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Abstract

In recent years, 360° videos, a.k.a. spherical frames, became popular among users

creating an immersive streaming experience. Along with the advances in smart-

phones and Head Mounted Devices (HMD) technology, many content providers

have facilitated to host and stream 360° videos in both on-demand and live stream-

ing modes. Therefore, many different applications have already arisen leveraging

these immersive videos, especially to give viewers an impression of presence in a

digital environment. For example, with 360° videos, now it is possible to connect

people in a remote meeting in an interactive way which essentially increases the

productivity of the meeting. Also, creating interactive learning materials using

360° videos for students will help deliver the learning outcomes effectively.

However, streaming 360° videos is not an easy task due to several reasons. First,

360° video frames are 4–6 times larger than normal video frames to achieve the

same quality as a normal video. Therefore, delivering these videos demands higher

bandwidth in the network. Second, processing relatively larger frames requires

more computational resources at the end devices, particularly for end user devices

with limited resources. This will impact not only the delivery of 360° videos but
also many other applications running on shared resources. Third, these videos need

to be streamed with very low latency requirements due their interactive nature.

Inability to satisfy these requirements can result in poor Quality of Experience

(QoE) for the user. For example, insufficient bandwidth incurs frequent rebuffer-

ing and poor video quality. Also, inadequate computational capacity can cause

faster battery draining and unnecessary heating of the device, causing discomfort

to the user. Motion or cyber–sickness to the user will be prevalent if there is an

unnecessary delay in streaming. These circumstances will hinder providing im-

mersive streaming experiences to the much-needed communities, especially those

who do not have enough network resources.

To address the above challenges, we believe that enhancements to the three main

components in video streaming pipeline, server, network and client, are essential.

Starting from network, it is beneficial for network providers to identify 360° video
flows as early as possible and understand their behaviour in the network to effec-

tively allocate sufficient resources for this video delivery without compromising the

quality of other services. Content servers, at one end of this streaming pipeline, re-

quire efficient 360° video frame processing mechanisms to support adaptive video



iii

streaming mechanisms such as ABR (Adaptive Bit Rate) based streaming, VP

aware streaming, a streaming paradigm unique to 360° videos that select only

part of the larger video frame that fall within the user-visible region, etc. On the

other end, the client can be combined with edge-assisted streaming to deliver 360°
video content with reduced latency and higher quality.

Following the above optimization strategies, in this thesis, first, we propose a mech-

anism named 360NorVic to extract 360° video flows from encrypted video traffic

and analyze their traffic characteristics. We propose Machine Learning (ML) mod-

els to classify 360° and normal videos under different scenarios such as offline, near

real-time, VP-aware streaming and Mobile Network Operator (MNO) level stream-

ing. Having extracted 360° video traffic traces both in packet and flow level data

at higher accuracy, we analyze and understand the differences between 360° and
normal video patterns in the encrypted traffic domain that is beneficial for effec-

tive resource optimization for enhancing 360° video delivery. Second, we present

a WGAN (Wesserstien Generative Adversarial Network) based data generation

mechanism (namely VideoTrain++) to synthesize encrypted network video traffic,

taking minimal data. Leveraging synthetic data, we show improved performance

in 360° video traffic analysis, especially in ML-based classification in 360NorVic.

Thirdly, we propose an effective 360° video frame partitioning mechanism (namely

VASTile) at the server side to support VP-aware 360° video streaming with dy-

namic tiles (or variable tiles) of different sizes and locations on the frame. VASTile

takes a visual attention map on the video frames as the input and applies a com-

putational geometric approach to generate a non-overlapping tile configuration to

cover the video frames adaptive to the visual attention. We present VASTile as a

scalable approach for video frame processing at the servers and a method to re-

duce bandwidth consumption in network data transmission. Finally, by applying

VASTile to the individual user VP at the client side and utilizing cache storage

of Multi Access Edge Computing (MEC) servers, we propose OpCASH, a mech-

anism to personalize the 360° video streaming with dynamic tiles with the edge

assistance. While proposing an ILP based solution to effectively select cached

variable tiles from MEC servers that might not be identical to the requested VP

tiles by user, but still effectively cover the same VP region, OpCASH maximize

the cache utilization and reduce the number of requests to the content servers in

congested core network. With this approach, we demonstrate the gain in latency

and bandwidth saving and video quality improvement in personalized 360° video
streaming.
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Chapter 1

Introduction

Video streaming has been dominating global network traffic over the past two

decades. Among them, 360° videos, a.k.a. spherical videos or virtual reality (VR)

videos, are becoming increasingly popular as it provides an immersive streaming

experience to the user. Cisco predicts that these immersive videos will account for

over 50% of the video traffic in a future connected home, demanding a very high

bandwidth of around 500 Mbps [8]. Therefore, even today, many popular content

providers such as YouTube (YT) and Facebook (FB) [9, 10] have already enabled

streaming 360° videos on their platforms that can be streamed on mobile devices

such as Head Mounted Devices (HMDs) (e.g., Facebook Oculus [11], Microsoft

Hololens [12]) and smartphones. Unlike normal videos, where the user’s view is

framed into a 2D rectangular frame, 360° videos provide a truly omni-directional

view where the users can see around the video frame by simply moving their head

if they use HMD or changing the orientation of the handheld device if using a

smartphone.

Due to this immersive experience, 360° videos can provide interactive remote ser-

vices in many domains such as education, health, entertainment and military sec-

tors. For example, students can now participate in virtual classes from their homes

and feel their presence in the class in a digital environment, not only talking to

their teachers or friends surrounding them but also effectively engaging with the

learning materials. Cisco recommends using more videos along with 360° or VR

videos to improve the team collaboration and training of employees in the working

environment [8]. Moreover, 360° video has been an ideal tool to connect people in

remote meetings, particularly in a situation like the COVID-19 pandemic where

1



Introduction 2

the physical gathering is limited [13]. Furthermore, in modern military training

programs, 360° videos and HMDs are used to train soldiers, especially for difficult

terrains in enemy zones [14].

Thus, it is evident that 360° videos are becoming a vital part of the video streaming

in user activities with many advantages over normal videos as discussed above.

However, streaming 360° videos is a challenging task due to many reasons, as

described in the following section.

1.1 Problem Statement

Yaw

Pitch

Roll
Spherical 

frame

User VP

User VP on spherical frame, 
𝑡 = 𝑇!

User VP changes from 𝑡 = 𝑇! to
𝑡 = 𝑇"

User VP on Equirectangular frame, 𝑡 = 𝑇!

𝑡 = 𝑇!
𝑡 = 𝑇"

User VP

User VP

Regions not going to be viewed 
by the user at 𝑡 = 𝑇!

Figure 1.1: User VP on a 360° video frame and three degrees of freedom of
head movement.

As we observe in Fig. 1.1, the user’s viewport (VP–user visible region on the video

frame) changes according to the yaw, pitch or roll movement of the head (e.g.,

t = T0 to t = T1). To provide this immersive experience in current 360° video

streaming settings, the entire video frame is transmitted to the user making these

spherical frames 4–6 times larger than a normal video frame to achieve the same

user perceived quality [15], posing three main challenges in the end-to-end video

delivery process. First, streaming larger video frames requires high bandwidth,

creating an enormous strain on commercial communication networks and nega-

tively affecting the quality of the other services. Secondly, processing such video

frames at the end devices imposes high resource utilization, which is challenging,

particularly with the devices such as smartphones with limited resources and many

other applications that want to share the same resources simultaneously. Even if

we stream the entire 360° video frame, at a given time, the user can see only a

small part of the frame, as shown in Fig. 1.1. Therefore, a large portion of the

entire frame is not viewed by the user, wasting network and device resources to
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process the frame. Finally, due to the interactive nature, 360° video streaming

requires strictly low latency, which should be within the motion-to-photon delay.1

Inability to fulfil the aforementioned high network bandwidth, processing power

and strict latency requirements results in poor Quality of Experience (QoE). First,

insufficient bandwidth causes lower video quality (i.e., lower resolution, blurred

video frames), frequent re-buffering and video quality switching. For example, in

today’s commercial 360° video streaming, user perceived video quality ranges be-

tween 240p–360p and around 46% of video sessions can have 20 s long stalling[16].

Second, allocation of limited resources for 360° video processing at the end devices

that are powered by batteries most of the time can quickly drain the battery and

create discomfort to the user due to the device overheat [17]. Third, the inabil-

ity to meet the latency requirement (just above 25 ms) causes severe motion or

cyber-sickness for the user, causing issues beyond user QoE [18].

Among many works conducted so far to optimize this video delivery (that we

further discuss in Chapter 2), first, there are studies to understand 360° video

streaming behaviour in real networks but are limited to gathering data only from

end devices [16, 19]. This type of data is not readily available for network providers

but rather the network traffic that is end-to-end encrypted. Data encryption has

confined the studies to understanding the 360° video streaming behaviour and de-

veloping effective solutions to optimize this video delivery in the network. Second,

tile-based streaming, which divides the entire video frame into tiles and transmits

only the tiles within the user VP, has been a promising way to reduce bandwidth

consumption, frame processing and latency [15, 20–22]. However, the fixed size

tiles and their fixed location still transmit a high amount of redundant data because

the tiles can cover beyond the VP region. Therefore, to gain the best advantages

of tile based 360° video streaming, dynamic tiling (i.e., tiles in variable size and

location on the frame) of 360° video frames is important to provide finer coverage

to the user VP and further reduce bandwidth consumption. Third, there are many

solutions leveraging edge assistance for 360° video streaming, especially to reduce

the latency in data transmission [23–25]. However, none of these approaches are

fully optimized for dynamic tiling based 360° video delivery.

1Delay between user head movement and the time it takes to render the corresponding VR
frame onto the display
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1.2 Proposed Solution

To address the problems in 360° video streaming mentioned above, we propose a

solution combining the three main components in video streaming pipeline, server,

network and client, as shown in Fig. 1.2, to provide an enhanced personalized 360°
video streaming experience satisfying individual user viewing patterns. We develop

multiple solutions that can be deployed on this streaming pipeline which take data

available at deployed locations: i) network : encrypted network traffic, ii) server :

video frames and iii) client : user VP information related to 360° video streaming.

CORE 
Network

Last mile 
Network

MEC server

Content server

• Identify 360° video flows and understand 
their behavior in encrypted traffic domain

Network

• Support encrypted traffic analysis by 
synthetic network data generation

MEC + Client

Server

Personalized variable tile 360°
video streaming with the 
support of MEC 

1

2

• Mechanism for 
efficient 360° video 
frame portioning with 
variable tiles

3

4

Client

(Chapter 3) 

(Chapter 4) 

(Chapter 5) 

(Chapter 6) 

Figure 1.2: Proposed solutions at Network, Server and MEC+Client for op-
timizing 360° video delivery

We start (Step 1) by getting more insights into streaming 360° videos by proposing

a mechanism for extracting 360° video flows in the encrypted traffic domain and

then analyzing them compared with normal video traffic (see Chapter 3). Such

analysis is important for network providers to manage their network resources

effectively, for example, allocate more channel bandwidth for a smooth 360° video
delivery. A significant issue that hindered our analysis in Step 1 was the lack of

real network data, especially to develop ML models to identify 360° video traces

that we further elaborate on in Chapter 4. Collecting streaming traffic data in a

real network is difficult for many reasons, such as network complexity, time for

developing data collection tools etc. As a solution, in Step 2, we develop a data
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generation tool (see Chapter 4) to synthesize both 360° and normal video traffic,

using a minimal amount of network data while emulating real network traffic.

In Step 3, we direct our attention towards the server, proposing a dynamic 360°
video frame partitioning mechanism with dynamic (or variable) tiles (DT) in dif-

ferent sizes and locations on the frame, considering VP information from historical

users (see Chapter 5). This mechanism provides DT cover with finer VP bound-

aries for subsequent users, reducing pixel redundancy and bandwidth consumption.

Finally, in Step 4, we leverage Multi Access Edge Computing (MEC) assistance

for 360° video streaming while moving the tile content closer to the end users and

reducing the latency in video transmission (see Chapter 6). In contrast to fixed

tile-based streaming, now, the MEC servers handle (e.g., cache) DTs because we

apply our dynamic tile partitioning mechanism on individual user VPs at the client

side to cover each VP with DTs, personalizing the 360° video streaming. As we

stream only the tile in user VP, processing them at the client device also consumes

less resources.

1.3 Contribution of the Thesis

The detailed contributions of this thesis are as follows.

1. We conduct a study to understand the nature of 360° video behaviour in

terms of their traffic characteristics. We propose a 360° and normal video

traffic classification engine to extract encrypted 360° video traffic from nor-

mal video traffic. Then we analyze their feature level information to realize

how 360° videos differ from normal videos. Many studies in 360° video net-

work traffic analysis have mainly focused on studying the 360° video stream-

ing collecting data from user end devices. But none of them has studied how

to identify 360° video traffic by passively monitoring encrypted traffic and

what are the intrinsic characteristics differences between two video types.

• To the best of our knowledge, this is the first study which takes en-

crypted mobile traffic as the input and extracts 360° video related traf-

fic leveraging Machine Learning (ML) (i.e., XGBoost models) based

mechanism using features from the encrypted data. We collect the data

from different vantage points of the network (e.g., Local Area Network
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(LAN), Enterprise, and Mobile Network Operator (MNO)) at both flow

and packet level by passively monitoring real 360° video streaming ses-

sions.

• We report high accuracy in 360° and normal video classification in mul-

tiple scenarios such as analyzing full video traces2 or segments extracted

from full traces offline, classification in near real-time, classification at

MNO etc.

• While revealing the root causes for the classification performance, we

provide insights into the nature of 360° videos differentiating them from

normal videos in terms of network traffic characteristics, mainly observ-

ing their feature distributions (e.g., uplink (ul) and downlink (dl) data).

2. To improve the performance of encrypted traffic analysis, we propose an in-

network modification to synthesize data taking 360° and normal traffic as

the actual input data. To further generalize the data synthesis model, we

extend our dataset to another normal video dataset with video fingerprinting

as the intended classification task.

• We propose Wasserstein Generative Adversarial Network (WGAN) based

data synthesis mechanism supported by novel algorithms to pre-process

video traffic traces and to control the WGAN model training to avoid

plausible overfitting or underfitting.

• We demonstrate an increase in 360° and normal video classification ac-

curacy with Deep Neural Network (DNN) models by applying synthetic

data for model training. Moreover, we improve the accuracy of the

video fingerprinting task of the extended dataset, further generalizing

the data generation mechanism.

• We analyze different aspects of the data synthesis process, including

fidelity of the synthetic data, the impact of the algorithm on the process,

and root causes for the observation we made in accuracy improvements

under different evaluation settings of ML-based classification.

3. While understanding the nature of 360° videos, we propose a mechanism

to dynamically partition 360° video frames into dynamic tiles (DTs) at the

content servers. Fixed tile based 360° video streaming proposed so far fails

2The temporal distribution of the network packets corresponding to a given video streaming
session



Introduction 7

to provide finer coverage to the user VP due to their fixed size and fixed

location on the video frame. However, with dynamic tiling, we create more

flexibility in providing tiles in different sizes in different locations on the

frame, which can cover the user VP in a finer granularity while reducing the

network bandwidth consumption.

• We propose an end-to-end framework to dynamically partition the 360°
video frames taking historical multiple user VPs and corresponding

video frames as the input. While providing a rationale to sample the

user VP, we propose algorithms to pre-process combined user VP maps

to extract highly salient (i.e., most attractive) content on the video

frames.

• Along with this content intelligence, we present a dynamic frame parti-

tioning mechanism based on a computational geometric approach which

we named the Minimal Non-overlapping Cover algorithm (MNC). The

MNC algorithm provides a suitable DT cover to the video frames based

on visual attention with less computational overhead compared with ex-

isting Integer Linear Programming (ILP) or exhaustive searching based

approaches. We propose post-processing mechanisms to modify this

DT cover to further adapt to the user VP distortions when converting

spherical frames to 2D rectangular frames.

• We experimentally validate the proposed mechanism using simulation

based experimental setup leveraging real user VP traces with corre-

sponding 360° videos. We show that the proposed mechanism can re-

duce bandwidth consumption and redundant pixel transmission, pro-

viding finer coverage to the user VP compared to fixed tile based ap-

proaches. Finally, we analyse the performance of near real-time frame

processing.

4. We propose an efficient MEC cache utilization mechanism that devises an

optimal cached tile coverage to the VP requests with DTs. To create DTs

on user VPs, we extend our dynamic tile partitioning mechanism to be run

at the client while personalizing the 360° video streaming. Our preliminary

experiments show that none of the existing caching mechanisms related to

fixed size tiles, which follow identical matching of tiles that have been cached

and from user requests, can handle VP requests with DTs. This is because,
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with the high dynamicity of DTs, cached DTs may not identically match

with the requested DTs on VP.

• We formulate an Integer Linear Programming (ILP) solution which

takes multiple properties of cached DTs (e.g., cached DT size) to de-

velop an objective function maximized at the optimal tile solution to

cover VP requests with DTs. The selected cached DTs may not be

identical to the requested VP DTs but substantially cover the user VP

while sending fewer tile requests to the content servers if any part of

the VP region is not covered by cached DTs.

• We propose a novel mechanism to model the DT size as a polynomial

function of the basic tile size (i.e., BT–the smallest, non-divisible tile on

the frame that forms DTs) of video frames to reduce the computational

cost of calculating the aforementioned objective function components.

• We analyze different aspects of the proposed mechanism, such as the

impact of existing cache replacement strategies, end user video quality,

impact video content, and overall processing time showing the promise

given for real-time streaming etc.

• Finally, developing a simulation based experimental setup, we validate

the performance of the proposed mechanism showing high VP coverage

provided by MEC server, lowered additional tile requests to the content

serves and through the core network and reduced transmission delays

in end-to-end video delivery.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows.

• Chapter 2 defines the context of this thesis by discussing the related work

and background of 360° video streaming.

• Chapter 3 presents 360° and normal video classification model with the

extended analysis of encrypted 360° and normal video traffic to understand

the network traffic behaviour comparing two video types.
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• Chapter 4 introduces our novel data synthesis approach to synthesize en-

crypted video traffic that takes both 360° and normal video network traffic

data as the input. The chapter further presents the experimental results and

analysis of downstream ML-based classification tasks.

• Chapter 5 details the dynamic tiling mechanism of 360° video frames at

the server along with comprehensive background information of the MNC

algorithm we leverage and experimental evaluation by simulation.

• Chapter 6 presents MEC-assisted 360° video streaming mechanism with

variable tile with detailed steps of formalization of the algorithms followed

by extensive analysis of streaming performance through experiments with

simulation.

• Chapter 7 presents the summary and future work.



Chapter 2

Background and related work

In this section, we present our literature survey in three main directions. First,

we provide the background of the current commercial 360° video streaming sce-

nario, highlighting the processes at the server, network and client components.

Second, we provide a comprehensive analysis of the current limitations of 360°
video streaming. Third, we critically evaluate the literature for optimizing the

360° video streaming addressing the above limitations. Finally, we summarize our

review highlighting the research gaps addressed in this thesis.

2.1 Current 360° video streaming scenario

Delivering 360° video to a viewer involves three main components: server, network

and clients (i.e., video uploading and downloading), as shown in Fig. 2.1. Below,

we discuss 360° video streaming in current commercial settings under those three

components.

2.1.1 Client-video capturing

Since a 360° video covers the spherical surrounding of the user, a special type of

camera is needed for video capturing. Omnidirectional camera, a.k.a. panoramic

camera, fisheye camera or wide-angle camera can record 360° surrounding of user.

There are mainly three types of omnidirectional cameras i) Diapotric: has more

10
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Server
• Video encoding
• Storing

Video chunks in 
different quality 

level

Network
• Video distribution
• Radio, Enterprise, LAN etc.

Client
• Video capturing

• PC, Omnidirectional camera
• Video streaming

• HMD, Smartphone

Figure 2.1: Current 360° video streaming architecture that involves server,
client and network.

than 180° Field of View (FoV)1 equipped with a combination of shaped lenses,

ii) Catadioptric: has a parabolic or hyperbolic mirror attached to a normal camera

module. This camera system can provide full 360° FoV horizontally. iii) Polydi-

apotric: has multiple cameras overlapping the FoV of real spherical geometry [26].

Captured frames can be exported to a server with or without stitching the frames.

Commodity 360° video capturing cameras have equal to or more than 4K resolu-

tion and a higher frame rate. For example, Samsung Gear[27], GoPro Fusion[28]

and Insta360 Pro 2 [29] can go up to 4K, 5.2K, and 8K resolutions respectively.

2.1.2 Server

The server acts as the place to store pre-captured video data. Hence, on the server

side, projecting the spherical view to a suitable planar format; compression/en-

coding; storing or transmitting to the client in real-time take place.

2.1.2.1 Different projection mechanisms

After capturing the data, the spherical format of the content is projected to a

planar format before encoding. There are mainly 2 mapping schemes, which are

Uniform quality mapping and Variable quality mapping [30]. Equirectangular for-

mat (ERP) and Cubemap format [31] are commonly available formats for uniform

1Extent of the visible region (VP) on the frame
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quality mapping. In equirectangular format, the entire spherical frame is un-

wrapped to a 2D rectangular plane, whereas cubemap transfers a spherical view

to a cube and divides it into six 2D frames. Variable quality mapping, containing

Pyramid projection[32] and Offset-CubeMap [33], focuses on Region of Interest

(RoI) of the user to vary the quality parameters of video frames such as bit-rate

during the encoding. For instance, Pyramidal projection projects the sphere onto

a pyramid where the pyramid’s base represents the user’s VP with higher quality.

Offset-CubeMap, which addresses the drawbacks of pyramidal projection, extends

the CubeMap projection pushing back the users from the cube’s centre to the

opposite direction where the user is viewing at [30][33]. Among these methods,

uniform quality mapping contributes more in commercial applications due to their

simplicity and ease of implementation.

Spherical frame Cubemap format Equirectangular format

Figure 2.2: Sample projection formats [2]: cubemap and equirectangular

2.1.2.2 Encoding, storing and transmitting videos

Encoding or compressing the raw data is important for the fast delivery of data

while reducing bandwidth consumption. Widely used coding standards, which

include both encoding and decoding, are H264 (AVC) [34] and H265 (HEVC) [35].

In the video on demand (VoD) settings, encoded and compressed video data is

stored in server storages [20, 36] before the streaming. Typically, 360° videos are
encoded at higher resolutions (i.e., up to 16K [37]) compared to normal videos

due to the larger spherical frames. And many content providers (e.g., YT and

FB) recommends 2K (1440p) or 4K (2160p) coding resolutions in live 360° video
streaming settings while supporting omnidirectional cameras [38, 39]. Similar to

normal videos, 360° videos are transmitted leveraging Adaptive Bit Rate (ABR)

algorithms such as Dynamic Adaptive Streaming over HTTP (DASH) [19] as video

chunks (i.e., group of video frames span over 2–4 s length) [40]. Therefore, at the
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server, first, these chunks are encoded in multiple resolutions. Secondly, upon the

client’s request, chunks in given qualities or resolutions are transmitted through

the network.

2.1.3 Network

We find no noticeable differences between handling 360° and normal data by the

network providers. Bandwidth is one of the main properties representing the per-

formance of a network which eventually affects the quality of a video streamed.

Table 2.1 summarizes the peak bandwidth and available throughput of three com-

mon network types, 5G, 4G/LTE andWiFi. We observe that practically we cannot

expect theoretical bandwidth conditions due to many reasons such as bandwidth

demand, environmental conditions etc. For example, though 5G signal can be

easily interrupted by physical objects such as buildings, trees etc. [41]. Such cir-

cumstances can negatively impact streaming a higher data volume such as 360°
videos in 4K–16K resolutions. To make the content closer to the users, Content

Delivery Network (CDN) and edge servers are used to cache the data and only if

the requested content is not found in those servers the request is re-directed to the

content servers.

Type 5G 4G/LTE WiFi
802.11ac

Theoretical (Available bandwidth) 20 Gbps 1 Gbps 1.3 Gbps
Practical (Available throughput) 100 Mbps 20 Mbps 400 Mbps

Table 2.1: Typical Bandwidth availability in commodity communication net-
works [4–6].

2.1.4 Client-video streaming

In general, video streaming applications in the client devices (e.g., HMD or smart-

phone) send HTTP requests to the server requesting the video data. These video

players consist of inbuilt ABR algorithms (e.g., DASH, HLS (Apple HTTP Live

Streaming)) to adaptively select the bit rates to the video requests in chunks while

considering the network throughput and the buffer occupancy level [40]. After re-

ceiving the encoded data, player buffers store the data temporally before decoding.
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Compared to a normal video stream, the 360° video stream seeks more decoding

power due to its large amount of data.

After decoding, there are mainly three ways (or devices) for displaying 360° video
content. First, HMDs (i.e. HTC Vive [42], Oculus Rift [43]), which are embedded

with dedicated computational resources, render the 360° videos at a higher frame

refreshing rate of around 90 Hz. Second, with HMDs that can be slotted with

smartphones, user can insert their smartphone inside the HMD and can view the

smartphone display through lenses with binocular vision (e.g., Google Cardboard

[44] and Samsung Gear VR[27]) [45]. Third, users can simply use their smart-

phones without any HMD. A simple smartphone movement will direct to different

scenes on 360° video frame. To render the graphics onto the display, GPUs with

parallel processing power are used in those smartphones.

2.2 Limitations in current 360° video streaming

setting

Streaming 360° videos over mobile networks is challenging mainly due to their

larger frame size and strict latency requirement to satisfy the interactive streaming

nature. In this section, we discuss those challenges in current 360° video streaming

settings in detail, categorizing them mainly into three sections, namely, bandwidth,

computational and latency-related issues.

2.2.1 Server and Client resources related issues

Processing 360° video frames demand more computational resources both at the

server and client ends due to its larger frame size and additional frame level oper-

ation for frame projection format transformation [46].
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2.2.1.1 Server

Though content servers are equipped with numerous computational resources to

conduct these frame-level operations (e.g., encoding, projecting to different for-

mats ), with the versatile amount of requests and processes from other applica-

tions, the servers may struggle with allocating sufficient resources for 360° video
processing. Zink et al. in [47] highlight that storage scalability is one of the main

challenges with 360° videos because videos need to be stored i) in multiple scenes,

ii) in different formats (i.e., projection format) to be compatible with a variety

of streaming devices (e.g., desktop and mobile video players), and iii) in differ-

ent quality levels for ABR-based streaming. According to the authors, a sample

90 min long 360° video requires around 270 GB storage on the servers. Controlled

experiments conducted in [19] report that current streaming servers lack efficient

transcoding, especially in live streaming settings, resulting in over 40 s initial de-

lay in video streaming. Stitching raw video frames must be done on the server if

the video capturing camera offloads that task to the severs [29]. A discrepancy

in stitching operation can result in significant quality degradation at the client

end [48].

2.2.1.2 Client

The client end has several limitations in the practical 360° video streaming sce-

nario, mainly due to the limited resources such as CPU or GPU, memory footprint

etc. The paper, NestDNN [49] shows that, in general, mobile devices always face

resource-accuracy trade-off, especially in mobile vision applications when multiple

independent applications are competing for the same resources. Therefore, allo-

cating enough resources for 360° videos in 4K–16K resolutions is more challenging

while running other user applications. When decoding 360° videos, the authors

in [15] find that allocating more than four decoders can result in synchronization

problems. When rendering frames, processing panoramic frames in high resolution

requires full utilization of available GPU resources to reduce any latency issues[50].

Also, the authors in Furion [4] predict that the current growth of mobile CPU and

GPU is not at an expected level; therefore, software-based approaches are vital for

providing more promising solutions. Leveraging many resources results in notable



Background and related work 16

power issues in mobile devices. According to the paper QuRate [17], power con-

sumption in 360° video processing is important because power-constrained batter-

ies drive many HMDs and smartphones. Intensive resource utilization can generate

heat, making it uncomfortable for the users to wear those devices on their heads.

The authors further highlight that streaming 360° video continuously on a mobile

device can drain the battery within less than 200 min, and 360° view generation

(i.e., rendering frames) consumes a major percentage of the power compared to

frame decoding, network management etc.

2.2.2 Network related issues

Limited bandwidth in the network is a critical bottleneck in 360° video streaming.

According to Table 2.1 and Table 2.2, it is obvious that existing network systems

can not tailor the requirement of 360° video, particularly for the advanced and

ultimate experience, which should be catered with higher bit-rate and bandwidth.

This phenomenon limits the number of users who can use the same network and

degrades the quality of the video at the same time. While WiFi systems are con-

sidered compliant with 360° video streaming, cellular networks do not perform

well due to their high dynamic environment and many network consumers mak-

ing the available bandwidth unpredictable. 5G technology, as an extension to the

prevailing 4G/LTE, will increase the bandwidth. Nevertheless, such significant im-

provement is in doubt due to the slow growth of the mobile hardware resources [4],

and 5G signals can be easily obstructed by large physical objects interrupting the

smooth data delivery as well [41].

Another common challenge is the effective handling of network resources. This

is because networks are handling a sheer volume of data in a short period mak-

ing the end-to-end transmission process more complex [51]. A thorough network

traffic analysis can support effective handling of network resources (e.g., identify

360° video traffic in advance and allocate more channel bandwidth). However, it is

challenging due to the high variability and encrypted nature of network traffic [52].

Though deploying ML-based models can give predictions or classification of net-

work traffic or its properties, collecting real network data to train those models

is also challenging due to multiple reasons such as data purity [53], privacy issues

with network users [53, 54] etc.
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Property Entry Level
Experience

Advanced
Experience

Ultimate
Experience

Screen Resolution 4K 8K 16K
Average bit-rate 64 Mbps 279 Mbps 3.29 Gbps
Network Requirement
on Demand

100 Mbps 418 Mbps 4.93 Gbps

Network Requirement
on Live Telecasting

83.2 Mbps 361.4 Mbps 4.27 Gbps

Table 2.2: Average Bandwidth requirement for 360° video streaming for raw
data [7].

2.2.3 Latency related issues

Figure 2.3: Frame synchronization with display refreshing in time domain

Bandwidth and computational related issues result in latency problems. For in-

stance, any bottleneck in the network increases the transferring time, and scarcity

of computational resources increases processing time. This eventually imposes ad-

ditional latency in video streaming. Though the frame refreshing ratio of a mobile

phone system is 16ms, still the end-to-end delivery time of 4K 360° video (3840 x

2160) streaming is typically around 30-40 ms under H264 compression even with

limited users and proper WiFi connections [34] [55] [4]. In contrast, in the wild,

the average end-to-end latency can be 18.7 s (37.1 s) for FB (YT) streaming. This

latency can go up to 4.8 min for FB, and 5.1 min for YT [16]. Thus, in current

systems, it is difficult to meet the 16 ms refreshing rate. In Fig. 2.3, a frame with

40 ms average streaming time (Tavg) losses possible frame refreshing opportunities

causing long waiting periods for the frames until the next display refreshing time.

If two consecutive frames are waiting for the same refreshing time (i.e. Frame

n+1 in Fig. 2.3), frame dropping needs to be done to keep smooth video playback,

potentially causing poor QoE.
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2.3 Optimization approaches

In this section, we discuss the countermeasures taken so far to mitigate the lim-

itations mentioned above. In Fig. 2.4, we provide a categorization of optimiza-

tion techniques we found in the literature. We elaborate on how the proposed

mechanisms are used to understand 360° video streaming in commercial networks,

adaptive 360° video streaming and utilizing edge servers to move content closer to

the users and to provide computation resources for video streaming.
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Figure 2.4: Categorization of optimization approaches from the literature.

2.3.1 Understanding 360° video traffic in commercial net-

work

In this section, we provide literature on understanding both 360° and normal video

streaming in commercial networks. We explore recent works analyzing encrypted

traffic (mainly related to video streaming) to understand their fundamental charac-

teristics during network transmission. We complement the review by investigating

time series data generation approaches that can be used to improve network traffic

analysis.
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2.3.1.1 360° video characteristics in real network

Very few studies have been done on analyzing characteristics and behaviour of

360° video streaming in commercial networks. LIME [16] studies how the com-

mercial streaming platforms: YT and FB support 360° live video streaming using

both crowd-sourced and lab (controlled) studies. Streaming activities and related

measurements are captured at the servers and the client devices. LIME reveals

that existing networks cannot provide the desired 360° video QoE in live stream-

ing. For example, experiment results report that most of the time, users perceived

video quality could be 240–360p. Also, 41% and 52% of sessions from YT and

FB, respectively, stall at least 20 s. A similar study done by Yi et al. [19] focused

on 360° 4K live streaming using a DASH supported streaming testbed. To mimic

real world streaming, they vary the properties such as video resolutions, camera

movements etc. Results show that for 4K 360° videos, rebuffering occurs at 33%

of playback duration, and one-way video transmission delay can be up to 42 s.

Afzal et al. [56] explore 2285 YT 360° videos comparing the video characteristics

such as duration, resolution, bit-rate with normal videos. The results show that

even if the bitrate of 360° video is greater than normal video, bitrate variability is

comparably low, which can benefit network provisioning.

2.3.1.2 Analysis of Encrypted network video traffic

Analysis of network traffic, which is end-to-end encrypted today, is vital to get

insights into fundamental traffic characteristics of video streaming. Classifica-

tion of video flows out of encrypted network traffic has been well-studied in the

past decade, including video flow classification [52, 57], identifying exact video

(video fingerprinting) [58–60], and QoE of video being transferred [61–63]. In [52],

transport layer flow characteristics were leveraged to identify YT flows leveraging

heuristic algorithms that take average payload and the data size as the input. They

leverage Server Name Identification (SNI) for flow filtering. A similar statistical

analysis is done in [57] to classify the network traffic on a large scale according to

different protocols, content providers etc. However, these statistical methods are

difficult to generalize with the high variability of network traffic. As a solution,

ML has been introduced for encrypted traffic analysis. A study by Li et al. [58]

fingerprints videos using frame level data passively extracted by sniffing a WiFi

network. They use Recurrent Neural Network (RNN) and Multi-Layer Perception
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(MLP) networks, achieving 97% of accuracy. Gu et al. [64] suggest that using

encrypted traffic, videos can be re-identified uniquely because bit rate trends of

videos keep remains even under the effects of ABR algorithms. Regarding pre-

dicting QoE, [61] leverages Network, Transport and Application layer traffic to

predict startup delay and resolution in different video streaming platforms: YT,

Netflix etc. By leveraging Random Forest (RF) classifiers, they show 0.93 aver-

age precision and less than 1 s error in resolution and startup delay prediction,

respectively. A similar study in [62] predicts the user QoE in YT video sessions by

taking flow-level features from weblogs collected by a large MNO in Europe. Their

RF-based classification predicts QoE-related problems with 72%–92% accuracy.

