBE(z)ν
. (5.10)

In this sense Λ+
M(z) represents an ideal state which the flow seeks to achieve such that the

turbulent flux profiles develop to obtain equilibrium.

Figure 5.3(c) shows the quasi-stationary values of γ plotted against Λ+
M(z) for all simulations.

The results show excellent agreement with identical bounding values of Λ+
M ≈ 2.5− 260 that

define the intermittent region of the flow. We observe that the slope of γ in the intermittent

region is slightly reduced to that of figure 5.3(b) due to our idealised assumption of neglecting

the molecular terms in Λ+
M . However the data remains well collapsed suggesting the variation

between the turbulent and molecular components due to the suppression of turbulent fluxes

in captured is the idealised measure of Λ+
M . The exception to this is the least intermittent

case R400L0.5 where the stationary flow never reaches a state of γ = 0. Accordingly as the

flow approaches the surface where the confinement effects modify the turbulence properties

(Calmet & Magnaudet, 2003; Flores et al., 2017), the assumptions of local equilibrium
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underpinning the construction of Λ become somewhat invalid and the data assymptotes to the

final value of γ even as Λ+
M continues to decrease.

As Λ+
M may be constructed entirely from bulk flow proprieties and the geometry of the

flow, our results suggest Λ+
M may lend itself as a useful forecasting tool for the onset of

intermittency and subsequent reduction in ‘local’ mixing of stratified open channel flow.

We note further from the comparison of our results of cases R400L1 and R400L1LD that their

is negligible difference in the intermittency profile and its dependence on Λ+ with increased

domain size. The results hence suggest that our results pertaining to ‘local’ intermittency and

its effect on ‘local’ parameters is independent of the domain size of our DNS.

5.4 Vertical distribution of conditionally averaged flow

properties

5.4.1 Mean gradients and energetic quantities

We briefly present the variation in key flow properties due to intermittency for our representat-

ive case R900L1. We similarly plot both the turbulent and quiescent data sets within the limits

of 0.05 ≤ γ ≤ 1 and 0 ≤ γ ≤ 0.95 respectively to minimize the effect of noisy measurements

in the presentation of our results. Dimensional flow properties are non-dimensionalized by

the friction velocity uτ and channel height δ

Figures 5.4(a,b) show the conditionally averaged stationary profiles of the buoyancy frequency

⟨N⟩|I and mean shear ⟨S⟩|I respectively, where ⟨S⟩|I = ⟨∂u(x)/∂z⟩|I . As discussed above,

the flow attempts to balance the imposed heating profile and pressure gradient through B

and M respectively. Accordingly we find that in regions of non-trivial intermittency, the

turbulent mean stratification ⟨N⟩|T and shear ⟨S⟩|T are appreciably reduced relative to the

full data-set as the turbulent fluxes are less suppressed within these regions. Analogously

the mean profiles in the quiescent data set ⟨N⟩|Q and shear ⟨S⟩|Q are both larger than the

full data-set as the flow tends to develop steeper gradients locally to account for the strong
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FIGURE 5.4: Stationary vertical profiles of key conditionally averaged flow
properties for case R900L1. (a) Buoyancy frequency ⟨N⟩|I . (b) Mean shear
rate ⟨S⟩|I . (c) Turbulent kinetic energy ⟨EK⟩|I . (d) production of turbulent
kinetic energy ⟨P ⟩|I . Dissipation rate of turbulent kinetic energy ⟨ϵK⟩|I .
(f) The vertical buoyancy flux ⟨B⟩|I . (g) The local energetic equilibrium
ratio ⟨P ⟩|I/(⟨B⟩|I + ⟨ϵK⟩|I). Turbulent and quiescent data sets are cutoff at
γ < 0.05 and γ > 0.95 respectively. Shading corresponds to ± one standard
deviation.

suppression of turbulence within these regions. As such our results support the concern raised

in Caulfield (2020) about the validity of any assumptions made of mean gradients of buoyancy

or shear, particularly from field measurements where the data-set may be limited or biased by

time-dependant events.

Figure 5.4(c) shows the stationary vertical profiles of the conditionally averaged turbulent

kinetic energy ⟨EK⟩|I where EK = 1/2⟨u′
iu

′
i⟩. From the results it is clear that in the region

of intermittency, ⟨EK⟩|T does not decline towards zero with increasing distance from the wall

as does the full data set, but rather plateaus to an approximately constant value within the
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energetic shear mixing layer. Conversely, we observe low but non-zero TKE for the quiescent

data-set as ⟨EK⟩|Q remains relatively small for its entire range. We conjecture that the energy

remaining within the flow is kept at long wave lengths similar to the analysis presented for

the diffusive regime of Brethouwer et al. (2007). Accordingly the results highlight the subtle

difference between a ‘quiescent’ in the presence of nearby turbulence to that of steady laminar

flow where the TKE is strictly zero.

Figure 5.4(d-f) shows the stationary conditionally averaged profiles of the dominant terms in

the TKE budget, that being the production term ⟨P ⟩|I , the dissipation rate of kinetic energy

⟨ϵK⟩|I and the buoyancy flux ⟨B⟩|I where P = ⟨−u′w′⟩S. The results show qualitatively

similar results within the intermittent region for all three quantities with the turbulent data-sets

showing clear growth up to a secondary peak at z/δ ≈ 0.8, roughly corresponding to the

location of maximum shear and where the overturning driven shear layer is observed in figure

5.2. As will be shown, this can be directly attributed to the idea of an ‘energetic’ mixing

regime as argued by Mashayek et al. (2021) where the flows self organises to a critical state

such that the mixing is most vigorous and becomes most efficient. Conversely, the three

quantities within quiescent data set remain relatively negligible and trend towards a constant

limit with increasing distance from the free surface.

Figure 5.4(g) shows the profiles of the ratio ⟨P ⟩|I/(⟨B⟩|I + ⟨ϵK⟩|I) which represents a

measure of how close the flow is to a state of local energetic equilibrium. For horizontal

layers where the ratio is unity we expect the local flow dynamics to be representative of an

instance of homogeneous flow such that local scaling and parametrization becomes valid. We

observe that the ‘turbulent’ flow exists in a state of local equilibrium for the majority of the

channel depth and this region has a slightly greater vertical extent relative to the full data set

as the quasi-laminar quiescent contributions are filtered out. Accordingly we define ze as

listed in table 2.1 as the upper vertical intercept for which the local equilibrium assumption

holds true such that ⟨P ⟩|T/(⟨B⟩|T + ⟨ϵK⟩|T ) ≈ 1 and where we expect negligible influence

over local flow dynamics from the confinement effects of the upper boundary which remains

poorly understood (Flores et al., 2017). For the other simulations not presented here we

note similar regions develop where the local equilibrium assumption is valid, albeit with
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different individual values of ze due the varying thickness of the upper fully quiescent regions

as the quasi-laminar flow is unable to produce enough TKE to maintain local equilibrium. In

agreement with this, we observe that in the quiescent regions where the turbulent fluxes are

almost fully suppressed, the local equilibrium assumption becomes strictly invalid for all z.

5.4.2 Gradient Richardson number and ‘marginal instability’

Through separation of the turbulent and quiescent data sets we can define a conditionally

averaged gradient Richardson number of the form

⟨Rig⟩|I =
⟨N2⟩|I
⟨S2⟩|I

(5.11)

Figures 5.5(a,b) show the quasi-stationary and conditionally averaged vertical profiles of the

gradient Richardson number for the ‘turbulent’ ⟨Rig⟩|T and ‘quiescent’ data sets ⟨Rig⟩|Q for

all simulations. For reference we include the full data-set (dashed line of same colour) on

both plots.

From the results we observe that even though the mean stratification and shear vary appreciably

over the intermittent region as seen in figures 5.4(a,b), Rig shows relatively small variation

from its full data-set values as the mean profiles of N,S evolve proportionally in the turbulent

and quiescent regions. Similar to past results of open channel and Poiseille flow (Armenio &

Sarkar, 2002; García-Villalba & del Álamo, 2011; Williamson et al., 2015), we observe the

core of the channel which directly corresponds to the region of intermittency equilibrates to a

constant critical value of approximately Rig,c ≈ 0.2. Towards the free surface where B and

M are comprised almost entirely through the molecular terms, Rig grows rapidly large as the

upper boundary condition dictates the mean gradient profiles of S and N through (5.9).