2.3.1.3 Time series data generation

Data generation is important to create synthetic data in many aspects, such as

to provide more trained data to improve ML performance (e.g., DNNs), collabo-

rative work environments, user privacy enhancement etc. [65, 66]. This has been

widely explored using both statistical and NN based approaches. Copula methods,

which come under probabilistic methods, were used to generate data, especially

in the finance sector, to create dependence structures for the distributions of de-

pendent random variables [67]. With DNN models such as Generative Adversarial

Networks (GANs), data generation has been widely studying not only in image

domain [68–70] but also in time series data generation with further modification

to the model [65, 66, 71, 72]. WGAN(Wasserstein GAN) based network traffic

masking mechanism is proposed in [66]. The authors apply a min-max normaliza-

tion method to normalize traffic features to train a WGAN model. Nevertheless,

fidelity is not well preserved in the temporal domain. The authors in [65] pro-

pose models combining both RNNs and GANs taking time series data (e.g., daily

page view on Wikipedia page) and corresponding metadata (e.g., connection type

- fibre or 4G). The model shows a high correlation with actual data and accept-

able accuracy levels with downstream classification tasks. Apart from directly

using time series signal for data generation, in [73], the authors apply time series

imaging mechanism for data generation, yet the original data considered is pe-

riodic biomedical signals (e.g., ECG) that are less complex than network traffic

patterns.
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2.3.2 Adaptive 360° video streaming

In adaptive 360° video streaming, video content is transmitted from the server to

the client adaptive to the user VP and other parameters such as available network

bandwidth and player buffer occupancy that affect video streaming. This process

requires three main mechanisms to be properly implemented. First, on the client

side, VP of the user should be accurately predicted because, at a given time, the

user will only see a particular direction of the spherical frame. Second, based

on the available VP information, the server should select the required content

efficiently to be transmitted to the users. Third, based on the available network

bandwidth, player buffer size, quality of previously streamed chunks etc. quality

of the selected video content is also changed by ABR algorithms in video players.

Network
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Figure 2.5: VP adaptive streaming mechanism. The client predicts the user
VP and sends data to the server. The server selects the data in VP and sends it
back to the user. There are multiple ways to select of VP region on the frame:

using tiles, cropping, multiple layers of frames, VP-adaptive projections

2.3.2.1 VP Prediction

As shown in Fig. 2.5, in VP adaptive (a.k.a. VP-aware) 360° video streaming, the

client device must detect the user VP in advance to pre-fetch video data to avoid

any video rebuffering. In the literature, we have found three main approaches for
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VP prediction based on VP trajectory, cross-user attention and a combination of

content features and VP trajectory data, as described below.

VP-prediction by single user trajectory In VP-aware streaming, first, the

VP should be predicted using historical head movement patterns. Predicted VP

information, in yaw and pitch direction most of the time, is sent to the server to

select the frame region at the content server and receive it in advance to the player

buffer. When the user starts looking at the new direction (i.e., predicted before

by the algorithms), the video player just needs to render the data from the buffer

without lagging and stalling.

In literature, different ML algorithms are used for VP prediction. Qian et al. in [40]

experiment with multiple algorithms for this task taking historical user head move-

ment of a given time window as the input. These algorithms are i) Averaging : take

the average value of the window as the output, ii) Linear Regression(LR): train a

simple LR model taking all the samples in the window while assigning the same

weight to predict the output. iii) and Weighted Linear Regression (WLR): similar

process to the LR, but consider recent samples are more important when giving

the weights. The authors show that LR and WLR can achieve over 92% prediction

accuracy for predicting the head movement of 1 s ahead. The same authors in [15]

extend this prediction to Ridge Regression (RR) and Support Vector Regression

(SVR), showing that LR can still perform better than complex regression meth-

ods. Following the same path, authors in [20, 21] adapt to the LR method for VP

prediction.

A thorough analysis of VP prediction, including both traditional ML and DNNs

is done in [74]. DNN methods include MLP and Trajectory-based Crowd-sourced

Deep Learning (TCDL), which consists of classic Recurrent Neural Network (RNN)

models with Long Short-Term Memory (LSTM) units. The authors note that

for shorter prediction windows, LR models can give reasonable accuracy levels,

whereas TCDL models are always better for longer prediction windows. Moreover,

they have found interaction methods (i.e., HMD, smartphone or desktop machine)

themselves impact VP prediction accuracy. For example, the prediction accuracy

of HMD is always better than smartphones and desktops.

VP prediction by cross user attention data In CLS [75], the authors

identify that VP prediction using only a single user is unaware of the content and
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other user’s behaviours resulting in inaccurate prediction, especially if there is a

large variation in the content. As a solution, they proposed to leverage historical

VP data from multiple users and cluster them into classes using the DBSCAN [76]

clustering algorithm. Then, they train Support Vector Machine (SVM) models to

decide to which class a new user VP at a given time point belongs, taking user

fixation data (VP positions of the user that are fixed on the frame for a given

period.) and already created cluster maps as the ground truth. Results show a

19% average accuracy improvement compared to trajectory-based approaches. A

similar approach to creating visual attention maps to estimate the salient region is

developed in [77] taking user fixation points and corresponding VP distributions

as the input. The authors suggest having only 17 users is sufficient to create

reasonably accurate visual attention maps that show visually attractive content in

the frame. Moreover, the authors emphasize that these visual attention maps are

highly correlated with the motion complexity of the videos. The authors highlight

the advantage of such attention maps for VP prediction and dynamic tiling of

frames [78].

VP prediction by content features and combining with head trajectory

data In addition to VP data, pure content features such as object semantics [79],

motion data, and low-level feature data [80] are used for VP prediction. In [80],

authors leverage Flownet2 [81] and SalNet [82] models to extract corresponding

saliency maps and build a saliency encoder for VP prediction. The authors in

Track [83] analyze the already available content based saliency detectors([80, 84]

etc.) for VP prediction. Feng et al. study object detection for VP detection

and report that user VP follows the patterns of object semantics. Though pure

content features on the frame (e.g., saliency by motion, low-level features, objects)

correlate with VP patterns, it is difficult to gain an adequate level of VP prediction

accuracy by only taking them as the input to the prediction model, especially for

longer prediction windows beyond 2–3 s [75, 83].

As a solution, historical user VP data is combined with content features to boost

the accuracy [80, 83, 85]. In [80], the authors simply contact the saliency features

with VP trajectory data output by LSTM architecture before feeding to the pre-

diction model. The paper, Track [83], uses slightly complex architecture with a

main building block which consists of separate RNN unities for VP trajectories

and content features connected to a fusion RNN model to combine two types of
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data improving the prediction accuracy by 16-20%. A Deep Reinforcement Learn-

ing (DRL) model is used to improve the prediction accuracy in [79] combining

object semantics and the VP trajectories.

2.3.2.2 VP-aware content selection

On the server side, the required content region must be selected efficiently without

significant delay. We identify four main approaches for this purpose. First, divide

the frames into tiles (i.e., rectangular non-overlapping regions) that can be either

to a fixed size or variable size and select the tiles within the requested user VP

(Fig. 2.5-A) [15, 20–22, 40, 55, 86, 87]. Second, the selected region can be cropped

in real time (Fig. 2.5-B) [88, 89]. Third, multiple layers with different quality

levels are transmitted where the VP region is formed by stacking all the layers to

increase the quality. (Fig. 2.5-C) [20, 90]. Finally, novel mechanisms are proposed

to transform the 360° video frame into a new projection where the VP region

is encoded at high quality and the remaining area at a lower quality (Fig. 2.5-

D) [91, 92]. Next, we discuss the above approaches in detail.

Tile based streaming (Fig. 2.5–A) In tile-based streaming we identify two

main approaches, i) Fixed size tiling (Fig. 2.6(a)–right): divides the video frame

into equal size rectangular regions [15, 20, 22, 40, 55], and ii) Dynamic tiling

(a.k.a. variable tiling) (Fig. 2.6(a)–left): divides video frame into rectangular tiles

that are in different sizes and location on the frame [21, 78, 86, 87]. Common to

both approaches, tiling can reduce the bandwidth and resource consumption at
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the network and client devices, respectively, while improving the video quality by

assigning high quality to the tiles within the user VP.

Fixed tiling is the most studied tiling mechanism in literature. Fig. 2.6(b) illus-

trates how the tiles are selected to cover a given VP region and transmitted to the

user as tile chunks (i.e., a tile chunk has the same frame rate as the larger video)

from the server. In literature, we find different fixed tile configurations such as

4×6 [15, 40], 6×6 [20], 4×8 [22], 10×20 [93] etc. The way how the servers select

the fixed tiles is different from one study to another. For example, Flare assigns

each tile into different classes in different priority levels based on its probability

of overlapping with the user VP. Tiles in the same class receive the same quality

levels quality of lower classes never exceeds the quality of higher classes. In [22],

the authors consider spherical to ERP distortion in addition to the tile viewing

probability to prioritize the tiles. A major disadvantage of the fixed tiling is with

larger and fixed tile sizes, it transmits a high amount of redundant data.

As a solution, dynamic tile (DT) based streaming provides finer granularity to the

user VP changing the tile size and location dynamically. In Fig. 2.6(a)–left, the

frame is composed of a set of smaller tiles that we define as basic tiles (BT). By

combining these BTs in rectangular shapes, DTs are derived. Once the DT distri-

bution is proposed for a given VP, it can be maintained through all frames of the

same video chunk, as shown in Fig. 2.6(c). Formation of DT is a non-trivial task.

Both [86] and [87] leverage Integer Linear Programming (ILP) based solutions to

find the best tile configurations taking the server-side storage size and streaming

data volume as the cost functions. Ozcinar et al. present an exhaustive searching

method to derive tiles while allocating a given bitrate budget [78]. In Pano [21],

the authors introduce a new metric called per-tile efficiency score which defines

how fast the quality of the tiles grows with the quality level. Starting from a

large hypothetical rectangle, formed by 12 × 24 BT configuration, they dynami-

cally form sub-rectangles grouping the BTs with similar per-tile efficiency score

together. Though these proposed approaches can further reduce the bandwidth

consumption of fixed tiling methods, they lack scalability for two reasons. First,

they require encoding all possible tile schemes, which may exceed 30000 of solu-

tions [86] incurring high encoding time. Second, algorithms such as exhaustive

searching/ILP itself need a longer processing time.
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Frame cropping based streaming (Fig. 2.5–B) Frame cropping is studied

in both normal and 360° video domains [88, 89, 94]. Bao et al. [89] leverage

predicted head motion to crop region on 360° video frame. Rather than considering

a rectangular VP region to extract, they calculate a circular VP region adding a

buffer to the VP to absorb VP prediction errors. They first find a beam angle (θ0)

for the circle region by calculating the diagonal VP. Then, add a margin angle

(θE) to θ0 to extract additional pixel regions. The paper, Freedom [88], applies

a similar approach by creating a cropped frame region called Visible Area plus

Margin (VAM). VAM contains pixels within the user VP and additional buffer

regions to cover the subsequent head movement. A real-time video encoder at

the server generates VAM frames by first downscaling (i.e., considering the small

screen sizes of the client devices.) the larger ERP frame and then cropping. They

have also found that adding 35% of margin (i.e., compared to full frame) is enough

to cover 99% VP region with 300 ms latency data transmission.

Layered mechanisms (Scalable Video Coding-SVC) (Fig. 2.5–C) In

the layered encoding of video frames, a.k.a. Scalable Video Coding (SVC), video

frames are encoded in multiple layers, which consist of a base layer and multiple

enhancement layers. To achieve the best quality, all the frame layers should be

rendered [90]. Nasrabadi et al. [90] apply SVC on cube map projection of 360°
video frames by tiling each faces into fixed-size tiles. Each tile is encoded in

different layers. The base layer is always transmitted to the user to cover any video

part to compensate for any VP prediction error or sudden user head movement.

Then, only the enhancement layers of the VP tiles are transmitted to the users to

improve the perceived video quality. However, the authors could achieve only 2%

bandwidth saving in this approach. The same method has been applied for live

streaming of 360° video with multicasting in [95] where the cross-user similarity

in the requested VP region is measured when selecting tiles and the layers.

Different projection mechanisms(Fig. 2.5–D) Projection mechanisms fo-

cusing on improving the VP regions are proposed by FB in [91, 92]. In [91], the

creators propose to remove the first and the last 25% regions (vertically) of ERP

frame that creates a reasonably uniform angular sample distribution in the remain-

ing part of the frame. Stretching can be applied to this region to increase the pixel

density to provide high quality for the user VPs while reducing the frame size by
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25% compared to the ERP format. A completely different approach is proposed

by FB [92] by putting the spherical frame into a pyramid (see (Fig. 2.5–D). In this

mechanism base of the pyramid contain the FoV of high quality, and the sides of

the pyramid cover the rest of the spherical frame (out of VP region) with a lower

quality. The authors claim that compared to ERP frames, this projection saves

80% of storage.

2.3.2.3 Bit rate adaptation

Generally, bit rate adaptation mechanisms in tile-based 360° video streaming

change the bit rate of tiles considering multiple streaming parameters such as

VP probability on tiles, player buffer status, and available network bandwidth.

The ultimate goal is to maximize different QoE metrics, average video quality,

stall duration, and inter-chunk quality difference, to name a few. Both statistical

or heuristic and ML-based models are used for rate adaptation.

For example, both Flare [15] and Rubiks [20] leverage Model Predictive Control

(MPC) based algorithm in their adaptation mechanism. Both consider average

video quality over a historical time window, rebuffering, and inter chunk quality

level changes as the QoE metrics taking VP, buffer and network bandwidth infor-

mation as the input. Flare categorizes the tiles of each frame into several classes,

considering the VP. With slight modifications, MPC-based model predicts the bit

rate for each class of tiles to increase the effective bandwidth utilization. In Ru-

biks, the authors add a penalty for decoder slow performance in addition to the

network throughput parameter.

One of the critical challenges in the above approaches is the tendency of under

selection and frequent fluctuations of the bit rate due to the discrete number of

levels of bit rates. The authors in [36] address this issue by adding dropping

frames and play out rate controlling mechanisms in addition to the throughput

and frame quality-based metrics. The authors in [96] propose modifications to the

existing DASH algorithm by streaming entire 360° video frames but with high-

quality regions (fall within the user VP) and low-quality regions (out of user VP)

on the frame. They pre-encode multiple representations of the video frame with

different regions selected for high quality and share this information with the

client through Media Presentation Description (MPD) file. Then, the client can
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select which representation should be streamed based on her VP and bandwidth

available.

In contrast to the heuristic models above, a Deep Reinforcement Learning (DRL)

based method is applied for rate adaptation in [97] addressing the challenges of

having various QoE metrics and their highly dynamic nature in interactive 360°
video streaming. Following concepts in DASH streaming, elements of the state

space are defined by taking chunk ID, viewport information, bandwidth and buffer

occupancy as the input. The agent’s action is to determine the bit rate of the tile

getting a QoE reward by monitoring the bit rate of received tiles and the frequency

of rebuffering. The policy of the model is selecting actions based on stochastic pol-

icy to maximize the cumulative reward. Results show that the heuristic methods

model can achieve 5-20% of QoE improvement.

2.3.2.4 Existing standards for adaptive 360° video streaming

The first standard for 360° video streaming has been proposed by Moving Pictures

Experts Group (MPEG), named Omnidirectional Media Format (OMAF) [98–

100], that supports adaptive 360° video streaming. The first edition of OMAF,

introduced in 2017, consists of basic supports for 360° video streaming with 3

Degrees of Freedom (DOF) and the second edition, introduced in 2020, further

improves the VP adaptive delivery and provides richer 360° presentations with

overlays. There are three main modules in OMAF architecture namely, i) OMAF

content authoring: consists of media acquisition, video (i.e., omnidirectional) pre-

processing, encoding and encapsulation of media files and segmentations, ii) Deliv-

ery: partition the media content into temporal segments and deliver either through

file delivery or streaming delivery, iii) OMAF player: decapsulates the media files

and segments, decodes and renders them.

To enable the VP adaptive streaming, OMAF player contains two essential mod-

ules. First, the tracking module controls the user’s viewing orientation and viewing

position. Second, the selection strategy module decides which parts of the content

should be streamed. The server side workflow for tile based 360° video streaming

consists of 6 main steps. First, the video is encoded into tiles or sub-pictures using

either H265 or H264 encoding standards where the H265 provides more support

for motion constraint tiling than H264. Second, bitstream processing prepares the

encoded bitstream for tiles or sub-pictures while parsing the high level structure of
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the bitstream. In the third and fourth steps, sub-picture or tile tracks (i.e., tracks

which contain the encoded tile or sub-picture sequence) and the corresponding

extractor or tile based track (i.e., the track which contains the information to ex-

tract the data from the other media related tracks) are generated respectively. In

the fifth step, sub-segments of the media tracks are created (i.e., generally known

as chunks) and finally, based on this segment information DASH MPD files are

generated.

2.3.3 Edge assistance for 360° video delivery

Edge computing, also nourished by MEC architecture in networking, has already

enhanced network data delivery moving the content closer to the users. In this

section, we review the literature on edge assistance for 360° video delivery in terms

of content caching and computational resource sharing.

2.3.3.1 Caching of 360° videos

A myriad of works has been done in caching and MEC assisted 360° video stream-

ing [23, 24, 101–103]. The authors in[101] utilize historical user VP and the quality

of the tiles within the VP to learn a probabilistic model to decide whether a given

tile is to be cached or not and removes the tiles with the lowest viewing probability.

The authors in [24] propose a 360° video caching in interconnected base stations

while sharing their resources. A reward model has been introduced, which is to

be maximized when fetching tile from the closest base station or content servers

(CS) by running a polynomial-time approximation algorithm. Papaioannou et

al. [23] analyze the problem of having different quality levels for tiles simultane-

ously, which may appear in different positions of the nearby VPs. When caching,

a representative resolution is given to the tiles requested in such different quality

levels. An error metric is introduced between cached quality and requested quality

by future users. The impact of content properties of the videos when caching is dis-

cussed in [102] by putting 360° videos into five categories. From these categories,

except explore category, all other categories such as static-focusand moving-focus

show near similar caching opportunities. Maniotis et al. [103] leverage Markov

Decision Process (MDP) and Deep Q-Network (DQN) algorithms to decide the

optimal caching placement at the edge with a relatively limited number of user
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VPs. They invoke layered video encoding where the VP tiles have high quality

and the remaining areas in low quality.

2.3.3.2 Task offloading

The large frame size of 360° videos imposes high resource demand, which makes

offloading frame processing tasks to edge servers rather than processing at the end

user device such as smartphones and HMDs. The proposed model in [25] renders

tiled video frames on the edge server and addresses the heterogeneity of devices

by providing algorithms to decide which type of device to be served to create a

device adaptive task offloading environment for 360° video streaming. In contrast

to tile base edge computing, Chakareski et al. [104] propose scalable multi-layer

360° video tiling with edge computing while collaborating with other edge cells in

a 5G network. To get the maximum use of different tires in the network, Rigazzi et

al. in [105] offloads 360° processing to fog, edge and cloud tiers while increasing the

systems scalability and reducing latency. Different processes such as DASH based

coding and frame composition, GPU intensive tasks are offloaded across three

tiers. For proper management, monitoring and orchestration of resources, they

also adapt to Fog05 framework. Being not limited to just video streaming, [106]

offload VR game tasks to edge servers while identifying different types of events.

For example, frame processing for local view change events (e.g., updating screen,

scrolling), which have stringent latency requirements, are offloaded to the edge

server, and global game events (e.g., updating scores) that are less delay-sensitive

are processed at central cloud.

2.4 Summary

Analysing the above literature revealed multiple gaps in research that need further

investigation. First, in Section 2.3.1 we explored several studies related to the

understanding of user QoE related to 360° video streaming in commercial networks.

However, most of the data measured were from web browser applications at the

server or client. From the point of view of network operators, they generally do

not get access to Application layer data but rather encrypted network data, which

makes it challenging to develop solutions to optimize traffic delivery. Therefore,

to better understand 360° video streaming behaviour from the network point of
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view and to build effective solutions for in-network optimizations, it is vital to

analyse their traffic characteristics through encrypted packet and flow level data.

None of the prior work on encrypted network data has analysed 360° video traffic

leaving many unanswered questions such as how to identify 360° video flows from

encrypted traffic, which we try to address in Chapter 3.

Second, given that many encrypted traffic analysis methods are based on ML,

especially with state-of-the-art DNN methods, better performance (e.g., high ac-

curacy, robustness to different traffic) can be achieved by collecting more network

data which is, in turn, difficult to do due to many reasons such as complexity

of networks, user privacy issues, etc. We observed time series data generation is

a promising solution to synthesize data emulating real network conditions. Nev-

ertheless, to our knowledge, we did not see much work related to normal video

traffic generation, let alone 360° videos. Implementing a robust network traffic

generation mechanism for both normal and 360° videos can enhance the analysis

of encrypted video traffic mentioned above, which is presented in Chapter 4.

Third, in tile based adaptive 360° video streaming (see Section 2.3.2.2), we ob-

served that compared to fixed tiling, dynamic tiling (or variable size tiling–DT)

mechanisms could further reduce the bandwidth consumption and redundant pixel

transmission to relieve the pixel level operation of both at the client and server

sides. However, those proposed dynamic tiling mechanisms lack efficiency and

scalability due two reasons. First, to propose optimal DT configuration, they have

to encode and analyse all possible variable tile configurations. Second, the ILP

based solutions and exhaustive searching methods on all possible tile schemes re-

quire significant processing. Therefore to get the best advantage of variable tiling,

it is imparative to develop an efficient method to derive DTs which consume less

resources at the servers and increases the scalability with the growing popularity

of 360° videos. We address these limitations by proposing a novel variable tile

generation mechanism in Chapter 5.

Finally, in Section 2.3.3, we reviewed the work related to edge assistance for 360°
video streaming, especially for edge caching and task offloading. Those methods

were based on fixed tile based 360° video streaming. Still, no such study has been

done on leveraging edge servers with future DT based streaming while personaliz-

ing video content delivery for the users. Conventional caching approaches which

try to find identical tiles on the edge servers are not applicable for DTs due to

their high dynamicity in size and location on the frame parameters. In particular,
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it is essential to study how the edge (or MEC) server resources can be fully utilized

for delivering DT content to cover individual user VPs. To achieve this goal, in

Chapter 6, we propose a novel mechanism to efficiently utilize MEC servers for

DT streaming while personalizing the video content delivery to the client.



Chapter 3

Encrypted traffic analysis for

understanding 360° video

behaviour

3.1 Introduction

In Chapter 2, we observed that 360° videos demand higher network bandwidth to

achieve the same user-perceived quality level of a conventional video. We further

emphasized that analyzing 360° videos in terms of their encrypted network traffic

is of utmost importance, in one aspect, to understand their intrinsic properties

during video streaming. In another aspect, to benefit ISPs and MNOs in develop-

ing effective network solutions such as for network capacity planning and traffic

optimizations that include maintaining traffic shaping (prioritizing and balancing),

traffic policing [62].

However, such analysis is almost impossible if, 360° video traffic is not properly

extracted from network traffic that is end-to-end encrypted. For that purpose, in

this chapter, we propose a 360° and normal video classification engine, named as

360NorVic (360° & Normal Video Classification) which extracts 360° video traffic

traces from normal video traces. Second, we provide insights into the 360° video
streaming behaviour in the network in light of 360NorVic classification performance

and analyze feature characteristics of 360° videos compared to normal video traffic.

Following many recent works [58, 107], we assume that it is possible to accurately

33
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identify video-related traffic (i.e., both normal and 360° videos) from encrypted

network traffic.

360NorVic is based on XGBoost classifiers and runs classifications on network

data collected from different network vantage points (e.g., LAN, Enterprise net-

works and MNO at operational level), including both packet and flow level data.

We provide classification in different scenarios such as offline, near-realtime, VP-

aware streaming and as a pilot study at the operational MNO. We first report the

classification performance under different streaming settings and then analyzing

encrypted traffic patterns and features of 360° videos while reasoning for the clas-

sification results. We further explore different aspects of 360° videos, such as the

impact of content popularity, the content itself and usage of different classifiers on

360NorVic performance. To the best of our knowledge, this is the first study on

360° video behaviour in networks and extracting them from normal video traffic

using ML.

3.2 Methodology of 360NorVic

360NorVic consists of four major components namely Data collection, Data pre-

processing, Classification and Analysis of 360° video behavior in network (We dis-

cuss component as a part of Results section). In Data collection (Section 3.2.1),

we collect data in two main approaches; i) Full frame streaming: 360° videos in

full frame size are streamed from commercial content providers (i.e., YT & FB)

and data collection points are LAN, Enterprise network, and MNO. ii) VP-aware

streaming: 360° video chunks are streamed in tiles that fall within the user VP

using an experimental testbed which consists of a custom server and a client.

Second, collected data is pre-processed (Section 3.2.2) by applying filtering, sam-

pling and feature extraction steps to convert them as the input to the ML-

classification models. Finally, we run multiple ML models in Section 3.2.3 for

classification at LAN, Enterprise, MNO and VP-aware streaming, namely: i) Full

trace (offline): classification of 360°/normal traces in full duration at offline,

ii) Random segment (offline): classification of segments that are shorter in du-

ration than full traces and have random start points, iii) Near real-time: pro-

vide classification with every 5 s starting from 10 s playback position of the

video, iv) VP-aware streaming: classification of 360°/normal traces with VP-aware
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streaming, v) MNO classification: offline classification of flow level data collected

at an operational MNO as a pilot study. Having multiple classifiers for data

collected at different vantage points of the network allows identifying 360° video
behavioural patterns in detail compared with normal videos. Finally, we analyse

the behaviour of 360° video streaming network along with the classification results

elaborated in Section 3.3.

3.2.1 Data collection
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Figure 3.1: Data collection in 360NorVic: Full frame streaming and VP-aware
streaming

3.2.1.1 Full frame streaming

We selected 200 unique videos under four main categories, YT/FB and 360°/Normal

(50 for each category) and streamed for the entire duration pre-defined (playback

time 2–4 min). Table 3.1 summarizes the number of traces from each video cat-

egory. We selected the videos according to their popularity in video distribution

channels in YT [108, 109] and FB pages [110–113], while matching the genre of

videos among four categories. The selected genres include but are not limited

to sports, documentary Horror, animals, cartoon, driving, movie trailer, roller

coaster, scenery etc. We focused on on-demand videos due to their popularity

compared to live streaming, especially in the case of 360° video live streaming due

to the requirement of specialised cameras to record 360° videos.

We developed an Android app which alternatively streams both 360° and normal

videos in sequences of 20 videos at a time. We launched commercial YT and

FB apps parsing video URLs to mimic the generalized streaming behaviour. To
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Table 3.1: Summary of datasets: Full frame streaming

Video Unique Total No. of UDP No. of QUIC No of TCP

type videos traces packets packets packets

(×105) (×105) (×105)

YT-360 50 160 2.03 166 1.29
YT-Nor 50 160 1.76 75 1.95
FB-360 50 149 151 1.12 6.03
FB-Nor 50 147 110 0.546 2.03

give the same network conditions for both types of videos that are consecutively

streamed, we limited the gap between two consecutive videos to 3 s. Also, we

accessed a simple web page we created between every two consecutive videos to

create a known signature which further helped in separating traces in data logs.

To automate the process, we created an additional Python interface with Android

adb [114] commands which control the streaming activity. While streaming, the

app stores the video id, start time, end time, video type (360° or normal) and

streaming platform (YT/FB) in the device storage.

We collect over 600 encrypted packet traces (DS-pkt) at the local router ( 1○/PC

in our experiment setup (see Fig. 3.1). We also vary the streaming context con-

ditions as follows: (i) Time of the day: morning, afternoon and night/evening,

(ii) Bandwidth: Not Controlled (NC-sufficient bandwidth for streaming), and (iii)

Backbone network: 802.11n with wired broadband, and 4G/LTE. Because of ABR

algorithm based streaming of commercial YT and FB apps and NC bandwidth

scenario, the resolution of the videos can vary between 480p–1080p.

Using DS-pkt, we synthesize DS-flw, which includes traffic flows emulating data col-

lection at vantage point 2○. DS-flw is compatible with the data formats deployed

by ISPs in their systems. Table 3.1 reports that YT videos are primarily streamed

with QUIC protocol, while FB leverages User Datagram Protocol (UDP). How-

ever, due to many other non-video flows (e.g., audio streams, advertisements etc.),

all three types of packets (i.e., including Transmission Control Protocol (TCP))

are observed in collected traces.

We run control experiments in the commercial network of a large MNO to collect

flow level data, DS-mno, in production settings by streaming over 200 360° and

normal videos. Note that in DS-mno data collection, we only have access to the

logs generated by a phone we controlled and no access to any information related to

other customers of the MNO. As depicted in Fig. 3.1 3○, flow level logs are collected
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at the transparent proxy the MNO deploys. The proxy aims to optimize the entire

mobile traffic and log performance metrics about user transactions. A transaction

is an entry in the monitoring logs generated by the middlebox. It corresponds to

an individual flow handling encrypted or non-encrypted traffic generated by an

app of a mobile phone connected to the MNO. We play 360° video traces from

each platform, YT and FB, with a Xiaomi Redmi 4A smartphone connected to

the 4G network of the MNO. We randomly select videos from [108–113].

3.2.1.2 VP-aware streaming

We select 17 360° videos with their VP traces from [115], which have been collected

in lab settings with real user participation. For each video, we randomly select

10 users. Note that these videos are different from those reported in Table 3.1

due to the unavailability of VP traces. By matching the genres, we select 17 nor-

mal videos. We implement a VP-aware tile-based 360° video streaming algorithm

modifying the mechanism in the paper, Flare [15]. For comparison, we stream

both 360° videos in full frame and normal videos using the setup and applying the

same rate controlling algorithm, further modifying it for full-frame streaming.

Fig. 3.1–right shows the video streaming testbed, which contains the server and

client developed on a Python-based emulation setup. The server contains video

frames divided into 4 × 6 tile configuration encoded in 4 different quality levels;

4K, HD, 720p and 480p. Each video tile, which has the same length of the original

video, is divided into chunks of 1 s.

There are four main modules for the client. VP predictor predicts the user VP for

3 s ahead based on historical head movement data. Then, considering the rela-

tive position of the predicted VP and the tiles, Tile scheduler ranks tile into four

classes (i.e., Class–0/1/2/3), where the lower the class number higher the overlap

with VP and vice-versa. Tiles with higher class numbers act as a buffer region

to the VP. At Quality assigner, quality levels are determined for the selected tiles

based on the available bandwidth of the channel while increasing the average video

quality considering the past 3 chunks and decreasing the inter-chunk quality dif-

ference.1 Then, the information of tiles with selected quality levels is passed to the

Tile downloader which sends the chunk requests to the server. We stream videos

in full duration while changing the buffer region around the VP by controlling

1We refer interesting users to [15] for detail information of the initial algorithm of Flare.
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the streamed tiles from different classes. Upon the client’s request server selects

the tiles with the required video quality levels. Client and Server connect via a

HTTP/1.1 connection and we control the channel bandwidth emulating 4G/LTE

traces from [116] using Linux tc (traffic control) command line utility [117].

We collect over 760 encrypted packet traces leveraging randomly selected 10 user

VP traces for each video. We denote this dataset as DS-vp-pkt. Using DS-vp-

pkt, we develop DS-vp-flw dataset which contains flow level traffic related with

VP-aware streaming.

3.2.2 Data pre-processing
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Figure 3.2: Data pre-processing and different classification scenarios

3.2.2.1 Packet level data (DS-pkt & DS-vp-pkt)

Fig. 3.3 shows the overall process of data pre-processing for packet level data.

We first filter packets related to the user device using the Media Access Control

(MAC) address. We consider bins resulting from a 5 s sliding window (by 1 s

steps) for calculating the features which are listed in Table 3.2 taking insights

from literature [58][118][61].

2Frame length on the wire
3Total length of the packet from transport layer to application layer
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Figure 3.3: Data pre-processing steps including filtering, binning and feature
extraction for DS-pkt

.

Table 3.2: Features extracted at packet level data

Direction Feature

Uplink (ul) Total bytes (Frame level)2

Downlink (dl) Total bytes (Packet level)3

Total bytes (TCP-header)
Total Num of packets
Packet size (mean, min, max, std)

We take these bin-level features for our near real-time classification. For the of-

fline prediction model, we calculate the statistical features – mean, std, min, max,

(25th, 50th and 75th) percentile – for each of these features over the bins cover-

ing the first t seconds. We omit percentile statistics for DS-vp-pkt data because

we observed reduced accuracy in classification with those features. Finally, the

calculated statistical feature vector represents one video streaming session.

3.2.2.2 Flow level data (DS-flw, DS-vp-flw and DS-mno)

Fig. 3.4 summarizes the pre-processing steps for flow level data. We filter flows for

individual users based on the MAC address, A flow is defined using 5 parameters:

source/destination IP/port and the protocol. To mitigate the impact of non-video

flows such as background traffic, analytics, advertisements etc., we sample the

flows related to YT and FB by observing the domain-specific keywords, i.e. YT:

googlevideo, yt, youtube, FB: fb, fbcdn, facebook [52, 62]. We extract the features in

Table 3.3, for ul & dl for the entire video flow. Then, – mean, sum, min, max – of

each feature are calculated taking first n number of flows, sorted by bytes dl value

in descending order. When n = 1, we consider only the mean value. Finally derived
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statistical feature vector represents the entire video trace in ML classification. The

reason behind varying the number of flows is to see its impact on classification

accuracy. Taking all the flows can add more noise. Nevertheless, leaving some

flows out of processing can drop important video streaming information.

We extract the same features for DS-vp-flw data. Unlike DS-flw, for every single

video session, DS-vp-flw contains only one flow because the streaming testbed

creates a unique TCP connection between server and client. We observe the same

phenomenon at MNO, where the first flow carries the majority of the data (see

Section 3.3.5) in both YT and FB video streaming. Therefore, we believe that

having only one flow per session adequately resembles the practical VP-aware

streaming settings.
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Figure 3.4: Data pre-processing steps including filtering, flow and feature
extraction for DS-flw

Table 3.3: Features extracted at flow level data

Entire video trace (ul/dl) Within bursts (ul/dl)

Throughput (mean) Burst size (max), Burst rate (max)
Frame gap (mean) Burst time (max)
Frame size (mean) Burst num of packets
Packet Re-transmission Burst Gap(mean), duration (mean)

For DS-mno, 360NorVic identifies the flows related to video sessions by using some

of the information reported by the middlebox, (e.g., video flow tag indicating

whether the flow carries video traffic, amount of bytes transferred within the flow),

and computes the required feature vectors. The middlebox already computes

statistics over flows. Note that these flow data can be slightly different from DS-

flw due to the differences in processing mechanisms used by the middlebox and

the Wireshark tool used to generate DS-flw.
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3.2.3 Classification

As illustrated in Fig. 3.2, there are 5 main classification scenarios in 360NorVic

namely, full trace (offline), random segment (offline), near real-time, VP-aware

streaming and MNO classification. Except for VP-aware streaming and MNO

classification, the other three scenarios involve training the models for three traffic

types: YT & FB separately and BOTH (a more generalized version combining YT

and FB data). We use XGBoost as our main classifier due to the fast performance,

and high accuracy [119]. Note that, we assume classification of video data (even if

the content is encrypted) is relatively straightforward [58, 118, 120, 121]. We val-

idate this via private communication with an operational MNO, confirming they

deploy in production middle-boxes for media traffic classification from encrypted

traffic [122, 123]. Unless otherwise noted, we present accuracy by avoiding hav-

ing different traces from the same video in both train and test sets which we

denote as unseen condition later. In the remaining, we explain the importance of

each scenario and implementation information. Important code implementations,

including hyper-parameters of the models, are available with the artifacts.4

3.2.3.1 Full trace (offline) classification

In Full trace (offline) scenario, we analyze the video traces in full length, having

identified the beginning of the video trace. Such offline classification is important

for network providers to identify long-term 360° video streaming patterns in the

network (i.e., geographical and temporal patterns) to enhance network planning

and efficient resource utilization.

In the classification, each video trace is represented by one feature vector taking

summary statistics of each bin for DS-pkt or flow for DS-flw. In addition, each

trace start position represents the beginning of the video. For each dataset, DS-pkt

and DS-flw, we create three XGBoost classifiers for three traffic types, resulting in

6 offline classifiers. To see the minimum data amount for a reliable prediction, we

train and test models for varying data collection intervals (i.e., taking bins from

20 s to 120 s) for DS-pkt, and for a varying number of flows sorted in descending

order of bytes dl for DS-flw. Every analysis had 20 random train/test (70%/30%)

splits for every analysis to cross-validate and generalize results.

4https://github.com/manojMadarasingha/360norvic.git

https://github.com/manojMadarasingha/360norvic.git
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3.2.3.2 Random segment (offline) classification

In this classification, we randomly select segments from different locations of the

full traces in DS-pkt data. In one aspect, segments in shorter lengths reveal short-

term variations of 360° video traces. In another aspect, this is a more practical

scenario when network operators fail to collect full trace with the exact beginning

of the video when handling the sheer volume of transactions in their networks.

Feature values of these segments vary significantly, making the 360°/Normal clas-

sification more difficult. For example, segments from the first 15–20 s can have a

noticeable difference between 360° and normal compared to the end of the video

(see Fig. 3.8(a)).

Fig. 3.5 shows the three main steps of segment-based analysis. First, taking raw

packet traces of 120 s duration, we prepare segments in d duration while keeping a

gap of gmin between two consecutive segments. We set d = 10, 15, 20, 25 and 30 s in

our analysis and gmin values from 1–20 s. Further decrease in gmin (i.e., ≤ 1s) can

increase the number of segments, causing high processing overhead. Therefore, we

keep gmin = 1 s as our lower bound. Secondly, after creating segments, we generate

5 s long overlapping bins with 1 s step size within each segment and extract the

packet level features in Table 3.2. Then, summary statistics over those overlapping

bins are taken to represent each segment as one sample to the ML model. Finally,

we run the classification for three traffic types separately, and these classifiers are

similar to offline classifiers in Section 3.2.3.1. Finally, we present the averaged

results of 10 random train/test splits of 70/30%.
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Figure 3.5: Random segment generation process. Once the d second long
segments are generated, features are extracted after creating bin sequences to
represent those segments. Extracted features are used for 360° and normal video

classification.



Encrypted traffic analysis for understanding 360° video behaviour 43

3.2.3.3 Near real-time classification
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Figure 3.6: Near real-time prediction model. XGBoost model takes DS-pkt
bins as the input and output 1/0 (360°/Normal) prediction, which is the input

for Mode operation

360NorVic near real-time classification model represents the scenario in which we

try to identify the 360° or normal traces during the video streaming time by

inspecting the packet level information (i.e., DS-pkt). This provides a closer look

at the 360° video traffic patterns in real-time. Such classification is also helpful for

network providers to efficiently utilize their resources (i.e., channel bandwidth) in

near real-time traffic re-routing.

Fig. 3.6 shows 360NorVic near real-time classification model which takes DS-pkt

bins individually and output video type (360°/normal) every 5 s with an increas-

ing accuracy until 120 s of packet data. First, for each bin, the XGBoost model

predicts whether the bin is from a 360° (=1) or normal (=0) video stream. Classi-

fication accuracy for these bins separately was comparably lower than 360NorVic

offline results. Also, inspecting every single bin output is unnecessary because,

unlike QoE prediction, once the video type is fixed at a certain confidence level,

operators can handle their resources accordingly. Therefore, to improve the ac-

curacy, we apply Mode (majority voting) operation on the output of XGBoost

model, taking them as groups of binary values (see Fig. 3.6). Every nth Mode

operation at t = (n + 1)5 s takes the first 5n bin outputs from the XGBoost

model. We increment group size by five bins because it provides traffic data of

10 s, which can reflect the dynamics of video streaming properly [61]. Finally,

the model (XGBoost+Mode) predicts the video class every 5 s. We create three

models for three traffic types (i.e., YT, FB and BOTH) As with the rest of the

classifiers, we keep 70%/30% ratios for train/test splits.
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3.2.3.4 VP-aware streaming classification

VP-aware streaming-based classification shows the performance of 360NorVic when

extracting 360° videos with tile based 360° video streaming from normal videos.

The analysis also provides insights into important characteristics of tile based 360°
video streaming in terms of their network traffic data. We train separate classifi-

cation models for DS-vp-pkt and DS-vp-flw datasets. We evaluate the classification

based on the number of tile Classes we streamed (see Section 3.2.1.2) to see the

impact of changing buffer region on accuracy. For example, Class 0 and Class 0–1

(i.e., include tiles from both Class 0 and Class 1) are separate classification scenar-

ios. Moreover, we analyze the classification performance for dl and dl+ul traffic

directions separately to see the impact of modified chunk requests that includes ad-

ditional tile information required to select the tiles to cover the VP+buffer region.

We follow the steps in Section 3.2.3.1 to process the traces further to derive the

input samples for the XGBoost ML models. We report the average performance

of 10 random train/test splits of 70/30% ratios.

3.2.3.5 MNO classification

The classification at MNO is imperative to understand 360° video streaming in

the wild and to compare and contrast the observations we get in the previous

classification scenarios, particularly in Full trace (offline) with DS-flw. 360Nor-

Vic classification step is divided in two phases, namely Training and Inference.

In the former, we train and validate the model on a set of flows generated via

controlled experiments. In the latter, we apply the trained model (i.e., model

inference) to all flows of the MNO customers in the wild. Note that only the

inference step has to be performed near real-time, and this operation is indeed

performed in the order of a few hundreds of milliseconds. At this stage of 360Nor-

Vic, we have run only the Training phase as a pilot study. We run separate models

for YT and FB for the classification, varying the number of flows sorted according

to the bytes dl value for each video streaming session from DS-mno data. In each

classification, we run a 10-CV cross-validation to obtain the results.
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3.3 Results and Analysis

Now, we present the results of 360° and normal video classification. We provide

insights into 360° video streaming behaviour in network analysing traffic char-

acteristics while providing reasons for the performance of 360NorVic. Since the

classifiers are run with data collected under different conditions in video stream-

ing, for example, including multiple vantage points in the network (e.g., LAN,

enterprise and MNO), different raw data types (i.e., packet and flow level), and

different streaming conditions (i.e., offline, near real-time), these insights reveal

nature of 360° video streaming under a broad spectrum of network conditions.

3.3.1 Full trace (offline) classification

3.3.1.1 Packet level (DS-pkt)

Results of ML-classification: Table 3.4 shows the accuracy and F1 score for

varying data collection intervals (from 20 s to 120 s). Results show that when we

capture packets at least for the first 30 s of the video, 360NorVic achieves accuracy

above 93% (with F1 score ≥ 91%) in classifying 360° videos, regardless of the app
combination (YT, FB or BOTH). Further increase in the interval to 60 s slightly

increases the accuracy for YT and FB, but drops for BOTH. A further increase to

90 s shows that the performance drops for YT, but remains constant for FB. The

accuracy slightly drops at 120 s in both cases (YT, FB).

Table 3.4: Avg accuracy and F1 score for DS-pkt

Data collection YT(%) FB (%) BOTH (%)
interval Acc F1 Acc F1 Acc F1

20s 85.9 81.9 93.7 92.7 89.8 87.2
30s 93.7 92.2 94.7 93.5 95.2 94.1
60s 96.7 95.6 95.1 94.0 94.6 93.6
90s 95.9 94.7 95.1 94.0 94.0 92.4
120s 96.2 95.2 94.2 93.0 94.0 92.4

Result analysis & insights into 360° video streaming in DS-pkt: To in-

vestigate the reasons for the differences in accuracy, we first examined the most

important five features in the classification that are reported in Appendix A.1. We

compare the most important feature distribution (denoted in the y-axis) between



Encrypted traffic analysis for understanding 360° video behaviour 46

360° and normal video for three traffic types in Fig. 3.7. For each traffic type, data

collection intervals of the lowest and highest accuracy values are shown.

We analyse differences in feature distributions because higher the difference be-

tween features, it is easier for ML classifiers, especially for decision tree-based

classifiers such as XGBoost, to differentiate two video types. For example, for

YT, although we observe there is a clear separation between 1st and 3rd quartiles,

considering full range, there is less overlap in Total bytes (frame level) between

360° and normal videos at higher durations. This has caused an over 11% boost

in accuracy from 20 s to 60 s. In contrast, we observe relatively high overlap in

the most important feature value in both 20 s (i.e., has the lowest accuracy) and

90 s (i.e., has the highest accuracy) duration traces from FB, causing a relatively

small improvement in accuracy.

YT FB BOTH

85.9% 96.7% 93.7% 95.1%
89.8%

95.2%

Lowest accuracy Highest accuracy

Figure 3.7: The most important feature variation for DS-pkt–offline classifi-
cation for the duration of lowest and highest accuracy for all three traffic types.

A dashed line separates distributions according to the accuracy

In YT, 360° videos show a significant difference in dl features, compared with

normal videos. Fig. 3.8(a) depicts that Total bytes dl in DS-pkt (DS-pkt bins are

aggregated into 10 s bins for clarity of the presentation) in 360° videos is always
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greater than the same distribution of the normal videos. This is mainly because

packet size and the number of packets in 360° video traces are greater than normal

video traces. Interestingly, features related with Packet size in ul dominate in FB

(see Appendix A.1). In Fig. 3.8(b), we observe that 360° videos show noticeable

differences in ul direction at the beginning of the video compared to its dl features

but towards the end, dl features become prominent. Also up to 4th bin, there

is a higher overlap between 360° and normal videos highlighting that aggregated

features such as Total bytes dl are less imperative for FB classification. This has

caused XGBoost to search through finer level details (i.e., packet size variations)

in FB traces for improved classification.

In summary, at packet level, 360NorVic achieves over 95% accuracy. Feature dis-

tributions indicate that the longer the video duration higher the differences between

360° and normal videos. Moreover, in the majority of the video duration 360° video
streams more data due to more network packets and their larger size in both ul and

dl, and the content platform itself has an impact on 360° video streaming.

3.3.1.2 Flow level (DS-flw)

Results of ML-classification: We present classification results for DS-flw in

Table 3.5, varying the number of flows we consider for classification. For YT,

FB and BOTH, taking the first 6, 4, and 2 flows gives the best accuracy level,

respectively. However, even with one flow, we see over 92% accuracy for all three

traffic types, which can be highly beneficial for large network operators who may

consider only the most significant flow for a video session when handling a large

number of transactions in a short time. In contrast to DS-pkt, flow level accuracy

drops by 1%–3% in all three cases. We conjecture this is because flows represent

entire streaming sessions, which aggregate the granular features (bin-wise) we

considered at the packet level.

Result analysis & insights into 360° video streaming in DS-flw: Fig. 3.9

shows the most important feature distribution at different number of flows corre-

sponding to the maximum and minimum classification accuracy reported in Ta-

ble 3.5. Appendix A.2 summarizes the first 5 most important features for DS-flw

data. For all traffic types, we observe the lowest accuracy when having All flows.

The Corresponding feature distributions show comparably a higher overlap at All

flows scenario, especially for FB and BOTH traffic types lowering the maximum
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Table 3.5: Aeverage accuracy and F1 score for DS-flw

No. of flows
YT(%) FB (%) BOTH (%)

Acc F1 Acc F1 Acc F1

1 93.3 92.2 92.8 91.9 92.3 91.0
2 93.2 92.4 92.9 91.3 92.3 91.1
4 93.4 92.2 94.1 92.8 92.2 90.8
6 93.7 92.7 92.8 91.2 91.8 90.1
8 92.4 90.8 91.1 88.8 89.7 87.9
All 92.0 90.7 90.6 88.4 88.7 88.6

accuracy by 5% on average. Taking more flows slightly reduces the performance

because it can add more noise to the dataset.

YT FB BOTH

93.3% 93.7%

No. of flowsLowest accuracy Highest accuracy

92.8%

94.1%

88.7%92.3%

Figure 3.9: The most important feature variation for DS-flw–offline classifi-
cation for the no. of flows of lowest and highest accuracy for all three traffic

types.

Fig. 3.10 shows the bytes downloaded (dl) and uploaded (ul) distribution by each

flow of a trace for YT and FB, respectively. Flows are sorted according to the

bytes dl value, and values are in log scale to highlight small range differences.
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Figure 3.10: Bytes dl and ul (in log 10) distribution for YT and FB respec-
tively by each flow and number of traces having at least a given flow number.

A dashed line separates distributions according to the accuracy
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Fig. 3.10(a) shows that, in YT, the first flow in 360° video streams 16.0 MB more

data (0.48 more data in log scale) on average compared to normal videos. Our

analysis shows that flows with fewer data contain information such as page loading,

video thumbnails etc. that are common for both 360° and normal video streaming.

This claims that having only the first flow, the ML model can give nearly the best

accuracy, verifying the results in Table 3.5 for YT. In contrast, FB analysis in

Fig. 3.10(b) indicates that 360° sends comparably fewer data in uplink compared

to normal videos and the first flow in both video types has higher overlap, which

carries the majority of the data in uplink. Therefore, for better classification, FB

traces require more flows.

Fig. 3.10 further shows the probability of having nth flow in a randomly selected

trace. Overall, YT 360° video traces have more flows than normal videos. Consid-

ering both video types, there is less probability (i.e., less than around 0.5) for a

YT trace to contain flows with lower data transmission (i.e., n ≥ 7 and has 1/1000

of first flow data). Therefore, in Table 3.5, even with all the flows, we observe only

a 1.7% drop in accuracy on average for YT. In contrast, FB 360° video tends to

have less flows than normal videos. Also, for both video types, there is a relatively

higher probability of containing low data transmitting flows that potentially have

higher feature value overlap between 360° and normal. This has been the main

reason for a noticeable drop in 3.5% and 6.4% of average accuracy drop in FB and

BOTH traffic types compared to YT.

Overall, 360NorVic offline classification with DS-flw achieves over 92% accuracy.

Having more flows reduces the classification accuracy because of noisy flows in-

cluded in the input dataset. Generally, 360° video flows transmit more data during

video streaming, however, content platform (i.e., YT or FB) impacts the flow be-

haviour by deciding flow properties such as number of flows, data transmitted in

ul and dl etc.

3.3.1.3 Impact of content popularity

To evaluate true ML performance, we specifically avoided the traces of the same

video appearing in train and test datasets which we denote as unseen condition

(Section 3.2.3). However, from [75, 124], it can be assumed that most popular

videos have already been seen by the ISP or MNO without loss of generality. We

take 70% of traces of each video as training data and the remaining for testing,
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Figure 3.11: seen and unseen comparison

which we denote as seen condition. Fig. 3.11 shows that, at packet level, the

accuracy of each platform is increased by 0.9%–1.6% under seen scenario, which

can have a huge impact on large-scale networks. FB shows noticeable improvement

at flow level compared to YT. Also, [125] claims that, for 80% of YT videos, it

takes up to 6 weeks to come to their peak view count. Therefore, assuming FB

also has such behaviour, these models can increase the accuracy by intermittent

training when videos are getting popular.

3.3.2 Random segment (offline) classification

Now we present the classification results of random segment analysis. We report

classification results under two main properties of random segments: segment

duration (d) and segment gap (gmin) (see Section 3.2.3.2). In each scenario, we

analyse the reasons behind classification performance while highlighting 360° and
normal video traffic characteristics in shorter segments.

3.3.2.1 Impact of segment duration (d)

Results of ML classification: Table 3.6 summarizes the classification accuracy

when changing the d from 10 to 30 s while keeping gmin = 1 s. We further compare

the results with DS-pkt offline 120 s scenario from Table 3.4 because 120 s is the

full length of video trace and the maximum length a segment can have. Note that,

here, we consider the unseen scenario where non-of the trace segments from test

video IDs appear in train data. For all three traffic types, increasing the d value im-

proves accuracy and F1-Score. Comparing YT and FB, YT improves the accuracy
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from 89.6%–95.1% whereas FB shows lower improvement from 84.3%–86.2%. The

impact of FB lower performance is further replicated in BOTH category resulting

in only 90% maximum accuracy at 30 s.

Table 3.6: Average accuracy and F1 score for segment based prediction. Com-
pared with full trace results from Table 3.4

d (s)
YT(%) FB (%) BOTH (%)

Acc F1 Acc F1 Acc F1

10 89.6 89.8 84.3 84.5 85.9 86.1
15 92.9 92.9 86.1 86.0 87.7 87.5
20 94.1 94.1 85.9 85.7 89.0 88.8
25 94.8 94.8 85.9 85.5 89.6 89.5
30 95.1 95.2 86.2 85.8 90.0 89.9

120 (Full) 96.2 95.2 94.2 93.0 94.0 92.4

Result analysis and impact of d on 360° video streaming: Fig. 3.12 shows

the distribution of average data dl and ul (MB) of 5 s bins in each segment duration

for YT and FB respectively.5 We further compare feature distribution with the

full trace duration. For YT, despite the overlapping outliers, we see a noticeable

difference between the average data dl value causing high classification accuracy.

In contrast, FB data ul patterns show significant overlap between 360° and normal

data for all d values compared to 120 s full traces causing lower performance during

classification. This reveals that the shorter the trace (or segment) duration, the

unique properties to identify 360° videos in a trace can be lost, making it similar

to normal videos. In other words, considering shorter period, there is a higher

probability that patterns (data dl or data ul) in network packets from both video

types can behave in the same way.

Further analysis in light of dl and ul feature distribution in Fig. 3.8(a) and

Fig. 3.8(b) shows that during the entire video duration dl features are dominant for

YT. This consistent behaviour supports classifiers to distinguish feature patterns

between 360° and normal random segments. In contrast, for FB, the importance

of features shifts from ul to dl towards the end of the trace. Therefore, for part

of the FB segments, ul features are dominant and for the remaining, dl features

become dominant causing ambiguity in prioritizing features for the classification

and eventually for lower accuracy levels.

5We select dl and ul features for YT and FB respectively based on the observations in feature
importance analysis in Section 3.3.1.1.
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Figure 3.12: Comparing average data dl and ul (MB) of bins in each segment
duration for YT and FB, respectively.

3.3.2.2 Impact from content popularity

We further compare the accuracy between seen and unseen scenarios on random

segments in Fig. 3.13 for different d values for three traffic types YT, FB and

BOTH. In seen scenario, 60% of the traces from the same video ID are used to

create train segments and the remaining traces for test segments. Note that results

in Table 3.6 are reported for unseen scenarios where traces from test classes are not

used for model training. Compared to unseen condition, in seen condition, we see

2.4%, 8.7% and 5.0% average accuracy improvement in all segment durations (d)

for YT, FB and BOTH, respectively. The main reason for accuracy improvement

is successive segments in proximity with near similar feature distributions can be

separated into train and test sets, making both distributions more similar, which

in fact, can be expected when the collected trace segments to train the model are

located near to the trace segments observed during inference phase in real.
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Figure 3.13: Accuracy comparison between seen and unseen scenario for three
video traffic types YT, FB and BOTH in random segment analysis.
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Figure 3.14: Accuracy variation when changing the gap (gmin) between seg-
ments for different segment duration (d)

3.3.2.3 Impact of segment gap (gmin)

Results of ML classification: We analyse the classification accuracy while

changing the gmin for selected 9 discrete values ranging from 1–20 s under seen

condition. An increase in gap reduces the temporal relation between the segments

and prevents the model from seeing the train and test segments in proximity, mak-

ing the classification more difficult. From Fig. 3.14, we observe 1.8% and 4.7%

average decrease in accuracy for YT and FB respectively when increasing gmin

1–20 s. Though segments with 10 s duration show the lowest accuracy, still the

minimum accuracy is (≥ 86%) at gmin = 10 s and gmin = 20 s for YT and FB,

respectively.

Figure 3.15: Autocorrelation between segments according to segment gap and
segment duration for YT 360° and normal videos.

Result analysis and impact of gmin on 360° video streaming: We measure

the autocorrelation between segments to investigate the root causes for the accu-

racy decrease. We first measure a representative feature value for each segment in

(Average bytes dl (for YT) or ul (for FB) across the bins in a segment) a given
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video trace creating a time series sequence representing the entire video trace.

Then, we analyse the autocorrelation in this sequence to measure how similar the

successive segments are. For example, if the gap between consecutive segments

is smaller, the packet distribution of those segments can be very similar. As a

result, we can observe a high similarity in feature values (i.e., that represent each

segment) calculated in consecutive segments, causing higher autocorrelation.

Fig. 3.15 shows autocorrelation (lag = 1 sample) of the segments from different

durations (d) and segment gaps (gmin) for segments from YT 360° and normal

videos. First, we notice that autocorrelation distributions are almost similar for

both 360° and normal videos, and experimentally we observe a similar distribu-

tion for 360° and normal videos from FB. This indicates that at the segment level,

features of segments show a similar correlation between 360° and normal videos.

Second, most importantly, increasing gmin reduces the autocorrelation, indicating

a higher difference between consecutive segments. Therefore, when randomly di-

viding these segments into train and test segments, we observe a relatively higher

difference between train and test sets, causing reduced accuracy in 360° and normal

video classification. Third, when d increases, autocorrelation between segments

increases because longer segments can absorb minor packet level variations raising

similarity between consecutive segments. This is another reason for comparably

higher accuracy for longer-duration segments that we observe in both Table 3.6

and Fig. 3.14.

In summation, classification with random segments can achieve over 95% accuracy,

and segment duration and segment gap are critical factors affecting the accuracy.

Analysing absolute feature values shows YT 360° video segments show a detectable

difference with normal videos, whereas FB 360° and normal video segments overlap

more. However, considering the correlation between aggregated feature values in

segments, we observe similar patterns for both 360° and normal videos.

3.3.3 Near real-time classification

Results of ML classification: We perform near-realtime classification for DS-

pkt, as it predicts at every 5 s interval until accuracy reaches a satisfactory level

as shown in Figure 3.6. In addition, it does not require retraining or maintain-

ing multiple models for different lengths of test data. Figure 3.16(a) shows the

performance of our near real-time classification model. The model performance
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Figure 3.16: Analysis of near real-time prediction considering mainly BOTH
scenario

gradually increases until 30 s, achieving more than 95% accuracy and stabilising

after 50 s. Note that, in Fig. 3.16(b), we observe a very similar variation in F1

score for all three traffic types. Comparing with the results in Table 3.4 at 20 s,

real-time model give 4.4% (8.7%), 1.7% (2.8%) and 2.9% (5.6%) improvement in

accuracy (F1 score) for YT, FB and BOTH respectively. We compare the near

real-time performance with offline classification results in Table 3.4 when using

DS-pkt data. Figure 3.16(c) depicts that the real-time model shows better accu-

racy than the offline results, which is about 2.1% higher on average, considering

all the trace duration.

Result analysis and 360° video streaming behaviour in near real-time:

We observe higher classification accuracy in near real-time scenarios, particularly

than in offline classification counterparts, mainly for two reasons. First, in near

real-time analysis, we can capture the recurrent traffic differences between 360° and
normal videos better than their offline counterparts (see Section 3.3.1.1). Such dif-

ferences between 360° and normal are further verified in Fig. 3.8(a) and Fig. 3.8(b)
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when considering bins separately. Second, Mode operation can absorb the impact

of erroneous predictions at different time points of the predictions. For example,

Fig. 3.16(d) indicates a 12% of average gain in accuracy we achieve by taking

the Mode of XGBoost predictions for BOTH scenarios. This reveals that when

analysing 360° and normal traffic in near real-time, it is important to capture

both session variations (i.e., variations in traffic patterns from the beginning of

the video captured by Mode operation) in addition to the current variations (i.e.,

variations in traffic patterns for the recent past captured by XGBoost) [126].

In summary, 360NorVic near real-time classification can provide almost 97% clas-

sification accuracy. 360° traffic characteristics show a noticeable difference against

normal traces in their current variations and can be combined with session varia-

tions to boost the traffic difference.

3.3.4 VP-aware streaming classification: packet (DS-vp-

pkt) & flow (DS-vp-flw) level

3.3.4.1 Results of ML classification

Packet level (DS-vp-pkt) Table 3.7 reports classification accuracy and F1-score

for 360° and normal classification for different classes of tiles at packet level. When

considering only the dl features, streaming only Class-0 tiles reports the highest

performance of 88.2%(92.7%) classification accuracy (F1-score). Adding ul fea-

tures significantly improves the classification performance. For all Class 0–n con-

figurations, accuracy and F1-score are almost 100%, revealing the importance of

ul features.

Table 3.7: Avg accuracy and F1 score for VP aware streaming using packet
level data. Results are given for different class numbers of tiles and compared
with Full frame streaming. Class 0–n indicates all tiles from Class–0 to Class-n

Tile classes
dl dl+ul

Acc (%) F1 (%) Acc (%) F1 (%)

Class 0–3 81.2 89.3 99.6 99.7
Class 0–2 81.1 89.6 100.0 100.0
Class 0–1 80.2 89.3 98.9 99.5
Class 0 88.2 92.7 98.3 99.2
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Flow level (DS-vp-flw): Table 3.8 reports the classification accuracy and F1-

score at flow level in VP-aware streaming. The maximum accuracy (F1-Score)

is gained at Class 0–1 scenario which is around 91.7%(94.3%) and 92.3%(94.8%)

when considering only dl and dl+ul features respectively. Compared to DS-vp-pkt,

we observe similar accuracy levels with dl features, nevertheless considering dl+ul

features, no significant accuracy improvement is reported. Moreover, at flow level,

Streaming tiles with a buffer (e.g., Class 0–1) gives the highest accuracy.

Table 3.8: Avg accuracy and F1 score for VP aware streaming using flow level
data. Results are given for different class numbers of tiles and compared with
Full frame streaming. Class 0–n indicates all tiles from Class–0 to Class-n

Tile classes
dl dl+ul

Acc (%) F1 (%) Acc (%) F1 (%)

Class 0–3 88.2 91.8 85.7 91.5
Class 0–2 87.9 92.0 88.0 92.6
Class 0–1 91.7 94.3 92.3 94.8
Class 0 86.0 91.5 87.1 92.3
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Figure 3.17: Accuracy when cumulatively adding the first 5 important fea-
tures in dl and dl+ul scenarios in DS-vp-pkt classification.

3.3.4.2 Result analysis and 360° video streaming behaviour with VP

awareness

Packet level (DS-vp-pkt): Taking DS-pkt into account, Fig. 3.17(a) shows that

having only Class–0 tiles achieves higher accuracy than the other class tile configu-

rations when adding the features cumulatively. Adding tiles from multiple classes

streams more data in 360° videos compared to normal videos. However, with this

additional buffer, higher variability is added to the trace patterns of different users
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for the same video, which results in lower accuracy. Fig. 3.17(a) also shows that

increasing the number of features improves the classification performance.

Fig. 3.17(b) shows the same performance considering ul+dl data. We see that,

even with the first feature, 360NorVic achieves almost 100% accuracy. Based on

this, we applied a simple heuristic for the classification which thresholds the most

important feature (i.e., F1 : max packet size ul) in dl+ul scenario. This exper-

iment gave 98% average accuracy and 98.8% average F1-Score in all the class

scenarios. These observations provide multiple insights for 360° video streaming

with VP awareness. First, VP-aware streaming embeds additional information

to the 360° video VP request (e.g., tiles and their quality levels), which makes it

different from normal or full-frame chunk requests by the clients. Second, with

DS-pkt data, the identified most important features are independent of trace du-

ration (e.g., features related to packet size), claiming that it can generalize the

results for challenging cases such as analysing random segments.

Flow level (DS-vp-flw): The main reason for low accuracy at flow level is that

the majority of the packet level features contributed to higher accuracy in DS-vp-

pkt are now aggregated, lowering their impact on the classification. Particularly,

in ul direction, flow data does not capture the packet level differences between

360° and normal traces, causing no accuracy improvement as in DS-vp-pkt.

In VP-aware streaming-based classification, we observed almost 100% classification

for DS-vp-pkt data with dl+ ul features due to the additional VP request (i.e., tiles

and their qualities to be fetched) information included 360° video traffic. Though

data aggregation remove finer level traffic information in 360° video traces, they

can still be extracted from normal video traffic with over 90% accuracy. Having an

additional buffer to the VP is useful to compensate for VP prediction errors due

to quick user head moments, however, can lead to higher variability in 360° video
traces.

3.3.5 MNO classification–pilot study

Result of ML classification DS-mno: At MNO level, 360NorVic achieves an

average accuracy of 92.0% (±5.1%) and average F1 score of 92.6% (±4.6%) for

YT. Similarly, for FB, the accuracy is 94.4% (±3.5%) and F1 score is 93.4%

(±4.5%). We observe a similar accuracy and F1-score distribution with DS-flw in
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Figure 3.18: Performance of 360NorVic classification when cumulatively
streaming number of flows at MNO level
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Figure 3.19: Data dl (MB) distribution by each flow in a video session. Flows
are sorted according to the data dl value

Section 3.3.1.2. Fig. 3.18 reports 360NorVic accuracy as a function of the number of

flows used for classification for YT and FB. Note that flows are sorted in decreasing

order of bytes downloaded as detailed in Fig. 3.19(a) and 3.19(b). We observe

that even with only one flow, FB can achieve 90(90)% average accuracy (F1-Score),

respectively and conversely, YT requires at least four flows to boost the accuracy

from 72% to 92%.

Result analysis and 360° video streaming behaviour at MNO: We observe

that the first few flows in both 360° and normal videos contain most of the data.

Interestingly, for FB, a single flow is sufficient to contain most of the video data,

as shown in Fig. 3.19. Therefore, in Fig. 3.18(b), we observe a higher classification

accuracy even with a single flow. Conversely, in YT, video content is spread

across multiple flows, as shown in Fig. 3.19(a), where the first four flows carry the

majority of the content. For both traffic types, 360° video flows comparably stream
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Figure 3.20: Throughput dl (Mbps) distribution by each flow in a video ses-
sion. Flows are sorted according to the data dl value

more data similar to the observations we made in Section 3.3.1.2. Fig. 3.20 details

the distribution of the most important features used by the model for classification,

especially including dl throughput. Similar to the previous analysis, the first four

and three flows present distinguishable values of the considered feature for YT and

FB, respectively. For most flow numbers 360° video traces have higher throughput

in dl.

At MNO level 360NorVic gains over 92% or equal average accuracy and F1-Score

for 360° and normal classification. At the flow level, 360° video carries more data

than normal videos, and only the first few flows are enough to achieve high accu-

racy. This analysis also shows the effectiveness and feasibility of 360NorVic using

data collected in a commercial network.

3.4 Further Analysis of 360NorVic classification

In this section, we further analyse the impact of the content itself on 360NorVic

performance, followed by comparing 360NorVic XGBoost classification with other

classification methods. This comparison contains a heuristic approach and other

ML methods, including both traditional ML approaches and DNN-based methods.

In this analysis we leverage DS-pkt and DS-flw datasets.
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Figure 3.21: Avg. classification accuracy for each video from DS-pkt

3.4.1 Impact of content

We collect individual classification accuracy for each video, streamed at the same

conditions, from DS-pkt. Figure 3.21 shows the average accuracy for a video

because the same video can be tested several times within 20 different train/test

splits. In each video category, the majority is classified with 100% accuracy (dotted

line indicates the number of videos with 100% accuracy). Out of 50 videos in

each category, only 3 YT-360°, 5 YT-Normal, 4 FB-360° and 6 FB-Normal videos

show less than 80% accuracy. This shows no correlation between the classification

performance and the video content type, supporting the generalization of our

solution.

3.4.2 Comparison with other classification approaches
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Figure 3.22: Heuristic comparison for ”BOTH” traffic type
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Figure 3.23: Comparison with CNN architecture proposed in [3] for both YT
and FB classification

DS-pkt DS-flw

MLP

YT FB YT FB

MLP
360Norvic 360Norvic

Figure 3.24: Comparison with other ML models for the configurations in
Table 3.4: DS-pkt (left) & Table 3.5: DS-flw (right)

3.4.2.1 Heuristic approach

We compare 360NorVic to a heuristic approach considering the five most important

features6 in Fig. 3.22(a) and Fig. 3.22(b). The heuristic uses a threshold per

feature, distinguishing between 360° and normal format using a majority rule on

the per-feature classification. 360NorVic accuracy is always higher than the one

of the heuristic approach, i.e., the average accuracy difference is of 8.7(±3.5)%
and 5.7(±1.0)% for DS-pkt and DS-flw respectively. We also observe additional

features provide noticeable benefits to 360NorVic while the performance of the

heuristic is not clearly improved.

6F1 : FN denotes combined first N number of features
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3.4.2.2 Other ML models

We compare 360NorVic with a modified Convectional Neural Network (CNN) ar-

chitecture from [3], Multi-layer Perceptron (MLP) [58] and a set of selected ML

classifiers used in literature[120]. For the CNN, each video trace is sliced in bins

of 0.25 s; this creates a feature vector with 480 samples for each trace of 120 s

long, as the input for the model. Figure 3.23(a) reports the accuracy of 360NorVic

(DS-pkt) and the CNN classifier for YT and FB as a function of the train set size

and trace duration. When the entire train set is used (70% of all traces), value 1

in the left figure, 360NorVic performs as the CNN model. When reducing relative

train data size, CNN accuracy drops by 30% at most for both platforms, whereas

the decrease for 360NorVic is only 1 (7)% for YT (FB). Figure 3.23(b) highlights

that by reducing the duration of the traces7 the CNN accuracy for FB reduces to

a minimum of 84% at the 30 s. For YT, for both CNN and 360NorVic accuracy

decreases steadily.