A key finding from these results is that although the profiles of ⟨Rig⟩|T and ⟨Rig⟩|Q are

qualitatively similar in the region of intermittency, the turbulent data set is marginally smaller

than the visually estimated asymptotic value of Rig,c ≈ 0.2, whilst the quiescent data set is

marginally larger. To show this more clearly, figure 5.5(c) shows the ratio of ⟨Rig⟩|T/⟨Rig⟩|Q
plotted against z within the region of intermittency of 0.05 ≤ γ ≤ 0.95. The results



5.4 VERTICAL DISTRIBUTION OF CONDITIONALLY AVERAGED FLOW PROPERTIES 141

(a) (b)

(c) (d)

FIGURE 5.5: Stationary vertical profiles of: (a) the ‘turbulent’ conditionally
averaged gradient Richardson number ⟨Rig⟩|T (b) the ‘quiescent’ condition-
ally averaged gradient Richardson number ⟨Rig⟩|Q. Vertical dashed line in
(a,b) indicates Rig = 0.2. Dotted lines of same colour depict full data sets
in both figures. Turbulent and quiescent data sets are cutoff at γ < 0.05
and γ > 0.95 respectively. (c) Ratio of the turbulent to quiescent gradient
Richardson numbers ⟨Rig⟩|T/Rig⟩|Q plotted against z within the vertical range
corresponding to 0.05 ≤ γ ≤ 0.95. (d) The ’full’ unconditionally averaged
gradient Richardon number ⟨Rig⟩|F plotted against the corresponding turbu-
lent fraction γ. Shading corresponds to ± one standard deviation. Note the
vertical scale in (c) is different to (a,b,d)

clearly show that sufficiently far from the upper boundary the ratio approaches a constant of

approximately 0.8 for all simulations, regardless of the external parameter set. The results

hence provide strong evidence for the ‘marginal instability’ hypothesis of Thorpe & Liu

(2009). As outlined in §5.1, the underlying theory being that the mean shear and stratification
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self-modulate in a cycle between states of marginal stability and instability. Under the

assumption that Rig,c ≈ 0.2 represents some critical measure of stability for our particular

flow, our results suggest that the turbulent flow exists in an energetic and marginally unstable

state prone to the formation of local instabilities. Meanwhile the quiescent flow remains

suppressed, yet exists in a state where a marginal acceleration of the flow and increase in

mean shear reverts the flow back to an unstable state defined by Rig < Rig,c. Considering

the distinct inhomogeneity of the S,N vertical profiles for our flow, our results present very

strong evidence for this self-modulating behaviour.

A further and crucial observation is that this critical state defined by Rig = Rig,c only occurs

within regions of intermittency. To make this clear we plot the stationary values of ⟨Rig⟩|F
against corresponding turbulent fraction γ for a given depth in figure 5.5(d). The results

clearly show that the transition to Rig ≈ 0.2 occurs for all simulations at precisely the location

where intermittency is introduced into the flow such that γ becomes less than unity. The

results hence suggest that for our flow, criticality and intermittency are fundamentally linked

as a critical Rig represents a saturated state past which the stationary flow cannot sustain

turbulence. The results hence present strong arguments for the theory of Thorpe & Liu (2009)

suggesting that past observations of a stationary and critical gradient Richardson number are

indeed linked to the stability of the local flow.

5.4.3 Turbulent Froude number and the mixing efficiency

As outlined in §5.1 one of the core aims of this study is to identify the effect of intermittency

on the scaling arguments of Maffioli et al. (2016) and Garanaik & Venayagamoorthy (2019)

that suggest the flux coefficient Γ trends towards a constant asymptotic value in the limit of

Fr ≪ O(1). Initially we consider the conditionally averaged vertical profiles of Fr and Γ.

We hence explicitly define the conditionally averaged measures of ⟨Fr⟩|I and ⟨Γ⟩|I of the

form

⟨Fr⟩|I =
⟨ϵK⟩|I

⟨N⟩|I⟨EK⟩|I
, ⟨Γ⟩|I =

⟨B⟩|I
⟨ϵK⟩|I

, (5.12a, b)



5.4 VERTICAL DISTRIBUTION OF CONDITIONALLY AVERAGED FLOW PROPERTIES 143

(a) (b)

(c) (d)

-0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

FIGURE 5.6: Stationary vertical profiles of ‘turbulent’ and ‘quiescent’ con-
ditionally averaged: (a,b) Turbulent Froude number ⟨Fr⟩|I . Vertical dashed
line corresponds to Fr = 0.3. (c,d) Flux coefficient Γ. Vertical dashed line
corresponds to Γ = 0.2 (d-f) Same as for (a-c) but the ‘quiescent data sets’.
Turbulent and quiescent data sets are cutoff at γ < 0.05 and γ > 0.95 re-
spectively. Shading where presented corresponds to ± one standard deviation.
Shading not included in (c,d) due to excessive noise.

Figures 5.6(a,b) show the stationary vertical profiles of Fr within the turbulent and quiescent

data sets respectively. For reference, the vertical profiles of the full data set of each simulation

are plotted as the dashed lines of the same colour on all figures.

We observe the distinct trend that irrespective of the external parameter set and the subsequent

range of Fr for the full data-set, the Froude number for the ‘turbulent’ data set appears

to assymptote towards a lower critical limit of Frc ≈ 0.3. The critical value being in

direct agreement of the value for the maximum mixing efficiency within the homogeneous
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simulations of Maffioli et al. (2016) and the value at which in §4 we observe the transition

to the ‘saturated’ constant Γ regime. Accordingly, this result adds further evidence to the

hypothesis of self-organized criticality of stratified shear flow, as the turbulent flow naturally

converges towards an optimal or critical state that facilitates conditions for relatively ‘efficient’

overturning induced mixing (Thorpe & Liu, 2009; Mashayek et al., 2017, 2021).

We note that similar to the results regarding Rig in figure 5.5, the flow obtains Fr ≈ Frc at

the location in the flow where intermittency becomes appreciable. Furthermore, as observed in

figure 5.3, the intermittency profile displays a clear dependence on Λ+ and hence ReB in direct

agreement with the theory off PKTSC16. Accordingly our results which suggest criticality

and intermittency are fundamentally linked for our flow, present compelling evidence for the

arguments of Caulfield (2021) that active vigorous turbulence in stratified sheared flow may

not be able to access the LAST regime and should not be considered ‘strongly stratified’ as

the underlying requirements of ReB ≫ O(1) and Fr ≪ O(1) are inherently unsatisfied.

Conversely, the quiescent vertical profiles of Fr essentially follow that of the full data set as

the turbulent properties (ϵK , EK) go towards zero and the parameters become predominantly

defined by the shape of the vertical profile of the background stratification N . We observe

that similarly to the lower limit for the turbulent data set, Fr appears to have an analogous

asymptotic upper limits within the quiescent regime of Fr ≈ 0.3. This is conceptually

consistent with the underlying theme of criticality in stratified shear flow and our analysis in

§4 that shows a functional relationship between Fr and Rig. Accordingly finite bounds must

exist on Fr within the turbulent and quiescent regions such that the respective measurements

of Rig remain in a marginally unstable or stable state.

Figures 5.6(c,d) show the stationary vertical profiles of Γ within the turbulent and quiescent

data sets respectively. Again, the vertical profiles of the full data set of each simulation are

plotted as the dashed lines of the same colour on all figures.

From the results we observe that the variation in Γ between the conditionally averaged and

full data-sets is relatively subtle as the qualitative behaviour remains essentially the same.

However within the region of intermittency it is clear that the ‘turbulent’ mixing efficiency
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is slightly larger than the full data. In particular this variation is most pronounced at the

secondary energetic peak corresponding to the shear mixing layer separating the turbulent

and quiescent regimes. This again directly corresponds to a critical state and the ‘optimal’

energetic mixing regime described above.

Conversely, the results show that for the majority of the intermittent region, measurements

of Γ in the quiescent regime are relatively smaller than the full data set as the quasi-laminar

flow is not able to mix the flow as efficiently. We note however, with increasing distance from

the free surface or analogously as the turbulent fraction γ → 1, Γ within the quiescent flow

grows larger and exceeds the full data set. As observed in Smith et al. (2021) in quiescent

regions described by low ReB, even as ϵK goes towards zero the diapycnal flux may not

fully suppressed resulting in high readings of Γ. Furthermore we note that this occurs at

the lower fringes of the intermittent region where the quiescent data set is relatively sparse

and measurements of B become very noisy resulting in large fluctuations of Γ. It is also

worth noting that the corresponding ‘quiescent’ Froude number for these higher values is

appreciably smaller than that of the full or turbulent data sets for the same vertical location.

5.4.4 Turbulent/Quiescent interface coordinate system

A key observation from the flow visualizations in figure 5.2 and the vertical profiles of

turbulent fraction γ in figure 5.3 is that the intermittency of the flow is largely defined by

an upper quasi-laminar quiescent layer separated from the lower turbulent channel by a

deformed horizontal interface. The exception to this being occasional detached turbulent

overturning structures within the quiescent layer and localised pockets of quiescent fluid

within the turbulent flow. We can hence consider the vertical distribution of flow properties

and non-dimensional parameters from the reference coordinate system of the interface location

analogous to past studies of turbulent/non-turbulent interface flows (Watanabe et al., 2016).

Within the horizontal (x− y) plane we hence define the vertical reference coordinate of the

turbulent/quiescent interface zi(x, y) = 0 as the upper most location that vertically separates

an upper ‘quiescent’ and lower ‘turbulent’ location according to the algorithm defined in
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§5.3. To ensure that we do not define the interface along a separated overturning structure

we place an additional constraint such that along a one dimensional search vector of length

L/δ = 0.2 in the −z direction originating at zi(x, y) = 0, more than half of the flow must be

‘turbulent’. The choice of L/δ = 0.2 being the visually estimated vertical size of the largest

turbulent structures within the central region of intermittency. Dimensional flow quantities

(i.e. N,S,EK , ϵK at a given x, y, z, t are hence calculated cell-wise relative to their reference

interface location zi(x, y, t) = 0 and subsequently bin-averaged into vertical bins of size

∆z+i = 4, 2.5 for the Reτ = 400, 900 cases respectively which correspond to the coarsest

vertical grid size. Non dimensional parameters for a given zi are constructed out of the

bin-averaged dimensional quantities.