Figure 3.24 reports the accuracy of 360NorVic, Naive Bayes (NB), k-nearest neigh-

bors (KNN), Multi-layer Perceptron (MLP) [58] and Random Forest (RF) al-

gorithms. Overall, both NB and KNN poorly perform in all cases, except for

YT at the packet level (DS-pkt). RF provides only slightly lower performance

than 360NorVic while the MLP does not improve performance when compared

to 360NorVic, while being more complex. These results highlight that 360Nor-

Vic provides the best performance when compared to traditional ML algorithms

while using complex models (i.e., CNN, MLP) would not provide any benefits but

rather hurt classification performance when there is not enough data available for

training.

3.5 Discussion

Now, we discuss several challenges of deploying in a network, especially at the

MNO level, followed by its advantages for network providers. Also, we provide

our initial thoughts about the subcategory of VP-aware streaming, dynamic tile

(DT)streaming, and how it can affect changing 360° video flows in the network.

7When reducing duration, size of the input to the CNN model is also reduced proportionally.
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3.5.1 Advantages and support for MPEG-OMAF

In 360NorVic, we conducted an initial study for 360° video extraction from normal

videos, which can support improving 360° video delivery by the network providers.

For example, traffic shaping, which aims to prioritize the network traffic, benefits

from prior identification of 360° videos by allocating more channel bandwidth

than normal videos. Long-term analysis of 360° video flows helps identify its

geographical distribution and frequency of 360° video usage. This enables ISPs and
network providers to add additional network infrastructures such as edge/cache

servers to store content rather than accessing the main CDN or content servers.

For example, educational institutes that use VR streaming as a teaching aid can

be a 360° video hotspot, which requires additional network capacity.

The 360NorVic is still capable of extracting the 360° video traffic transmitted ac-

cording to the MPEG-OMAF standard. MPEG-OMAF standardizes tiles based

streaming by either delivering all the tiles with different quality levels (i.e., tiles in

VP are in higher quality and the remaining in lower quality) or only the selected

tiles in the user VP. The classification with VP-aware streaming 360NorVic mim-

ics this scenario showing its readiness for MPEG-OMAF standardized 360° video
streaming.

3.5.2 Challenges in deployment

Deployment of 360NorVic in the wild is challenging for several reasons. First,

millions of flow transactions need to be handled at the MNO level when filtering

for video-related flows. This mainly affects the near real-time classification model

that provides time-critical results. Second, this filtered data will have flows with

variable lengths, noisy flows and characteristic differences due to the proprietary

streaming algorithms by different applications that are frequently getting updated.

Third, data collection in the wild raises many ethical issues related to the privacy

of network consumers. Therefore, proper ethical clearances and privacy protection

steps should be taken. Fourth, continuous monitoring of video traffic is required

to identify any changes to the traffic patterns which can degrade the performance

of the classifiers. This is because the feature differences between 360° and normal

videos can get changed making the already trained classifiers less usable. However,

such persistent training needs to be carefully managed without incurring additional
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costs for the network operators. For example, prolonged data collection requires

the deployment and maintenance of data collection tools, continual acquisition

and emendations to the ethical clearances etc. which are significantly expensive

at an operational level. One possible solution could be to properly identify the

pertinent thresholds for performance metrics of the classifiers and trigger the data

collection if those metrics become below those limits.

3.5.3 VP-aware streaming with DTs

The preliminary study we conducted on VP-aware streaming is based on the paper,

Flare [15] which emulates streaming fixed size tile directly from a content server.

Following the basic concepts of tile-based streaming, variable size tiling of 360°
video frames has been proposed, which partition the frames into tiles that are dif-

ferent in sizes and locations to provide finer VP coverage [86, 87]. These tiles can

create more upstream and downstream variability, making the 360° and normal

video classification more challenging. Also, Edge-assisted mechanisms have been

proposed to stream part of the tiles from Edge servers through the last-mile net-

work and only the remaining tiles from the content/CDN (Content Delivery Net-

work) servers through the back-haul networks [23, 102]. Therefore, full upstream

and downstream data is not seen by the operators in the back-haul network but

should rely on the measurements taken in the last-mile network that can capture

the full data stream. Therefore, 360NorVic should be optimized to be worked on

edge servers in edge-assisted tile-based streaming scenarios.

3.6 Summary

To summarize this chapter, we first proposed a 360° and normal video classification

mechanism, 360NorVic, to extract 360° video traffic from normal videos. Then we

analyzed the 360° video traffic behaviour comparing with normal videos. Collect-

ing both packet and flow level data from different layers of the network and from

different content providers (YT and FB), we apply 360° and normal video classifi-

cation for multiple scenarios such as offline, near real-time and slicing longer video

traces into random segments. Moreover, we apply 360NorVic for recently proposed

VP-aware streaming and classification at the MNO level.
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Under all the above scenarios, 360NorVic achieved a higher classification accuracy.

Using packet and flow level data offline, we achieved over 95% and 92% accuracy,

respectively, and with extended classification with random segments, we gained

around 95% accuracy. 360NorVic near real-time classification was capable of cap-

turing short (i.e., current) and long (i.e., session) features of network traces, leading

to a 97% of maximum accuracy. Interestingly, with additional user VP informa-

tion embedded into uplink traffic, classification accuracy with VP-aware streaming

was almost 100%. Finally, applying flow level data from MNO to 360NorVic gave

us over 92% accuracy.

While achieving high accuracy in classification, we provided reasons for those

results by analysing the traffic characteristics of both 360° and normal videos,

especially along with the traffic features used for classification. This eventually

gave us insights into the behaviour of 360° video streaming compared with normal

traffic in the network. For example, 360° video traffic stream more packet data

in larger packet sizes compared to normal videos, which is consistently observable

throughout the video duration. Also, we observed that content platform itself

(e.g., YT, FB) affects traffic patterns (e.g., ul or dl) when distinguishing 360°
video traffic from normal video. With VP-aware streaming, 360° videos embed

additional VP information to the ul traffic, making them different from normal

videos, and such differences are still identifiable in encrypted data.

We further analyzed different aspects of 360NorVic classification, including the im-

pact of the content itself and comparison of 360NorVic XGBoost ML performance

with other ML methods. We discussed several challenges of practical deployment

of 360NorVic and advantages of 360NorVic for network providers.



Chapter 4

Network traffic generation for 360°

and normal videos

4.1 Introduction

In the previous chapter, we proposed 360NorVic to extract 360° video data from

encrypted video traffic using XGBoost classifiers and analyzed their network traffic

characteristics. However, we observed that due to the limited amount of data, the

maximum performance of several analyses, such as DNN based 360° and normal

video classification, which has been the state of the art method in many encrypted

network traffic classification methods [58, 63, 127, 128], was not achieved (see

Section 3.4.2). Therefore, we had to follow additional feature engineering steps

to manually extract the features to train ML models, which is a more traffic-

dependent and time-consuming task. Collecting more training data is a direct

solution to increase dataset size and improve the traffic analysis, nevertheless,

such process is hindered by many practical challenges.

First, the high complexity of network systems and the sheer volume of traffic

transactions (i.e., hundreds of millions of packets per second with millions of

flows [59, 129]) make capturing data a significant challenge. Second, end-to-end

encryption, opaque nature of the network traffic, and limitations of current hard-

ware systems have made it difficult to collect network traffic at the endpoints and

network middle-boxes [130]. Third, privacy, legal and ethical issues arise when

67
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collecting network traffic data due to the ability to leak personally identifiable in-

formation such as user location, user device addresses, user routines and websites

visited [131].

As a solution, in this chapter, we propose a holistic data synthesis mechanism

called VideoTrain++ to synthesize encrypted network traffic data for video stream-

ing. While such a dataset can be used to improve downstream classification tasks,

in general, it can also be used to properly understand the video traffic charac-

teristics for effective network solutions, algorithm evaluations (e.g., to fine-tune

algorithms deployed in network systems that require more data) [65].

VideoTrain++ is based on Wasserstein Generative Adversarial Network (WGAN)

model, further supported by algorithms to pre-process actual network traces and

control the WGAN model training to avoid plausible model overfitting and under-

fitting. We leverage We propose VideoTrain++ mainly for network providers and

administrators as a tool to synthesize network traces for analysis, such as ML-based

classification of network traffic. We develop VideoTrain++ using both 360° and
normal video traffic presented in Chapter 3. To increase the model’s robustness

to a broad spectrum of video traffic patterns, we extend our dataset by including

video streaming traffic from [60]. This new dataset contains normal video traces

from YT, Netflix and Stan. We validate the performance of data synthesis process

showing improved performance in 360° and normal video classification using DNN

models and video fingerprinting related to the extended dataset.

4.2 Methodology

First, we briefly describe the overall workflow of VideoTrain++ as shown in Fig. 4.1

followed by introducing the datasets used. After that, we present the details of

the three main components of VideoTrain++: Data pre-processing, Data generation

and ML-based traffic classification in the following sections.

4.2.1 Overview of VideoTrain++

In Pre-processing, we follow the steps up to binning of packet level data processing

in Chapter 3-Section 3.2.2.1. This includes packet filtering and aggregating them
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Figure 4.1: Overview of VideoTrain++ data generation framework which com-
prises of two steps: Data pre-processing and WGAN based data generation. ML-
based traffic classification is used for validation of the data synthesis process.

to form a time series of bins. A given video trace consists of both uplink (ul)

and downlink (dl) traffic packets. Therefore, in Feature extraction, we separate

them into two time series distributions of ul and dl data and extract features

at bin level. Unless otherwise noted, from here onwards, we define a ‘trace’ as

a sequence of bins. Note that, in VideoTrain++ data, we do not synthesize raw

packet data (i.e., as in .pcap files) but the traces that contain time series features

at bin level. This is because, as we observed in 360NorVic in Chapter 3, bin level

aggregation of packet data, on the one hand, can absorb noisy variations in raw

packets (i.e. noisy packets with high/low amplitudes). On the other hand, it

can easily provide feature distribution of finite length for ML-based classifiers. We

often observed a high throughput at the beginning of the trace that led the models

to be biased towards the feature values at the beginning of the stream during the

data generation. To reduce this biasing effect and to improve the fidelity of the

synthetic data generation, we propose a novel algorithm to decide whether a given

trace should be split into two parts for further processing. The detailed Trace

splitting algorithm together with other steps of Pre-processing phase are presented

in Section 4.2.3.

In Data generation, we train the WGAN model separately for each trace and

synthesize traces which are variations of the input trace (e.g., streamed under

different bandwidth conditions, therefore, different data download (dl) and upload

(ul) patterns). Note that if the trace is split into two parts by the Trace splitting

algorithm, we run the entire data generation process for the two parts separately.
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We first transform different feature distributions of a given trace to corresponding

percentile distributions using the mechanism proposed in [1]. We leverage this

percentile transformation as a mechanism to maintain the periodic peaks and

inter-packet gaps, which are not i.i.d. (independent and identically distributed)

when training the WGAN model. To avoid underfitting or overfitting the WGAN

model, we introduce a novel epoch controlling mechanism. The WGAN model

outputs a set of synthesized percentile distributions for each feature distribution

of the input trace, which are then inversely transformed to obtain the synthesized

traces. Finally, if the input trace has been split, we merge the corresponding two

synthesized traces. Further details of each step in Data generation are presented

in Section 4.2.4.

In ML-based traffic classification, we combine actual and synthesized data and run

two main classification tasks, 360° and normal video classification and video finger-

printing, leveraging the datasets discussed in Section 4.2.2. We utilize two types of

classifiers: i) DNN based: MLP and Convolutional Neural Network (CNN) mod-

els, ii) Traditional classifiers: XGBoost and SVM models. To train the traditional

classifiers, in Feature engineering step, we convert video traces to a feature vec-

tor to represent a given trace. We feed the DNN classifiers with the binned trace

data without further modification and let the models learn the feature interactions

by themselves. Further details about ML-based traffic classification are given in

Section 4.2.5.

4.2.2 Datasets

We leverage two datasets, namely D1 and D2, which contain encrypted video

traffic traces for video type classification (i.e., 360° or normal video from 360NorVic

in Chapter 3) and video traffic fingerprinting tasks collected in [60] respectively.

For the completeness, Table 4.1 summarizes the content of datasets. D1 consists

of 360° video streaming data from Chapter 3 including YT and FB 360° and

normal video streaming. In D2, we have selected three popular content streaming

platforms (i.e., YouTube, Netflix) on which the adversarial actions are prominent.

Important facts related to content selection are further elaborated in the Chapter 3

for D1 and in [59, 60] for D2.

As we have already described in detail about D1 dataset in Chapter 3, we provide

brief introduction only for D2 dataset. D2 consists of normal videos streamed
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Table 4.1: Summary of Datasets

Dataset Platform Content Unique Trace Total
type videos length traces

D1 (Chapter 3) YT 360° 50 120 s 160
YT Normal 50 120 s 160
FB 360° 50 120 s 149
FB Normal 50 120 s 147

D2 [59, 60] YT Normal 20 180 s 2000
Stan Normal 20 180 s 2000
Netflix Normal 20 180 s 2000

from YT, Stan and Netflix from [59, 60]. Each platform has 20 unique videos

and each video has 100 traces that are 180 s long. We leverage this dataset to

fingerprint videos identifying a trace of a given video out of a closed set of 20 videos.

While Netflix and Stan videos are deliberately chosen from various drama or movie

series, YT videos have been selected from a pool of fireplace videos to examine the

classifier’s capacity to distinguish between distinct and similar videos. Videos are

collected by automating the streaming process leveraging Selenium web-driver.1

To remove any background interference, particularly due to the advertisements

in YT, the authors have used the AdBlock Plus2 Chrome extension to remove

advertisements. Similar to D1, amount of background data transmitted during

D2 video streaming was negligible which is shown in [59].

4.2.2.1 Analysis of raw data

Fig. 4.2 shows some randomly selected pre-processed traces from D1 and D2. We

see noticeable differences in trace patterns between different datasets and within

the same dataset. For example, comparing D2–YT with D2–Netflix from the

same dataset, we observe that Netflix streams a higher amount of data within

the first 10–15 s. In contrast, YT streams the data until the end of the video in

a periodic nature. Possible reasons would be differences between the proprietary

ABR algorithms, application nature (e.g., buffer usage) addition to the content

itself.

1https://chromedriver.chromium.org/
2https://adblockplus.org/

https://chromedriver.chromium.org/
https://adblockplus.org/


Network traffic generation for 360° and normal videos 72

0 20 40 60 80 100 120
Time (s)

0

2

4

6

8

10

By
te
s d

l (
M
B)

(a) D1–YT (360°)

0 20 40 60 80 100 120
Time (s)

0

2

4

6

8

10

By
te
s d

l (
M
B)

(b) D1–YT (Normal)

0 20 40 60 80 100 120
Time (s)

0

2

4

6

8

By
te
s d

l (
M
B)

(c) D1–FB (360°)

0 50 100 150
Time (s)

0

2

4

6

8

10

By
te
s d

l (
M
B)

(d) D2–YT

0 50 100 150
Time (s)

0

10

20

30

40

50

60

By
te
s d

l (
M
B)

(e) D2–Stan

0 50 100 150
Time (s)

0

20

40

60

By
te
s d

l (
M
B)

(f) D2–Netflix

Figure 4.2: Downlink streaming patterns of selected traces of different video
types. D1 and D2 videos are streamed from the mobile and desktop versions

of up-to-date applications by content providers, respectively.

Due to the differences in mobile and desktop applications, traffic patterns vary.

Mobile versions of many streaming applications adapt to the same ABR algo-

rithms as their desktop counterparts (e.g., YT DASH protocol) [132]. However,

compared to desktop browser-based applications, mobile applications are run in

more dynamic environments (i.e., mobile users) [133] causing these ABR algo-

rithms to adjust the video quality according to the highly fluctuating bandwidth

conditions. In addition, mobile video streaming applications tend to keep lower

resolutions and smaller increments in the resolution upon an increase in band-

width, mainly due to the smaller size of the mobile device screen [134]. These

reasons have led to differences in mobile and desktop streaming video traffic. For

instance, though both D1–YT (Normal) and D2–YT represent YT normal video

category, patterns have noticeable differences in both amplitude and periodicity.

We see that the desktop version (D2–YT) tends to stream more data compared

to the mobile counterpart, D1–YT (Normal). In VideoTrain++ , we consider dif-

ferent types of video traffic patterns as mentioned above to improve the model’s

robustness.

For both D1 and D2, we consider comparably shorter duration videos. For the

intended classification tasks (i.e., 360° and normal video classification and video

fingerprinting), giving predictions early as possible is important to take necessary
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steps by the network providers and administrators. For example, early identifi-

cation of 360° video traces enables allocation of high channel bandwidth at the

beginning of the video stream. Therefore, short video durations are sufficient

to achieve effective data classification results. Short-duration videos reduce the

time for actual data collection, model training time in WGAN, and other resource

consumption (e.g., storage).

4.2.3 Data pre-processing

In data pre-processing, we convert raw pcap traces to a meaningful time series

feature distribution as shown in Fig. 4.3. We follow the same steps presented

in Chapter 3-Section 3.2.2.1 for creating bins using raw packet data. We create

non-overlapping M number of bins of t seconds for each trace resulting in two

streams for ul and dl separately. Aggregating raw packet data to bins reduce

many complications in encrypted traffic analysis and supporting data synthesis

in VideoTrain++. First, it can remove the impact of noisy data (e.g., removing

noisy peaks by taking the average packet data in the bin). Second, aggregation

of packets can better represent the chunk level variation of video streaming [135].

Third, a sequence of bins can represent a given trace with comparably smaller

vectors of different features that can train ML models with less complexity and

processing time.

Filtered raw packets

Binning (no. of bins = M )

Feature Extraction
…

𝐱! 𝐱" 𝐱#

Filtered network packets from .pcap files

T𝑡 𝑡
1 2 3 4 5 M-1 M

• Extract 𝑘 no. of 
features at bin level 

…

T…

MM

Figure 4.3: Data pre-processing steps in VideoTrain++

In our analysis, we set t = 0.5 s for D1 data and t = 0.36 s for D2-Netflix [59, 60].

For D2–YT & D2–Stan data we empirically set t = 1.44 s, which gave us higher

ML classification accuracy before adding synthesized traces. Having different t

values, we further show the robustness of our data synthesis process for varying

bin-level data aggregations. Finally, number of features are extracted at bin level

considering the raw packet distribution, which creates a time series distribution for
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each feature separately, and will be the input for the data generation mechanism

as described in Section 4.2.4. Note that time series distributions in Fig. 4.3 have

onlyM samples. The features we extracted are Tot bytes dl, Tot packets dl, Tot

bytes ul and Tot packets ul. Since packet dl/ul patterns were highly correlated

with bytes dl/ul features, we selected only Tot bytes dl for D1 and additional Tot

bytes ul feature for D2 due to the improved classification accuracy empirically

observed.

4.2.3.1 Trace splitting algorithm

In video streaming, it is highly like to observe high burstiness and throughput

at the initial phase of video playback because content servers send more data to

fill the buffers in video player applications to avoid video stalling. This results in

noticeable peaks at the beginning of the trace (see Fig. 4.2(f)). And the rest of

the streaming session is completed in periodic chunks. In our initial experiments,

we observed these unbalanced streaming patterns could result in lower fidelity in

synthetic traces the data generation model, which tries to match the high peaks of

the signal at the beginning, also tends to create unexpected peaks in the remaining

part of the trace. To overcome this issue, we propose a trace splitting algorithm

that divides a longer trace into two parts, potentially with high and low data

transmission and then feeds them to the data synthesis process separately. The

algorithm consists mainly of two parts: margin calculation (following the approach

in [1]) and splitting trace.

Margin calculation [1]: In this step, we calculate a margin in the temporal

domain to split the traces into high and low data transmission periods. For that,

we first derive the cumulative sum of Tot bytes dl feature and its gradient. For

example, Fig. 4.4 shows the cumulative sum and its gradient of the traces shown

in Fig. 4.2(a) (from D2–YT (360° )) and in Fig. 4.2(f) (from D2–Netflix). The

cumulative sum distribution of D2–Netflix (Fig. 4.4(b)) illustrates a significant

change in the gradient after the initial data burst. Contrarily, D2–YT (Fig. 4.4(a))

shows an approximately linear curve throughout the entire video duration, making

it difficult to identify a margin to split the trace.

Algorithm 1 summarizes the main steps in margin calculation to split the trace.

Table 4.2 upper shows the abbreviations used in Algorithm 1. For a given trace,

we denote Tot bytes dl feature as xd including all xd
m elements where m ∈ [1,M].
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Figure 4.4: Moving average of cumulative sum and its gradient distribution
for the traces D1–YT (360° ) and D2–Netflix [1] shown in Fig. 4.2(a) and

Fig. 4.2(f) respectively.

Algorithm 1: Trace splitting and margin selection

Input: xd

Output: tp, whether the trace is splittble
1 h(xd)← CumSum(xd) // get cumulative sum

2 yd ←MovinAvg(h(xd), ws) // get moving avg.

3 gd ← Gradient(yd)// get gradient

4 ∀m ∈ [1,M], gdm =

{
gdm gdm ≥ Hm

0 otherwise

// find consecutive zeros to get the margin

5 tp, count = 0
6 for m← 1 toM do
7 if gdm == 0 then
8 count+ = 1 // count if a consecutive 0

9 if count == 1 then
10 tp = m+ 1 // start of consec. 0s

11 if count > H0 then
12 break

13 else
14 count = 0

15 if count > 0 then // acceptable margin found

16 calculate wp in Eq. 4.1
17 calculate wd in Eq. 4.2
18 calculate wc in Eq. 4.3
19 if wc > Hc then // is the trace splittable?

20 return tp, splittable = True

21 else
22 return , splittable = False

23 else
24 return , splittable = False
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Table 4.2: Abbreviations used in Algorithm 1 (Upper section) and 2 (Lower
section)

Notation Description

xd/h(xd) Distribution of Tot bytes dl/cum. sum
∀m ∈ [1,M]

yd Moving averaged distribution of h(xd)
gd Gradient of yd

gdm Gradient value at mth bin
ws Window size for MovingAvg() function
Hm Threshold for small peak removal in gcd
H0 Threshold to detect consecutive zeros
Hc Threshold to check whether

the trace can be split

Ta Actual feat. trace
Se Set containing the synthesized traces

at epoch e
emax Max number of epoch
es Epoch at which the metric calculation starts
l Repetition value for metric calculation
Bv Buffer to store metric values
Bsyn Buffer to store synthesized trace set
cose/euce Cosine sim./Euclidean dis. at epoch e
gp/gn Positive/negative gradient of values in Bv

First, we convert the xd to its cumulative distribution h(xd), followed by applying

moving average with window size ws to create a smooth distribution, yd. Then, we

calculate the gradient of yd denoted as gd (line 1–3). We further pre-process gd

applying a threshold, Hm, to remove small peaks to support finding consecutive

0 values (line 4). The 0 values in the gradient signal indicate that h(xd) has

plateaued out and xd is not downloading any data. Then, we traverse through the

signal to find the start point of a predefined number of consecutive 0 values (H0).

With the predefined H0, the algorithm stops the searching process at the earliest

possible margin, which we denote as tp (line 6–14).

Splitting trace: After deciding on a suitable margin, we expect two conditions

to be satisfied if a trace is splittable. First, significant data transmission should

happen at the beginning of the trace. The reason is, generally, for video traces,

inconsistent peak data transmissions are observable at the beginning of the video

(e.g., Fig. 4.2(c) and Fig. 4.2(f)). We define a time threshold tl, s.t. noticeable

data transmission should appear within 0 − tl. We define a weight factor, wp,

which is inversely proportional to the tp value as in Eq. 4.1
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wp =


tl−tp
tl

tp ≤ tl

0 tp > tl
(4.1)

Second, the majority of the data should be transmitted within tp without making

comparably higher data transmissions after tp. This condition filters out traces

having significant differences between their peak transmission period and the re-

maining duration of the trace. For example, though both D2–Stan (Fig. 4.2(e))

and D2–Netflix (Fig. 4.2(f)) show significant peak data transmission at the be-

ginning, a periodic data transmission is visible only for D2–Stan causing proper

training of the model even without trace splitting. Given that total number of

bins per trace isM and bins up to tp isMp, we define wd as in Eq. 4.2.

wd =

∑Mp

m=1 x
d
m

(
∑M

m=Mp+1
xd
m) + 1

(4.2)

where xd
m is the Total bytes dl in mth bin3. Finally we calculate combined weight

factor, wc, using Eq. 4.3.

wc = wpwd (4.3)

To find whether tp satisfies the two conditions to split a trace 4, we calculate wp,

wd and wc in line 16–18 in Algorithm 1. If wc exceeds pre-defined threshold Hc,

we return tp denoting that the trace is splittable (line 19–22). If the video streams

data through the entire duration, we may not find an acceptable tp and return the

trace is not splittable (line 23–24). Finally, if the trace is splittable, all K feature

distributions are split at tp for two portions and are fed to the data generation

step separately. If not, we input the trace without splitting it for data generation.

With an empirical analysis of D1 and D2, we define tp = half the video duration,

ws = 20 and H0 = 5 in number of bins, Hm = 400 (Total bytes dl/bin) and

Hc = 1.8.

3We add 1 to the denominator to avoid any zero division.
4Note that tp represents the initial peak data transmission. If there are other peaks trans-

missions after tp we capture their effect through wd weight
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4.2.4 Data generation process

Now, we present VideoTrain++ data generation mechanism in detail. We elaborate

on the main three components of VideoTrain++ data generation step. i) Real-

value to percentile transformation, ii) WGAN based data generation and iii) Re-

transformation from percentile to real-value distribution. We implement first and

third components following [1]. Fig. 4.5–A-D illustrates the data generation work-

flow for a given a trace with K features.

4.2.4.1 Convert feature traces to a Dataframe (Fig. 4.5–A)

We denote kth feature distribution as a vector xk and each element in xk as xk
m

where m ∈ [1,M]. Based on the output from Algorithm 1, input trace with

multiple xk features shown in Fig. 4.5–A block can be the first or the second

part of a split trace or the entire trace which is not split. First, we convert

feature distribution to a corresponding dataframe (DF) ofM×K. In Fig. 4.5–A

dataframe, we denote each non-zero xk
m in a colored cell and explicitly indicate 0

if xk
m = 0. xk

m = 0 denotes that mth bin of the kth feature is from an inter-packet

gap location, where no data transmission happens either in ul or dl or else in both

directions.

4.2.4.2 Transform feature values to percentile distributions [1](Fig. 4.5–

B)

Fig. 4.5–B block shows the percentile feature transformation, which maps xk to

the corresponding percentile distribution x′k using the percentile graphs for each

feature, k. The main reason for such percentile mapping is that input feature

values span through a long range with the majority of 0 values and high peaks in

xk. This makes training the WGAN model more difficult and losing the fidelity of

the synthetic traces. Assigning a non-zero percentile value, αk to x′k when xk = 0,

and corresponding percentile values for the other xk values as in Eq. 4.4, can reduce

the range of the input feature distribution, enhancing the model training process.

x
′k
m =

Fk(x
k
m) xk

m ≥ 1

αk xk
m = 0

(4.4)
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Figure 4.5: Detailed steps of VideoTrain++ data generation mechanism for
a given pre-processed trace with multiple features. The process starts by sep-
arately transforming each feature distribution xk to a percentile distribution.
Then multiple snapshots of the percentile distributions are created to train the
WGAN model, which synthesizes percentile value distributions. Finally, the
inverse transformation of percentile mapping is applied to obtain corresponding

feature values synthesizing a new trace.

In Eq. 4.4, Fk(.) is the cumulative distribution of kth feature and x
′k
m ∈ [αk, 1].

Having a rigid threshold for xk
m = 0, which is equal to αk in x

′k, can decelerate

the training of the WGAN model. To further enhance the model training, in the

next step, we map αk to a uniform random distribution uk ∼ [0, αk], dispersing
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values evenly in the given range, defining a data mapping as,

x
′k
m =

Fk(x
k
m) xk

m ≥ 1

uk
m xk

m = 0.
(4.5)

The model creates N random snapshots of a single video trace by running this

transformation iteratively while extracting random values from uk. Note that as

depicted in Fig. 4.5-B, x
′k
m when xk

m > 0 is a fixed value for all the snapshots. Only

x
′k
m when xk

m = 0 get changed from one snapshot to the other as denoted by uk,n
m

at nth snapshot. Finally, these snapshots are used to train the WGAN model to

synthesize traces that maintain the characteristics of the input trace but are not

identical to it.

4.2.4.3 WGAN-based data generation (Fig. 4.5–C)

Fig. 4.5-C block shows the overview of VideoTrain++ WGAN model training pro-

cess. We take N snapshots of percentile mapped features (from Fig. 4.5-B) as the

input to the discriminator to train WGAN models. In VideoTrain++, we leverage

two types of DNN architectures, MLP and CNN, which we define as WGAN-MLP

and WGAN-CNN here onwards. We use WGAN-CNN for D2–YT and D2–Stan,

which gave improved performance in our experiments, whereas WGAN-MLP was

sufficient to give acceptable accuracy for both D1 (i.e., 360° /normal) and D2–

Netflix 5.

Despite trace splitting by Algorithm 1 and fine-tuned dropout layers applied in

neural networks (NNs), WGAN model still tends to bounce between overfitting

and underfitting when there are higher peaks and lower peaks in the input trace.

For example, a less trained model can match lower peaks well but fails to model

high peaks. On the flip side, the over-trained model properly resembles higher

peaks in the synthesized trace but also makes undesired high peaks at near-zero

values in the actual trace. We observe this phenomenon mostly in D2 dataset in

which regular higher and lower peaks appear in periodic nature. As a solution,

we provide cosine similarity and euclidean distance-based mechanism to control

the number of epochs for training WGAN models for D2 traces. For matching

5All model architectures are provided in https://github.com/manojMadarasingha/

videoTrain

https://github.com/manojMadarasingha/videoTrain
https://github.com/manojMadarasingha/videoTrain
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(a) First part of the split (b) Second part of the split

Figure 4.6: Metric variation if the input trace is split. Fig. 4.6(a) and
Fig. 4.6(b) (left): Cosine similarity and Euclidean metric variation by the epochs.
Fig. 4.6(a) and Fig. 4.6(b) (right): Avg. activation output of hidden layer 3 in
MLP architecture in Generator model. Traces are selected from D2–Netflix
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Figure 4.7: Cosine similarity and Euclidean distance variation by the epochs
if the traces are not split for randomly selected traces from YT and Stan

two traces, the higher the cosine similarity and lower the euclidean distance are

expected. In a gist, during the intermediate epochs of model training, we calculate

the above metric values between actual and synthesized traces. If the best metric

value is found, as described in Algorithm 2, we stop training the model and output

the synthesized traces with the highest fidelity. Cosine similarity, a scale-invariant

metric, indicates the proper positioning of the peaks and inter-packet gaps and

is more flexible when deciding the optimal epoch. Though euclidean distance

matches absolute values between two traces, we found that it is more suitable to

match patterns with fewer peaks as in Fig. 4.2(f) (Netflix trace) tail part.

First, to decide which metric to be prioritized to control the model training, we

empirically analyzed the metric variation with the number of epochs as shown in

Fig. 4.6(a) and Fig. 4.6(b) (left), if the traces are split by Algorithm 1. Since the
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traces from D2–Netflix are split, we take 20 randomly selected traces from D2–

Netflix dataset. Every 5 training epochs, the trained generator synthesizes traces,

and we measure both metrics by comparing Total bytes dl distribution between

those synthesized traces and the input actual trace. Furthermore, we collect the

average of activation layer 3 (L3) output value of WGAN-MLP generator as shown

in Fig. 4.6(a) and Fig. 4.6(b) (right). We see that for the first part of the trace,

both metrics show intended behaviour when increasing the training epochs, while

L3 activation shows a similar variation to the cosine similarity. In contrast, for the

second split, activation output behaves similar to the euclidean distance measure.

Thus, it is intuitive that for the first and second split, the model tends to optimize

cosine similarity and euclidean distance, respectively, which in turn is the strategy

of the metric prioritization mechanism.

Fig. 4.7 shows the metric variation taking randomly selected 40 traces from D2–

YT and D2–Stan of which the traces were not split. The cosine similarity shows

noticeable improvement between 100–150 epochs while dropping the euclidean

metric at the beginning and starts increasing after 130 epochs. Since both metrics

show intended behaviour at early epochs, we set the maximum number of epochs

to 130. Also, due to the wider range of values, cosine similarity can provide more

flexibility in deciding the optimal number of epochs. Therefore, we select cosine

similarity as the epoch controlling metric for the non-splittable traces.

Based on the above observations, we propose Algorithm 2, which controls the

WGAN training process, and returns synthesized percentile value traces. Com-

paring feature traces from both D1 and D2, we observed that traces from D2

dataset show high tendency for overfitting and underfitting. Therefore, we apply

Algorithm 2 mainly for D2 data generation but is still applicable for D1 dataset

as well. We keep a fixed number of epochs for the D1 dataset at this stage of

VideoTrain++, which gave us acceptable performance presented in Section 4.3.2.

Key abbreviations used in Algorithm 2 are provided in Table 4.2.

In Algorithm 2, the model starts training taking the percentile mapped N number

of feature DFs as the input. Every lth epoch after es epochs from the start, we

synthesize traces using the percentile value distributions that are outputted from

the WGAN model and put them into a set, Se, and stored in Bsyn (line 1–5).

We discuss the re-transformation of percentile values to corresponding feature

distributions in detail in Section 4.2.4.4. If the trace is split, then for the first split,
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Algorithm 2: Dynamic epoch controlling
Input: Ta, emax, es, l
Output: Ts,best

Variable: Bv, Bsyn

1 for e← 1 to emax do
2 Train WGAN model
3 if e > es ∧ l|e then
4 Se ←G(Ta, p) // synthesize traces

5 Bsyn.add(Se) // add traces to buffer

6 if Trace split then
7 if first split then // calculate cos. sim.

8 cose, gn, Bv ← CalCos(e, Bv, Se)

9 if cose > cosbest ∨ gn then
10 return Bsyn[argmax(Bv)]

11 else // calculate euclid. dist.

12 euce, gp, Bv ← CalEuc(e, Bv, Se)

13 if euce < eucbest ∨ gp then
14 return Bsyn[argmin(Bv)]

15 else // calculate cos. sim.

16 euce, gn, Bv ← CalCos(e, Bv, Se)

17 if cose > cosbest ∨ gn then
18 return Bsyn[argmax(Bv)]

19 return Bsyn[−1]
20 Function CalCos(e, Bv, Se):
21 gn ← False // by default gn is False

22 cose = f(Ta, Se) // calculate avg. cosine sim.

23 Bv.append(cose) // append new val to buffer

24 if (e− es) > 5 then // check last 5 vals grad.

25 gn ← CheckGrad(cosine, Bv)

26 return cose, gn, Bv

27 Function CalEuc(e, Bv, Se):
28 gp ← False // by default gp is False

29 euce = g(Ta, Se) // calculate avg. eucl. dist.

30 Bv.append(euce) // append new val to buffer

31 if (e− es) > 5 then // check last 5 vals grad.

32 gp ← CheckGrad(euclid, Bv)

33 return euce, gp, Bv

34 Function CheckGrad(metric, vals):
35 j = len(Bv)// get total number of values in Bv

36 if metric==cosine then
37 if Bv[i+ 1] ≤ Bv[i] ∀i ∈ [j − 5, j − 1) then // Check for monotonic decrease

38 return True

39 else
40 if Bv[i+ 1] ≥ Bv[i] ∀i ∈ [j − 5, j − 1) then // Check for monotonic increase

41 return True

42 return False
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we calculate the average cosine similarity (cose) using CalCos() function (line 6–

8). In CalCos() (line 20–26), we measure cose comparing each synthesized trace in

Se with the corresponding actual trace (Ta) by using the function f(.). Then, the

algorithm runs CheckGrad() (line 36–44) to check whether cose is monotonically

decreasing considering the last 5 metric values stored in the buffer, Bv (line 39–

40). Finally, if cose exceeds the best cosine similarity value (cosbest) or values are

monotonically decreasing, we stop the process and return the synthesized trace

set from Bsyn with the highest average cosine similarity value (line 9–10). For

the second split (line 11–12), we calculate average euclidean distance (euce) using

g(.) in the function CalEuc() (line 28–34). By calling CheckGrad(), we measure

whether the euclidean distance values are monotonically increasing (line 42–43).

Finally, if the euce is lower than the best value (eucbest) or values are monotonically

increasing, we stop training and return the synthesized trace set from Bsyn which

has the lowest average euclidean distance value (line 13–14). If the trace is not

split, we repeat the process of cosine similarity-based trace selection (line 15–18).

In any scenario, if non-of the stopping criteria are met, the algorithm returns the

last synthesized trace set (line 19).

Table 4.3: Parameters used in Algorithm. 2

Dataset emax es l cosbest eucbest

D2-NS 130 50 5 0.95 –
D2-S-1 300 70 5 0.95 –
D2-S-2 400 300 10 – 3.8

All the important parameters used in Algorithm 2 are given in Table 4.3. NS

indicates that the trace is not split by the Algorithm 1. S-1 and S-2 represent the

first and second part of a split trace. Note that as we mentioned before, we do

not apply Algorithm 2 on D1, however we keep emax = 130 for the traces from

D1. We set N = 500 (i.e., number of random snapshots) and arbitrary number

of synthesized traces generated for each input individual trace to 20 for both D1

and D2.

4.2.4.4 Re-transform percentile to real-values [1](Fig. 4.5–D)

Fig. 4.5-D, illustrates the inverse transform process for converting synthesized x′k

percentile trace distributions to corresponding real feature distribution xk. Note
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that when we run Algorithm 2 for D2, we do this re-transformation iteratively as

an intermediate step (line 4 in Algorithm 2). But for the clarity of the presentation

and to generalize the VideoTrain++ workflow, we illustrate this process separately

in Fig. 4.5-D having a percentile distribution outputted from the trained WGAN

model as the input. For each feature k, we apply Eq. 4.6.

xk
m =

F−1
k (x′k

m) x′k
m > αk

0 x′k
m ≤ αk

(4.6)

where F−1
k (.) is the inverse transformation of Fk(.) in Eq. 4.4 and Eq. 4.5. For

simplicity, Fig 4.5-C and Fig 4.5-D show only one percentile distribution DF with

K features corresponding to one synthesized trace. Nevertheless, the trained model

can generate an arbitrary number of traces. Finally, if the actual trace is split, we

merge the synthesized traces in the first and second splits temporally, which are

generated in two separate rounds of block A–D. If the trace is not split, Fig. 4.5-D

output is taken as the final synthesized trace set.

4.2.5 ML-based classification

Fig. 4.1 shows the overview of the ML-based traffic classification workflow, which

we used to validate the data synthesis process. As our main classification task, we

select 360° and normal video classification leveraging data fromD1. We implement

both DNN classifiers and traditional classifiers from Chapter 3 and from litera-

ture [58, 59] to validate the VideoTrain++ performance. Synthetic data is used only

for model training and only actual data for model testing. Taking insights from

D1 classification, we build DNN models for video fingerprinting for D2 dataset.

As we mentioned before, by extending the VideoTrain++ for normal videos from

other streaming platforms, we aim to generalize our VideoTrain++ usage for var-

ious network video traffic. In both cases, our main intention is to improve the

accuracy by adding synthesized data but not to optimize the classification models

themselves.

4.2.5.1 360° and normal video classification

For 360° and normal video type classification, we leverage both traditional (i.e.,

XGBoost and SVM) and DNN (i.e., CNN and MLP) classifiers. To train XGBoost
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and SVM models, we first feature engineer the binned traces following steps in

packet level data pre-processing (Section 3.2.2.1) from Chapter 3. To recall, we

create overlapping larger bins of 5 s with a step size of 1 s while summing up

the Total bytes dl6 value in the initial smaller bins. Then, we generate feature

summary statistics such as—mean, SD (standard deviation), (25th, 50th, 75th)

percentile—to represent a given trace by one feature vector.

For the NN-based classifiers, we feed the initial binned (0.5 s) traces as it is and

let the classification models learn the features by themselves[58]. As in Chapter 3,

there are mainly two scenarios in our dataset arrangement for the classification;

i) seen: 60% of traces for each video are taken as a training set and the remaining

for testing, mimicking the scenario that videos are already popular among the

users. We randomly split both actual and corresponding synthesized traces of

each video ID to train/test sets 4 times and average the classification results.

ii) unseen: all the traces from selected video ids are taken as training data

and the remaining for testing. This represents the practical use case where a

new video appears on the content platform. Based on video ID, we generate

different train/test splits 9 times, guaranteeing that both actual and synthesized

traces of a given video ID have been used to train the classification model at

least two times. For each scenario, there are two main sub-scenarios. First, we

combine synthesized data with actual data for training (actual + synth). Second,

we evaluate classification performance by taking only synthesized data for model

training (synth). In each arrangement, we increase the training data size by 200,

cumulatively adding synthesized data without re-sampling.

4.2.5.2 Video fingerprinting

In the video fingerprinting task, out of 100 traces per video, we train the model

using the first 80 traces, combining actual traces with synthesized traces and

the remaining 20 traces for testing, preserving the chronological order of data

collection. Taking insights from D1 evaluation, we limit our classifier to CNN

models due to the comparably high performance when increasing synthesized data.

We feed CNN models with binned traces (0.36 s bin size for D2-Netflix, and 1.44 s

bin size for D2-YT and D2-Stan) including two features, Total bytes dl and Total

bytes ul. In the analysis, we evaluate two main factors; i) Amount of actual

6To provide the same features in DNN models, we select only Total bytes dl for feature
engineering for traditional ML models.
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traces from each video ID: reducing the number of actual traces can restrict the

classifiers from learning the traffic patterns unique to each video. In experiments,

we reduce traces from 80 to 60, 40 and 20. We fill the gap of not having enough

actual traces by adding more synthesized traces. ii) Reduce the trace duration:

Not seen the entire trace can also impact model performance [136]. By increasing

training data size with synthesized traces, we answer two questions. First, can the

classifiers boost the accuracy even with short-duration traces? and second, can

short duration traces exceed the accuracy when having complete actual traces for

model training? In our analysis, we limit the duration from 180 s to 90 and 60 s.

Note that in each experimental setup, we randomly selected actual and synthesized

traces 5 times when training the classification model and presented the average

results. However, to preserve the data collection’s chronological order and mimic

a real video fingerprinting scenario, we make this random selection only for the

train data set while keeping the test dataset (i.e., the last 20 traces of each video)

unchanged.

4.3 Results and evaluation

In this section, we first report our results on video traffic data generation, con-

sidering how well the synthesized traces can maintain the properties of the actual

traces. Then, we present the improvements in ML-based 360° and normal video

type classification, followed by a detailed analysis of the results. After that, the

results of D2 video fingerprinting tasks are reported.

4.3.1 Video data generation

We first present the intermediate outcome of Algorithm 1. Then, we illustrate some

sample synthesized traces compared with corresponding actual traces in proba-

bilistic (Kernel Density Estimation–KDE) and temporal distributions. Finally, we

evaluate the overall similarity score between actual and synthesized traces for D1

and D2 in terms of cosine similarity and euclidean distance.
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Figure 4.8: Outcome of trace splitting algorithm showing the weight distribu-
tion for the traces from each dataset. Zoomed in graphs shows finer variation

for D1 and D2 separately for the selected weight factors.

4.3.1.1 Impact of Algorithm 1 for trace splitting

Fig. 4.8 shows the weight distribution of wc, wp and wd from Eq. 4.3, Eq. 4.1 and

Eq. 4.2 respectively for each dataset. From Fig. 4.8(a), we see that only D2–

Netflix shows an acceptable range of wc for almost all the traces. Except for the

outliers, other platforms show zero or near-zero values for most traces, further

verified in zoomed-in graphs. (Fig. 4.8(b))–left indicates that except D2–Netflix,

almost all the other datasets skew towards 0 for wp. This is because the margin

(tp) goes beyond tl or Algorithm 1 does not find an acceptable margin as the data

is streamed continuously through the entire video duration. In Fig. 4.8(b)–right,

we see some traces in D1 show significant wd value, but due to the zero/near-zero

values of wp, only a few outliers appear in wc. Thus, considering the majority of

trace behaviour, we apply the trace splitting approach only for D2–Netflix, and

the non-splittable approach for other cases.

To verify the improvement by Algorithm 1, Fig. 4.9(a) compares the fidelity of

a randomly selected trace with its corresponding actual trace before and after

applying Algorithm 1. Splitting the trace has reduced the majority of the undesired

high peaks and has increased the fidelity. Overall, Fig. 4.9(b) compares the cosine

similarity between actual and synthesized traces before and after trace spitting for

D2–Netflix data. Before splitting, the maximum cosine similarity we could expect

was 0.6. However, by applying Algorithm 1, more than 90% of traces achieve at

least 0.6 cosine similarity.
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Figure 4.9: Improvement in data synthesis after applying Algorithm 1 on the
actual traces from D2-Netflix.

4.3.1.2 Comparison between actual and synthesized data

We compare actual and synthesized data based on KDE diagrams and temporal

distributions of Total bytes dl value (i.e., converted to MB) as shown in Fig. 4.10

and Fig. 4.11 for randomly selected traces from D1–YT (360°), D1–YT (Normal),

D1–FB (360°), D1–FB (Normal), D2–YT and D2–Netflix. These graphs show

that synthesized traces from VideoTrain++ can maintain the corresponding actual

traces’ properties in probabilistic and temporal domains. The minimum and the

maximum values of actual and synthesized data are nearly the same in KDE plots,

while the generated traces properly align with data peaks and the inter-packet gaps

of the actual traces in the time domain.

Fig. 4.12 shows the cosine similarity and euclidean distance distribution between

the synthesized and actual traces. All the datasets achieve more than 0.8 cosine

similarity while D1–YT (360) gains the maximum average value of 0.92 (±0.06).
Though we set cosbest (i.e., best cosine similarity that a synthesized trace can have)

in Algorithm 2 to be 0.95, values can go below 0.75 because traces can show a

negative monotonic gradient when increasing the epochs at where the algorithm

stopped further training WGAN model. Fig. 4.12(b) illustrates that D1 dataset

shows high euclidean distance mainly due to their non-periodic patterns and mobile

streaming nature, which create more dissimilarity between synthesized and actual

traces. Since we apply Algorithm 2 on D2 data, which directly controls euclidean

distance in the second split of a splittable trace or limits the maximum epoch at
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Figure 4.10: KDE plots of randomly selected traces from selected datasets
which show the probabilistic distribution of the actual and synthesized traces.

Corresponding time series distribution is given in Fig. 4.11
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Figure 4.11: Time series distribution of Total data dl feature in MB for the
actual and synthesized traces. Corresponding probabilistic distributions of the

values are given in Fig. 4.10

where these metric values are lower for a non-splittable trace, all average euclidean

distances are below 1.73.
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Figure 4.12: Cosine similarity and Euclidean distance distribution comparing
the actual and generated traces from all the datasets

4.3.2 D1: 360° and Normal video type classification

Now, we present the accuracy improvement in 360° and normal video type clas-

sification when adding the synthesized traces to train the classification models.

Fig. 4.13 and Fig. 4.14 show 360° and normal video type classification accuracy

for seen and unseen scenarios respectively. For each content platform, YT (with

D1–YT including both 360° and normal videos) and FB (with D1–FB including

both 360° and normal videos), we categorize the performance by the type of clas-

sifier used: DNN (CNN or MLP) and Traditional (XGBoost or SVM). In each

figure, we illustrate the accuracy variation when adding synthesized traces for the

two sub scenarios (actual + synth) and synth. Note that because we illustrate

both (actual + synth) and synth scenarios in the same graph, the 0th position on

the x-axis indicates the performance when having only actual traces. We use 300

and 296 actual traces for D1–YT and D1–FB classification, respectively, which is

reported in Table 4.1. Overall, for both seen and unseen scenarios, DNN-based

classifiers (CNN and MLP) show an increasing trend in accuracy when adding

synthesized data.

4.3.2.1 Seen scenario

D1–YT classification: In Fig. 4.13(a), DNN classifiers achieve a noticeable im-

provement range from 85%–97% in both (actual + synth) and synth sub scenar-

ios. Particularly, for the (actual + synth) sub scenario, CNN (MLP) achieves

the maximum of 2.1 (12.9)% accuracy when increasing the sample size up to 1800
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(a) D1–YT: DNN clf.
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(b) D1–YT: Traditional clf.
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(c) D1–FB: DNN clf.
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(d) D1–FB: Traditional clf.

Figure 4.13: D1 360°/normal video classification performance in each video
platform for seen scenario. Two types of classifiers: DNN (CNN and MLP)
and Traditional (XGBoost and SVM) are illustrated separately for each video
platform. Each sub-figure shows the performance in two sub scenarios: ac-
tual+synth and synth, graphed separately according to the model used. 0th

position on x-axis indicates having only actual traces.

(1200). Interestingly, without actual traces, synth sub scenario can also achieve

the same performance emphasizing the effectiveness of the data generation mech-

anism. However, Fig. 4.13(b), which shows the D1–YT classification accuracy

with traditional classifiers, (actual + synth) sub scenario in both XGBoost and

SVM starts accuracy at 97% for actual data, and then drops and levels-off at 95%

when adding more synthesized samples. For having only synth data, increasing

synthesized samples does not drop the accuracy below 90%, but always remains

below the accuracy of (actual + synth).

D1–FB classification: In Fig. 4.13(c), relative to D1–YT, we see a significant

gain in the accuracy for D1–FB, which is around 16.4 (12.5)% for CNN (MLP) at

1800 (1800) synthesized samples for the (actual + synth) sub scenario. synth

sub scenario also achieves over 95% accuracy after 1200 synthesized samples are

added. Traditional classifiers (Fig. 4.13(d)) shows lower accuracy levels compared



Network traffic generation for 360° and normal videos 93

to D1–YT. For the (actual + synth) sub scenario, performance is stable at

around 86% and 81% for XGBoost and SVM respectively and the same values for

the synth sub scenario vary between 70% and 80%.
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(c) D1–FB: DNN clf.
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Figure 4.14: D1 360° and normal video classification performance in each
video platform for unseen scenario. Types of ML models and x-axis training

dataset distribution are similar to the Fig. 4.13.

4.3.2.2 Unseen scenario

D1–YT classification: Despite the lower accuracy compared to seen scenario,

we still observe an accuracy improvement, particularly in DNNmodels. Fig. 4.14(a)

shows a 5.0(3.8)% accuracy improvement when adding 800(1000) synthesized data

in (actual+synth) sub-scenario for CNN and MLP models respectively. Having

only synthesized data, we could observe only 3.0% improvement for CNN, and for

the MLP, the accuracy is fairly stable. Similar to the seen scenario, Fig 4.14(b)

shows a decreasing trend in the accuracy.

D1–FB classification: Compared to D1–YT, D1–FB shows a noticeable im-

provement in accuracy when adding synthesized data. Fig. 4.14(c) indicates
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Figure 4.15: Difference of Total bytes dl features between Actual and Synthe-
sized data for both video types

that for CNN(MLP) in (actual+synth) sub-scenario, accuracy improvement is

14.6(14.0)% which is gained at 1000(1800) synthesized samples. For the synth

sub-scenario, 10.1(14.0)% accuracy gain is achieved by CNN(MLP) reaching to a

maximum of 87(88)% accuracy. Unlike DNN models, XGBoost and SVM models

shown in Fig. 4.14(d) show lower performance but adding synthesized data still

keeps the accuracy at a fairly stable level in all cases.

4.3.2.3 Analysis of classification accuracy

To analyze possible reasons for the above observations, we consider the CDF of

the Total bytes dl feature over the bins, for YT and FB traces in Fig. 4.15. In

Fig. 4.15(a), we observe that D1–YT(360°) and D1–YT(Normal) video has a

clear separation between the feature distribution causing high classification ac-

curacy even with only actual data compared to FB. We observe around 0.5 MB

average difference between the Total bytes dl feature value between synthesized

and actual traces for both 360° and normal videos. This resembles the slight dif-

ferences between synthesized and actual data that have decelerated the accuracy

improvement when adding synthesized data for model training.

For FB (Fig. 4.15(b)), we see that the difference between Total bytes dl value of

D1–FB(360°) and D1–YT(Normal) video is lower for up to 40% of the traces,

where the difference is less than 3MB. This has been the reason for low accuracy,

especially at the beginning of the seen condition in NN based classifiers and for all

the scenarios in traditional classifiers throughout the entire synthesized sample size

span. However, the inherent capability of finding subtle feature patterns even in
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(a) D1–YT (b) D1–FB

Figure 4.16: Accuracy vs no. of traces per video: (actual + synth) & seen
scenario

highly randomized datasets, NN approaches improve their accuracy when increas-

ing the input sample space. Also, high similarity between synth and actual data

in each video category has been another reason for that significant improvement.

4.3.3 Further analysis of 360° and normal classification

Below we present different aspects of 360° and normal video classification with

synthetic data, mainly analysing the impact of the number of actual traces to

synthesize data and comparison with a heuristic approach.

4.3.3.1 Impact of number of actual traces

Here, we describe the impact of the number of traces per video on data syn-

thesis and validate the process by taking only the (actual + synth & seen)

scenario for both D1–YT and D1–FB, based on their high accuracy observed in

Section 4.3.2.1. We kept one actual trace per each video as test data and from the

remaining traces gradually increased the number of traces7 we used for data syn-

thesis. We also kept the total training samples the same among all experiments,

i.e., at 1800, which was the synthesized sample size added to gain the highest

accuracy in the (actual + synth) & seen scenario. Finally, we evaluate the

classification using the CNN model proposed. We randomized the train/test split

7Note that for each video in both 360° and Normal, we collected in 360NorVic in Chapter 3,
the number of traces varied between 1-6
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and sampled synthesized traces per video by repeating the entire process. The

aggregated results are shown in Fig. 4.16 for D1–YT and D1–FB separately.

Fig. 4.16(a) and 4.16(b) show that by synthesising data even for only one trace per

video, we can achieve almost 90% accuracy on average for both D1–YT and D1–

FB. Moreover, increasing the number of traces while keeping the total synthesized

data amount constant increases the accuracy for both D1–YT and D1–FB. Note

that since the train/test splitting process is different to our main evaluation setup

in Section 4.2.5, we see a slight decrease (i.e. 3%–4%) in the accuracy. For D1–

YT, the impact of the number of traces is less significant as the average accuracy

only increases from 90.5% to 93.0%, and the standard deviation never decreases.

In contrast, there is a noticeable increase for D1–FB in average accuracy and

minor variance.

Figure 4.17: Comparison with Heuristics: D1–YT data with CNN classifier
left: (actual + synth) scenario, middle: synth scenario, right: bytes dl dis-

tribution by actual and generated datasets by video type.

4.3.3.2 Comparison with heuristics

Fig. 4.17 shows the comparison between our WGAN based data synthesis approach

and a heuristic approach taking the D1–YT seen condition data for both the

(actual + synth) and synth scenarios. As the heuristic approach, we added

Gaussian random noise with mean = 0 and standard deviation(sd) = 0.5, selected

by experiments, to the total bytes dl value in 0.5 s bins for each trace. We removed

all the negative values and replaced them with the value 0. Fig. 4.17 (right) shows

the bytes dl distribution of the actual and generated data (WGAN and heuristic

approach) in terms of video type. We see that synthesized data from the heuristic

approach has many zeros, yet the considerable difference in the amount of non-

zeros values distinguishes between 360° and normal videos.
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Fig. 4.17 (left) shows that, in the (actual + synth) & seen scenario, the heuristic

approach can perform similar to the WGAN approach. This is mainly because

our CNN architecture can learn the difference between 360° and normal videos

properly even with actual data. According to Fig. 4.17 (right), the difference

between 360° and normal traces is still preserved in the synthesized data from

heuristics. Fig. 4.17 (middle) shows that with having only the synthesized data

we can achieve more than 90% accuracy, whereas the heuristic approach accuracy

is limited to below 70% on average. This indicates the outstanding performance

of our data generation method, which is further confirmed by Fig. 4.17 (right),

where the actual data and synthesized data from WGAN method have nearly the

same distribution.

In summary, adding synthesized traces by VideoTrain++ can increase the accu-

racy in identifying 360° video traces from normal traces using NN methods. seen

scenario has higher accuracy than unseen. This is because the ML models have

seen part of the traces of the same video ID during the training phase, which is

expectable with the growing popularity of a video. The ability of DNN models to

observe subtle feature differences in traces, without any feature engineering,

4.3.4 D2: Video fingerprinting

In this section, we present our results of D2-based video fingerprinting perfor-

mance. We start with analyzing how the accuracy is varied when adding synthetic

data even if we reduce the actual number of traces and video trace duration when

training the CNN models. Multiple aspects VideoTrain++ evaluation lvergaing

D2 dataset are presented in Appendix B including individual video performance

of D2 data, impact of Algorithm 2, and in detail comparison with other data

generation methods.

4.3.4.1 Impact from the number of actual traces

Fig. 4.18 shows the classification accuracy when reducing the number of actual

traces from 80 to 60, 40 and 20. In this analysis, we set the trace duration for 90

s, which gave us a wider range of accuracy variation. Overall, having the maxi-

mum number of actual traces (=80) gives the best results for all three platforms.

Fig. 4.18(b) shows that except for 20 actual trace scenario, all three other scenarios
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give accuracy improvement ranges between 82%–98% for D2–Netflix. This indi-

cates that collecting 1/2 the actual data is enough to achieve the same/near-same

accuracy as in having the full amount of actual data. For Stan (Fig. 4.18(c)), we

notice that actual traces 80 scenario shows a noticeable increase from 91%–97%,

whereas 60 and 40 scenarios show fairly stable behavior over 92% accuracy. In

contrast to D2–Netflix and D2–Stan, D2–YT does not show an increasing trend

when adding synthesized data; however, it keeps a stable accuracy level when

adding synthesized data. We observed that for D2–YT, actual traces between

different video IDs had similarities causing the classifiers to identify subtle feature

differences more difficult. This has been the main cause for not having significant

improvement in accuracy when adding synthesized data.
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Figure 4.18: Change the number of actual traces used for video fingerprinting
task keeping the trace duration = 90 s for D2. x-axis training set values are
given for 80 actual trace scenario. For other Actual trace: β scenarios, training
set = β.current training set

80 . Initial position on x-axis of each graph indicates
having only actual traces.
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Figure 4.19: Change the duration of the trace for 180 (Full trace), 90 and 60
s while keeping the number of actual trace for video fingerprinting task = 80.

x-axis training set values are similar to the Fig. 4.18.

4.3.4.2 Impact from trace duration

Trace duration also impacts the classification accuracy as it drops tail information

from the trace. Fig. 4.19 depicts the accuracy when changing the trace duration

(for both actual and synthesized data) while keeping the number of actual trace

size = 80. Though having the maximum duration (= 180 s) can give the best
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accuracy for all three platforms, 90 s traces show a wider range of accuracy increase

and achieve nearly the same accuracy as in 180 s with the synthesized data. For

example, Fig. 4.19(b) and Fig. 4.19(c) show that for 90 s traces, accuracy range

from 83%–97.5% and 91%–98% respectively for D2–Netflix and D2–Stan, which

is only a less than 1% decrease compared to 180 s traces. This is imperative to

overcome the issues with incomplete data collection in operational networks. Also,

we see that with synthesized data, shorter traces can exceed the accuracy of longer

actual traces. For instance, 90 s traces of D2–Netflix exceeds 95% accuracy at

3520 training set size, which is the accuracy for 180 s long traces when having only

the actual traces. As in Section 4.3.4.1, D2–YT shows decreasing trend even from

early training set sizes except for 90 s. This is mainly due to the highly random

nature in D2–YT, which adds unnecessary complexity by tailing information at

180 s and dropping important unique characteristics of different video ids in mid

of the traces (at 60 s case) in synthesized data. We observe a similar decreasing

trend for 60 s in D2–Stan, whereas 180 and 90 s cases show fluctuating accuracy

between 90%–98%.

Improved classification accuracy of video fingerprinting indicates the feasibility of

VideoTrain++ to be applied to various types of network video traffic in addition

to 360° video traffic. We observe that even with limited information (i.e., reduced

trace duration and number of traces per class) for data generation, synthetic traces

from VideoTrain++ can improve classification accuracy by 16% at maximum.

4.4 Discussion

4.4.1 Advantages and extended use cases

We categorized use cases of VideoTrain++ into network optimizations and secu-

rity aspects. Firstly, improved classification accuracy by adding synthetic traces

from VideoTrain++ can be used for network resource optimization. For instance,

ML models (e.g., DNNs) for 360° and normal video classification with improved

accuracy by VideoTrain++ data synthesis can be deployed in the wild first to

identify resource demanding (i.e., high channel bandwidth) 360° video flows and

then, allocate enough resources. Furthermore, offline analysis of identified flow

distribution provides insights into the temporal and geographical usage of these
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flows. This helps network operators to properly distribute required levels of radio

or caching resources and come up with efficient traffic policing and shaping strate-

gies [62, 136]. Secondly, in terms of security aspects, data synthesis helps develop

ML models to identify harmful network traffic flows such as harmful propaganda

streaming [137] or surveillance system attacks [138]. These types of flows may

contain very few actual traces, which may not sufficient to train a sophisticated

ML model to classify them from other traffic. Synthesize traces leveraging Video-

Train++ on these limited number of flows can increase the ML model performance

to fingerprint them in real networks.

4.4.2 Challenges in deployment

The main advantage of VideoTrain++ is that it requires collecting only a min-

imal number of actual traces, which can adequately represent the properties of

target video flows. Therefore, firstly, network operators need to collect a sufficient

amount of raw packet level traces from the required vantage point of the network,

such as core network (i.e., middleboxes), local area networks(i.e., WiFi AP) etc.

Secondly, using raw packet level traces, they must deploy VideoTrain++ offline for

trace synthesis while efficiently managing available resources. At this stage, we

consider only video trace generation, but VideoTrain++ can be easily extended to

other types of network traffic by properly analysing their inherent traffic charac-

teristics. Also we assume that, identification of video flows from other network

traffic is relatively straightforward following the previous works [120, 136, 139, 140]

and using certain network components(i.e., middleboxes) [136]. Note that Video-

Train++ is designed to synthesize traces at bin level, which is desirable for ML-

based applications (see Section 4.2.3) and is not similar to the initial raw packet

level traces. Though we have conducted limited experiments changing the video

duration (see Fig. 4.19), more randomized flow durations can be expected in op-

erational settings. We see this as a limitation in our experiments and expect to

conduct further evaluations on the impact of video duration on data synthesis by

randomizing the flow duration values in our future work.

In VideoTrain++ we train a WGAN model for each trace separately, which de-

mands more resources than having a single model for multiple traces. However,

we believe that at the network operator level, such resource requirements can be

easily fulfilled, especially in offline settings. Experimentally, we observed that
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feeding multiple actual traces together to the GAN model results in losing the

majority of inter-packet gap locations with near 0 values. This is because it is not

guaranteed to have well-aligned peaks and inter-packet gap locations between the

traces from the same video. When combining multiple traces, inter-packet gap

locations can be replaced by non-zero feature values from other traces. Therefore,

synthesized traces may not show typical characteristics of a video trace with a

combination of inter-packet gaps and high peaks. To train the model for a given

trace either from D1 or D2 datasets, it takes 2 to 4 min on average. Therefore,

the total time for data synthesis depends on the size of the actual dataset and

can be reduced by provisioning sufficient computing facilities. Moreover, given

that data synthesis and analysis processes are done offline, the time requirement

of VideoTrain++ is tolerable. Further optimization to the WGAN model to take

multiple traces as the input will be considered in our future work.

4.5 Summary

In this chapter, we presented VideoTrain++, a WGAN-based video traffic gener-

ation for 360° and normal video data to enhance the DNN-based classification,

which requires more data to train the model. We extended our 360NorVic dataset

to another dataset that consists of normal video traffic collected by three content

providers to generalize the performance of VideoTrain++. We proposed Video-

Train++ as a tool mainly for network-level operators to synthesize video traffic

traces to circumvent tedious data collection processes in their complex network

systems.

We started by pre-processing the traces that are time series distributions of bin

level features. We proposed an algorithm to split traces into two parts based on

the amount of data carried by at the beginning and the rest of the trace. We

trained WGAN models after applying a percentile transformation of time-series

distribution to remove persistent peaks and zeros that are unique to video traces

and can deteriorate the WGAN training. To control the WGAN training process,

we proposed an algorithm which early stops the training process by iteratively

measuring the fidelity between synthesized and actual traces. Finally, synthetic

traces are generated using the trained WGAN model while maintaining the prop-

erties of input traces.
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We validated the performance of VideoTrain++ mechanism in multiple aspects.

First, we measured the fidelity between the actual and synthesized traces, com-

paring them quantitatively and qualitatively. Second, we leverage these synthetic

traces to improve the accuracy of downstream ML-based classification tasks, par-

ticularly for 360° and normal video classification. We also conducted a video

fingerprinting related classification task with normal videos, further generalizing

the performance of VideoTrain++ data synthesis. Results showed that training

classification models with synthetic data could increase the 360° and normal video

classification accuracy by 5%–15% from ≈85% to almost 100%, and video finger-

printing accuracy by 6%–16% from ≈82% to 98%.

Finally, we discussed challenges in deploying VideoTrain++ in real network sys-

tems along with aspects of resource consumption and computational time. We

further discussed extended use cases and advantages of VideoTrain++ for network

operators.



Chapter 5

Dynamic tiling 360° video frames

5.1 Introduction

In Chapter 3 and Chapter 4 we proposed two mechanisms to identify 360° video

flows in the network and to synthesize 360° and normal video traffic traces to

improve downstream traffic analysis tasks. These solutions were proposed mainly

for network providers to optimize the 360° video delivery by early identification

of such flows, which helps optimize network capacity, planning and expansion etc.

In this chapter, we draw your attention to a server-side modification to provide

better QoE by deep understanding of actual content of video frames and user VP

information.

So far, fixed tiling that divides the entire video frame into rectangular tiles in

fixed size and streaming only selected tiles in user VP have been proposed for

reducing the high bandwidth and resource consumption at the network and the

client, respectively. However, due to the fixed number of tiles (typically ranges

between (24–36) [15, 20]) and their fixed sizes, the optimum gain of bandwidth

saving is not achieved by these mechanisms. On the one hand, tiles towards the

VP boundary may contribute to cover a small part of the VP region, causing high

pixel redundancy in data transmission [86]. On the other hand, they are unaware

of visually attractive regions when encoding the tiles. For example, corresponding

regions of the polar regions in the equirectangular projection (ERP) frame are

highly distorted and have less viewing probability. However, fixed tiling encodes

103
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these regions at the same bitrate levels and in smaller tile sizes as in the equa-

torial regions, adding unnecessary quality overhead and losing many compression

opportunities compared to having bigger tiles [86, 141].

To this end, provisioning a VP-aware adaptive tiling mechanism with dynamic tiles

(DT) that are variable in size and location on the frame can provide fine granular-

ity for the VP and increase compression gain. This enables content providers to

reduce encoding overhead incurred by tiling the videos and identify the tiles which

should be of high quality at a fine granularity. However, achieving such an adaptive

tiling mechanism is challenging. First, tile scheme generating algorithms should

not demand high processing power, as the servers are already in high utilization

to support the excessive demand for other video streaming services. Second, al-

gorithms should process in a minimal time to scale up the solution. However,

recently proposed dynamic tiling solutions [78, 86, 87] compromise both aspects

by encoding all possible tile schemes for a given frame.

In this chapter, we propose an adaptive tiling mechanism for 360° video frames

supported by the dynamic nature of user VPs in 360° video streaming. We

name this approach as VASTile1. In VASTile, we leverage a computational ge-

ometric approach, which we call Minimal Non-overlapping Cover (MNC) algo-

rithm [142, 143], to devise a suitable tile scheme by partitioning rectilinear poly-

gons generated by combining basic tiles (BTs) from 10 × 20 grid overlaid on the

360° video frames. To generate the rectilinear polygons, VASTile consists of a

semi-automated thresholding mechanism, which divides the 360° video frame into

multiple sub-regions based on the visual attraction level, i.e., saliency, of pixels

of the frame. Moreover, taking VP distortions on the ERP frame and removing

potential overlaps, VASTile further reduces the downloaded data volume, trans-

mitted pixel redundancy and processing time for the end-to-end tile generation

process.

5.2 Background and motivation

In this section, we elaborate on MNC algorithm [142, 143] and its applicability

of partitioning 360° video frames in light of visual attention maps (i.e., a map

which shows the attractive content regions on the video frames based on observing

1From [4∗] Viewport Adaptive Scalable 360-degree video frame (Tiling)e
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multiple user VPs). Then we present some preliminary results we obtained that

motivated for VASTile.