Figures 5.7(a-c) shows the stationary vertical profiles of the dominant energetic terms

P ,B, ϵK , normalized by their mean interfacial values P (zi = 0), B(zi = 0), ϵK(zi = 0)

in the zi reference coordinate system for all simulations. As the turbulent/quiescent interface

is markedly defined by distinct overturning structures, we hypothesize that the size of the

interfacial layer will scale with the size of the overturns. Accordingly, we normalize zi by

LE(zi = 0) calculated at the interface, where LE is well known Ellison length describing the

characteristic size of the overturns in a stratified fluid (Ellison, 1957; Shih et al., 2005; Mater

et al., 2013), defined as:

LE =
b′rms

N2
. (5.13)

The results show clear behaviour of two distinctly different flow regimes separated by an

interfacial layer where the properties rapidly change, showing qualitatively similar behaviour

to the results of Watanabe et al. (2016). Above the interface, the energetic terms go to zero

as the flow approaches quasi-laminar conditions. Below the interface the flow is actively

turbulent, in particular the mixing being most energetic just below the interfacial layer as seen

from the peak in B. Crucially, the interfacial layer does appear to characterized by the Ellison

length, with thickness of approximately 4LE/δ.

We note that on the ‘turbulent-side’ of the interface the energetic quantities follow individual

trajectories with each simulations. This is unsurprising as the location of the vertical region of

intermittency varies with each simulation, which combined with the vertically inhomogeneous
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FIGURE 5.7: Stationary vertical profiles in the zi turbulent/quiescent interface
system of: (a) Turbulent kinetic energy production P , (b) Buoyancy flux B.
(c) Turbulent kinetic energy dissipation rate ϵK . (d) Local equilibrium ratio
P/(B + ϵK). Dimensional quantities in (a-c) normalized by their respective
mid-interface values at zi = 0. For all figures: vertical interface location
zi normalized by the Ellison length calculated at the centre of the interface.
Vertical dashed lines indicate a value of unity. Horizontal dashed lines indicate
values of zi/LE = −2, 0, 2. Shading where presented corresponds to ± one
standard deviation.

nature of the depth dependant mean shear and stratification profiles causes variation in the

energetic quantities with respect to the turbulent/quiescent interface.

Figure 5.7(d) shows the stationary vertical profiles of the local equilibrium ratio P/(B + ϵK)

in the zi coordinate system. Note that the data in the positive zi direction has been abbreviated

to minimize excessively noise measurements of the local equilibrium ratio as all terms become
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(c) (d)

FIGURE 5.8: Stationary vertical profiles in the zi turbulent/quiescent interface
system of: (a) Buoyancy Reynolds number ReB , vertical dashed lines indicate
ReB = 1, 10. (b) Gradient Richardson number Rig, vertical dashed line
indicate Rig = 0.2 (c) Turbulent Froude number Fr, vertical dashed line
indicate Fr = 0.3. (d) Flux coefficient Γ, vertical dashed line indicate Γ = 0.2.
For all figures: vertical interface location zi normalized by the Ellison length
calculated at the centre of the interface. Horizontal dashed lines indicate
values of zi/LE = −2, 0, 2. Shading where presented corresponds to ± one
standard deviation and has been abbreviated to minimize excessive noise in
the quiescent region. Legend same as figure 5.7.

small and minor fluctuations in any quantity cause large variations in the local equilibrium

ratio. A state of local energetic equilibrium is only evident for the actively turbulent flow as

the suppressed momentum flux in the quiescent layer is unable to extract sufficient turbulent

kinetic energy from the mean shear to maintain local equilibrium in agreement with our

analysis in §5.4.
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We again normalize zi by LE(zi = 0) to demonstrate self-similar behaviour of the interfacial

layer. Figure 5.8(a) shows the stationary profiles of the buoyancy Reynolds number ReB(zi).

The results are well collapsed for all simulations. At the quiescent-side boundary of the

interfacial layer, the flow obtains ReB ≈ O(1) confirming the observation of a quasi-laminar

or diffusive state. Conversely at turbulent-side boundary of the interfacial layer, the flow

obtains ReB ≈ O(10). The results are consistent with the assumptions of PKTSC16 and past

work on stratified flows discussed in §5.3 regarding the lower ‘local’ limit of ReB ≈ 10 for

actively turbulent flow.

Figure 5.8(b) shows the stationary profiles of the gradient Richardson number Rig(zi). The

results clearly show support for our argument that the criticality of the flow is inherently

linked to the intermittency as the flow deviates from its critical state of Rig ≈ 0.2 at precisely

the interface location zi = 0 for all simulations. Above the interface Rig rapidly grows as

the flow approaches stable and quasi-laminar conditions. Further evidence to support this

idea is seen in figure 5.8(c), which analogously shows that through the stationary profiles of

the turbulent Froude number Fr(zi) that the flow similarly departs from its critical state of

Fr ≈ 0.3 within the interfacial layer again suggesting that actively turbulent shear flow is

unable to access Fr ≪ O(1) locally.

Figure 5.8(d) shows the stationary profiles of the flux coefficient Γ(zi). We interestingly

observe non-monotonic behaviour of Γ with zi. We note that the mixing is most efficient

with a clear peak of Γ ≈ 0.25 at the lower turbulent-side boundary of the interfacial layer

at zi/LE = −2 rather than at zi = 0, corresponding to the peak in B observed in figure

5.7(b) and where Rig and Fr obtain their critical values. Past this point, as ReB < O(10)

and the flow begins to enter a diffusive regime which is not able to mix the buoyancy field as

efficiently, Γ drops slightly and approaches a constant value (albeit with a significant amount

of scatter) within the quiescent regime. This suggests the asymptotic nature of a ‘saturated’ Γ

at low Fr is linked to the quiescent flow. We will explore this concept in more detail in §5.5.

We again observe that on the ‘turbulent-side’ of the interface the profiles the mixing diagnostics

do not universally collapse when normalized by the interfacial value of LE . In particular, this

is accentuated in our R900L1 results. This can be explained if we consider that for all cases
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the transition to the intermittent interfacial region occurs at ReB ≈ 10, consistent with the

underlying theory and our analysis so far. Furthermore, we recall that ReB can be defined as

a ratio of length scales such that

ReB =

(
LO

LK

)4/3

, (5.14)

where LO = (ϵK/N
3)1/2 is the Ozmidov length roughly defining the upper limit of the inertial

subrange in stratified flow and LK = (ν3/ϵK)
1/4 is the Kolmogorov micro scale. ReB hence

represents an estimate of the isotropic inertial subrange of the flow. Hence if we assume

LK decreases with increasing Reτ , then to maintain ReB ≈ 10 we expect LO to similarly

decrease. Furthermore as argued by Mashayek et al. (2021) and as will be shown directly in

§5.5, we expect this region of ‘optimal’ or critical mixing to be defined by LE ≈ LO such

that the injection of energy into the flow through overturns is precisely at the wavelength

corresponding to the upper limit of the inertial subrange. Hence the interfacial value of LE

accordingly shrinks with increasing Reτ . The vertical profiles of the Reτ = 900 appear more

‘stretched’ than the Reτ = 400 cases. However the significant takeaway from the results is

that regardless of Reynolds number, the behaviour of the energetic quantities and mixing

diagnostics within the interfacial layer as seen in figures 5.7,5.8 remains self-similar when

scaled with the interfacial mean value of LE .

5.5 Effect of intermittency on a Fr based parametrization of

Γ

5.5.1 Horizontal averages

We now consider how the spatially varying distributions of the conditionally and horizontally

averaged values of Fr and Γ correlate and to what effect the parametrization of the mixing

efficiency is effected by highly intermittent flow. We note that a caveat to the use of our

conditionally averaged data sets in this section is that the ‘turbulent’ and ’quiescent’ patches

within the horizontal layers for which statistics are calculated, must be larger than all the



5.5 EFFECT OF INTERMITTENCY ON A Fr BASED PARAMETRIZATION OF Γ 151

(a) (b)

FIGURE 5.9: Stationary vertical profiles of the Ellison length LE , shear mix-
ing length LS , Ozmidov length LO, turbulent inertial length LI normalized
by the channel height δ. (a) ‘Turbulent’ data set. (b) ‘Quiescent’ data set.
Turbulent and quiescent data sets are cutoff at γ < 0.05 and γ > 0.95 respect-
ively. Shading where presented corresponds to ± one standard deviation. Data
presented for case R900L1 in both figures.

physically relevant scales such that the two regions may be seen as self-contained. If this

condition is met, we conceptually expect the two flow regimes to be independent of one

another and local measures of Fr to correlate with local measures of Γ.