5.2.1 MNC algorithm

The original rectilinear polygon partitioning algorithm proposed in [142, 144] cre-

ates a rectangular tile configuration covering a given polygon region with the fewest

number of tiles in variable size. We describe the basic steps of MNC algorithm us-

ing Fig. 5.1 as an illustrative example. There are three main steps in partitioning.

Note that the basic MNC algorithm is proposed for a hole-free rectilinear polygon.

Step 1 First, from detected concave vertices on the boundary, we connect all the co-

horizontal and co-vertical nodes which may have intersections (see Fig. 5.1a).

Step 2 Chords detected in Step 1 are then used to find maximum independent chords

prioritizing the chords in the horizontal direction (see Fig. 5.1b). [143]

propose to use a bipartite graph to find maximum independent chords, which

is readily available as a library in Networkx package [145].

Step 3 From the remaining concave vertices which are not connected with indepen-

dent chords in Fig. 5.1b, draw either vertical or horizontal chords to the

nearest independent chords or polygon boundary as in Fig. 5.1c.

The complexity of Step 1 and 2 is O(n
5
2 ), whereas Step 2 and Step 3 can be done

in O(nlog(n)). n is the number of vertices on the boundary. To apply MNC

algorithm for 360° video partitioning, we need to identify rectangular polygons on

the video frame that potentially represent visually attractive regions. Next, we

provide the background on identifying visual attractive regions and how the MNC

algorithm can be applied to partition them.

5.2.2 Detecting attractive content on 360° video frames

Generating visual attention maps has been well studied in the literature [78, 84,

86, 146], which are often developed by either analysing content features [84, 146]

or/and by analysing past VP traces of the video [78, 84, 86]. In VASTile we,

leverage the second approach, which combines historical user VPs on the same
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Figure 5.1: Basic steps of MNC algorthm

video frame to create average VP distribution as shown in Fig. 5.2. Individual

user VP is a binary map representing FoV (extent of visible region (VP) on the

frame) by 1 and outside the FoV by 0. Combining these individual user VPs

and normalizing them creates a map that highlights the attractive content on

the frame, which is dispersed throughout the frame because VPs of the users can

change from one to the other.

Combine and 
normalize

Individual user VPs Combined user VP map 

Figure 5.2: Combined VP map by individual user VPs and detecting visually
attractive content regions on the video frame.

5.2.3 Applicability of MNC algorithm for frame partition-

ing

Fig. 5.3-(left) shows that on the visual attention maps generated using past VP

traces, we can first identify visually attractive regions. Dividing the entire video

frame into a grid of BTs, it is possible to create rectilinear polygons surrounding

those regions. Then these polygons are further partitioned by the MNC algorithm

as in Section. 5.2.1 to non-overlapping DTs. However, MNC algorithm is unaware

of visual attention as information on vertices of the polygon is enough for the
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partitioning. Leveraging simple pre/post-processing steps on the video frame, we

can inject viewport awareness to the MNC algorithm converting the process for

quality adaptive tiling. Compared to the exhaustive searching or ILP [78, 86]

based methods that can also provide variable tile coverage for identified visually

attractive polygon regions but require searching through a large solution space

with more processing time, the modified MNC algorithm can derive tile schemes

relatively fast because of its heuristic nature while increasing the scalability.
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Figure 5.3: Applicability of MNC algorithm for frame partitioning. Identify
high visual attention regions on the frames (left), cover those regions with rec-

tilinear polygons and partition them using MNC algorithm (right).

5.2.4 Comparison with fixed tile configuration: Prelimi-

nary experiment

To see the performance of MNC algorithm on partitioning, we run MNC algorithm

on individual user VPs (i.e., Fig. 5.2-left) and compare the generated tile schemes

with fixed tile configurations [15, 20, 93] measuring the pixel redundancy before

compression. We leverage VP maps of randomly selected 5 users from 5 sample

videos representing the video categorization provided in [102]2. We consider three

BT configurations (5×10, 10×15 and 10×20) to generate rectilinear polygons as

the input to the MNC algorithm. We compare the derived tile schemes from MNC

algorithm with five fixed tile configurations (4×6, 6×6, 5×10, 10×15 and 10×20)
applied on the same user VP. We measure percentage (%) pixel redundancy before

compression as in Eq. 5.1.

Pixel red. before compression =
NT −NFoV

NFoV

% (5.1)

2[102] put videos into five categories: riding, moving focus, exploration, rides and miscella-
neous (a combination of previous types)
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where NT and NFoV represent the number of non-zero pixels in tiles which overlaps

with the user FoV and considered FoV region, respectively.
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Figure 5.4: Pixel redundancy before compression & number of tiles per frame:
comparison between variable tiles after MNC based partitioning and fixed tile

configurations

Fig. 5.4 shows the analysis results. We see that 10×20 configuration results in the

lowest percentage (%) pixel redundancy for both MNC partitioning and the fixed

tile approach. However, to cover the same single user VP, 10 × 20 configuration

in fixed tiling requires ×25 the number of tiles generated by MNC algorithm.

Therefore, compared to MNC algorithm, more encoding overhead incurs on fixed

tile configurations as the tile sizes are smaller and higher in amount [86, 141].

These results have been the motivation for creating DT schemes on combined user

VP maps which we elaborate in detail next.

5.3 Design of VASTile Framework

Now, we present VASTile holistic architecture, which includes Pre-processing, Par-

titioning and Post-processing of 360° video frames as illustrated in Fig. 5.5. We

introduce all the key abbreviations we used in this VASTile process in Table 5.1

5.3.1 VASTile overview

The objective of the Pre-processing step is to identify different regions in a frame

according to the expected visual attention to inject viewport awareness to the

MNC algorithm and reduce the complexity of detected polygons for partitioning.
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Table 5.1: Abbreviations used in VASTile framework

Abbreviation Explanation

VM Viewport map combining individual user VP
R(FoVf ) Most attractive regions on 80% of VP covered region (or FoV)
R(FoV ) Remaining area of of the 80% VP covered region after

removing R(FoVf )
R(Buf) Buffer region for R(FoVf ) and R(FoV )
R(OoV ) Remaining area of VM after removing R(FoVf ), R(FoV )

and R(Buf)
i, j, uj User, video, no. of users in a video
H,W Height and width of a video frame
m,n Vertical and horizontal coordinates of a pixel
ci Center of VP (or FoV) of user i in ¡yaw, pitch¿
Vi Binary VP map for user i
V Mnorm Normalized averaged VM
α∗ Approximate threshold to extract R(FoVf ) +R(FoV )
VM(α∗) Frame containing R(FoVf ) +R(FoV )
VM(α∗, b) Frame containing extracted blobs in VM(α∗)
ζ Finer threshold to extract R(FoVf ) from VM(α∗, b)
VM(α∗, b, ζ) Frame containing R(FoVf ) +R(FoV ) and R(FoVf )

is thresholded
VM buff Frame containing buffer area

V buff
i Buffer region on VM by removing DTs covering VM(α∗, b, ζ)

for user i
β∗ Buffer threshold to extract R(Buf)
V oov Frame containing R(OoV )
V Tmax and HTmax Maximum allowable DT size in vertical and horizontal

direction
C1 and C2 Configuration 1 and 2 used in Chapter 5 evaluation

We first create averaged Viewport Map (VM) combining individual user viewport

maps and then apply a hierarchical thresholding mechanism to detect visual at-

tention blobs3 for the following four regions, as depicted in Fig. 5.6. The first

two regions are defined on the area which covers at least 80% of the user VPs

namely, R(FoVf ), which covers the most attractive regions and R(FoV ) covering

the remaining area of the 80% VP covered region. We define R(Buf) as an addi-

tional buffer region to cover VPs slightly deviated from the R(FoVf ) and R(FoV )

which is likely to be outside the region covering at least 80% of user VPs. Finally,

R(OoV ) is the remaining area of VM with the lowest viewing probability. Details

of Pre-processing steps are presented in Section 5.3.2.

In Partitioning step, we run MNC algorithm on the above four regions separately.

3Regions with (near)concentric user VPs
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Figure 5.5: Overall architecture of VASTile including Pre-processing, Parti-
tioning and Post-processing steps.
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Figure 5.6: Four FoV regions considered in frame partitioning

We create rectilinear polygon boundaries around the blobs in these regions and

partition them into non-overlapping DTs, comprised of a set of BTs. Since we

consider multiple blobs in VM frame separately, there can be overlaps between the

derived tiles if the considered blobs are close to each other. Therefore we remove

such overlaps during R(FoV ) and R(Buf) partitioning. Details of Partitioning

steps are presented in Section 5.3.3.

In Post-processing step, we further split DTs which are larger than FoV (100° ×
100°) considering its distortion when projecting on to the ERP Frame. Finally, the
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bit rate can be allocated to each DT considering the tile properties such as average

pixel intensity, size and location. Details of partitioning steps are presented in

Section 5.3.4.

In the remainder of this section, we explain VASTile in for a given frame as we

run the algorithms at the frame level. Explanations are given for different blocks

(from a-l) in Fig. 5.5 under the three main processing steps. Here on-wards, we

denote a given user and video by i and j respectively, and the number of users

in a video as uj. Pixel coordinates of video frames are denoted as (m,n), where

0 ≤ m < H, 0 ≤ n < W .

5.3.2 Pre-processing

We now describe the frame pre-processing pipeline, which identifies salient regions

partitioned by the MNC algorithm.

5.3.2.1 Frame sampling (Fig. 5.5–a)

The frame rate for videos can vary between 24-60 fps, while 30 fps is common

in general. It is not necessary to partition every frame in a video because; i) it

is safe to assume that VP of the user is fixed at a certain position for a certain

period [84], ii) having different tile scheme for each frame can reduce compression

gain in encoding, and iii) based on the above two facts, running a partitioning

algorithm on every frame adds unnecessary computational cost.

60°

30°
0°

60°

30°

Mid peripheral
N

ear peripheral

Far peripheral

Mid peripheral

Near peripheral

Safety margin: 5°

Frame gap (s)

Figure 5.7: (left): Angle difference vs the frame gap. (right): Peripheral
vision of the human eye

To decide the most suitable frame gap, we analyse the relationship between the

temporal and spatial user viewport behaviour in light of the peripheral vision of the
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human eye. Fig. 5.7 shows the angular difference of yaw and pitch distribution

against the sampling frame gaps from 0.1–2.0 s by every 0.1 s. Human vision

can perceive high quality only at near peripheral region, i.e. within 30° range,

[147–149]. Based on that fact, we make a fair assumption that from a fixation

point, the user can view with almost the same visual quality at a maximum of 30°
without changing the fixation point. According to practical VP traces, up to 0.8 s

of frame gap can tolerate 30° angle difference in the Yaw direction. Including a

safety margin of 5°, we decide on 0.5 s as the frame gap to refresh the tile scheme

without causing significant harm to the user perceived quality. Compared to 1 s

tile scheme refreshing period found in literature [78, 86], which can lead to (≥ 35°)
angle difference, 0.5 s gap can better adapt to VP changes. Also, it reduces the

encoding overhead and time for processing if we are to consider every single frame

for partitioning.

5.3.2.2 Viewport Map (VM) generation (Fig. 5.5–b).

Despite many different approaches for generating visual attention maps, we lever-

age historical user VP traces to generate VMs. [78] claims that 17 users are

sufficient to create a representative VP map. Therefore, we consider 20 users from

each video to generate our VM frames. First, given the centre of VP: ci, of each

user i in < yaw, pitch > angles, we create a binary map, Vi according to Eq. 5.2.

Vi(m,n) =

1, if (m,n) ∈ Fi

0, otherwise
(5.2)

We assume a 100° × 100° FoV area (Fi) representing the FoV of the majority of

commercially available HMDs [102]. We also project spherical coordinates of pixels

(x, y) to ERP format (m,n) considering the geometrical distortion, creating more

dispersed pixel distribution towards the upper and bottom parts of the frame (i.e.,

corresponding to the polar region of the spherical frame). We then generate VM

taking the average of all users, uj. We generate a normalized avg. Viewport Map,

VMnorm, after histogram equalizing the VM and dividing by maximum pixel value

(=255).
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Figure 5.8: Percentage user viewport distribution on the thresholded area un-
der different threshold values for both approximate (α) and buffer (β) thresh-

olding

5.3.2.3 Approximate Thresholding (Fig. 5.5–c)

This step aims to filter R(FoVf )+R(FoV ) regions representing at least 80% of

the user VPs. We apply Approximate threshold (α∗) selected from discrete set of

α values based on VPs distribution on VMnorm frames to extract the above two

regions. First, to determine α range, we calculate the overlap between individual

user VPs and the thresholded regions for a discrete set of α applied on VMnorm

frames. Fig. 5.8(a) shows that except 0.8, all other values can cover at least 80%

of FoV region at least for one frame. We also note that 80% margin covers VPs

of at least 17 out of 20 users, which is claimed to be the minimum number of user

VPs needed to generate representative VM [78]. Thus, we reduce the range for α

between 0.4 to 0.7.

We present Algorithm 3 to select the highest possible α = α∗ for each frame

because higher the α, region boundaries are smoother, reducing the complexity

in partitioning. But, to avoid losing important salient regions, we constrain that

α should threshold at least 80% of VP coverage. First, we create a binary map

VM(α) by thresholding the VMnorm using a selected α (line 2). Then we measure

the percentage of FoV overlap of each user VP (Vi) with VM(α) calculating an

average value, savg(α) (line 3-7). Finally, if the savg(α) is no more giving 80%

coverage we stop further process and assign α∗ with the previous α value. If none

of the α satisfy 80% VP coverage, we select α∗ = 0.4 (line 8-14). We apply α∗ on

VMnorm and denote the resulting frame with R(FoVf )+R(FoV ) as VM(α∗).
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Algorithm 3: Determine α∗

Input:
VMnorm Normalized VP map
{Vi} Set of individual user VP maps ∀i ∈ [1, uj ]
Variable:
VM(α) Binary map of VMnorm after thresholding by α
Ii(α) Intersection map between Vi and VM(α)
si(α) % overlap between Vi and Ii(α)
S(α) Set containing si(α) ∀i ∈ [1, uj ]
savg(α) Avg. of si(α) for all users uj
Output: α∗

1 for α = 0.4 to 0.7 step = 0.1 do

2 VM(α) =

{
1, if VMnorm(m,n) ≥ α

0, otherwise

3 for i = 1 to uj do
4 Ii(α) = VM(α) ∩ Vi // get intersection map

5 si(α) =
∑∑

Ii(α)∑∑
Vi

% ∀m ∈ [0, H), ∀n ∈ [0,W )

6 S(α).add(si(α)) // store the % overlap user i

7 savg(α) =
1
uj

∑uj

i=1 si(α), s.t. si(α) ∈ S(α)

8 if savg(α) < 80% then // check for 80% coverage

9 if α > 0.4 then
10 α∗ = α− 0.1

11 else // if none of the α satisfy 80% coverage

12 α∗ = 0.4

13 return α∗

14 return α∗ = 0.7 // if α = 0.7 satisfy the 80% coverage

5.3.2.4 Blob detection (Fig. 5.5-d)

Due to the non-uniform dispersion of the user VP, VM can contain multiple blobs.

The aim of this step is to identify these blobs and exclude non-significant small

blobs reducing the complexity of the partitioning process. Without loss of gener-

ality, we select the blobs in VM(α∗), covering at least 95% of R(FoV )+R(FoVf ).

Algorithm 4 summarizes the blob selection process given the VM(α∗) as the input.

Firstly, the function G(VM(α∗)) outputs all the blobs in VM(α∗) frame as a set,

B, followed by sorting in descending order according to the blob size (line 1-2).

After that, we cumulatively sum up the blob size, starting from the largest one

and stop the process when the total selected blobs size (Zsel) exceeds 95% of total

thresholded area (ZVM(α∗)) in VM(α∗) (line 3-9). Finally, a map, VM(α∗, b), is

created combining all the selected blobs using the function H(Bsel) (line 10).
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Algorithm 4: Select blobs from VM(α∗)

Input:
VM(α∗) Approximate thresholded frame
Variable:

bl lth blob in VM(α∗), l ∈ [1, lmax], lmax: maximum no. of blobs in VM(α∗)

zl Size of lth blob
B Set containing all the blobs from VM(α∗)
Bsel Set containing the selected blobs
Zsel Total size of selected blobs from Bsel

ZVM(α∗) Total thresholded area of VM(α∗)

1 B ← G(VM(α∗)) // get all the blobs to set B
2 Bsort ← sort(B) : (descending order of blob size)
3 Zsel = 0
4 while l < lmax do
5 Bsel.add(bl) // Add blobs to a set

6 Zsel = Zsel + zl // add blob size cumulatively

7 if (Zsel/ZVM(α∗))% ≥ 95 then // check for 95% coverage

8 break

9 l = l + 1 // increment the blob count

10 VMα∗,b ← H(Bsel) // create pixel map from selected blobs

11 return VMα∗,b

5.3.2.5 Finer thresholding (Fig. 5.5-e)

To provide a higher quality for the most attractive region, in this step, we filter

R(FoVf ) from VM(α∗, b), defining Finer threshold, ζ. Without loss of generality

we set ζ = 0.9 to identify the region R(FoVf ) boundaries. We expand this bound-

ary to generate a perfect rectangular polygon as we discussed in Section 5.3.3. We

denote the finer thresholded frame as VM(α∗, b, ζ), which is the input for MNC

algorithm for R(FoV ) +R(FoVf ) partitioning

5.3.2.6 Buffer region thresholding and blob detection (Fig. 5.5–f and

Fig. 5.5–g)

The objective of this step is to filter R(buf), which covers slight variations of user

VPs. We extract R(Buf) from the area not covered by the DT (derived tile)s from

VM(α∗, b, ζ) on the initial VM which is denoted as VM buf (Eq. 5.3). We use the

same DT information to obtain corresponding buffer regions in Vi (individual user

viewports) namely, V buf
i , as in Eq. 5.4.
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VM buf ← VM ∩ (VMT (α∗, b, ζ))
′

(5.3)

V buf
i ← Vi ∩ (VMT (α∗, b, ζ))

′ ∀i ∈ [1, uj] (5.4)

where VMT (α∗, b, ζ) and (VMT (α∗, b, ζ))
′
denotes the DT overlay on the VM(α∗, b, ζ)

by MNC algorithm and its complement.

In order to extract a suitable buffer region from VM buf , we apply Buffer thresh-

old (β∗) and Blob detection as the same way we followed in α∗ finding and Blob

detection in approximate thresholding (cf. Section 5.3.2.3 and 5.3.2.4). Hence,

we compute percentage user viewport (V buf
i ) covered by the thresholded region

from VM buf , for the β ∈ {0.1, 0.2, 0.3, 0.4}. Fig. 5.8(b) shows that all threshold

values can provide (≥ 80%)4 buffer viewport coverage, therefore, we dynamically

select β = β∗, exploiting the above set. We apply Algorithm. 3 simply changing

the threshold values and replacing VMnorm and Vi with VM buf and V buf
i respec-

tively. After finding β∗, we define thresholded buffer frame as VM buf
i (β∗). After

that, to exclude the non-significant smaller blob region, we apply Algorithm 4

on VM buf (β∗), by simply replacing VM(α∗) with VM buf (β∗). We denote blob

filtered buffer frame as VM buf (β∗, b).

5.3.2.7 OoV extraction

The goal of this step is to extract R(OoV ) to derive low-quality DT to satisfy any

anomaly user VP. We filter out R(OoV ) removing the area covered by DT overlay

on VM(α∗, b, ζ)+VM buf
i (β∗, b) area (similar to Eq. 5.3). No further pre-processing

is applied to OoV region as no significant pixel value distribution is observed. We

denote the OoV region as VM oov.

5.3.3 Partitioning

VASTile frame partitioning step runs the MNC algorithm on R(FoVf )+R(FoV ) ,

R(Buf) and R(OoV ) regions separately to generate DTs. We start with creating

4Covering corresponding V buf
i from at least 17 users out of 20
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a rectilinear polygon covering each blob, followed by running the basic MNC algo-

rithm in Section 5.2.1. We select basic tile configurations as 10× 20, nevertheless

VASTile supports the flexible quard tree partitioning structure in H265 with the

maximum coding unit (CU) of 64× 64 [150] preserving the coding efficiency.

Firstly, forR(FoV ) andR(FoVf ) partitioning (Fig. 5.5-h), we leverage VM(α∗, b, ζ).

Fig. 5.9 shows (R(FoV ) + R(FoVf )) partitioning process. We expand the detected

polygon in R(FoVf ) (i.e., polygons in blue colour), converting it to a perfect rect-

angle. The boundary is extended to the minimum and maximum (m,n) locations

as long as it does not exceed the R(FoV ) polygon boundary, as shown in red colour

arrows in Fig. 5.9(a). By this step, we make the partitioning process simpler and

create an extra buffer for R(FoVf )s to be encoded at a higher quality. Fig. 5.9(b)

shows that polygons for R(FoV ) (e.g.,R3) is extracted removing all the polygons

generated for R(FoVf ) (e.g., R1, R2). Extracting R(FoVf ) as rectangles creates

holes in R(FoV ) region (Fig. 5.9(c)).

𝑅(𝐹𝑜𝑉)

Rectilinear 
boundary

𝑅(𝐹𝑜𝑉!) Rectilinear polygon for 𝑅(𝐹𝑜𝑉) Rectilinear polygon 𝑅(𝐹𝑜𝑉!)

Further expandable 
areas in 𝑅(𝐹𝑜𝑉!)

R1

R2

R3

Rn Regions for partitioning

(a) (b)

R3

R2

R1

(c)

Remove R2 
and R3 
regions

Figure 5.9: (R(FoV ) +R(FoVf ) partitioning: (a)-before & (b)-after expand-
ing rectilinear polygon of R(FoVf ), (c) R(FoV ) region to be partitioned after

removing R(FoVf ) blocks.

Since the basic MNC algorithm is proposed for hole-free rectilinear polygons, we

have added additional steps on top of VASTile MNC implementation. Below are

the basic steps we apply to partition rectilinear polygons with holes.

Chords connecting 
vertices of holes

Independent chords Chords drawn from the remaining 
concave chords on the boundary or 
vertices on the holes. 

(a) (b) (c)

1

3

2

Figure 5.10: Basic steps of applying MNC algorithm to rectilinear polygons
with holes
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Step 1 Connect co-horizontal and co-vertical vertices considering both concave ver-

tices on the main polygon boundary and four vertices on the holes (see

Fig. 5.10a). Chords can be created between i) holes–holes (e.g., chord 1○),

ii) holes–main polygon (e.g., chord 2○), iii) main polygon–main polygon

(e.g., chord 3○)

Step 2 Find the maximum independent chords (Fig. 5.10b) leveraging basic MNC

algorithm (cf. Section. 5.2.1)

Step 3 From the remaining concave vertices on the polygon boundary and vertices

on the holes, create chords to the nearest independent chord or polygon

boundary (Fig. 5.10c).

5.3.4 Post-processing

We further partition DTs beyond a certain size limit to reduce pixel redundancy.

Since we consider polygon boundary for the partitioning, we may encounter DTs

even bigger than FoV size horizontally/vertically or in both. Therefore, any slight

overlap with such tile incurs large pixel redundancy. In this process, we first define

the maximum allowable DT size considering the VP distortion variation according

to its vertical position. For example, a viewport located towards the polar region

allows having a larger DT size as the corresponding VP on the equirectangular

frame spreads in a larger region compared to the equator. Hence, considering the

number of overlapped BTs with the distorted VP maps on the equirectangular

frame, we define the maximum allowable DT size in both vertical (V Tmax) and

horizontal (HTmax) directions which are shown in Fig. 5.11 y-axis.
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centre of a given tile.
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Note that further reducing V Tmax and HTmax support decreasing redundant data

transmission as the DT size becomes small, nonetheless incurs high encoding over-

head. To see the impact, we take γ.V Tmax and γ.HTmax where γ ∈ [0, 1]. We set

γ = {0.25, 0.5, 1.0} in our experiments. Decreasing the γ results in smaller tiles.

After detecting larger DTs, we start partitioning outwards from the centre lines as

in the example tile in Fig. 5.11. The reason is that majority of the user VP con-

centrated around the centre of the frame [93, 151]. Therefore, to reduce potential

quality changes within the tile, we keep those DTs near centre lines non-split as

much as possible.

Finally, the quality allocated tile scheme can be achieved as in Fig. 5.5-l considering

the multiple properties of DTs such as pixel intensity, size and location of the tile.

We keep implementing a proper bit-rate allocation scheme and keep it as future

work and further interactions with bit-rate allocation are discussed in Section 5.6.

5.4 Evaluation setup

We proposed VASTile as a 360° video frame processing mechanism at the server

side. Therefore, first, VASTile should be generalized for various types of videos.

Second, it is safe to assume that servers have sufficient resources to process video

frames with state-of-the-art encoding libraries. Finally, VASTile performance should

be evaluated for its promise given not only for server/client coding optimization

but also for saving in bandwidth consumption. Taking these three factors into

consideration, we propose the following evaluation setup for VASTile.

Dataset: We develop and validate algorithms in VASTile leveraging VP traces

collected from 30 videos from three different datasets [93, 152, 153]. All videos are

in 60s duration with 30fps. VP centre is denoted by < yaw, pitch > angle. Each

video has 30 users, and we take VP traces from randomly selected 20 users to

develop tile schemes using VASTile and the remaining 10 users VPs to validate the

performance of VASTile. The selected videos represent 360° video categorization

proposed in [102] and are in different genres such as sports, documentary, stage

performance etc., generalizing the content of the videos.

Hardware and software setup:We implement VASTile architecture using Python,

which consists of 4500 lines of code, on macOS–intel Core i9 2.3GHz single core
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CPU. We use Networkx-2.4[145, 154] package for implementing the MNC algo-

rithm5. Videos in HD (1920× 1080) and 4K (3840× 2160) resolution are encoded

using FFmpeg-4.1 in H265 (HEVC) provided by libx265 at default Quantization

Parameter (QP)=28 with motion constrained tiling.

Evaluation metrics and comparison benchmarks: We compare VASTile

with 3 fixed tile configurations 4× 6 [15], 6× 6 [20], and 10× 20 [93]. To evaluate

VASTile with viewport-aware streaming, we use two metrics. i) % Pixel redun-

dancy before compression: extra pixels in selected DTs, but not overlapped with

the user FoV using Eq. 5.1. Higher the pixel redundancy, pixel-level operations

will increase in video encoding/decoding at the servers and rendering at the client

devices. ii) Downlink (dl) data volume: data transmitted by selected tiles in in-

dividual user VPs, which impacts the bandwidth saving. Total number of DTs

covering the entire frame when γ = 1 and 0.5 is near similar to the fixed tile 4× 6

and 6×6 configurations, respectively. We compare VASTile’s relative gain to fixed

tiling using the above metrics, and denote two configurations as C1: γ = 1 to

4× 6 and C2: γ = 0.5 to 6× 6.

5.5 Results

We evaluate VASTile considering three main aspects, namely, DT distribution

on the video frame and individual user VP, percentage pixel redundancy before

compression, dl data volume and frame processing time.

5.5.1 Distribution of DTs

We analyse the DT distribution generated by VASTile on each region: R(FoVf ),

R(FoV ), R(Buf) and R(OoV ). First, we vary γ, which controls the maximum

allowable DT size (see Section. 5.3.4), to see the corresponding variations in the

number of DTs and their average size in BTs in each region. Table. 5.2 reports

the averaged results for all the frames in 30 videos. For each γ value, around

31% of DTs on the entire frame covers R(FoV ). However, the average tile size

is 37.3% lower than the DTs in R(FoVf ). This is due to the region expansion

5For bipartite graph generation for searching maximum independent chords in a given polygon
(see Section 5.2.1)
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of R(FoVf ) during Partitioning step (see Section 5.3.3) and the remaining re-

gions on the VM(α∗, b, ζ) covered by R(FoV ) are smaller patches surrounding

the R(FoVf ). The second largest tiles are derived in R(OoV ) area because the

maximum allowable tile size is higher near the upper and bottom region of the

ERP frame.

Table 5.2: DT distribution in 4 regions: number of DTs (no. of T ) and
average tile size in BTs (S) variation by γ

γ R(FoVf ) R(FoV ) R(Buf) R(OoV ) Total

no. of T S no. of T S no. of T S no. of T S no. of T

0.25 18 3.2 19 2.8 11 3.0 16 3.6 64
0.50 8 6.8 13 4.0 8 4.0 11 5.4 40
1.00 4 13.4 9 5.6 6 5.6 9 6.4 28
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Figure 5.12: Temporal variation of DT at γ = 0.5: (a) number of DT on the
entire frame, (b) size of DT, (c) percentage (%) user VP on DT (d) percentage

(%) area of each DT overlap with user VP

Fig. 5.12 shows the temporal variation of DT distribution for the entire video

duration for γ = 0.5. Fig. 5.12(a) and Fig. 5.12(b) show that DT distribution

becomes stable within first 5 s. For example, in Fig. 5.12(a), number of DTs in

R(OoV ) decreases from 15 to a stable value 10. In contrast, DTs in R(FoVf )

and R(FoV ), the same value increases from 5 to 10 and 10 to 14, respectively.

Fig. 5.12(b) shows that, DT size of R(OoV ) decreases from 7 to 5 (in BTs) whereas

DTs in R(FoVf ) and R(FoV ) keep nearly the constant size at 6 and 4. Thus,

within the first 5 s VASTile generates a large R(FoVf ) and a high number of
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R(OoV ) DTs as the user VPs are concentric to a certain area. As the user VP

starts spreading on the frame, VASTile generates more R(FoV ) and R(FoVf ) DTs

reducing the R(OoV ) DTs.

Fig. 5.12(c) shows percentage user VP overlap with DTs in 4 regions. More than

50% and 30% of individual user VP overlaps with DTs from R(FoVf ) and R(FoV )

enabling the allocation of high-quality DTs in the user VPs. Fig. 5.12(d) shows

the proportion of each DT area overlapped with the user VP. Starting from 80%,

the average overlapped proportion of DTs on R(FoVf ) decreases to 70% because,

in the beginning, R(FoVf ) DTs provide a finer boundary to the individual user

VPs, but slightly fail with VP dispersion. Only 48% of the area of R(FoV ) DTs

overlaps with user VPs because many R(FoV ) DTs cover the boundary of the

high visual attention areas.

(a) (b)

Figure 5.13: Pixel intensity distribution: (a) Pixel Intensity per Basic Tiles
(PI/BT) for the 4 regions, (b) Spatial distribution of PI/BT of R(FoVf ) and

R(FoV )

Fig. 5.13(a) shows the Total Pixel Intensity per Basic Tile ( PI/BT) as measured

in Eq. 5.5 for the DTs in 4 regions.

PI/BT =
sum of pixel values in DT

number of BTs in DT
(5.5)

Overall, R(FoVf ) and R(FoV ) attain more than 1000 PI/BT whereas the majority

of DTs in both R(Buf) and R(OoV ) have (≤ 500) PI/BT showing the effective-

ness of VASTile threshold selection in Pre-processing step. Fig. 5.13(b) illustrates

the spatial distribution of PI/BT values of R(FoVf ) and R(FoV ). Values are nor-

malized separately for the two regions. The pre-defined ζ (=0.9) in VASTile is able

to derive the majority of R(FoVf ) tiles at the center of the frame, at where the

user viewports are concentrated in general [151, 152]. In the meanwhile, DTs in

R(FoV ) cover the surrounding regions of R(FoVf ) acting as a high-quality buffer

to R(FoVf ).



Dynamic tiling 360° video frames 123

Overall, DT distribution in identified four regions has unique properties in differ-

ent aspects such as number of tiles, size, overlap with user VP and pixel intensity

levels. Understanding these properties enables content providers to treat DTs adap-

tively by changing their quality levels to provide high QoE to the users.
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Figure 5.14: Pixel redundancy before compression and relative gain achieved
by VASTile compared to fixed configurations.

5.5.2 Percentage pixel (%) redundancy before compres-

sion

We measure percentage pixel redundancy before compression for the entire video

using the Leveraging Eq. 5.1. Fig. 5.14(a) details the results averaged over all the

videos. We see that when γ = 1 (γ = 0.5), VASTile redundant cover is 142 (110)%

which is a 20(5)% reduction compared to fixed-configuration 4 × 6 (6 × 6). High

redundancy is due to the partial overlap of the user VP by the DTs towards the

boundary of the FoV. Moreover, comparing VASTile: γ = 1 with the best basic

tile configuration provided by Ozcinar et al. [78], we see that [78] costs additional

137% of pixel redundancy mainly due to the large polar region tiles in their tile

scheme.

Fig. 5.14(b) shows relative saving of redundant pixels before compression in C1

and C2 cases for each individual video. We measure an average of 12.8% pixel

saving and a maximum of 31.1% in C1 (γ = 1 to 4 × 6). However, the same

results for C2 (γ = 0.5 to 5× 8) are 3.7% (average) and 16.8% (max), due to the

reduced size of the fixed tiles. This is the same reason for negative saving (i.e.,

more pixel redundancy with DTs) for some videos; however, the negative saving is



Dynamic tiling 360° video frames 124

less significant than total positive savings. Dissimilar patterns between two graphs

along the video ID are due to varying positioning of the tiles when changing the

tile configuration relative to the same user VP.

5.5.3 Downlink (dl) data volume
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Figure 5.15: Comparison of VASTile for dl data volume with Full frame and
Fixed tile configurations with viewport-aware streaming

We compare dl data volume exploiting DTs from VASTile for both HD and 4K

videos with viewport-aware streaming scenario. Fig. 5.15(a) shows that compared

to the Full frame streaming scenario, which is utilized by commercial content

providers such as YT and FB, VASTile can save in average 32.6 (40.8)% of band-

width in HD (4K) videos. When decreasing the γ, bandwidth saving reduces

to 10.8(32.3)%, as the decrease in γ affects increase in the number of tiles, and

thereby more encoding overhead. We further measure the bandwidth saving by

VASTile in light compared to the existing fixed tile configurations for each video

in Fig. 5.15(b). C1 shows more gain, which is 12% in average and 35.4% in max-

imum. The similar measures for C2 is 4.5% (average) and 10.5% (max). Almost

all videos show positive bandwidth saving as the compression can boost up the

VASTile performance despite negative relative pixel redundancy (see Fig. 5.14(b)).