To demonstrate that this is strictly true for our flow, we consider that the largest length scales

most physically relevant to the mixing dynamics of our flow are: the Ellison length LE

defining the size of the overturns, the mean shear mixing length LS , the Ozmidov length LO

defining the upper limit of the inertial subrange and the inertial turbulent length LI roughly

characterizing the integral scale of the flow. We hence explicitly define the above conditionally

averaged lengths:

⟨LE⟩|I =
⟨b′rms⟩|I
⟨N2⟩|I

, ⟨LS⟩|I =
⟨E1/2

K ⟩|I
⟨S⟩|I

, (5.15a, b)

and

⟨LO⟩|I =
(

⟨ϵK⟩|I
⟨N3⟩|I⟨EK⟩|I

)1/2

, ⟨LI⟩|I =
⟨E3/2

K ⟩|I
⟨ϵK⟩|I

, (5.15a, b)

Figures 5.9(a,b) respectively show the stationary vertical profiles of the turbulent and quiescent

length scales LE, LS, LO, LI normalized by the domain height δ for case R900L1. From the
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results it is clear that for both data sets, within the region of intermittency all the normalized

lengths are of size L/δ ≈ O(10−1). In particular we note that within the ‘turbulent’ data sets

LE, LS and LO appear to be of similar scale and approach an asymptotic limit in agreement

with the concept of criticality as argued by Mashayek et al. (2021) where all three length

scales equate. Conversely, from our visualizations in figure 5.2 it is clear that with the

exception of small isolated overturning events, contiguous turbulent or quiescent patches

are of size L/δ ≈ O(1). Furthermore, as the turbulent and quiescent flow regions may be

loosely considered two large dynamically distinct regions separated by a deformed horizontal

interface, the results confirm our underlying assumption that the local dynamics describing

both regions are self-contained.

We have used a singular case R900L1 to show this result for brevity. Although the size of the

four aforementioned length scales vary slightly with each simulation, they all remain of size

L/δ ≈ O(10−1) validating our assumption of self-contained flow within the quiescent and

turbulent patches.

Figure 5.10 shows the bin averaged values of instantaneous measurements of ⟨Γ(z, t)⟩|I ,

plotted against their corresponding bins of ⟨Fr⟩|I for each individual simulation. To show the

spread of the instantaneous data, we plot the two-dimensional probability density functions

(2D p.d.f.s) of the same variables constructed from all simulations as a single 2D p.d.f. in the

insert of the figures. To demonstrate the invariance of our results to time, we include data

for both the temporally evolving and quasi-stationary state such that both the bin averaged

values and p.d.f.s are constructed for data where t/T 0
τ > 1. Furthermore, to ensure our results

are not susceptible to the confinement effects from the top and bottom boundaries, we limit

the vertical range from which we construct our figures between 0.2δ < z < ze. Here z = 0.2

corresponds to the approximate lower bound in which Williamson et al. (2015) observe a

transition of the flow to a state of local equilibrium such that P ≈ B+ ϵK for their Reτ = 395

simulations. Meanwhile ze as defined in §5.4 varies with each simulation. Accordingly within

this vertical range we expect the mixing dynamics of the flow to be free from boundary effects

and to be characterized by local processes.
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(a)

(b)

(c)

FIGURE 5.10: Bin averaged values and 2D p.d.f.s of the conditionally aver-
aged flux coefficient ⟨Γ⟩|I , plotted against corresponding bins of conditionally
averaged ⟨Fr⟩|I . Bin averaged values and 2D p.d.f. constructed with the
temporal range of t/T 0

τ > 1 and the vertical range of 0.2δ < z < zle. (a)
‘Full’ data set. (b) ‘Turbulent’ data set. (c) ‘Quiescent data set’. For (a,b)
solid diagonal lines indicate Γ ∝ Fr−1 and Γ ∝ Fr−2. Dashed vertical lines
indicate Fr = 0.3, 1. Horizontal thin lines in all figures indicate Γ = 0.2, 0.33.
Legend same as figure 5.3(b)
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For reference, figure 5.10(a) shows the the correlations between Γ with Fr for the ‘full’

data set. The results show the same qualitative behaviour as shown in figure 4.4, with a

distinct collapse of the data along the lines of scaling as proposed by Maffioli et al. (2016)

and Garanaik & Venayagamoorthy (2019). For Fr ≳ 1 the flow displays a Γ ∼ Fr−2

scaling consistent with the arguments of Maffioli et al. (2016) for ‘weakly stratified’ flow.

For 0.3 ≲ Fr ≲ 1 we observe the ‘moderately stratified Γ ∼ Fr−1 scaling of Garanaik

& Venayagamoorthy (2019). Importantly we observe that similarly to the results presented

in §4, the full data set displays an asymptotic Γ regime for Fr < 0.3 which corresponds

directly to the regions of the flow where we observe strong intermittency. Within this regime

Γ approaches a constant value within the bounds of Γ = 0.2 as predicted by Osborn (1980)

and Γ = 0.33 as predicted for the optimal mixing regime of Mashayek et al. (2021).

Figure 5.10(b) shows the correlations between Fr and Γ for the turbulent data set and the

comparison to the full data set is striking. The results clearly show that within the turbulent

data set there is no indication of a constant Γ regime. Rather for flow where Fr ≲ 1, the

mixing efficiency continues to display an inverse correlation with Fr, such that the Γ ∼ Fr−1

‘intermediate’ scaling of GV19 clearly holds for an entire decade of Fr with a distinct collapse

of the data for all simulations even for Fr < Frc. This is again seemingly in agreement with

the arguments of Caulfield (2021) suggesting turbulent stratified shear flow is unable to access

a strongly stratified buoyancy dominated regime. However as discussed in Mashayek et al.

(2021), the emergence of an ‘intermediate’ Γ ∼ Fr−1 mixing regime under the assumption of

Garanaik & Venayagamoorthy (2019) that buoyancy influences the evolution of B to leading

order appears somewhat in contradiction of their primary assumption underlying the theory

of self-organized criticality of stratified shear flow. Being that for the entire mixing life cycle

of a shear driven overturning event, the flow is weakly stratified in the sense that the mixing

of the buoyancy field defined through B is ‘slaved’ to that of momentum and hence the shear

and inertial forces of the flow. We will return to this idea in more detail in §5.5.3.

It is important however to consider our distinct observation from figure 5.5(a) which shows

that for the stationary case and when considering only the ‘turbulent’ flow, Fr approaches its

clear critical limit of Frc = 0.3. For our results this directly corresponds to a measurement of
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Γ = 0.2 − 0.33 conceptually consistent with the critical mixing regime of Mashayek et al.

(2021) and with numerous studies for the saturated value of the mixing efficiency in the limit

of strong stratification (Osborn, 1980; Ivey & Imberger, 1991; Shih et al., 2005; Maffioli et al.,

2016; Portwood et al., 2019; Howland et al., 2020). This is reflected by the high concentration

of data on the 2D p.d.f at the critical point in the flow.

In contrast, we note that the instances where Fr < 0.3 and we observe higher measurements

of Γ are significantly less frequent and and can be interpreted as transient mixing events at

strong levels of stratification. This interpretation of the results is conceptually consistent with

the findings of numerous stratified free shear layer studies that show the mixing efficiency

grows very large during an initial ‘roll-up’ of a KHI mixing event in a quiescent and hence

more strongly stratified background fluid (Caulfield & Peltier, 2000; Peltier & Caulfield, 2003;

Salehipour et al., 2015; Mashayek et al., 2017).

In stark contrast to the above results, figures 5.10(c) clearly show that within the quiescent flow,

Γ does not show any functional relationship on Fr. Rather, the mixing efficiency appears to

remain constant such that Γ ranges between 0.2− 0.33 for the full parameter range presented.

We explain this by employing the scaling arguments of Garanaik & Venayagamoorthy (2019).

Within this regime the flow is essentially quasi-laminar such that buoyancy has almost entirely

suppressed turbulent motions and ReB ≲ O(1). Accordingly we expect, shear and inertial

forces to be negligible and all dynamics of the flow to be characterized by processes occurring

at the buoyancy time scale TN = 1/N . This leads to their scaling argument of

B ∼ ϵK ∼ w′2

TN

(5.16)

and subsequently

Γ =
B

ϵK
∼ w′2TN

w′2TN

= const. (5.17)

We note within this quiescent data set there is a significant amount of spread in the results as

B and ϵK approach zero and small fluctuations in either quantities cause large variations in Γ.

However, the main observation from the results that Γ appears independent of Fr within the

quiescent regions of the flow remains distinctly clear.



156 5 INTERMITTENCY AND CRITICAL MIXING IN STRATIFIED OPEN CHANNEL FLOW

The results clearly show that at our parameter range and for our flow configuration, flow

described by a global (unconditionally averaged) Fr < Frc and hence low ReB corresponds

to highly intermittent flow with appreciable contributions from both the turbulent and quiescent

data sets. Accordingly for our flow the transition observed in figures 5.10(a) at the critical

point of Frc = 0.3 from the Γ ∼ Fr−1 regime to a ‘saturated’ constant Γ regime occurs

due to the increasing contributions from the quiescent flow regions leading to a plateau in

a ‘global’ measure of Γ. Hence assuming that Fr ≈ 0.3 represents a critical lower bound

for our sheared flow in the same sense that Rig,c ≈ 0.2 represents an upper bound, the

results suggest that the manifestation of a constant Γ regime within stratified shear flows in

the limit of low Fr as argued by Maffioli et al. (2016) and Garanaik & Venayagamoorthy

(2019) occurs directly due to the intermittency of the flow as the ‘saturated’ flow cannot

exceed critical conditions. The results again provide clear evidence for the concept that the

self organized criticality of stratified shear flow is linked with and arises directly due to the

strong spatio-temporal intermittency of the flow. Although this concept has been previously

discussed in past studies (Caulfield, 2020, 2021; Mashayek et al., 2021), to our knowledge

ours is the first study to directly demonstrate this with DNS data. Furthermore, considering

the collapse of the results irrespective of the external parameter set, time or vertical location,

we believe this behaviour will display a degree of universality for a variety of forced stratified

shear flows.

Furthermore, it becomes clear that for rare transient mixing events where Fr < Frc, Γ can

significantly vary for a single measured value of Fr depending on whether the composition

of the flow is turbulent, quiescent or contains varied contributions from both flow regimes.

5.5.2 Interface based parametrization within the region of intermittency

We also investigate a Fr based parametrization of Γ within the turbulent/quiescent interface

based coordinate system. Figure 5.11 shows the bin averaged values and the 2D p.d.f of

⟨Γ⟩|(zi, t) plotted against corresponding bins of ⟨Fr⟩|(zi, t) constructed out of instantaneous

measurements of Γ(zi, t) and Fr(zi, t), which are constructed from the instantaneous zi bin

averaged dimensional quantities, i.e. B(zi, t), ϵK(zi, t), EK(zi, t), N(zi, t).
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FIGURE 5.11: Bin averaged values and 2D p.d.f.s of the flux coefficient
⟨Γ⟩|I(zi), plotted against corresponding bins of conditionally averaged
⟨Fr⟩|I(zi) calculated within the zi turbulent/quiescent interface based co-
ordinate system. Bin averaged values and 2D p.d.f. constructed with the
temporal range of t/T 0

τ > 1. Solid diagonal lines indicate Γ ∝ Fr−1 and
Γ ∝ Fr−2. Dashed vertical lines indicate Fr = 0.3, 1. Horizontal thin lines
in all figures indicate Γ = 0.2, 0.33. Legend same as figure 5.3(b)

However in contrast to our horizontally averaged results we observe non-monotonic behaviour

of Γ in the left flank of the figure. Here the critical value of Fr(zi) ≈ 0.3 corresponds

to a clear peak in the mixing efficiency consistent with the underlying theme of this study

being the concept of optimal and most ‘efficient’ mixing under critical conditions defined by

Fr = 0.3. Past this critical point, the mixing efficiency drops off slightly before plateauing to

an ‘Osborne’ constant value at approximately Γ ≈ 0.2, although this is somewhat unclear due

to the significant scatter in the measurements of Γ within this regime.

The results here are consistent with the findings and arguments of Maffioli et al. (2016) who

similarly find a peak in the mixing efficiency at Fr = 0.3 in their high resolution DNS

study. We note that although the nature of the mixing in their body-forced homogeneous

DNS is appreciably different to ours being driven by the mean shear, we find their results

conceptually consistent with our hypothesis that intermittency in stratified flows is responsible

for the asymptotic nature of Γ at low Fr. In their study, flow for which Fr < 0.3 and where

they observe a constant Γ regime corresponds to flow where ReB ≈ O(10) and we expect

strong intermittency. Conversely their Fr = 0.3 case where they observe a peak in mixing
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efficiency corresponds to ReB ≈ O(103) and hence we expect intermittency to be negligible.

Accordingly, the results presented in this section provide further strong evidence not only for

the concept of self organized criticality manifesting due to the intermittency of the flow. But

also for our hypothesis that within stratified flow the asymptotic behaviour of Γ for Fr ≲ 0.3

comes directly as a result of the intermittency and contributions from quasi-laminar quiescent

flow. How this result pertains to a wide variety of stratified flows and at significantly higher

Reynolds presents clear direction for future high resolution DNS studies.

5.5.3 Underlying assumptions of the ‘intermediate’ mixing regime

In light of our results in figures 5.10, 5.11 and the discussion presented in Mashayek et al.

(2021) (henceforth denoted as MCA21 in this chapter) regarding the potential discrepancies

of the ‘intermediate’ Γ ∼ Fr−1 scaling of Garanaik & Venayagamoorthy (2019) (henceforth

denoted as GV19 in this chapter) and their assumptions of stratified shear flow, we explore

this regime and the scaling arguments of both studies. In particular our data-set for which the

majority of the flow falls within 0.3 ≲ Fr ≲ 1 ‘intermediate’ regime within a quasi-steady

state allows us to explore this in more detail than previously reported in literature.

Central to the scaling arguments of MCA21 are two key assumptions. Firstly, that within the

critical mixing regime, the flow approaches a critical state defined by Rig ≈ Rig,c. Secondly,

that buoyancy in stratified shear flows inherently never dominates the dynamics of the flow

such that the mixing of the buoyancy field is ‘slaved’ to that of the momentum field resulting

in PrT = KM/Kρ ≈ 1 for all stages of the shear instability mixing cycle. Where KM and

Kρ are the eddy viscosity and diffusivity defined as

KM =
⟨−u′w′⟩

S
, Kρ =

B

N2
. (5.18a, b)

Figures 5.12(a,b) respectively show the ‘turbulent’ conditionally bin- averaged values and

2D p.d.f.s of ⟨Rig⟩|T and ⟨PrT ⟩|T plotted against corresponding bins of ⟨Fr⟩|T for all

simulations. The plots are constructed analogously to figure 5.10. The results distinctly
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(a)

(b)

FIGURE 5.12: Bin averaged values and 2D p.d.f.s of the (a) the conditionally
averaged gradient Richardson number within the turbulent data set ⟨Rig⟩|T ,
thin horizontal line indicates Rig = 0.2. Diagonal lines indicate Rig ∝
Fr−1 and Rig ∝ Fr−2. (b) conditionally averaged turbulent Prandtl number
within the turbulent data set ⟨PrT ⟩|T plotted against corresponding bins of
conditionally averaged ⟨Fr⟩|T , thin horizontal line indicates PrT = 1. Bin
averaged values and 2D p.d.f. constructed with the temporal range of t/T 0

τ > 1
and the vertical range of 0.2δ < z < zle. Vertical dashed lines indicate
Fr = 0.3, 1. Legend same as figure 5.3(b).

present confirmation of the two assumptions of MCA21. In agreement with our past analysis,

it is clear from the high concentration of data that the flow organizes towards a critical point

of Fr = Frc ≈ 0.3 and Rig = Rig,c ≈ 0.2. For Fr ≥ 1, we obtain the classic scaling of

Rig ∼ Fr−2 for weakly stratified flow (Maffioli et al., 2016; Zhou et al., 2017a). And for

the ‘intermediate’ regime of 0.3 ≲ Fr ≲ 1 and, the flow displays the transitional scaling of

Rig ∼ Fr−1 between the weakly stratified and critical states as derived in §4. For Fr ≲ 0.3
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we observe that Rig seems to remain constant and become independent of Fr in agreement

with our scaling analysis in §4. Furthermore, from the results it is clear that for all Fr, we

obtain PrT ≈ 1 as argued in MCA21, albeit with significant scatter the the left tail of the

figure for Fr ≲ 0.3 where the data set becomes quite scarce.

As discussed in MCA21, the scaling arguments of GV19 for the intermediate regime of

B ∼ EKN (to be derived in more detail shortly) presents an apparent contradiction of the

PrT ≈ 1 assumption. If we employ this scaling and initially assume that EK ∼ ⟨−u′w′⟩, we

can show that

PrT =
KM

Kρ

=
⟨−u′w′⟩N2

BS
∼ ⟨−u′w′⟩N2

EKNS
∼ N

S
= Ri1/2g . (5.19)

And from the results presented in figure 5.12(a) this implies that PrT has an inverse and

functional relationship with Fr for Fr > 0.3. However, the results in 5.12(b) demonstrate

this to be untrue.

We hence consider the arguments of GV19. They argue that the evolution of the buoyancy

perturbation b′ evolves due to a turbulent vertical displacement of a fluid parcel from its

background stratification such that

b′ ∼ w′N2T∗, (5.20)

where T∗ is the time-scale relative to the mixing dynamics of the local flow. Hence by

multiplying both sides of (5.20) by w′ we can obtain

b′w′ ∼ B ∼ w′2N2T∗ ∼ EKN
2T∗. (5.21)

Accordingly they argue that for the weakly stratified regime, inertial effects are dominant

such that T∗ = TL, where TL = EK/ϵK is the turbulent time scale. And for the ‘intermediate’

regime GV19 propose that buoyancy dominates the evolution of B such that T∗ = TN .

Accordingly they derive

Γ =
B

ϵK
∼ EKN

2TL

ϵK
=

E2
KN

2

ϵ2K
= Fr−2 (5.22)
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for the weakly stratified regime and

Γ =
B

ϵK
∼ EKN

2TN

ϵK
=

EKN

ϵK
= Fr−1 (5.23)

for the intermediate regime. However note that inherent within (5.20) lie two key assumptions.

Firstly, that the separation of vertical and horizontal scales is negligible such that w′2 ∼ EK .