We compare VASTile with Optile [86] considering their best-performing metrics

under dl data volume saving. Considering bandwidth saving compared to full

frame streaming [86] has at maximum 49% of saving whereas VASTile has 35.4%

saving, which is still acceptable at scale. However, considering the comparison

with fixed tile configurations, [86] shows the best performance only for two of the
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(b)(a)

Figure 5.16: Processing time for different steps: (a) Dissection of VASTile
process in time, (b) Comparison with ILP for Partitioning step

five videos they considered. In contrast, VASTile shows positive gains for 29 videos

out of 30 videos which can vary between 2–37%, which is more generalizable.

Analysis of pixel redundancy before compression and dl data volume after encoding

show that VASTile outperforms fixed tile configurations in general while achieving

significant gains with certain videos. Such gains benefit in reducing processing

requirements at content servers and relieving the high strain on the network by

current full frame 360° video streaming scenario.

5.5.4 Processing time of VASTile

We measure the end-to-end processing time for VASTile including Pre-processing,

Partitioning and Post-processing steps for the four main regions as shown in

Fig. 5.16(a). In a gist, VASTile can provide a suitable tile scheme within 0.98(±0.11) s
of avg. processing time revealing its scalability for large-scale video datasets. Pre-

processing step in R(FoVf )+R(FoV ) and R(Buf) demands higher processing

time due to the semi-automated selection of α∗ and β∗. Compared with the ILP-

based approach in [86] which takes 7–10 s to process one frame on a single core

CPU(3.3 GHz), VASTile can reduce the processing time by 85–90%.

Fig. 5.16(b) shows a comparison of processing time of Partitioning step between

VASTile and modified ILP based method from [86]. Since we consider the minimum

number of tiles to cover the video frame, we modify the cost function in ILP method

to reduce the number of tiles matching the VASTile objective. We keep Pre/Post-

processing steps as the same for both methods. Overall, Partitioning time in

VASTile is 513.2 ms less than ILP showing its higher scalability for on-demand

video processing and relatively higher flexibility for live streaming scenarios with

further improvements.
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5.6 Discussion

5.6.1 Challenges in practical deployment

We discuss the challenges and requirements of deploying VASTile at the servers

mainly under four aspects. Firstly, at this stage of VASTile, we do not encode

all DTs when selecting a suitable tile scheme, excluding compression-related pa-

rameters such as motion vector distribution [86]. Therefore, the solution is sub-

optimal, reducing server storage optimization opportunities and demanding more

space compared to fixed tile configurations. As a solution, incorporating compres-

sion or storage awareness to VASTile is viable, nevertheless, should not increase

the current lower processing time. A possible approach would be to leverage ML

models that output compression-aware parameters such as DT size on storage on

top of MNC algorithm. However, calculating features such as in [86] as the in-

put to the ML model should be efficient when probing each possible DT for the

scheme.

Secondly, true benefits of VASTile can be achieved with systematic implementation

of dynamic bitrate or quantization parameter (QP) allocation to change the tile

quality, in contrast to the constant QP value used at this stage. Compared to

fixed tile configurations, DTs from VASTile are aware of the VP distribution on the

video frame. Therefore, when adapting to the existing DASH (Dynamic Adaptive

protocols, we can have more control over adjusting the suitable quality affecting

parameters (i.e., change the bitrate/QP levels based on the pixel intensity of the

tiles on the VMs). Since we update the tile scheme every 0.5 s, the DASH segment

duration should be a multiplier of 0.5 s to avoid complexity in MPD (Media

Presentation Description) file generation. We keep DASH implementation and

detailed user QoE analysis as our future work.

Thirdly, proposing a DT scheme with different sizes and locations on the frame

results in a higher number of smaller tiles than a fixed tile configuration. Therefore,

despite the bandwidth saving and redundant pixel reduction compared to fixed

tile configurations, DTs can incur overwhelming computational overhead when

encoding and decoding the content. However, given that we deploy VASTile offline

on the servers at this stage, the server will get sufficient time to encode DTs.

Implementing parallel encoding and decoding at the server and client side [15],

respectively, is another direction to achieve efficient coding. Such operation can be
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further enhanced by deploying hardware-level encoders and decoders implemented

using GPUs, and Field Programmable Gate Arrays (FPGAs) [15, 88, 155, 156].

Finally, we propose to run the VASTile iteratively on servers to update the DT

schemes on video frames when the new users start streaming the video. Though

having 17 user VPs is proven sufficient to have an acceptable VP map [78], slight

variations to the content attractiveness can occur with the new VPs. We suggest

two solutions to tackle this issue. First, content providers can periodically update

the DT scheme considering a fixed time interval having a combined VP map (VM)

from all the past users. Second, an efficient mechanism to detect the changes in

attractive levels in VM should be implemented to trigger to run VASTile . This

can potentially reduce the number of VASTile operations utilizing server resources

intelligently.

5.6.2 Compatibility with MPEG-OMAF

There are multiple aspects of MPEG-OMAF that are compliant with dynamic

tiling in VASTile. For example, HEVC encoding, the coordinate system supporting

3 DoF and VP extraction for VP adaptive streaming are still required to implement

VASTile. However, several intrinsic mechanisms of OMAF which are built based

on fixed tile streaming should be modified to handle dynamic tiling. For instance,

the Tile binding process which provides information on how to extract data from

other tile streams in a video session needs to be modified to be compatible with

dynamic tiles. There are two main approaches for Tile binding namely, Author

driven (i.e., the content author provides information on how to combine the tiles

at the OMAF video player) and Late tile binding (i.e., OMAF player decides

which tiles to be received and merges them into a single video stream). From

these two methods, Late tile binding approach is more appropriate for VASTile to

avoid having a large number of combinations of tiles to cover user VPs by Author

driven method. Moreover, Tile indexing and MPD file creation to support DASH

streaming required to be modified to handle more tiles compared to fixed tiling.
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5.7 Summary

In this chapter, we propose a novel approach, named VASTile, to partition 360°
video frames into variable tiles (DTs) dynamically as a solution to be deployed

at content servers to enhance the 360° video delivery. VASTile identify attractive

content in the video frames by considering visual attention maps created from

historical user VPs. Taking this content information as the input, VASTile par-

titions the video frame into DTs that are different in size and location on the

frame. VASTile leverages a computational geometric approach called Minimal

Non-overlapping Cover (MNC) algorithm to provide a suitable non-overlapping

DT coverage to the video frame. These dynamic tiles provide a finer coverage to

the user VP while reducing the redundant pixel transmission we observed in fixed

tile-based streaming, further reducing bandwidth consumption and improving user

perceived video quality.

We first laid out the background information of MNC algorithm, followed by

showing its applicability to partitioning the 360° video frames with variable tiles.

Then, we presented VASTile architecture, which includes three main steps, Pre-

processing, Partitioning, and Post-processing. During Pre-processing, we extract

content regions on the frame that are in different levels of visual attraction. In

Partitioning step, we apply MNC algorithm to the identified regions in the frame

and derive variable tiles (DT). VASTile Post-processing step further processes the

DTs by changing their size adaptive to the user FoV parameters. Eventually, com-

bining DTs from all regions creates a non-overlapping tile scheme that can fully

cover the video frame.

Results show that the tile scheme derived by VASTile can provide finer coverage to

the user VP while identifying tiles to be encoded at high-quality levels (e.g., tiles

covering the centre region of the user VP). Also, compared to fixed tile configura-

tion benchmarks, we observed 31.1% and 35.4% maximum reduction in redundant

pixel transmission and bandwidth consumption during tile transmission, respec-

tively. Moreover, VASTilecan derive the tile within 0.98 s, which is 85–90% less

than ILP or exhaustive searching-based mechanisms from the literature showing

its scalability on the servers and promise given for live streaming settings.

Finally, we thoroughly discuss the challenges and requirements of deploying VASTile

on the content servers in different aspects, such as incorporating tile compression

information to VASTile, improving the support of DASH-based streaming etc.
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We further discuss the compatibility of VASTile with existing standards, MPEG-

OMAF, defined for 360° video streaming.



Chapter 6

Optimized utilization of MEC

cache for dynamic tiling

6.1 Introduction

In Chapter 5, we presented VASTile which partitions 360° video frames into variable

tiles to support VP-aware streaming. We observed further reduction in redundant

pixel transmission and bandwidth consumption compared to existing fixed tile

based 360° video streaming. We propose VASTile for content providers as a tool

for efficient frame partitioning. In this chapter, we investigate how we can leverage

Multi Access Edge Computing (MEC) for variable tile streaming while running

VASTile for individual user VP partitioning at the client.

In parallel to video content (e.g., frame modification) based optimizations, many

solutions have been proposed to push the 360° video content closer to the user by

the assistance of edge or MEC servers [23, 24, 102, 103, 124]. These mechanisms

are mainly based on fixed tiles and try to provide high-quality cached tiles to cover

the requested VPs while reducing the content delivery time. However, to the best

of our knowledge, none of those mechanisms has explored how to cache DTs at

MEC servers effectively.

In Fig. 6.1, we illustrate one of the key challenges related to DT caching that we

aim to address in this chapter. According to Fig. 6.1(a), in a typical fixed tile-based

caching mechanism, it is easier to query the cached tiles because both requested

and cached tiles have the same discrete set of locations and a fixed size. However,

130
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Figure 6.1: Problem of lower cache hit rate with variable tiling compared to
fixed tiles in caching base 360° video streaming. In both scenarios, tiles are

cached on MEC server.

in a DT caching scenario (Fig.6.1(b)), when querying cached tiles for a new user

VP in DTs, the location and size of the tiles are no longer useful because those

parameters are highly variable now. To further explain, when a VP request in DTs

is received, with traditional cache querying methods, MEC cannot find identical

tiles in the cache even though already cached DTs may cover nearly the same

region of the VP. Therefore, most requests are redirected to the content server

(CS) that can lead to several negative consequences [157, 158]. First, content is

delivered through the core network (i.e., 4G/LTE), which is already congested

due to the limited per user capacity. Therefore, there will be significant delays in

video delivery and lower quality in tiles due to the lower bit rates. Secondly, if

newly fetched tiles are to be cached, caching all different tiles even with a slight

difference between their size and location can easily overrun the available cache

capacity.

As a solution, in this chapter, we present OpCASH1 an efficient MEC cache utiliza-

tion mechanism that devises an optimal cached tile coverage to the VP requests

with DTs. To devise DT cover at the client, we deploy VASTile for individual

1From [3∗] Optimized Utilization of MEC Cache for 360-Degree Video S(H)tream- ing with
Dynamic Tiling
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user’s VP at the client. The novelty of OpCASH stems from finding these cached

tiles, which might not be identical (i.e., location, size) to the requested DT con-

figuration, but providing nearly the same coverage to the VP, while making fewer

tile requests to CS to cover regions of VP not covered with cached tiles. Such

cache utilization is important in different ways. First, filling the majority of the

VP region with cached tiles limits the requests to CS through the core network.

Therefore, most data transmission occurs within the last mile network reducing

the delays in total data transmission. Second, due to the decrease in new tiles

from the CS, there will be less probability of exhausting the cache, proposing an

efficient caching strategy for DTs.

6.2 Preliminary studies for motivation
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Figure 6.2: Preliminary analysis showing potential to serve VPs with cached
DTs.

To understand the extent of caching of variable tiles, we simulated a DT caching

scenario in which a nth user is requesting DTs in her VP derived by VASTile ap-

proach and DTs up to n− 1 users are already cached on the MEC. We assume a

cache with infinite storage capacity. We first measured Intersection over Union

(IoU) between requested DTs and cached DTs in terms of BTs as shown in

Fig. 6.2(a). Note that overlapped DTs might not be identical. For the same

requests, we further measured how many cached and requested DTs were identi-

cally matched (i.e., same size and location)

Fig. 6.2(b)–(a) shows a high average overlap between the requested DTs and

cached DTs in terms of their BT distribution. However, in Fig. 6.2(b)–(b). we
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see that identical tile distribution (%) (or cache hit ratio) can only reach up to

50-60%, and even that is only for users who watch the video later. These results

show that despite the variability in location and size, cached and requested VP

DTs in variable sizes can still have a high overlap. However, applying conven-

tional tile-based caching approaches, which try to find identical cached tiles to the

VP tiles, is inefficient with DTs. For example, in Fig. 6.2(a), though we observe a

higher overlap between requested DTs and cached DTs, almost all the DTs are not

identical to each other. The inability to find identical tiles makes more requests

to the CS for new tiles. Caching those new tiles can overrun the MEC storage

easily.

6.3 Methodology

Now we present OpCASH methodology. We begin with the system overview, fol-

lowed by formulating the problem of DT utilization on the MEC. Then, we present

an ILP-based solution to find the optimal cache tile configuration to cover a given

user VP in variable tiles. Unless otherwise noted, we use the term “tile” addition-

ally to refer to a DT here onwards.

6.3.1 OpCASH overview

Fig. 6.3 shows the overall process of OpCASH. First, at the client end, a suitable

tile (i.e., suitable DT) scheme is proposed to cover the user VP. We assume that a

frame partitioning mechanism is already deployed at the client device (e.g., HMD

or smartphone). In OpCASH, we deploy variable tiling mechanism on the client

device, but it can also be deployed on the MEC or CS. With this, we intend

to improve the scalability by distributing MEC & CS workload to client devices

similar to DASH protocol.

In OpCASH, we leverage VASTile in OpCASH to derive VP tiles (i.e., as in DTs)

at the client. We adopt the same VP sampling rate of 2 Hz proposed by VASTile

method to reduce the computational cost at a tolerable VP error level. Once a

suitable tile scheme is proposed, tile requests are made to the MEC server located

in proximity to the user. The users connect to the MEC server through the last

mile network, which can be 5G.
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Figure 6.3: User requests variable tiles from the MEC server with cached tiles
of previous users. Leveraging ILP, MEC server decides which cached tiles (in
red) should be selected to cover the requested VP and makes additional tile (in
blue) requests to the CS to fill the uncovered VP regions by the cached tiles.
Finally, the complete tile cover is transmitted to the user and new tiles from

the CS will be cached at the MEC.

Upon the VP tiles request, the MEC server tries to find the optimal cached tile

configuration to cover the requested VP tile region. To increase the cache utiliza-

tion, OpCASH finds cached tiles (e.g., tiles in red in Fig. 6.3) which might not be

identical to the requested VP tiles in terms of size and location but instead located

in proximity and are near similar in size. Due to this non-identical nature, cached

tiles might also cover extra regions out of the VP tile causing pixel redundancy.

If the area covered by cached tiles is smaller, requesting more tiles from the CS is

a viable solution to reduce the pixel redundancy. However, sending more requests

to the CS results in higher data transmission through the core network, which
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can cause higher motion-to-photon delay because of high latency and potential

network congestion on backbone networks.

To address the above trade-off, we formulate the problem of proposing optimal

cached tile configuration as an ILP problem, which tries to achieve three ob-

jectives. First, the solution should reduce the pixel redundancy by cached tile

coverage. Secondly, it should encourage selecting tiles from cache as much as

possible. Thirdly it is essential to reduce the excess data transmission through

the core network. These objectives are further elaborated in Section 6.3.2. If the

proposed cached tile configuration is insufficient to cover the VP region, OpCASH

requests additional tiles from the CS. The CS can generate requested variable tiles

(tiles in blue) in real-time [88]. OpCASH combines both sets of tiles to create a

non-overlapping coverage on the requested VP. Selected tiles are transmitted to

the user while caching the new tiles from CS on MEC.

6.3.2 Problem formulation

We formulate the problem of finding optimal cache tile coverage for the VP of a

given user n, assuming that tiles requested by previous n − 1 users are already

cached on the MEC. Moreover, we provide this cached tile configuration to the

first frame of each chunk and extend to the subsequent frames of the same chunk.

We exclude any temporal correlation between the chunks [23]. We denote sxi as a

single tile in any type of tile set presented in Table 6.1. x is a variable notation

for tile type and i denotes ith element.

Table 6.1: Components used in ILP objective function formulation

Term Definition

i ith element of a given vector or set
sx A single tile of a given set, x is a variable notation
S Set of VP tiles of the nthuser: {s1, s2, ..., sk}
Sc Set of cached tiles by up to n− 1 users: {sc1, s2,c ..., scl }
Sc,o Set of cached tiles overlap with S: {sc,o1 , s2,

c,o ..., sc,op }
Sc,s Set of cached tiles selected by ILP: {sc,s1 , s2,

c,s ..., sc,sq }
Sa Set of additional tiles from CS: {sa1, s2,a ..., sal }
cr Vector of redundant pixel transmission for each sc,o ∈ Sc,o

< cv1, c2,
v ..., cvp >

ce Vector of size of each sc,o ∈ Sc,o: < ce1, c2,
e ..., cep >

cs Vector of remaining area size on the VP for each sc,o ∈ Sc,o

: < cs1, c2,
s ..., csp >
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As shown in Fig. 6.4, firstly, a suitable tile configuration, S = {s1, s2, ..., sk},
for the user n, while considering the VP distortion that occurs when projecting

spherical VP to equirectangular frame, is proposed using VASTile. Then, S is

transmitted to the MEC server where tiles up to n− 1 users are cached, which is

denoted as Sc = {sc1, s2,c ..., scl}. In Fig. 6.4, coordinates of all the BTs enclosed

by the corresponding tiles from S and Sc are shown. From Sc, we find tiles

which overlap with s ∈ S creating another set Sc,o = {sc,o1 , sc,o2 ..., sc,op }, which
is a subset of Sc. The exclusion of non-overlapping tiles removes unnecessary

computations during the process and is important to reduce cached tile search

space for ILP solver. ∀ sc,o ∈ Sc,o, we calculate three vector components used for

ILP formulation, cr, ce and cs, defined in Table 6.1, which have the same length of

Sc,o. A weighted combination of these components derives the objective function

of ILP from devising an optimal cache tile configuration to cover S, denoted as

Sc,s. Next, we present the formulation of cr, ce and cs showing their contribution

in OpCASH. In Fig. 6.4, we take a sample tile sc1 from Sc, which overlaps with S

to clearly present the method.

6.3.2.1 Pixel redundancy before compression component (cr)

cri ∈ cr, where i ∈ [1, p], represents redundant pixel transmission before compres-

sion when a selected sc,oi is covering the VP region S. Block– A○ in Fig. 6.4 shows

a sample redundant pixel distribution when sc,o1 overlaps with the tiles in S. We

calculate cri as in Eq. 6.1.

cri =

∑k
j=1 f(s

c,o
i ∩ sj)

f(sc,oi )
(6.1)

f(.) measures the number of pixels in a given region on the video frame. Eq. 6.1

first measures amount of pixels in the intersected region between sc,oi and all s ∈ S

followed by taking the relative value compared to amount of pixels in sc,oi . Higher

cri values guarantee that a high proportion of the sc,oi area covers the VP and is

located closer to the VP. Lowering the pixel redundancy (i.e., higher cri ) reduces

the data transmitted after compression. Also, it further reduces the pixel level

operations at the client device, such as frame rendering as discussed in Chapter 5

and in [88].
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Figure 6.4: Overview of processing on MEC: After receiving VP tile requests
(S) from the user n, MEC first finds the overlapping cached tiles with S (sc,o).
All the BT coordinates enclosed by the corresponding tiles (DTs) are shown.
Considering the tiles in Sc,o and S, elements of objective function components,
cr,ce and cs, are calculated. Sample case is given for sc,o1 . A combination of
the above components constructs a maximization problem solved by ILP, which
derives an optimal cached tile configuration (Sc,s) to cover S taking additional

tiles (Sa) from the content server. Sa is cached on the MEC.

6.3.2.2 Compressed tile size components (ce and cs)

Both ce and cs are derived considering compressed tile size (in MB). Firstly, as

shown in Fig. 6.4–Block B○, elements of ce (cei where i ∈ [1, p]) contain the size

of each sc,o ∈ Sc,o. We use this component as a forcing factor to select tiles

from the cache, pointing it as a maximization factor in the ILP objective. In

our experiments, we observed that sc,oi with a larger cei value can typically cover

a substantial region of the VP region and is desirable. However, such tile can

also cover out of VP regions incurring high pixel redundancy. We remove such

sc,oi considering cri component described in Section 6.3.2.1. Also, a tile with a

lower cei can cover the VP region with less pixel redundancy but may result in the

majority of the VP region being uncovered. We avoid such tiles by considering

the component csi explained next.
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Secondly, elements of cs (csi where i ∈ [1, p]) are determined by calculating the

size of the residual area on the VP region for each sc,o. We denote this region as

s
′c,o. Fig. 6.4–Block C○ illustrates such a region corresponding to the example tile,

sc,o1 . If the calculated csi is high (i.e., potentially a tile with low cei ), selection of

corresponding sc,oi tends to make more additional tile requests to the CS as there

can be many uncovered parts on the VP. On the contrary, low csi indicates that the

corresponding sc,oi can cover the majority of the VP region. Therefore, fewer tile

requests to the CS and less data transmission through the core network. These

s
′c,o regions are not need to be similar to the set of final tiles fetched from CS.

Estimating the elements in ce and cs is not a trivial task. Though cei can be easily

measured because the encoded tiles are already available on the MEC, calculating

elements in csi by encoding corresponding s
′c,o
i imposes an intensive encoding task

load on the MEC. Particularly, s
′c,os are highly irregular in shape, size and location

due to the variability of tiles in S and Sc,o. As a solution, we first investigated the

factors affecting DT (i.e., variable tile) size (ZDT ) proposed in [86]. There are four

main factors suggested by [86] namely; i) total size of BTs (i.e., basic tile) that a

given DT is comprised of (
∑

ZBT ), ii) number of BTs in DT (u), iii) number of

original motion vectors on the video frame that should be relocated if a given BT

is encoded independently. We denote this number as v and summation of such

motion vectors related to each BT in the DT (
∑

v), and iv) Difference between

the
∑

v and motion vectors that should be relocated if the given DT is encoded

independently (m).
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Interestingly, Fig. 6.5(a) shows that ZDT is highly correlated with
∑

ZBT which is

0.9. Further analysing the distribution of ZDT and corresponding
∑

ZBT (Fig. 6.5(b)),

we derive a 2nd degree polynomial function, which takes only
∑

ZBT of a given DT

and estimates ZDT in MB. For the test dataset (see Section 6.4.1), this estimation

gave us 20% median absolute error, which is still tolerable for OpCASH tile size

estimation in real-time. During this process, we simply divide the entire frame

into BTs and encode them individually to measure ZBT , which is done only once

after the video is uploaded. Eq.6.2 presents the relationship between the ZDT and∑
ZBT ,

ZDT = a2(
∑

ZBT )
2 + a1

∑
ZBT + a0 (6.2)

where a2 = 0.432, a1 = 0.306 and a0 = 0.0025. Thus, to estimate cei or c
s
i , OpCASH

first finds BTs enclosed in sc,oi or s
′c,o
i regions respectively followed by calculating∑

ZBT after individual ZBT values are measured. Then, Eq. 6.2 is applied by

simply replacing ZDT with cei or csi and assigning
∑

ZBT accordingly. Due to

the lower correlation and high computational cost in calculating motion vector

information in real-time, we exclude other factors from OpCASH analysis.

6.3.3 ILP formulation

Now, we present the ILP formulation combining the components in Table 6.1. ILP

has been utilized in the network optimization domain for several reasons [86, 159,

160]. First, ILP allows defining problem specifications precisely. Secondly, there

are many ILP solvers which can provide faster and more accurate solutions, such

as GLPK, IBM-CPLEX Optimizer [161, 162].

We denote the selection of sc,o to cover the VP tiles (S) as a binary vector

x =< x1, x2, ..., xp >, which has the same length of Sc,o. xi = 1 indicates that

corresponding sc,oi is selected to cover the requested VP tiles and vice versa. We

denote the selected sc,o set as Sc,s = {sc,s1 , s2,
c,s ..., sc,sq }. ILP solver finds optimal

x under the constraint that tiles in Sc,s should not overlap with each other. To

develop this constraint, we create matrix D which holds the information of the set

of BTs and their coverage by sc,o ∈ Sc,o. Fig. 6.6 shows construction of D taking

the same sample tile overlap shown in Fig. 6.4.
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In D, first column contains the union of BTs from tiles in Sc,o and S. The remain-

ing each column represents each sc,o ∈ Sc,o separately and assign 1 if a selected

sc,o encloses a given BT and 0 otherwise. To a non-overlapping coverage, each BT

should be covered only one time by the tiles sc,s ∈ Sc,s, which can be formulate as

DxT = 1. By selecting the BTs outside the VP, which are covered by sc,o, avoids

potential sc,s overlaps outside the VP. We formulate the objective function and

constraints in ILP as follows.

Fobj = maximize (w1c
r + w2c

e − w3c
s)xT (6.3)

w1 + w2 + w3 = 1 (6.4)

w1, w2, w3 > 0

Subject to: DxT = 1 (6.5)

x ∈ {0, 1} ∀x ∈ x (6.6)

Note that we formulate a maximization objective in Eq. 6.3, while normalizing

(i.e., min-max) each component separately between 0–1 to covert them to the

same scale. cr is a maximization component calculated in Eq. 6.1. As depicted in

Section 6.3.2.2, keeping ce positive, we motivate the solver to fetch tiles from MEC

server as much as possible. Negative cs demotivates selecting smaller cache tiles to

avoid having many uncovered VP regions. A careful balance between the weights

in Eq. 6.4 further optimizes the cached tile selection. For example, a larger w1

and a smaller w2 discourage selecting cached tiles with a higher pixel redundancy

by the forcing component ce.
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Figure 6.6: Generation of matrix D. We first identify BTs covered by the tiles
in both S (BTs in green) and Sc,o (BTs in blue). Then, for each BT (column
1) assign 1 or 0 if it is overlapped with any sc,o ∈ Sc,o. Each sc,o is allocated

one column.
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We relax the constraints in two ways. First, we change the hard constraint in

Eq. 6.5 to a soft constraint: DxT ≤ 1. The operator, “≤” allows leaving certain

BTs not covered if there is no optimal sc,o tiles to cover them. These BTs are

covered by fetching tiles from the CS. Secondly, to circumvent the NP-hardness

of ILP, we change x ∈ {0, 1} in Eq. 6.6 to 0 ≤ x ≤ 1 ∀x ∈ x to convert the ILP

to a LP problem [86, 163]. Then, we round the solution to 0/1 if we encounter

fractional values for x [163].

6.3.4 Caching variable tiles

Once the Sc,s is found, additional tile set (Sa) is fetched from the CS to covers

regions not covered by Sc,s. These new tiles are cached on the MEC server at the

highest possible quality level. For the first user, all the tiles will be fetched from

the CS. Cache utilization mechanism in OpCASH in turn provides a more efficient

variable tile caching strategy compared to applying fixed tile-based caching strate-

gies. For example, the inability to find identical tiles on the cache increases the

number of new tiles to be cached when applying conventional fixed tile caching on

variable tiles. This can lead to exhausting the cache storage comparably faster.

However, efficient cache utilization in OpCASH reduces the number of new tiles to

be cached reducing the risk of cache overrun.

6.4 Evaluation setup

We proposed OpCASH as an efficient MEC cache utilization approach when stream-

ing 360° videos with variable tiles while deploying VASTile at the client. Therefore,

providing the realistic conditions as much as possible, we design the following eval-

uation setup to validate the OpCASH performance by simulation experiments.

6.4.1 Dataset and simulation setup

Video and user VP dataset: In OpCASH we leverage 29 360° videos in 1 min

duration and 30 fps collected from [93, 151, 152, 164]. These VP traces have

been collected in lab settings with real user participation reflecting the real user

behaviour in video streaming in OpCASH. Each video has 30 VP traces claiming
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52200 min of total trace duration. The authors in [78] show that 20 users are

enough to create a representative VP map for a 360° video. Therefore, we believe

30 user traces are sufficient to create a representative cache tile repository for a

given video in OpCASH evaluations. We randomized the user streaming order

three times in our experiments. Due to the unavailability of 4K (3840×2160) res-
olution for all videos, we upscale videos in HD resolution to 4K. Though upscaling

does not regain the content 100% similar to the original 4K version, .mp4 file sizes

are approximately equal to the original 4K version, which is still acceptable for

OpCASH validation. These videos also include different genres such as documen-

taries, sports, stage performances etc. We randomly picked 20 videos for model

development, including all different video categories provided in [102] and tested

the performance for the remaining 9 videos.

Network traces: For a realistic mobile networking environment, particularly in

variable quality tile streaming experiments, we leverage bandwidth traces collected

from a real-world 4G/LTE network by [116], when users are mobile (e.g., walking,

commuting by car), assuming that core network is not congested. We select two

bandwidth values 500 and 200 Mbps from [165] for the last mile network matching

the mobility patterns in 4G/LTE traces. For example, if the user moves slowly

(i.e., walking), we use 500 Mbps, and for faster mobility patterns (i.e., commuting

by car), we change the value to 200 Mbps [165].

Hardware/Software setup: We implement OpCASH as a Python based simu-

lation setup on MacOS-intel Core i9 2.3GHz single core CPU. For video encoding

operations FFmpeg [166] has been used. To solve the ILP, we use Python version

of GNU Linear programming Kit (GLPK) solver [161, 167]. We assume a perfect

cache with infinite storage in our main analysis and assume all videos and frames

have an equal popularity. We analyze the impact of cache replacement policies on

OpCASH as a separate study.

6.4.2 Comparison models and Parameter selection

We compare OpCASH with a baseline approach, which attempts to find identical

cached tiles to the VP tiles. We use VASTile to derive VP tiles in baseline. If the

required cached tiles are not found, baseline makes additional tile requests to the

CS and stores new tiles on the cache. We further compare OpCASH with fixed

tile configuration based cached tile requesting method (fixed-cfg). In fixed-cfg, we
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cover the VP with fixed tiles then follows the same methodology in baseline to

request cached tiles. To be matched with the average size of variable tiles in VP,

which VASTile proposes, we select 4× 6 fixed tile configuration [15].

We empirically determine parameters in Eq. 6.3 as w1 = 0.60, w2 = 0.25 and

w3 = 0.15 using the 20 videos for model development. A larger value to w1

guarantees a non-overlapping tile cover and reduced pixel redundancy. Having

w2 > w3 prioritizes encouraging selecting tiles from the cache than discouraging

fetching them from CS. These parameters can be changed depending on the user

requirements.

6.5 Results

In this section, we analyse the OpCASH performance in different aspects such as

tile distribution, data downloading (dl) patterns, compatibility with existing cache

replacement policies, the processing time of OpCASH, video quality variations etc.

6.5.0.1 Distribution of tiles

Fig. 6.7(a) shows the Cumulative Density Function (CDF )distribution of the

number of tiles (left) and percentage of total tile region relative to the video frame

(right) for a given VP request. We see that MEC cache delivers more tiles that are

larger in VP region compared to the CS, reducing the load to the core network.

For example, 80% of chunks deliver at most 12 tiles from the cache and only

around three from the CS. Comparing the tile size, 80% of tiles from cache cover

at most 36% of the entire video frame and the same value for tiles from CS is

around 7%. Fig. 6.7(b) illustrates the spatial distribution of two types of tiles.

Values are normalized separately for two distributions. The tiles from the cache

mainly reside at the centre of the frame where the majority of the user VPs are

concentrated [80]. The tiles from CS cover the periphery of the centre of the frame.

6.5.0.2 Overlap between VP and cached tiles

Fig. 6.8(a) shows percentage VP region covered by selected cache tile set, Ss,c.

Values are averaged across all chunks from all the test videos. We see that VP
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(a) Distribution of no. of tiles and their % tile
sizes compared to the entire video frame

Tiles from Cache

Tiles from CS

(b) Spatial distribution of tiles. To increase the
clarity, two distributions are normalized indepen-
dently

Figure 6.7: Distribution of the tiles from MEC cache and CS fetched by
OpCASH

coverage in OpCASH exceeds 90(±14.6)% and 95(±8.0)% by the 11th and 24th

users. For the same users baseline achieves only 21(±35.9)% and 36(±45.8)%
respectively. Thus, tiles from up to 24 users are enough to fill the cache with a

representative VP tile set. Also, variability of the metric is reduced by the user in

OpCASH generalizing the performance over chunks from a variety of videos.

Fig. 6.8(b) shows percentage (%) region of sc,s which overlaps with a given VP

region and percentage of zero cache hits (i.e., no Sc,o found for S) over the all VP

requests by a given user. Values are averaged across all chunks from all the videos.

For OpCASH at the 22nd user, almost 80% of a given sc,s overlaps with the VP

and levels off after that. In contrast, the same metric gradually increases for the

baseline but is still lower than OpCASH performance. The reason is zero cache

hits in the baseline are higher for the users at the beginning therefore, averaging

across all users makes the percentage sc,s region on VP smaller. On the contrary,

the percentage of zero cache hits in OpCASH becomes almost 0 by the 5th user

increasing the cache utilization and stabilizing the ss,c coverage on VP.

6.5.0.3 Normalized data dl from MEC cache and CS

Fig. 6.8(c) presents data download (dl) per video by MEC cache and CS normalized

by requested VP size. OpCASH is able to reduce the content from CS by 85% of

the same value in baseline. Data dl from the cache by OpCASH stabilizes at 24th

user claiming 1.4× data relative to the VP size. Moreover OpCASH download 4.4×
more data from the cache compared to baseline. Since the cached tiles proposed by
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90%

95%

User 11 User 24

(a) % VP region overlap with the cached tiles
averaged by all the videos and chunks

(b) % region of a given sc,s on VP region and %
No. of chunks with zeros cache hits by the user
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Figure 6.8: % tile distribution from the cache and CS, Normalized data dl
distribution comparisons and delivery time comparison

OpCASH can cover out of VP regions as well, a certain level of data redundancy is

expected nevertheless, given the higher bandwidth in the last mile network, such

data redundancy is manageable.

6.5.0.4 Absolute data dl and content delivery time

We measure the absolute data dl value per video (shown in Fig. 6.8(d)) comparing

OpCASH with streaming 360° videos in full frame, fixed-cfg, exact VP tiles (S) with

no caching (VP-NC ) and baseline. For the first three cases, we assume data is

fetched only from CS. Compared to full frame and fixed-cfg, VP-NC can reduce the

data dl by 62% and 38% respectively. The baseline fetches 9.2 MB per video from

CS, but can be further reduced by 80% using OpCASH. OpCASH fetches additional

5.0 MB data compared to the initial VP request due to the extra VP cover by

cached tiles. However, OpCASH total data transmission and variability of MEC

cache usage is 12.0% and 49.3% lower than compared to fixed-cfg, respectively.



Optimized utilization of MEC cache for dynamic tiling 146

Fig. 6.8(e) shows the content delivery time for VP-NC, baseline and OpCASH.