A similar assumption in (5.19) leads to EK ∼ ⟨−u′w′⟩. Secondly considering the statistical

nature of B, that the multiplication of the root-mean-square (rms) values of b′rms and w′
rms

corresponds to the correlation between their local values such that b′rmsw
′
rms ∼ B. We can

directly investigate the validity of these assumptions by defining the ratios

C1 =
w′2

rms

EK

, C2 =
⟨−u′w′⟩
EK

, C3 =
B

b′rmsw
′
rms

. (5.24a, b, c)

To test this figure 5.13 shows the ‘turbulent’ conditionally bin-averaged values and 2D p.d.f.s

of ⟨C1⟩|T , ⟨C2⟩|T and ⟨C3⟩|T plotted against corresponding bins of ⟨Fr⟩|T . For the weakly

stratified case of Fr ≳ 1, the assumptions are clearly valid and all three ratios approach a

constant asymptotic value as buoyancy effects are neglible and the flow remains in a state of

relative isotropy. However for Fr ≲ 1 the assumptions become distinctly invalid as all three

ratios grow smaller with decreasing Fr such that we can empirically observe

C1 ∼ C2 ∼ C3 ∼

 const, F r ≥ 1

Fr1/2, F r ≤ 1.
(5.25)

Conceptually this is consistent with the stratified turbulence theory of Billant & Chomaz

(2001) and Lindborg (2006) if we consider that Fr may be interpreted as a ratio of length

scales such that

Fr =

(
LO

LI

)2/3

, (5.26)

Accordingly as Fr < 1, we obtain LO < LI such that buoyancy begins to constrain the

vertical component of the largest energetic scales leading to large scale anisotropy. Hence

we observe that the vertical and horizontal velocity scales diverge as seen in the evolution of

C1 and C2. Similarly as Fr grows smaller and b′ becomes increasingly effected by motions

due to the resulting internal waves of the stable flow field (Itsweire et al., 1993), we similarly
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(a)

(b)

(c)

FIGURE 5.13: Bin averaged values and 2D p.d.f.s of: (a) ⟨C1⟩|T , (b) ⟨C2⟩|T
and (c) ⟨C3⟩|T as defined in (5.24) within the turbulent data set plotted against
corresponding bins of conditionally averaged ⟨Fr⟩|T . Bin averaged values
and 2D p.d.f. constructed with the temporal range of t/T 0

τ > 1 and the vertical
range of 0.2δ < z < zle. Solid diagonal lines in all figures indicate C ∝ Fr1/2.
Vertical dashed lines indicate Fr = 0.3, 1.Legend same as figure 5.3(b).
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observe C3 to grow smaller. We note that for Fr < 0.3 there is significant scatter in the results

as the data-set becomes sparse, corresponding to the rare high stratification mixing events.

However it is still reasonably clear that a positive correlation continues to exist between

C1, C2, C3 and Fr. These results are consistent with the experimental findings of Ivey &

Imberger (1991) who demonstrate that the correlation coefficient between the vertical density

flux and rms values of vertical velocity and density fluctuations goes to zero as Fr → 0.

We can now rewrite (5.21) explicitly incorporating the above assumptions

B ∼ C1C3EKN
2T∗. (5.27)

Hence if we take the assumption of MCA21 that active turbulence in stratified shear flow may

always be considered ‘weakly stratified’ for all Fr, we take T∗ = TL to obtain

Γ =
B

ϵK
∼ C1C3EKN

2TL

ϵK
= C1C3Fr−2. (5.28)

Accordingly for Fr > 1, the flow approaches relative isotropy and buoyancy acts as a passive

scalar such that C1 ∼ C3 ∼ const and hence we recover the Γ ∼ Fr−2 scaling of Maffioli

et al. (2016) and GV19.

For the 0.3 ≤ Fr ≤ 1 ‘intermediate’ transitional regime, the flow begins to develop the shear

and large scale anisotropy to reach its critical and ‘optimal’ state such that C1 ∼ C3 ∼ Fr1/2.

Accordingly we obtain

Γ ∼ C1C3Fr−2 ∼ Fr1/2Fr1/2Fr−2 ∼ Fr1, (5.29)

the same as the results presented in GV19 and directly supported by our results in this study.

We now directly reconcile this with the primary assumption of MCA21 by rewriting (5.19)

using (5.24) and (5.27) to obtain

PrT =
KM

Kρ

=
−u′w′N2

BS
∼ 1

C1C3

−u′w′

EK

N2

N2

TS

T∗
∼ C2

C1C3

TS

TL

, (5.30)
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where TS = 1/S is the shear time scale. We also recall that Rig and Fr may be interpreted as

a ratio of time scales such that

Rig =
T 2
S

T 2
N

, F r =
TN

TL

. (5.31a, b)

Accordingly from the results in figure 5.9(a) we obtain

Rig ∼ Fr−2 → TS/TL = const, F r ≥ 1 (5.32)

and

Rig ∼ Fr−1 → TS/TL ∼ Fr1/2, 0.3 ≤ Fr ≤ 1. (5.33)

Hence for the Fr ≥ 1 regime we recall that C1 ∼ C2 ∼ C3 ∼ const to obtain

PrT ∼ C2

C1C3

TS

TL

∼ const (5.34)

and for the intermediate regime we recall that C1 ∼ C2 ∼ C3 ∼ Fr1/2 to obtain

PrT ∼ C2

C1C3

TS

TL

∼ Fr1/2

Fr1/2Fr1/2
Fr1/2 ∼ const. (5.35)

This is consistent with our observations that PrT ≈ 1 across both the weakly stratified and

intermediate regimes. Hence we reconcile a Γ ∼ Fr−1 mixing regime with the PrT ≈ 1

assumption of MCA21 by accounting for the large scale anisotropy of the flow at Fr ≲ O(1).

For the super-critical regime of Fr < 0.3 where Rig becomes constant we hence expect no

correlation between TS and TL. Due to the sparsity of data and scatter of our results in figures

5.12 and 5.13 within this regime in our study, it becomes somewhat unclear if PrT would

remain constant with further decreasing Fr. However as Fr ≈ 0.3 represents a critical state

for the stationary flow, we expect the infrequent deviations from this state to be relatively

small and hence the PrT ≈ 1 assumption to hold.

As such our results and analysis directly support the arguments of Caulfield (2021) that

vigorous turbulence in stratified shear flow should never be considered ‘strongly stratified’

in the same sense as the LAST regime where buoyancy effects dominate the flow dynamics

to leading order. However our results distinctly show that for Fr ≤ 1, the assumption that

buoyancy acts purely as a passive scalar is also invalid. The results suggest, that as argued by
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GV19, the emergence of a Γ ∼ Fr−1 intermediate mixing regime indeed manifests due to

buoyancy beginning to influence flow dynamics. However, the results imply that this occurs

due to the secondary effect of buoyancy distorting the large scales of the flow towards an

optimal anisotropic state rather than buoyancy playing a leading order role in the evolution of

b′ and hence B.

5.6 Conclusions

In summary, we have investigated the behaviour of spatio-temporal intermittency in our DNS

of stratified open channel flow due to the suppression of turbulence through the stabilising

effects of buoyancy. In particular our study focuses on the prediction of the vertical intermit-

tency profile and on the effect of the inherent intermittency in stratified shear flows on the

accurate parameterization of the flux coefficient Γ.

By adapting the density inversion criterion method of PKTSC16 to our inhomogeneous

flow we are able to robustly separate the flow into regions of active turbulence defined by

ReB ≳ O(10) and the surrounding quiescent fluid which approaches a quasi-laminar state.

Our method demonstrates that we are able to construct our reference state of ‘fully turbulent’

flow from a single instantaneous realisation of the flow, provided a sufficient vertical range

emerges in the flow where ReB > O(100).

We find our flow configuration modelled as a canonical representation of radiatively heated

stratified river flows in the framework of Williamson et al. (2015) is distinctly defined by

an intermittency profile that is highly inhomogeneous in the vertical direction that results

from the spontaneous formation of an interface separating the upper quiescent flow from the

turbulent bulk flow. We quantify this local intermittency through a depth varying turbulent

volume fraction γ. The flow displays a fully turbulent and weakly stratified lower region near

the wall defined by γ = 1, ReB > O(100) and Fr > O(1). Conversely, at our parameter

range (with the exclusion of our most weakly stratified case case R400L0.5) the region at

the top free surface transitions into a fully quiescent quasi-laminar state defined by γ = 0,

ReB < O(1) and Fr ≪ O(1). The central bulk flow hence develops as region of vertically
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varying intermittency separating the two regions. By applying local Monin-Obhukov scaling

we find that γ is well predicted by a locally defined Obhukov length (normalized in wall

units) Λ+ across all simulations and their respective external bulk parameter set. We find

that in direct agreement with the analysis of Chung & Matheou (2012), the transition away

from the fully turbulent regime occurs at Λ+ ≈ 260, while the flow approaches quasi-laminar

conditions at Λ+ ≈ 2.5. As such our results add further evidence that the Monin-Obhukov

framework is highly applicable for the prediction of intermittency in a variety of stratified

shear flows where the flow exists in a state of balance between the production of turbulence

through the mean shear and suppressing nature of buoyancy and viscosity.

We find that within the region of intermittency, the background stratification N and shear S

are marginally lower in the ‘turbulent’ flow relative to the surrounding quiescent fluid as the

suppression of the turbulent fluxes causes the quiescent flow to develop steeper mean gradients

such that the total buoyancy and momentum fluxes are in balance with the forcing terms of

the flow. Accordingly we find this region to be described by a critical value of Rig,c ≈ 0.2

and where the turbulent and quiescent flow respectively organizes towards local Rig values

marginally smaller and larger than the conceptual critical value for stability suggesting the

flow exists in a state of ‘marginal instability’ as argued by Thorpe & Liu (2009). This

region is notably defined by vigorous overturning shear instability driven mixing that form

in these critical conditions and where we find that the dominant energetic terms within the

‘turbulent’ flow P,B, ϵK all come to a local maxima. In agreement with the concept of optimal

mixing under critical conditions as argued by Mashayek et al. (2021), we find that within this

region the turbulent flow is described by Γ ≈ 0.2 − 0.33. Considering the distinct vertical

inhomogeneity in the profiles of the mean and turbulent flow, our results strongly suggest

as to a degree of universality for the self-organization of stratified shear flows towards this

‘optimal’ state. Furthermore, we find that within this region of critical flow, the stationary

profiles of Fr within the ‘turbulent’ flow all clearly converge to a clear lower critical limit

of Frc ≈ 0.3 in direct agreement to the transitional value towards an asymptotic regime

proposed by Maffioli et al. (2016). Hence we provide further evidence for the arguments of

Caulfield (2021) that active and vigorous turbulence in stratified shear flow should not be
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considered ‘strongly stratified’ in the same theoretical sense as the LAST regime due to a

clear lower limit on Fr.

By considering the flow from the zi turbulent/quiescent interface reference coordinate system,

we find that the thickness of the interfacial layer separating the two regimes to scale with the

Ellison length LE . This being in direct agreement with our visual observations of overturning

within this region. In particular we find that the critical values of Rig,c ≈ 0.2, Frc ≈ 0.3 and

the peak in Γ occur directly at the lower bound of the interfacial layer. Accordingly our results

directly suggest that criticality and intermittency are intrinsically linked within stratified open

channel consistent with the concept of self organized criticality in stratified shear flows as

argued by Smyth et al. (2019).

By examining the correlations between horizontal averages of Fr and Γ across the condition-

ally averaged data sets we show that in the limit of low Fr, Γ shows continued dependence on

Fr within the ’turbulent’ flow such that the flow continues to display Γ ∼ Fr−1 behaviour in

for Fr < Frc. Conversely, within the quiescent regions of the flow we find Γ is independent

of Fr for the full parameter range presented and maintains a constant value of Γ ≈ 0.2−0.33.

The emergence of an asymptotic constant Γ regime for Fr ≤ 0.3 in the full data set comes

directly as a result of the intermittency of the flow and increasing contributions to measure-

ments of Fr and Γ from the surrounding quiescent fluid. We argue that the observation of a

‘saturated’ Γ regime in numerous past studies of stratified shear flow is fundamentally linked

to the inherent intermittency of the flow at finite ReB.

Within the turbulent patches of the flow, we observe the emergence of a Γ ∼ Fr−1 inter-

mediate regime for Fr ≤ 1 manifests due to the separation of the vertical and horizontal

velocity scales within such patches as buoyancy and the mean shear distorts the flow towards

an anisotropic state to facilitate efficient mixing through shear instabilities. As such, our

results present evidence for the arguments of MCA21 that suggest when considering energetic

turbulent patches within stratified shear flow, buoyancy does not play a leading order role in

the evolution of the mixing rate but rather it is ‘slaved’ to the mixing of momentum such that

PrT ≈ 1 for all Fr.



CHAPTER 6

Conclusion

The primary aim of this dissertation has been to investigate and improve our understanding

of the nature, mechanics and accurate parameterization of turbulent mixing within vertically

inhomogeneous stratified flows. To that end, we have performed an extensive series of

direct numerical simulations of stratified open channel flow in the framework of Williamson

et al. (2015). We have employed a canonical ‘sunrise’ configuration whereby we consider

the temporally evolving flow of a neutral turbulent open channel subject to sudden radiative

heating. This has allowed us to explore a wide and distinctly inhomogeneous ‘local’ parameter

range of Fr,ReB, Rig,Γ within a single simulation as the flow evolves towards stationarity.

Furthermore and in the context of regulated stratified river flows, a secondary aim of this

thesis has been to provide a detailed qualitative description of the transient response of

the temporally evolving flow as well as a bulk parameterization for the global stratification

process. A summary of the key research outcomes of this thesis is presented below.

6.1 Main research outcomes

In chapter §3 we have demonstrated that the transient response of the turbulent channel flow

can be defined by two transient periods. Firstly the flow undergoes ‘rapid suppression’ as the

sudden imposition of stratification causes a reduction in w′ and hence the turbulent momentum

flux u′w′. This causes an inbalance between the total momentum flux and the driving pressure

gradient as well as an inbalance in the TKE budget causing a global loss of TKE across the

channel. Secondly, the flow enters a ‘slow recovery’ period as the flow accelerates to develop

the mean shear profile required such that the flow is able to extract sufficient TKE from the
168
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mean flow to obtain an equilibrium stratified state. Within the region of increased shear

we observe that the flow structure changes such that mixing becomes predominantly driven

by overturning shear instabilities that manifest locally rather than wall-bounded turbulence

from below as in neutral channel flow. A description of the changing vertical structure of the

channel with respect to mean shear and stratification gradients, second order statistics and

energetic quantities has been presented for both periods of the flow.

We have presented scaling arguments to demonstrate that the global suppression of turbulent

mixing within the temporally evolving channel flow defined by normalized bulk measures of

the eddy diffusivity and viscosity ⟨Kρ⟩/κPr and ⟨KM⟩/ν can be parameterized across three

regimes by the mixed parameter Ri−1
τ Reτ :

For Ri−1
τ Reτ ≳ 100 the flow approaches neutral (asymptotic) conditions such that

⟨Kρ⟩
κPr

∼ ⟨KM⟩
ν

∼ const. (6.1)

For 10 ≲ Ri−1
τ Reτ ≲ 100 the flow enters a ‘intermediate’ state in which buoyancy begins to

suppress the turbulent fluxes such that

⟨Kρ⟩
κPr

∼ ⟨KM⟩
ν

∼ (Ri−1
τ Reτ )

1/4. (6.2)

And for Ri−1
τ Reτ ≲ 10 the flow enters a strongly suppressed regime with relaminarization in

the upper layer such that

⟨Kρ⟩
κPr

∼ ⟨KM⟩
ν

∼ (Ri−1
τ Reτ )

1/2. (6.3)

We note that this is a new scaling relationship derived for both time-varying and stationary flow

and hence propose that Ri−1
τ Reτ may form the basis of a forecasting tool used in stratified

river flows for the prediction of suppressed mixing in the upper layer. We note again however

that at the limited Reτ −Riτ parameter range explored in this thesis it remains to be seen as

to the universality of these transitional values.

We have demonstrated that the convergence of the buoyancy and momentum fluxes as well

as the TKE towards an equilibrium state is a global parabolic process governed by a single
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timescale such that the flow obtains equilibrium at all depths simultaneously at t = te. We

find that te similarly defines the time at which local mixing dynamics have reached stationarity

such that key non-dimensional mixing diagnostics (i.e. Rig, Rf , F r, ReB etc) reach their final

stationary values.

By employing our previously derived bulk parameterization of ⟨Kρ⟩ we provide further scaling

arguments and demonstrate that te can be predicted such that the flow obtains stationarity

at Ri
−1/2
τ (t/Tτ ) ≈ 2 provided that Ri−1

τ Reτ ≲ 100. Our results which support our scaling

across the full external parameter set are consistent with the past ‘sunset’ studies of Kirkpatrick

et al. (2019, 2020) which similarly show a Ri
−1/2
τ dependence on the convergence of the

destratifying flow towards neutral equilibrium.

As Riτ and Reτ are parameters that may be readily obtained from field measurements, the

results presented in this chapter provide a clear practical application for stratified river flows

for both the time-varying prediction of suppressed mixing as well as an estimation for the

time at which the initially and presumably well mixed ‘sunrise’ flow obtains stationarity such

that local mixing diagnostics obtain their established stationary values as shown in the study

of Williamson et al. (2015).

In chapter §4 we have robustly investigated the parameterization of the flux coefficient Γ within

Fr,Rig, LE/LO and ReB frameworks within stratified open channel flow by considering

instantaneous horizontal averages of the flow. In particular our vertically inhomogeneous

and temporally evolving flow configuration has allowed us to investigate this at a broad local

parameter range and without the a priori assumptions of stationarity or local equilibrium.

We demonstrate that the local flow is described by three dynamically different mixing regimes

defined by transitional values of Fr and where despite the spatio-temporal inhomogeneity,

Γ is well predicted by the Fr based parameterization schemes of Maffioli et al. (2016) and

Garanaik & Venayagamoorthy (2019).

For Fr ≳ 1, the flow is only weakly affected by stratification and displays a Γ ∼ Fr−2

relationship. For 0.3 ≲ Fr ≲ 1, the flow enters an ‘intermediate’ regime where stratification

begins to modify the turbulence structure and the flow displays Γ ∼ Fr−1 relationship. For
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Fr ≲ 0.3 the flow enters a ‘saturated’ regime as Γ approaches a constant value. In particular

our observed transitional value of Fr ≈ 0.3 to the saturated regime is directly in agreement

with the analysis of Maffioli et al. (2016). Considering the strong inhomogeneity of our

flow with respect to both z and t, the results strongly suggest a degree of universality on the

relationship between Fr and Γ as argued in their study.