Since the data from CS is carried through both core and last mile networks, the

total delivery time for both networks is depicted. For the data from the cache, only

last-mile network delivery time is measured. For every request at 0.5 s, OpCASH

has only 42.8 ms delivery time which is 83.4% and 78.4% reduction compared

VP-NC and baseline methods respectively. This is mainly because OpCASH tends

to fetch the majority of the data from the cache, which is delivered only through

5G/6G enabled last mile network.
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(b) % data dl by the cache by the video duration
for different user categories based on streaming
order

Figure 6.9: Comparison OpCASH vs fixed-cfg, % data dl cache by video du-
ration

6.5.0.5 Comparison with fixed tiling schemes

In this section we present an in-detail comparison between OpCASH and fixed-cfg.

Fig. 6.9(a) shows the data dl per video by OpCASH and fixed-cfg normalized by

VP size. Compared to OpCASH, fixed-cfg reaches its relative maximum cache data

dl value, 1.5 at the 10th user, whereas OpCASH gradually improves the metric until

24th user to achieve its plateau at 1.4. in average. fixed-cfg fetches 0.25× less data

from CS and 1.13× more data from the cache server. The reason for higher cache

utilization by fixed-cfg is towards the last users, almost all the tiles are cached at

the MEC due to the limited number of tiles and their fixed configuration to cover

the entire frame. Though fixed tiling outperforms OpCASH in terms of cache and

CS utilization, total data dl by fixed-cfg is higher than OpCASH, which is further

verified in Section 6.5.0.4. This is because fixed-cfg downloads more redundant

data from out of VP region.
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6.5.0.6 Percentage data dl (%) from cache by the video duration

We analyze the percentage data dl from the cache by the video duration categoriz-

ing the users according to the video streaming order shown in Fig. 6.9(b). Users

from 1–5 have the lowest cache utilization, less than 70% with high variability

throughout the video duration. Towards the end of the user order (i.e., users from

26–30), data dl from the cache exceeds 95% and is consistent throughout the entire

video duration. This is because now the MEC has already cached representative

tiles that can satisfy the majority of the user VPs. A close observation to the

user 1–5 category reveals that the data dl rate decreases from 75% to 65% within

the first 10s. The reason is, at the very beginning user VPs are concentrated in

the centre of the frame and soon enter an exploratory phase dispersing the VPs

reducing the impact from the cache. We do not see such a trend in later users

because most tiles are cached.

6.5.0.7 Impact of cache replacement

We analyzed the impact of cache replacement policy on OpCASH assuming equal

popularity to all test videos considered. With this assumption, all the videos are

cached, which is more challenging compared to popularity based caching, where

only popular videos are cached. We create several cache limits (L); 70%, 50%

and 35% of the maximum avg. cache consumption by a video when there is no

cache limit (NL), which occurs at 30th user. We apply the Least Frequently Used

(LFU) cache replacement policy to remove excess content. Fig. 6.10(a)–left shows

that at 22nd and 14th users, L=70% and L=50% plateau the cache consumption

at 48 MB and 36 MB per video respectively. For the same limits, Fig. 6.10(a)–

right indicates that L=70% and L=50% achieve 87.8(±17.6)% and 86.2(±18.2)%
data dl from the cache, which is only a 1.1% and 2.9% decrease compared to

the NL approach. These results first show that with properly tuned cache limits,

OpCASH can still provide the same cache contribution without exhausting the

MEC resources. Second, experimentally we observed that controlling the cache

size also limits the number of tiles reducing the search space for ILP. Finally, the

high VP overlapping nature [164] is favourable for higher cached tile overlap even

under a limited storage.
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L=50%

L=70%

L=35%

(a) (left): Cache consumption per video for sev-
eral cache limits. (right): % data dl by the cache.
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Figure 6.10: Adding cache replacement policy on OpCASH and time for key
tasks.

6.5.0.8 Dissection of time of OpCASH processes

Since we assume 2 Hz of VP sampling rate at the client, OpCASH has to meet

500 ms strict latency requirement. Fig. 6.10(b) shows the time taken by different

tasks to complete that includes, i) tile proposal at the client (31.6 ms), ii) pro-

cessing on the MEC (35.4 ms), iii) tile encoding at CS (281.6 ms), iv) content

delivery time through the network (43.2 ms). OpCASH ILP process compara-

bly has a shorter duration. Altogether OpCASH requires 391.8 ms which is less

than the 500 ms limit assuming that the remaining time is adequate for uplink

transmission and frame rendering [21]. In this analysis, we have shown the time

for single tile encoding by a single CPU core leveraging software-level encoders

(i.e.,FFmpeg). Given the fact that 90% of the requests to the CS have at maxi-

mum only 5 tiles and cover only 13% of the entire video frame in total, we believe

that parallel processing with GPUs or hardware level encoding can achieve this

time requirement easily [88, 155, 156].

6.5.0.9 Video quality with variable quality tiles

We conducted a preliminary experiment for streaming variable quality tiles imple-

menting a tile quality selection algorithm, which is based on [15], on top of the

OpCASH solution. To reduce the complexity of ILP process, we propose first to

decide on the Sc,s and Sa considering the 4K resolution videos. Then, select tiles

on different quality levels (i.e., HD, 4K and 8K) to meet the bandwidth constraints

while maximizing the quality of the video chunks and minimizing the inter-chunk
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OpCASH

Baseline

(a) Analysis by the user. Values are averaged
across the video duration.

OpCASH

Baseline

(b) Analysis by video duration, Values are aver-
aged across the users.

Figure 6.11: Video quality (bottom) and tile resolution composition (top 2
graphs). Normalized values are given considering all the videos.

quality difference. We derive equations, as in Eq. 6.2, to decide the DT size of

HD and 8K videos taking the total size of BTs in corresponding DTs. We make

three key assumptions as follows; i) We see that majority of the Sa tiles fall at the

peripheral regions of the VP (see Fig. 6.7(b)). Therefore, Sa should never exceed

the quality of Sc,s [15], ii) Given the fact that tile decoding mainly depends on

the size of the tiles [20], we estimate a rough decoding time for the tiles consider-

ing the decoding time given by [15] (i.e., 160 ms in average) by taking the ratio

between sizes of the VP tiles streamed by OpCASH and [15]. We use this value to

estimate the content delivery time as 70 ms and to decide the total data that can

be transmitted within 500 ms chunk interval under a given bandwidth constraint,

iii) MEC can transcode 4K tile in Sa to HD and 8K within the chunk period that

can be streamed for the later users. This Tile selection algorithm takes only 6 ms

(average) to select the quality of tiles of a given chunk.

Fig. 6.11 shows the video quality and composition of resolution of the tiles ac-

cording to the user streaming order and the video duration. Fig. 6.11(a) (bot-

tom) shows that after the 5th users, OpCASH provides 2× higher video quality.

Fig. 6.11(a) (top 2) indicates that 89.5% (average) of the tiles streamed by Op-

CASH is under 8K resolution but baseline streams only 50.0% of 8K tiles. In

Fig. 6.11(a) (bottom), OpCASH users achieve 1.9× higher video quality than base-

line users, but the overall quality gradually reduces towards the end of the video.

This is mainly because, particularly the front users, who start streaming first, have

to fetch more tiles from the CS towards the end of the videos, which can be lower

in quality due to the limited bandwidth. We observe, higher number of 8K tile

proportion (Fig. 6.11(b) (top 2)) in OpCASH than baseline in temporal domain as
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well. Interestingly, baseline method streams 34.7% HD tiles which is 27.1% higher

than OpCASH.

Static Focus Moving focus Riding Explore Miscellaneous

Videos categories

Figure 6.12: Normalized distribution of data dl from the cache and the CS by
individual videos in different categories and the % data dl by the cache. Values

are averaged across the videos in the same category.

6.5.0.10 Individual video caching performance

We analyze the data dl from CS and MEC cache for individual videos in Fig. 6.12.

Values are max normalized by the value of maximum data dl video. Individual

video values are averaged across the same category. We see that videos in Riding

(e.g., roller-coaster, driving) category, which have comparably higher motion ef-

fects, account for the highest cache utilization of 0.77. Considering percentage data

dl from cache, Moving focus and Riding categories account for the highest MEC

cache usage, 89.9% and 90.3% respectively. Moving objects (e.g., scene narrator)

which grab the user’s attention in Moving focus category and consistent viewing

direction (e.g., roller-coaster riding) in Riding category have created common VP

distribution, increasing the cache usage. Note that we observed minor variations in

terms of different data dl metrics between different video categories. This is mainly

because when providing VP cover with finer granularity, OpCASH performs well

on all types of content, making the impact from content less significant.



Optimized utilization of MEC cache for dynamic tiling 151

6.6 Discussion

6.6.1 Challenges in deployment

Now we discuss several challenges and requirements that need to be considered

when deploying OpCASH in real. First, to develop OpCASH algorithms, we con-

sidered only one MEC server. However, OpCASH can be easily extended to col-

laborate between multiple edge nodes at the same network layer [24, 168, 169].

This is advantageous in multiple aspects. First, having multiple servers increase

the capacity to cache more data finding more cached content to satisfy the user

requests, further reducing the requests for the content servers. Second, sharing

MEC resources such as processing power and storage to handle tile content can

reduce the workload to a single server. To achieve such collaboration, OpCASH ILP

formulation can be easily modified by integrating the awareness of the other MEC

servers and their available content.

Second, At this stage of OpCASH we consider one quality level for all the tiles.

This is because the client requests only the VP tiles; therefore, tiles from both the

cache and CS should be at the highest possible quality level to achieve the highest

QoE. However, high volatile nature of operational networks, particularly the core

network, can reduce the available bandwidth causing frequent re-buffering and

poor video quality. Including the information of i) network bandwidth awareness

and ii) available quality levels and required bit rate to transmit the tiles [20, 170]

to our problem formulation, OpCASH can be easily extended to have tiles with

variable quality levels.

Third, there is a trade-off between the number of users we satisfy and the latency

in delivering cached content to the user based on the place we aim to deploy Op-

CASH in network. Generally, 5G network provides two locations for data caching

I-UPF (User Plane Function) (i.e., allows caching the data in proximity to the

user and has limited capacity) and UPF (i.e., cache the data at PGW and can

serve a large number of users). While OpCASH mainly focuses on I-UPF at this

stage, it can be extended to UPF caching to satisfy a substantial user space at the

cost of more processing and a larger search space for ILP. This essentially adds an

additional latency when delivering cached content because now the MEC servers

are located relatively further away from the consumer. Moreover, OpCASH must
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be further tested with an optimized cache replacement mechanism to not overrun

the cache storages before such UPF level deployment.

Finally, in parallel to deploying OpCASH on MEC server to find optimal cached

tiles to cover user VP, VASTile should be run on the client device (e.g., smartphone,

HMD) to propose a suitable tile (i.e., variable tile) scheme for the VP. Though we

run VASTile reasonably at a lower processing speed in our simulation experiments,

with the limited resources on the client devices, we can expect extra delays in

processing. To avoid such delays, efficient implementation of VASTile in a native

language (e.g., Android native) could be done, which requires more engineering

effort. Alternatively, VASTile can also be offloaded to be run at MEC servers

having only the VP information (i.e., coordinates of VP centre) from the client

side. However, this, in turn, will impose additional computational tasks on MEC

processors, which can be already overloaded with many other processing tasks.

6.7 Summary

In this chapter, we proposed OpCASH, a novel approach to support MEC assisted

personalized 360° video streaming with variable tiles (DTs). First, we deployed

VASTile on the client device to suggest a suitable DT scheme for the individual

VP and send tile information to the MEC server. On the MEC, OpCASH tries to

provide optimal cached tile coverage solving the problem of non-identical behaviour

of cached and requested VP tiles. While utilizing the MEC cache at the maximum

level to find cached tiles to cover the requested VP region, OpCASH reduces the

number of additional tile requests to the content servers decreasing the content

delivery time through the congested core network and improving video quality.

To find optimal cached tile configuration, we formulated an ILP in OpCASH, which

takes pixel redundancy before compression, compressed cached tile size and com-

pressed region size on VP that is not covered by the cached tile as the inputs to

the objective function. We modelled the cached tile size as a function of basic tile

size to circumvent calculating tile sizes by encoding them. If only OpCASH cannot

find optimal tiles to cover parts of the VP region, it makes additional tile requests

to the content servers to fetch new tiles.

We validated OpCASH with a trace-driven simulation of 870 VP traces consisting

of 29 360° videos in multiple genres accounting for 52200 min total video duration.
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The results show that having only variable cached tiles up to 24 users achieves

more than 95% of VP coverage which is 74% greater than the baseline. Moreover,

OpCASH reduces the data fetched from the CS by 85%, total content delivery time

by 74% and 2× higher video quality compared to the baseline. Compared to fixed-

tile based cached utilization, OpCASH can reduce the total data dl value by 12%.

Further analysis of OpCASH showed that it could effectively support existing cache

replacement strategies and provide high-quality video tiles improving the end-user

QoE.

Finally, we discussed several challenges when deploying OpCASHin the wild, mainly

including OpCASH’s support for collaborative edge caching, the importance of

integrating video quality-related parameters to ILP formulation and implemen-

tation challenges of VASTile on the resource-limited client devices in parallel to

OpCASHdeployment at the MEC.



Chapter 7

Thesis conclusion and Future

work

7.1 Summary and Conclusions

In this thesis, we presented a holistic architecture to optimize the 360° video deliv-

ery by proposing four solutions at the network, server and combining client with

MEC as shown in Fig. 7.1. First, as a network solution to optimize 360° video

delivery (Fig. 7.1– 1○), we proposed ML based framework named 360NorVic to ex-

tract 360° video flows from the encrypted network traffic. Then we analyzed the

extracted traffic to understand 360° video behaviour in the encrypted traffic do-

main. Second, we proposed a video traffic generation mechanism (VideoTrain++)

(Fig. 7.1– 2○) as our next in-network modification to support encrypted video traf-

fic analysis including 360NorVic. Third, we moved our attention towards server

side modification proposing VASTile (Fig. 7.1– 3○), an efficient tool 360° video

frame partitioning into dynamic tiles (DT) to reduce redundant data transmission

and save bandwidth. Finally, we propose to combine client with MEC to assist

360° video streaming with DTs (Fig. 7.1– 4○) while personalizing the video stream-

ing session by applying VASTile on individual user VPs. Below, we further discuss

our summary and conclusions under network, server and MEC+client categories.

154
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Figure 7.1: Proposed solutions for 360° video delivery optimization at differ-
ent components in 360° video streaming pipeline. Network: 360NorVic, Video-

Train++, Server: VASTile, MEC+Client: OpCASH

7.1.1 Network

In our in-network solutions, we started our analysis by understanding the 360°
video traffic behaviour in the network proposing 360NorVic as a 360° and normal

video classification engine (Fig. 7.1– 1○) in Chapter 3. We diversified our dataset

by collecting flow and packet level data for 360° and normal video traffic from

different network vantage points and video streaming modes (e.g., full frame and

VP-aware streaming). We proposed ML classification under various scenarios,

such as offline, near real-time, VP-aware streaming, and MNO level.

Our results showed higher classification accuracy (over 92%) in all classification

scenarios for both packet and flow level data indicating the feasibility of deploying

360NorVic for network level optimization for efficient delivery of 360° videos. For

example, classification results at MNO reveal the ability to extract 360° video flows
in the wild that can eventually be extended for efficient network resource handling

for smooth 360° video delivery. We then analyzed the root causes for the results

that gave us insights into how 360° video differs from normal video in the encrypted

traffic domain. In general, 360° video traces stream more data (e.g., more packets

in larger sizes) than normal videos throughout the entire video. However, multiple

other factors can also contribute differentiating 360° video traces from normal
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videos, such as traffic direction, content provider, and embedded information to

the chunk requests (e.g., user head movement information when watching 360°
videos), to name a few.

In DNN based analysis in 360NorVic, we observed low classification accuracy

mainly due to the lack of training data. As a solution, in Chapter 4, we pro-

posed VideoTrain++ as a data synthesis framework based on WGAN models for

encrypted video traffic generation (Fig. 7.1– 2○). In addition, to 360° video traces,

we leveraged a variety of normal video datasets to generalize the data synthesis pro-

cess. We observed increased classification accuracy by applying synthetic data for

ML model training, especially with DNN models. Moreover, effective algorithms

we introduced for actual trace pre-processing and controlling WGAN model train-

ing improved the fidelity of synthetic data with actual data. In one aspect, this

high data fidelity and improved classification accuracy validate VideoTrain++ per-

formance. In other aspects, they showcase the promise given to network providers

to circumvent tedious data collection processes in complex network systems, which

may take a longer time and are bound with many privacy issues of the network

users.

7.1.2 Server

As we mentioned before, we proposed VASTile (Fig. 7.1– 3○), as a mechanism

for 360° video frame partitioning for dynamic (variable) tiles (DTs)–rectangular

regions with variable size and locations, as a 360° video frame pre-processing mech-

anism for content servers. DTs are important in reducing redundant pixel trans-

mission, which is an unavoidable factor when covering boundary areas of the VP

regions. VASTile first aggregates the historical user VP maps to create visual at-

tention maps on the frame and then applies a computational geometric algorithm

for frame partitioning. We implemented multiple semi-automative algorithms to

separate regions with different visual attention levels, which eventually provided

the intelligence of user visual attention for the partitioning algorithm.

We observed that VASTile can reduce the pixel redundancy when transmitting

variable tiles to the users, resulting in reduced bandwidth consumption compared

to existing fixed size tile streaming. Moreover, we showed that VASTile can process

chunks in less than 1 s, which is significantly lower than existing variable tile

proposal mechanisms and indicates its scalability of processing 360° videos on the
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servers. With VP-awareness, VASTile could provide high quality for the tiles in

highly visually attractive regions, which is of utmost importance for future 360°
video streaming with high Quality of Experience.

7.1.3 MEC + Client

We proposed OpCASH (Fig.7.1– 4○) for personalized 360° video streaming with

DTs by deploying VASTile at the client side and taking MEC assistance for con-

tent caching. We first showed that the conventional cache querying methods,

which try to find identical tiles on the cache servers, are no longer appropriate for

dynamic tiling due to their variable tile size and locations on the frame. Therefore,

OpCASH consisted of ILP based solution to find the optimal variable cached tile

configuration to cover a given user VP request with DTs. While maximally uti-

lizing the MEC cache to provide optimal VP tile cover, OpCASH further reduces

the number of additional tile requests to content servers through highly congested

core network.

In our extensive experiments, we observed that OpCASH could provide over 95%

VP cover by only cached DTs and 74% reduction in data delivery time compared

to a baseline approach considered. Along with other results in Chapter 6, we

demonstrated the promise given by OpCASH for optimized utilization of MEC

cache for personalized 360° video streaming with variable tiles with reduced latency

and high quality.

7.2 Implications in real-world implementation

In this section, we brief the considerations when deploying the solutions we pro-

posed in real-world systems.

• When deploying 360NorVic in the wild, it should be further optimized to

handle millions of flow transactions, especially at the MNO level where

the filtered flows will be in variable lengths with noisy data. Many ethi-

cal concerns arise when collecting real user data in an operational network,

therefore, proper ethical clearances should be obtained. Another significant

challenge we discussed was the evolution of traffic traces and their impact
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on classifier performance. It is mandatory to closely monitor the changes

in video traffic patterns and update the traffic classification models as an

ongoing process.

• To deploy VideoTrain++ in real world, network operators need to collect

a sufficient amount of raw packet level traces from the required vantage

point of the network followed by pre-processing them. Though we con-

ducted data synthesis only for video traffic, the proposed approach can be

easily extended for different other traffic types which obviously can have more

randomized traffic patterns with different durations. As we consider train-

ing VideoTrain++ for each trace separately, the end-to-end process requires

more computational power and time. However, given that VideoTrain++ is

run offline and network operators have the ability to provide sufficient com-

putational resources, this would not be a major obstacle to the practical

deployment of VideoTrain++.

• When deploying VASTile implementation, we need to handle a higher number

of variable tiles compared to the number of tiles in fixed tile configurations

which may demand more time for encoding and decoding. However, given

that we deploy VASTile offline on the servers, there will be sufficient time for

encoding which can be further harnessed by parallel GPU/FPGA processing.

In practical, VASTile should be run iteratively to update the DT schemes.

This can be done either by proposing periodic time intervals for DT updating

or by implementing an efficient mechanism to detect the changes in attractive

levels in visual attention maps.

• For OpCASH, it is possible to leverage multiple MEC servers for collaborative

caching to further increase the caching capacities and to reduce the addi-

tional requests to the content servers located in the far distance. Moreover,

it is mandatory to introduce multiple quality levels for DTs with DASH sup-

port which is also beneficial for adapting to MPEG-OMAF standard. When

placing OpCASH in 5G networks, it is desirable to select I-UPF cache servers

over UPF servers at PGW gateways. However, with a proper analysis of how

to handle comparably a large number of user requests and strict latency re-

quirements in delivering cached content, OpCASH can be deployed at UPF

to satisfy a larger population through one cache server.
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7.3 Limitations

We identified several limitations in the proposed holistic architecture which we

summarized under four main solutions proposed.

• In 360NorVic, we conducted experiments with a limited number of mobile

devices which has Android OS, excluding HMDs that are dedicated for 360°
video streaming. Such device variability can affect the video streaming pat-

terns depending on frame processing power and rendering capabilities. Also,

in 360NorVic we considered only video streaming on demand. However, 360°
video live streaming will be a more challenging scenario with bandwidth lim-

itations in uplink direction, causing differences in trace patterns. Therefore,

we believe that 360NorVic should be trained with 360° and normal traces

from such different conditions to generalize the results further.

• In VideoTrain++, the input to the WGAN model was an individual trace,

and the output was synthetic traces that maintain the feature properties of

the input trace. Though this is advantageous when the number of actual

traces is limited to train WGAN model, such process of feeding individual

traces model training may not properly capture the common properties of the

traces from a signal class. This can lead to poor classification performance

because the synthetic traces within a class can show high variance.

• VASTile, that we proposed to deploy at the content servers does not consider

compression related parameters such as motion vector distribution during tile

partitioning. Therefore, the proposed tile configurations can be sub-optimal

and reduce the gains in serve storage and bandwidth savings. Therefore, the

partitioning algorithm in VASTile should be provided with intelligence from

compression awareness.

• Though we leveraged experimentally collected real user VP traces in Op-

CASH experiments, the best results for user perceived video quality ought to

be measured by real user participation. For example, metrics such as Mean

Opinion Score (MOS) can be used in such analysis especially implementing

VASTile on sophisticated HMDs. Also, to improve the user perceived QoE,

DTs with variable qualities need to be incorporated which has not been done

at this stage.
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7.4 Future works

Mainly addressing the limitations we mentioned above, we outline the following

steps as our immediate future works.

Extended user study of 360NorVic at MNO: We aim to extend our 360Nor-

Vic pilot study at MNO to a large scale user study, first conducting a crowdsourced

data gathering through controlled experiments for 360° video streaming. We plan

to deploy a 360° and normal video streaming task along with an Android/iOS

application on a crowd sourcing platform such as Amazon Mechanical Turk [171]

which allows selected users to stream several 360° and normal videos. Second, we

extract the traffic flows related to these streaming sessions to develop and train

ML classifiers to extract 360° video flows. Third, we expect to deploy trained

models in network middleboxes to extract 360° video flows. Data gathered by

the extracted flows will be used for extensive analysis of 360° video usage in the

wild, including its geographical distribution, daily usage patterns etc. Finally, the

deployed models will be periodically updated by observing the plausible changes

in the traffic patterns that also impact the traffic congestion control mechanisms.

Experiments for user perceived QoE in OpCASH: At this stage of OpCASH,

we conducted experiments by simulation leveraging VP traces collected by real user

participation in lab settings. To measure user perceived QoE, an important factor

in immersive video streaming, we aim to conduct video streaming experiments

with real user participation. First, we implement VASTile on a real Android device,

which can also be slotted to a HMD, to propose a variable tile scheme for the user

VP in real-time. Second, ILP based optimal cached tile selection will be deployed

on MEC server, which is connected to a content server (i.e., both servers will be

workstations in lab settings). Finally, the user will stream 360° videos through this

step, emulating the real world 360° video streaming and measurements related to

the user perceived QoE (e.g., MOS) will be evaluated.

In addition to the above QoE experiments, a thorough analysis will be done to

identify the placement of OpCASH in real 5G network (e.g., UPF or I-UPF) along

with their practical concerns including the number of users to satisfy and latency

when delivering cached content. We aim to leverage network simulation packages

such as NS3 in these experiments.
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Incorporate compression awareness for VASTile: In VASTile we aim to first

add compression awareness to the frame partitioning to further reduce storage on

the server and bandwidth consumption. One possible approach would be to use

parameters such as motion vectors, BT size (on storage) distribution to create

compression awareness maps and combine them with visual attention maps ap-

propriately before applying the partitioning algorithm. Second, we aim to change

the quality levels of variable tiles dynamically based on visual attention maps to

support bit rate adaptive streaming algorithm at the client.



Appendix A

Feature importance of 360NorVic

classifiers

This section summarizes the most important 5 features for offline models: DS-

pkt and DS-flw for each traffic type separately. We let the XGBoost classifiers

select the most important features with the relative importance by feeding all the

features we derive.

A.1 DS-pkt–offline

To recall, we first extract the features in Table 3.2 for each 5 s long bin in a

given trace. Then we derive summary statistics (i.e., mean, min, max, (25th, 50th,

75th) percentile) of each feature over all the bins, which creates a final vector to

represent one trace. The most important 5 features out of them are reported in

Table A.1.

A.2 DS-flw–offline

In DS-flw, for each feature in Table 3.3, we derive summary statistics over flows

of a given streaming session, creating a feature vector to represent the session.

Table A.2 reports the most important 5 features.
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Table A.1: Normalized feature importance: DS-pkt

Traffic type Feature Importance

YT Total bytes frame lvl dl 75% 0.159
Total bytes packet lvl dl 75% 0.120
Total bytes packet lvl dl mean 0.088
Total num of packets dl 75% 0.067
packet size std dl 50% 0.019

FB packet size std ul 50% 0.108
packet size std ul 25% 0.046
packet size mean ul 25% 0.043
packet size std ul mean 0.036
packet size mean ul 50% 0.036

BOTH packet size mean ul 50% 0.092
packet size mean ul 25% 0.054
packet size mean ul min 0.047
packet size std ul 50% 0.046
Total num of packets dl 75% 0.033

Table A.2: Normalized feature importance: DS-flw

Traffic type Feature Importance

YT frame size ul mean min 0.152
frame size dl mean max 0.150
burst size dl mean max 0.091
burst num of packets dl max 0.081
frame gap ul mean max 0.078

FB frame size dl mean mean 0.210
frame size dl mean sum 0.197
burst size uldl mean min 0.074
frame size ul mean min 0.057
burst gap ul mean mean 0.056

BOTH frame size ul mean min 0.204
frame gap ul mean max 0.101
burst duration ul mean max 0.068
burst gap dl mean mean 0.062
burst gap ul mean max 0.057



Appendix B

Further analysis of

VideoTrain++ performance using

D2 dataset

In this appendix, we provide details of additional evaluation of VideoTrain++ con-

ducted using D2 dataset. We first present the individual video performance in

classification, followed by the impact of Algorithm 2 on ML-based classification.

Finally, we present a sophisticated analysis of comparing VideoTrain++ with other

data synthesis methods leveraging D2 dataset.

B.1 Individual video performance

Fig.B.1 indicates the performance of individual video classification (i.e., finger-

printing) in F1-Score [172] 1 for the 90 s long traces with 40 actual traces for

CNN model training. In D2–Netflix (Fig. B.1(a)), for almost all the videos, F1-

Score starts from 60%–95%, then gradually increase more than 90%. However,

for D2–Stan (Fig. B.1(b)), video IDs such as 10, 14, 18, 19 always show higher

performance (≥ 95%) whereas, video ID 1, 3, 20 perform poorly throughout the

increase in training data size. For the videos such as video ID: 4, 5, 8, perfor-

mance fluctuates while slightly improving the value at increased training dataset

1Referring to the definition of accuracy, it is impractical to provide an accuracy score for
individual videos in multi-class classification. Therefore, we use F1-Score, which is provided by
SkLearn [172] for multi-class classification
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size. Moreover, the accuracy of video IDs: 2, 6, 11, 13, 16 and 20 decreases when

adding synthesized data. An in-depth analysis of confusion matrices showed that

the majority of the error predictions are made between these video IDs themselves.

For example, considering the error predictions of video ID 6 and 13, 66% and 80%

are made by incorrectly predicting them as video ID 16 and 6, respectively. We

observe the same phenomenon for the other video IDs. The similarity of the syn-

thesized traces between these video IDs has been the main reason for such error

predictions and decreased accuracy. This indicates that the content of the video

has an impact on video classification, which determines the performance variation

when increasing the training dataset size with synthetic data.
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Figure B.1: F1-Score of individual video classification performance for D2–
Netflix and D2–Stan. Actual number traces = 40 and trace duration = 90 s

B.2 Impact from Algorithm 2

In Table. B.1, we compare the classification accuracy with and without applying

Algorithm 2, which controls the number of epochs in WGAN training. We consider

the number of actual traces = 40 and trace duration = 90 s scenario for CNNmodel

training using the traces from D2–Netflix and D2–Stan. In without applying

Algorithm 2 scenario, there are two cases namely Underfitting and Overfitting.

In Underfitting and Overfitting, we early stop and overrun the model training

process respectively. For these two scenarios, the fixed number of epochs to train

the WGAN model are calculated based on the optimum epoch values (i.e., values

which give the higher cosine similarity and lower euclidean distance) shown in

Fig. 4.6 and Fig. 4.7. For D2–Netflix first split and second split, we define this

optimum value as 200 and 370, respectively. The same value for D2–Stan is 130.
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In Underfitting, number of epochs are fixed at 0.5× the optimum epochs for both

datasets and in Overfitting, number of epochs are set at 2× and 4× the optimum

epoch for D2–Netflix and D2–Stan respectively.

Overall, Algorithm 2 outperforms both Underfitting and Overfitting scenarios due

to the impact of the dynamic epoch controlling mechanism when training the

WGAN model. For both D2–Netflix and D2–Stan, applying Algorithm 2 gives

the highest accuracy values 94.3% and 95.1% at 3200 and 1600 train set sizes,

respectively. In D2–Netflix, this highest accuracy is 3.9% and 1.2% greater than

corresponding Underfitting and Overfitting scenarios. In D2–Stan, the same dif-

ference is 2.9% and 4.6%. In addition, we observe a clear decreasing trend in

Underfitting (in other words, early stopping) scenario of D2–Stan mainly due to

the lower fidelity of synthesized traces to the actual traces.
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B.3 Comparison with other data generation ap-

proaches

In this section, we compare VideoTrain++ with other data generation mechanisms

that are categorized into Statistical and ML methods. We first briefly introduce

each approach and then present the comparison results. We selected D2–Netflix

for the comparison and the features used are Tot bytes dl and Tot bytes ul. Note

that since VideoTrain++ traces are sequences of bin-level feature values, direct

comparison between packet-level trace generation methods leveraging statistical

feature distributions from raw packet data [173] is not viable. Instead, statistical

approaches, which leverage the same pre-processed actual data used in Video-

Train++ are considered for the comparison.

Gaussian noise (Statistical): In this method, without loss of generality, we add

Gaussian random noise of µ = 0 and σ = 0.5 on top of each feature distribution.

We set the minimum value to be 0 to remove any negative values.

Gaussian Copula (Statistical): Generally, copula methods first create univari-

ate marginal distributions of individual features and create a joint distribution

considering the interdependencies of the features [174]. For a given video, we ran-

domly select ncop number of traces and consider each bin of the trace as a random

variable to create corresponding marginal distributions. Then, we apply Gaussian

copula to create a joint distribution of time points (i.e., bins) considering temporal

interactions and sample the values for each time point from that distribution to

synthesize traces. For this purpose we leverage GaussianMultivariate() from

Copulas package. 2

GANTunnel (ML): This is a GAN based data generation approach proposed

in [66], which leverages min-max normalization approach to generate data. For

each actual trace, we ran the model for 3000 epochs which gave us near matching

synthesized traces.

Auto Regression (AR) (ML): Auto regression (AR) applies a regression model

to predict the values taking observations from previous time steps as the input.

We leverage the AutoReg model from statsmodel 3. We vary the lag variable

2https://sdv.dev/Copulas/tutorials/03_Multivariate_Distributions.html#

Gaussian-Multivariate
3https://www.statsmodels.org/stable/examples/notebooks/generated/

autoregressions.html

https://sdv.dev/Copulas/tutorials/03_Multivariate_Distributions.html#Gaussian-Multivariate
https://sdv.dev/Copulas/tutorials/03_Multivariate_Distributions.html#Gaussian-Multivariate
https://www.statsmodels.org/stable/examples/notebooks/generated/autoregressions.html
https://www.statsmodels.org/stable/examples/notebooks/generated/autoregressions.html
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(vlag) between 4–8, which changes the number of previous observations from 1 to

vlag to train the AR model. We randomly select synthesized traces from different

vlag values for the final classification.

Table B.2: Comparison with other data generation methods under the
categories statistical and DNN-based approaches

Train dataset Statistical approach ML approach VideoTrain++
Gauss. noise Gauss. copula GANTunnel AR

800 (actual) 86.9±3.7 88.0±4.1 85.6±4.7 86.5±4.3 84.5±6.4
1120 92.5±2.2 82.6±7.5 94.0±2.2 85.1±4.3 90.4±5.3
1440 90.9±1.9 89.0±2.5 92.1±2.3 93.5±2.1 88.2±9.2
1760 89.4±2.5 82.3±5.2 94.6±1.6 93.5±2.0 92.9±3.5
2080 87.5±3.4 88.0±4.1 92.6±2.4 93.5±1.7 96.4±1.1
2400 81.9±3.3 81.9±9.9 93.6±1.4 90.3±5.8 94.0±4.0

Table B.2 reports the accuracy variation when adding synthesized data. Video-

Train++ shows the highest accuracy of 96.4% at 2080 train set size. Comparing

VideoTrain++ with statistical approaches, both Gaussian noise and Gaussian cop-

ula methods show less than 90% accuracy most of the time. On average, Video-

Train++ attain 4.1% and 8.1% more than accuracy compared to Gaussian noise

and Gaussian copula methods. GANTunnel [66] approach shows higher accuracy

results than VideoTrain++ at earlier train set sizes but becomes lower than Video-

Train++ after 2080 train set size. Note that to achieve such accuracy for the

GANTunnel method, we trained the corresponding WGAN model 3000 epochs,

which are around 5 to 6 times greater than the epochs in VideoTrain++. AR

method also exceeds 90% accuracy, but the maximum accuracy achieved is 93.5%,

which is 2.9% lower than the accuracy of VideoTrain++.
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