In contrast we find that only two mixing become apparent when considering the flow in a Rig

framework. For Rig ≲ 0.25 the flow displays a classic linear relationship of Rf ∼ Rig as

observed in past studies (Shih et al., 2005; García-Villalba & del Álamo, 2011; Zhou et al.,

2017a). And for Rig ≳ 0.25, Rf approaches a constant value analogous to the saturated

regime described above. We provide new scaling arguments to show that in the ‘intermediate’

regime, shear, inertial and buoyancy forces are all significant such that the flow obtains a

transitional Rig ∼ Fr−1 relationship. For Fr ≳ 1 we observe that the classic inertial scaling

leads to Rig ∼ Fr−2 as observed in past studies (Zhou et al., 2017a). We present support

for our new intermediate scaling from a variety of DNS data sets of stratified shear flow

suggesting a degree of universality to this behaviour (Shih et al., 2000; Chung & Matheou,

2012; Portwood et al., 2019). We hence reconcile the two parameterization frameworks

for stratified shear flow across all three mixing regimes defined by Fr. In particular the

new scaling relationship for the intermediate regime highlights the complexity of mixing

dynamics in stratified shear flow and directly bridges the gap in literature between the two

limit regimes. Considering the distinctly different dynamics and mixing mechanics of the

weakly and moderately stratified regimes, the results suggest that a local measure of Fr may

offer a more nuanced and insightful perspective into mixing dynamics than Rig.

We demonstrate that Γ within the temporally evolving flow is also well parameterized by

the length scale ratio LE/LO across all three mixing regimes as argued by Garanaik &

Venayagamoorthy (2019). In particular we observe a distinct Γ ∼ (LE/LO)
1 scaling for the

intermediate regime that holds for an entire decade of LE/LO. We present scaling analysis to

demonstrate that for our shear driven quasi-steady (forced) class of flow, this occurs directly

due to the presence of mean shear and the resulting LE ∼ LS scaling within the intermediate

regime. We further present scaling arguments to propose why past studies of homogeneous
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(un-sheared) stratified flow have not displayed an appreciable range of Γ ∼ (LE/LO)
1 within

their DNS (Mater et al., 2013; Howland et al., 2020). We hence demonstrate, that for our

shear driven flow, the Fr,Rig and LE/LO frameworks are directly equivalent across all three

mixing regimes.

We demonstrate that although the flow qualitatively displays all three mixing regimes based

on ReB as argued by the seminal work Shih et al. (2005), there exists no universal transitional

value of ReB between the varying regimes. Rather we find that the transition between the

three mixing regimes displays a clear ReT and hence Reτ dependence in agreement with

the analysis of Maffioli et al. (2016). Our results add further evidence to recent studies that

suggest ReB is not an optimal single parameter for the accurate estimation of Γ (Scotti &

White, 2016).

In chapter §5 we have investigated the spatio-temporal intermittency that manifests in our

flow due to stable stratification. We have demonstrated that the density inversion criterion

method of Portwood et al. (2016) can be adapted to our vertically inhomogeneous flow such

that we are able to robustly separate the flow into turbulent regions where ReB ≳ O(10) and

surrounding quiescent flow within a single instantaneous realisation of the flow.

We have demonstrated that the resulting depth varying turbulent volume fraction γ(z) is well

predicted by Monin-Obhukov theory through the normalized (by viscous units) local M-O

length Λ+, such that intermittency manifests within the range of 2.5 ≲ Λ+ ≲ 260. This

corresponds directly to a buoyancy Reynolds number range of 1 ≲ ReB ≲ 100 and falls

directly in agreement with the analysis of Chung & Matheou (2012), suggesting a degree

of universality in the prediction of intermittency for a wide range of stratified shear flows

through local M-O scaling. Again, in the direct context of stratified river flows where the flux

profiles may be roughly estimated a priori through knowledge of bulk flow properties, our

results present direct applicability for the forecasting of suppressed mixing in rivers due to

intermittency. Furthermore, due to the the inhomogeneity of the flux profiles, the intermittency

within our flow manifests spontaneously as a deformed horizontal interface that separates

an upper quiescent quasi-laminar layer from the lower bulk and highly turbulent flow. By

considering the flow from an interfacial coordinate system we further demonstrate that the
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thickness of the resulting interfacial layer scales with the overturning length LE such that

energetic quantities and non-dimensional mixing diagnostics display self-similar behaviour

within the interfacial layer irrespective of the external parameter set.

By considering conditional horizontal averages of the ‘turbulent’ and ‘quiescent’ flow regions

we demonstrate that critical mixing conditions defined by asymptotic limit values of Rig ≈

0.2,Γ ≈ 0.25 and Fr ≈ 0.3 only manifest within regions of appreciable intermittency. Our

results suggest that for our flow, these critical mixing conditions directly arise from the

intermittency in the flow and presents direct support for the theory ‘optimal mixing’ and

self-organized criticality that has been observed in a variety of stratified shear flows (Thorpe

& Liu, 2009; Salehipour et al., 2018; Smyth et al., 2019; Mashayek et al., 2021).

We show that when considering a conditionally averaged Fr based parameterization of Γ,

the ‘turbulent’ flow does not display a saturated regime at low Fr, but rather continues

to display a Γ ∼ Fr−1 intermediate scaling for Fr ≲ 1. Conversely, the quiescent flow

displays no correlation between Fr and Γ such that Γ remains constant for all Fr. We directly

demonstrate that the emergence of an asymptotic mixing regime for Fr ≲ 0.3 as observed in

chapter §4 manifests directly due to the intermittency in the flow and increasing contributions

to ‘global’ measures of Fr and Γ from the quiescent flow. To our knowledge ours is the

first study that has demonstrated this behaviour directly through DNS data. Considering the

ubiquitous appearance of Fr ≈ 0.3− 0.5 in literature (Chung & Matheou, 2012; Portwood

et al., 2019; Smith et al., 2021) as well as the original scaling arguments of Maffioli et al.

(2016), we argue that this behaviour is a fundamental characteristic of a wide variety of

quasi-steady stratified shear flows and presents evidence for the arguments of Caulfield (2021)

that active turbulence in stratified shear flow is unable to access the LAST regime as defined by

ReB ≫ O(1) and Fr ≪ O(1). In the context of the frequent observations of spatio-temporal

intermittency or so called ‘patchiness’ of turbulence in various geophysical flows (Caulfield,

2021), our results in this chapter highlight the importance of accurately understanding both

the mechanisms by which intermittency manifests as well as the need for robust and accurate

methods to quantify its effect on global mixing rates.
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6.2 Future outlook

A particular key result of this thesis has been the observation that critical flow conditions

characterized by efficient overturning driven mixing and limit values of Rig, F r occurs

directly within regions of appreciable intermittency, seemingly in agreement with the SOC

theory of Smyth et al. (2019). However, as seen from our results in chapter §4 (figures 4.4

and 4.12), at our modest resolution and Reτ values considered in this DNS, strongly stratified

regions where Fr ≈ O(10−1) corresponds to flow defined by low ReB. It is not clear if this

behaviour is a fundamental characteristic of stratified shear flow or an implicit result due to

the correlation of Fr and ReB at our paramater range. As ReB = ReTFr2 and ReT ∼ Reτ ,

future studies at significantly higher Reτ would be able to test this result explicitly. It would

be further extremely useful to rigorously test this behaviour in DNS of other stratified shear

flow configurations at a presumably intermittent local ReB range of 1 ≲ ReB ≲ 100 while

similarly maintaining ReT as a control variable.

For the most part, in this thesis we have explicitly excluded flow statistics close to the upper

free surface boundary where the confinement effects on mixing dynamics remain relatively

uninvestigated in current literature. In the context of stratified river flows and reduction of

vertical scalar transport absorbed at the water-air interface it is clear that the free surface

dynamics become extremely relevant and crucial to the understanding of such flows. Calmet

& Magnaudet (2003) use scaling arguments and their LES data set to show that for unstratified

channel flow an upper surface effected ‘source layer’ is approximately of the order 0.2δ.

However in chapter 5 we have demonstrated that for case R900L1, when considering only

the turbulent flow, the local equilibrium region extends up to z/δ = 0.91. This suggests that

the reduction w′ and subsequent anisotropic nature of stratified turbulence acts to reduce

the thickness of the proposed ‘source layer’. Furthermore, at the paramater range explored

within our study the upper layer generally is described by ReB ≲ O(10) and the issue is

confounded by intermittency and relaminarization making it very challenging to analyze

the surface confinement dynamics separately. As such future studies where DNS run at

significantly higher Reτ while concurrently maintaining high λ such that the upper layer is

described by ReB ≳ O(10), while the core channel remains Fr ≲ O(1) would be able to
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investigate this in a detailed and rigorous manner. Furthermore, we have demonstrated in

chapter 3, that our bulk scaling for the stratification rate S ∼ 1 − 0.5Ri
−1/2
τ (t/Tτ ) breaks

down due to relaminarization at the upper layer. Again DNS at higher Reτ and λ as expected

in real river flows would be able to test whether a linear relationship develops as per the

scaling arguments.

Finally we must address that for the entirety of this thesis, with the exception of a single case

we have only considered a molecular Prandtl number of unity for computational efficiency.

This being in stark contrast to Pr = 6 − 7 expected in stratified river flows. As shown in

past studies Γ has been shown to decrease monotonically with increasing Pr (Salehipour

et al., 2015; Zhou et al., 2017b). How this result pertains to the parameterization of Γ within

our flow in chapters 4 and 5 remains to be seen. Although it does not arise in our scaling

arguments, it is unclear how high Pr would effect the bulk parameterization of reduced

mixing or equilibrium time derived in chapter 3. Future studies run at higher Pr would be

able to answer these open questions.
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